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ABSTRACT

Modern information retrieval (IR) models, trained exclusively on standard <query,
passage> pairs, struggle to effectively interpret and follow explicit user instruc-
tions. We introduce InF-IR, a large-scale, high-quality training corpus tailored
for enhancing retrieval models in Instruction-Following IR. InF-IR expands tradi-
tional training pairs into over 38,000 expressive <instruction,query,passage>
triplets as positive samples. In particular, for each positive triplet, we generate two
additional hard negative examples by poisoning both instructions and queries, then
rigorously validated by an advanced reasoning model (o3-mini) to ensure semantic
plausibility while maintaining instructional incorrectness. Unlike existing corpora
that primarily support computationally intensive reranking tasks, the highly con-
trastive positive-negative triplets in InF-IR further enable efficient representation
learning to facilitate direct embedding-based retrieval. Using this corpus, we train
InF-Embed, an instruction-aware Embedding model optimized through contrastive
learning and instruction-query attention mechanisms to align retrieval outcomes
precisely with user intents. Extensive experiments across multiple instruction-
based retrieval benchmarks demonstrate that InF-Embed significantly improves
the instruction-following capability for both embedding-based (+9.0 p-MRR) and
auto-regressive language models (+4.2 p-MRR) across different model sizes.

1 INTRODUCTION

Query
Deforestation and urbanization result in 
increased emissions, urban heat island effects ...

Positive Document

Relevance:
Semantic MatchingTraditional Information Retrieval

Find an optimistic and positive doc to the query. Community-led initiatives, such as urban tree 
planting and regenerative farming, are restoring 
local ecosystems and helping to absorb 
atmospheric carbon, demonstrating the collective 
potential to build a more sustainable future.

Positive Document

Relevance:
Instruction-Aware 
Semantic Matching

Instruction-Following Retrieval

How human activities influence climate system?
Query

Instruction

How human activities influence climate system?

Figure 1: Example of original information retrieval compared to instruction-following retrieval.

Information retrieval (IR) systems play an important role in efficiently accessing relevant information
from vast document collections (Robertson et al., 1995; Karpukhin et al., 2020). Despite notable
advancements, conventional retrieval models often struggle to accurately interpret and align with
specific user requests, retrieving information based primarily on lexical or semantic matching while
overlooking nuanced intents explicitly expressed in complex user queries (Figure 1). Modern language
models (LMs) serving as the backbones of retrieval systems has demonstrated strong potential to
incorporate instruction-following capabilities (Ouyang et al., 2022; Wang et al., 2023b), enabling
retrievers to understand and respond accurately to a diverse set of user requests (Su et al., 2023;
Asai et al., 2023; Jiang et al., 2024). Instruction-following IR has emerged as an effective paradigm
for explicitly guiding retrieval systems through detailed user instructions (Weller et al., 2024; 2025;
Muennighoff et al., 2024), thereby enhancing retrieval accuracy and user satisfaction.

In a standard instruction-following IR framework, detailed user instructions are incorporated alongside
queries to condition the retrieval process (Weller et al., 2024; Oh et al., 2024). However, embedding
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models typically struggle with effectively interpreting and following detailed instructions; conversely,
modern decoder-only LMs inherently lack robust representation learning capabilities, inadequately
capturing the complex interactions among instructions, queries, and documents (Xiao et al., 2024;
Wang et al., 2022a; Izacard et al., 2021). This fundamental dilemma underscores the pressing need
for an effective embedding-based instruction-aware retrieval model that simultaneously excels in
both efficiently encoding and accurately interpreting complex instruction-query-passage interactions.
Addressing this challenge requires high-quality training resources specifically tailored for instruction-
aware representation learning; unfortunately, existing instruction-following IR datasets (Petroni et al.,
2021; Thakur et al., 2021; Muennighoff et al., 2023; Oh et al., 2024; Zhou et al., 2025; Sun et al.,
2024; Su et al., 2024) serve primarily as evaluation benchmarks with insufficient training data.

Recent studies (Weller et al., 2024; 2025) employ large language models (LLMs) to synthesize both
relevant and irrelevant documents corresponding to specific instruction-query pairs. Yet, they often
rely merely on binary relevance signals or simplified negative examples, failing to capture the intricate
relational dynamics inherent in instruction-based retrieval tasks. Moreover, current training paradigms
focus heavily on computationally intensive reranking tasks with decoder-only architectures (Weller
et al., 2024), thereby neglecting the substantial efficiency and scalability advantages of embedding-
based retrieval models. To summarize, it is still crucial yet challenging to effectively and efficiently
unleash the capability of retrieval models for complex instruction-following IR.

In this study, we introduce InF-IR, a large-scale training corpus designed to advance instruction-
following capabilities in retrieval models. We extend traditional retriever training samples by trans-
forming standard <query,passage> pairs into expressive <instruction,query,passage> triplets,
explicitly modeling complex interactions in instruction-following IR. Specifically, we generate diverse
instruction-query combinations paired with corresponding retrieved documents as positive samples,
while systematically poisoning both instructions and queries separately to create challenging negative
samples. To further strengthen representation learning, we employ an advanced reasoning model
(o3-mini) to ensure negative sample quality by validating semantic plausibility while maintaining
instructional misalignment. The resulting InF-IR comprises 38,759 positive samples and 77,518
meticulously crafted hard negative samples, effectively guiding retrievers to accurately interpret user
intentions while distinguishing between semantically similar but instructionally distinct contexts.
Importantly, InF-IR not only supports training large, computationally expensive auto-regressive LMs,
but also enables efficient training and scaling of smaller embedding-based models for instruction-
aware representation learning. Building upon InF-IR, we propose InF-Embed, an instruction-aware
text embedding model trained via contrastive learning and instruction-query attention to optimize
embeddings, accurately capturing complex relationships among instructions, queries, and retrieved
documents. Our key contributions can be summarized as follows:

• (i) Dataset Wise, we introduce InF-IR, a publicly available large-scale, high-quality training
corpus specifically designed to enhance retrieval models in instruction-following IR. InF-IR
features over 38,000 expressive <instruction,query,passage> triplets with carefully crafted
hard negative examples, effectively addressing the critical shortage of high-quality training
resources for instruction-aware representation learning;

• (ii) Methodology Wise, we propose InF-Embed, an instruction-aware embedding model optimized
via contrastive learning and instruction-query attention. InF-Embed efficiently encodes and
precisely interprets complex user instructions, resolving the efficiency-effectiveness trade-off
faced by traditional decoder-only and encoder-only instruction-following retrieval models; and

• (iii) Experimental and Benchmark Wise, extensive empirical evaluations demonstrate that
InF-Embed consistently improves instruction-following performance for both embedding-based
(+9.0 p-MRR) and auto-regressive (+4.2 p-MRR) LMs, facilitated by our diverse training corpus,
InF-IR. Moreover, we systematically benchmark a comprehensive suite of contrastive learning
objectives across multiple embedding models and LMs with varying sizes, thereby supporting
rapid future advances in instruction-following retrieval systems.

2 RELATED WORKS

Instruction-Following Retrieval Datasets. Integrating explicit instructions into IR models represents
a recent research focus that contrasts with traditional dense retrievers emphasizing phrase-level
semantic matching (Wang et al., 2022a; Izacard et al., 2021). While several datasets (Petroni
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Table 1: Summary of existing instruction-following IR datasets. "I", "Q", and "P" denote "instruction",
"query", and "passage", respectively. "−" denotes negative samples; for example, "I−" indicates
contrasting instruction for negative sample generation. Notations are consistent across tables.

Datasets Eval. Train (Q, P)+ I+ I− Q− P− Quality Check #I #Q #P Avg. |I| Avg. |Q| Avg. |P|

KILT (2021) ✓ ✗ ✓ ✗ ✗ ✗ ✗ - - 50.7K 5.9M - 160.83 18.23
BEIR (2021) ✓ ✗ ✓ ✗ ✗ ✗ ✗ - - 54.3K 52.8M - 14.78 113.77
MTEB (2023) ✓ ✗ ✓ ✗ ✗ ✗ ✗ - - 1.0M 172M - 25.64 100.14
InstructIR (2024) ✓ ✗ ✓ ✓ ✗ ✗ ✗ gpt-4 9.9K 9.9K 16.1K 49.04 5.57 91.23
FollowIR (2024) ✓ ✗ ✓ ✓ ✗ ✗ ✗ gpt-4 104 104 98.3K 43.51 11.44 122.69
Bright (2024) ✓ ✗ ✓ ✗ ✗ ✗ ✗ - - 1.3K 1.3M - 203.05 343.01
MAIR (2024) ✓ ✗ ✓ ✓ ✗ ✗ ✗ - 805 10.0K 4.3M 33.18 315.16 547.51
InfoSearch (2025) ✓ ✗ ✓ ✓ ✗ ✗ ✗ gpt-4 1.6K 600 6.4K 17.21 8.19 175.98
IFIR (2025) ✓ ✗ ✓ ✓ ✗ ✗ ✗ gpt-4o 2.1K 943 1.4M 99.35 36.52 224.97
Promptriever (2025) ✓ ✓ ✓ ✓ ✗ ✗ ✓ FollowIR-7B 489K 489K 1.6M 103.2 5.95 56.27
InF-IR (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ o3-mini 77.5K 77.5K 116.2K 35.57 8.06 55.2

et al., 2021; Thakur et al., 2021; Oh et al., 2024; Su et al., 2024; Sun et al., 2024; Zhou et al.,
2025; Muennighoff et al., 2023; Weller et al., 2024; 2025; Song et al., 2025) have emerged to
comprehensively evaluate the instruction-following capabilities of retrieval models, there remains
a notable scarcity of sufficient and high-quality training resources (Table 1). FollowIR (Weller
et al., 2024) offers a small set of 104 instructions with simple binary relevance signals. Although
Promptriever (Weller et al., 2025) contributes a significantly larger training set, it generates negative
examples by only contrasting documents and relies extensively on an under-trained small instruction-
tuned LM for quality assurance. Motivated by these limitations, we introduce InF-IR, an instruction-
following IR data synthesis pipeline that systematically generates challenging negative examples by
jointly contrasting instructions, queries, and documents. Moreover, InF-IR incorporates rigorous
quality validation, resulting in a high-quality corpus of representative positive-negative triplets
specifically designed to enhance instruction-aware contrastive learning.

Instruction-Following Retrieval Models. LMs as backbones of information retrievers enable ad-
hoc search systems to retrieve with user instructions when responding to complex queries (Wang
et al., 2023a; Moreira et al., 2024; Su et al., 2023; Asai et al., 2023). Early attempts to incorporate
instructions into retrieval systems have often relied on decoder-only LLMs, formulating the retrieval
task as a specialized text generation or reranking problem. For example, FollowIR (Weller et al.,
2024) fine-tunes a LM as a reranker, achieving notably better alignment with user instructions
than standard bi-encoder retrievers. Additionally, GritLM (Muennighoff et al., 2024) integrates
representation and generative instruction tuning into a unified decoder-style architecture, capable
of handling both generative and embedding tasks simultaneously by distinguishing them through
instructions. Promptriever (Weller et al., 2025) fine-tunes RepLLaMA upon query-level instruction
data to improve retrieval efficiency and adaptability to diverse query instructions. In contrast to
existing instruction-following IR models that rely on powerful yet inefficient and less scalable auto-
regressive LMs, we hypothesize that embedding models as retrieval backbones can effectively address
diverse user requests through advanced instruction-aware representation learning.

3 PRELIMINARIES

Noise Contrastive Estimation. We begin by formulating a ranking-based noise contrastive estima-
tion (NCE) objective (Ma & Collins, 2018; Gutmann & Hyvärinen, 2010; Henderson et al., 2017;
Yang et al., 2019) from a conditional modeling perspective. Specifically, consider a model that
estimates a conditional distribution P(y | x), where x and y represent arbitrary combinations of
target variables. We define a scoring function sθ (x,y) parameterized by learnable parameters θ,
quantifying the relevance between a given pair (x,y). Given a training set D = {xi,yi}ni=1 and an
arbitrary minibatch B ⊆ D1 sampled during training, we introduce a predefined negative sampling
distribution P−

B (·) for generating negative examples within each minibatch. The resulting NCE
objective using in-batch negatives is formulated as follows:

ℓNCE(θ) = −Ei∼B

[
log

exp (sθ (xi,yi))∑
yk∼P−

B (y) exp (sθ (xi,yk))

]
. (1)

1For simplicity, D and B also represent the sets of indices corresponding to the sample pairs they contain.
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Passage 𝑃!

Existing Works

Query 𝑄! Instruction 𝐼!

Irrelevant
Instruction 𝐼"

Passage 𝑃!

Irrelevant
Passage 𝑃"

InF-IR (Ours)

Negative
Passage 𝑃#"

Query 𝑄!

Passage 𝑃! Query 𝑄! Instruction 𝐼! Passage 𝑃!

Irrelevant
Query 𝑄" Instruction 𝐼!

Query 𝑄! Irrelevant
Instruction 𝐼"

Negative
Passage 𝑃$"

Contrast

Contrast

Golden Elements
Synthetic Negatives
Other Negatives

Figure 2: Hard negative samples in InF-IR generated by poisoning both instructions and queries.

Dense Passage Retrieval with Instructions. Consider a corpus P = {Pi}Ni=1 comprising a large set
of candidate retrieval passages. Given a query Q paired with an instruction I provided by the user, an
instruction-following retrieval model aims to retrieve a concise subset of passages from P that best
satisfies the instruction and query. We denote this targeted positive subset as P+ = {P+

j }Mj=1, where
M ≪ N , and correspondingly define the negative set as P− = P\P+. During training, we adopt the
NCE to approximate the conditional distribution P(P+|I,Q) for the retriever model parameterized
by θ, initiating by defining x = P and y = (I,Q). Specifically, the objective encourages aligning
representations of matching instruction-query-passage triplets (P+, I, Q), while simultaneously
promoting separation of representations corresponding to non-matching triplets (P−, I, Q). In the
retrieval phase, the learned scoring function sθ(P, I,Q) quantifies the similarity between candidate
passages P and instruction-query pairs (I,Q). Instructions I provide essential supplementary context,
specifying various retrieval dimensions such as formatting, stylistic preferences, passage length, or
user-specific details such as background knowledge or profiles (Weller et al., 2024; Wang et al.,
2022b; Oh et al., 2024). By incorporating instructions, the retrieval model flexibly adapts to diverse
user intents, thereby enhancing personalization and utility of retrieved passages P+.

4 InF-IR: INSTRUCTION-FOLLOWING IR TRAINING CORPUS

4.1 DATA CURATION

In this section, we present InF-IR, a large-scale training corpus specifically curated for training a
bi-encoder retrieval model capable of effectively following instructions. To ensure generalizability, we
utilize MS MARCO (Bajaj et al., 2018) as our seed dataset to construct corresponding <instruction,
query, passage> tuples.2 MS MARCO provides a large-scale, general-domain dataset consisting
of anonymized real-world queries paired with human-annotated relevant passages. We selected
MS MARCO because of its extensive query-passage coverage and high-quality annotations, which
provide a solid foundation, allowing us to focus primarily on instruction generation.

Overview. Our data curation pipeline proceeds in three stages: (i) We first synthesize explicit instruc-
tions aligned to each query-passage pair, creating positive tuples <instruction, query, passage>;
(ii) To enhance discriminative representation learning, we then employ gpt-4o-mini (Hurst et al.,
2024) to generate challenging negative examples by introducing subtle alterations to instructions and
queries; and (iii) We rigorously validate tuple quality using o3-mini as a proxy evaluator, filtering
out low-quality tuples where the intended passage relevance is ambiguous or not clearly identifiable.

Instruction Generation. We initiate data synthesis by generating a suitable instruction for each
query-passage pair in MS MARCO. We prompt gpt-4o-mini to produce instructions that add
specificity or stylistic context, thereby explicitly linking queries more precisely to their corresponding
ground-truth passages. Leveraging gpt-4o-mini enables scalable instruction generation with a
careful balance between effectiveness and computational efficiency.

Contrastive Negatives. To facilitate effective representation learning, we generate challenging
negative samples by systematically altering instructions and queries independently, forcing the
retrieval model to distinguish subtle differences in relevance. Unlike traditional retrieval setups
relying solely on <query, passage> pairs, instruction-following retrieval introduces an additional

2We use the MS MARCO v2.1 available at https://huggingface.co/datasets/microsoft/ms_marco.
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(b) Diversity Metrics, APS (↓) and INGF (↑)

Figure 4: Visualization and diversity analysis of synthetic training samples from InF-IR.

dimension, the instruction. Thus, effective negative sampling must fulfill two criteria: (1) negative
samples must be sufficiently different from positives to alter tuple relevance significantly; and (2) they
should retain close semantic similarity to positives, enabling models to detect nuanced differences.

To fulfill these criteria, we instruct gpt-4o-mini to subtly alter (i.e., poison) the original positive
instruction I+ and query Q+, producing closely related yet instructionally misaligned negatives
I− and Q−. By combining the negatively modified instruction with the original query (I−, Q+)
and vice versa (I+, Q−), we obtain two new negative passages P 1− and P 2−. By contrasting these
carefully generated negative tuples (I−, Q+, P 1−) and (I+, Q−, P 2−) against the original positive
tuple (I+, Q+, P+), our training encourages the model to more accurately capture subtle variations
in instruction, query, and passage relevance (Figure 2). Additional details are available in section B.
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Figure 3: Cohen’s kappa
from 100 random samples.

Data Quality Check. To ensure the quality and semantic consis-
tency of our synthetic data, we employ an advanced reasoning model,
o3-mini, for quality evaluation. This validation procedure rigorously
verifies whether the generated instructions preserve the original positive
relevance of <query,passage> pairs from MS MARCO. We specif-
ically check consistency across all combinations: the positive tuple
(I+, Q+, P+), and the two negative variations (I−, Q+, P 1−) and
(I+, Q−, P 2−). For each validation scenario, we simulate the instruc-
tion retrieval task by presenting o3-mini with the instruction and query
alongside the positive passage, closely-related negatives, and additional
distractive passages randomly sampled from MS MARCO. We then
prompt o3-mini to identify the most relevant passage. Only tuples
that yield consistent and unambiguous relevance judgments across all
three scenarios are retained, while others are discarded. This rigorous
filtering maintains high quality data and ensures reliable model training.

To validate the effectiveness and reliability of our quality-check procedure, we conducted a human
annotation study. Annotators were asked to identify the most relevant passage for a given instruction-
query pair from a set of distractors, including generated negatives from above as well as in-batch
negatives. Figure 3 reports the average agreement scores (Cohen’s Kappa) between human annotators
and various models. The results clearly indicate that o3-mini achieves higher agreement with human
judgments compared to other models, including FollowIR-7B, gpt-4o-mini, and gpt-4o, thus
confirming the robustness and validity of our filtering strategy.

4.2 DATA VISUALIZATION AND ANALYSIS

We conduct a comparative experimental analysis using 10,000 random samples from each of Fol-
lowIR (Weller et al., 2024), Promptriever (Weller et al., 2025), and our InF-IR.

Qualitative Analysis of Semantic Coverage. To qualitatively assess topic coverage of our gen-
erated training data compared to FollowIR (Weller et al., 2024) and Promptriever (Weller et al.,
2025), we first embed instructions, queries, and passages using the off-the-shelf embedding model
E5-Mistral(Wang et al., 2023a). As shown in Figure 4(a), samples from our InF-IR cover a sig-
nificantly larger semantic space compared to FollowIR and Promptriever. This broader coverage
highlights the effectiveness of our synthesized negative instructions and queries in capturing complex
semantic variations, crucial for robust contrastive learning.

Quantitative Analysis of Diversity. To quantitatively evaluate data diversity, we employ two
diversity metrics: average pairwise sample similarity (APS) and inter-sample N-gram frequency
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(INGF) (Mishra et al., 2020). Results presented in Figure 4(b) clearly indicate that InF-IR achieves
superior diversity scores compared to FollowIR and Promptriever, with a lower APS (indicating fewer
redundant samples) and a higher INGF (reflecting greater textual diversity).

5 InF-Embed: INSTRUCTION-AWARE EMBEDDING TRAINING PARADIGM

In this section, we introduce InF-Embed, a training framework aimed at improving instruction-aware
IR. Specifically, we propose two distinct interactions between instructions and queries (section 5.1),
and then further explore various contrastive learning objectives (section 5.2).

5.1 INSTRUCTION-QUERY INTERACTION AND REPRESENTATION

We adopt a dual-encoder paradigm (Karpukhin et al., 2020), comprising two encoders g (· ; θP ) and
g (· ; θI,Q) to represent corresponding entities within a shared d-dimensional embedding space:

pi = g (Pi ; θP ) , ii = g (Ii ; θI,Q) , qi = g (Qi ; θI,Q) , (2)

where pi, ii,qi ∈ Rd denote the embedding for the passage, instruction, and query, respectively.

Instruction-Aware Query Representation. Our primary goal is to improve the instruction-awareness
of retrieval models by explicitly incorporating instruction semantics into query representations. To
this end, we introduce an instruction-aware query IQj,k and its embedding iqj,k designed to integrate
instruction-specific context from Ij while interpreting query Qk. We then propose two interaction
strategies to compute the combined embedding iq:

⋄ Interaction I (Self-Attention): For each instruction-query pair (I,Q), we concatenate the in-
struction I with the query Q to construct the instruction-aware query using the simple template of
"<Instruction> <Query>". The corresponding embedding iq is then computed as:

iqj,k = g (concat (Ij , Qk) ; θI,Q) . (3)

When using a decoder-based retriever where g (· ; θI,Q) employs causal attention exclusively, this
concatenation naturally allows the model to incorporate instructional context when processing
the query. Note that this straightforward approach enables instruction-following retrieval without
requiring architectural modifications or introducing additional training parameters.

⋄ Interaction II (Cross-Attention): Although effective, concatenation in Eq. equation 3 can be
computationally expensive as it requires a full forward pass for every instruction-query pair. To
mitigate this inefficiency, we propose an alternative cross-attention-based mechanism, which explicitly
integrates instruction embeddings into the query embeddings via attention:

iqj,k = softmax
(
(ij ·Wi) (qk ·Wq,1)

⊤
/
√
d
)
(qk ·Wq,2) , (4)

where Wi,Wq,1,Wq,2 ∈ Rd×d are learnable linear transformations. We then define the scoring
function for retrieval as:

sθ (Pi, Ij , Qk) = sim (pi, iqj,k) , (5)

where θ = θP ∪θI+Q denotes parameters from both passage and instruction-query encoders g (· ; θP )
and g (· ; θI,Q); sim (·, ·) represents the cosine similarity between these embeddings.

5.2 CONTRASTIVE LEARNING OBJECTIVES

After constructing the positive and negative samples in InF-IR, we flatten them into training tuples
(Pi, Ij , Qk), where identical indices (i = j = k) indicate matched positive samples, while differing
indices represent unpaired hard negatives. Let the training set be denoted as D = {Pi, Ii, Qi}ni=1. We
then introduce an efficient negative sampling strategy along with two contrastive learning objectives.

Marginal Sampling Strategy for Negatives. Direct specializing the general NCE objective
(Eq.equation 1) in a multivariate setup involving passages (P ), instructions (I), and instruction-
aware queries (IQ) results in combinatorial sampling complexity O

(
|B||y|

)
, growing combina-

torially for large batch sizes, where |y| denotes the number of input variables. For instance,
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setting y = (P, I, IQ) yields a cubic summation in the denominator of Eq.equation 1, i.e.,∑
m∼B

∑
j∼B

∑
k∼B exp (sθ (Pm, Ij , IQk)). To enhance computational efficiency, we propose

a marginal negative sampling strategy, independently sampling negatives for each variable in y, while
fixing others to their positives. This simplifies the denominator in Eq. equation 1 for a positive
example indexed by i as follows:∑

m∼B exp (sθ (Pm, Ii, IQi)) +
∑

j∼B exp (sθ (Pi, Ij , IQi)) +
∑

k∼B exp (sθ (Pi, Ii, IQk)) ,

reducing complexity from combinatorial to linear, i.e., O (|B| · |y|).
⋄ Objective I (Univariate Conditional Modeling): Building upon the conditional probability
perspective (section 3), we propose a univariate objective modeling three conditional distributions,
P(P |I,Q), P(I|P,Q), and P(IQ|P ), via separate contrastive terms:

ℓuni
P,I,IQ = −Ei∼B

[
log

exp(sim(pi,iqi,i))∑
m∼B

exp(sim(pm,iqi,i))︸ ︷︷ ︸
ℓuni
P w.r.t. P(P |I,Q)

+ log
exp(sim(pi,iqi,i))∑

j∼B
exp(sim(pi,iqj,i))︸ ︷︷ ︸

ℓuni
I w.r.t. P(I|P,Q)

+ log
exp(sim(pi,iqi,i))∑

k∼B
exp(sim(pi,iqk,k))︸ ︷︷ ︸

ℓuni
IQ w.r.t. P(IQ|P )

]
,

(6)
which flexibly enables any combination of univariate conditional modeling by selectively retaining
the desired contrastive terms.

⋄ Objective II (Multivariate Conditional Modeling): Alternatively, we can ensure instruction-
following by keeping instructions as part of the contrasting inputs. This naturally leads to conditional
modeling with multivariate inputs such as (P, I), (P, IQ), (I, IQ), and (P, I, IQ) conditioned on the
remaining variables. Using the marginal sampling strategy, we formulate the multivariate objective
for (P, I, IQ) as:

ℓmulti
P,I,IQ = −Ei∼B

[
log

exp
(
sim(pi,iqi,i)

)
∑

m∼B
exp

(
sim(pm,iqi,i)

)
︸ ︷︷ ︸

Marginal Negatives for Pi

+
∑
j∼B

exp
(
sim(pi,iqj,i)

)
︸ ︷︷ ︸
Marginal Negatives for Ii

+
∑

k∼B
exp

(
sim(pi,iqk,k)

)
︸ ︷︷ ︸
Marginal Negatives for IQi

]
, (7)

where other variations of the multivariate objective, such as ℓmulti
P,I , ℓmulti

P,IQ, and ℓmulti
I,IQ, can be readily

derived by eliminating the corresponding marginal negatives from the denominator in Eq. equation 7.

Empirically, the univariate contrastive objective in Eq. equation 6 may experience competition among
its individual terms. In contrast, the multivariate objective presented in Eq. equation 7 formulates a
more challenging ranking-based contrastive task by introducing a larger set of hard negatives that
the retriever must effectively differentiate. Consequently, this multivariate formulation potentially
exhibits greater robustness to competition-related issues, as evidenced in similar same-tower retrieval
contexts (Moiseev et al., 2023; Ren et al., 2021). See additional details in section C.

6 EXPERIMENTS

6.1 EXPERIMENTS SETUP

Evaluation Datasets. We conduct a comprehensive evaluation across the following representative
instruction-following retrieval datasets: (1) FollowIR (Weller et al., 2024) including Robust04,
News21, and Core17, (2) MAIR (Sun et al., 2024) including Dynamic Domain (DD) and Fair
Ranking (FR), and (3) Bright (Su et al., 2024). Detailed descriptions are in section D.

Evaluation Metrics. Following Weller et al. (2024); Oh et al. (2024), we consider the (1) mean
average precision (MAP), (2) pairwise mean reciprocal rank (p-MRR), and (3) normalized discounted
cumulative gain (nDCG@5 for FollowIR and nDCG@10 for MAIR) jointly as the metric, while
p-MRR is used as the main metric to evaluate the effectiveness of the instruction-following retrieval.

Benchmarks and Baselines. We compare the following categories of baselines for a comprehensive
benchmark evaluation: (1) non-instruction retrieval models, (2) instruction-following retrieval models,
and (3) instruction-tuned LMs. We include additional details of baselines in section E.

Implementation Details. We consider both embedding models (e5-base-v2, e5-large-v2,
ModernBERT-base) and decoder-only LMs (Llamma-3.2 and Qwen-2.5 variants) as backbone LMs
for instruction-aware tuning. Additional details of the implementation are available in section F.
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Table 2: Main experimental results comparing base models and their variants trained with InF-Embed
on multiple instruction-following retrieval benchmarks.

Datasets (→) Robust04 News21 Core17 FollowIR DD-15 DD-16 DD-17 FR-21 FR-22 Bright
Metrics (→) MAP p-MRR nDCG p-MRR MAP p-MRR score p-MRR nDCG nDCG nDCG nDCG nDCG nDCG

Base Size: < 1B parameters

e5-base-v2 13.4 -6.7 20.9 -2.0 14.0 -2.9 16.1 -3.9 40.3 31.5 32.7 29.4 61.5 3.7
+InF-Embed 14.0 6.9 23.8 3.2 11.6 5.3 16.5 5.1 47.5 35.5 32.9 49.8 78.9 8.4

e5-large-v2 17.4 -4.2 24.3 0.9 17.0 0.1 19.6 -1.1 41.1 35.6 32.7 15.6 51.1 7.6
+InF-Embed 17.5 9.4 26.6 2.0 16.0 7.1 20.0 6.2 51.4 37.9 34.7 57.0 89.2 9.2

ModernBERT-base 4.29 -5.8 4.3 -1. 5.7 -0.5 4.8 -0.3 2.3 3.6 8.7 3.0 5.4 0.5
+InF-Embed 10.0 0.3 6.0 0.1 9.8 2.9 8.6 1.1 44.8 31.8 35.8 50.6 69.0 7.8

Large Size: 1-5B parameters

Llama-3.2-1B 8.0 -1.5 17.7 1.5 9.8 0.4 11.8 0.1 3.1 5.4 8.3 3.2 26.4 0.1
+InF-Embed 16.8 6.0 20.8 0.7 13.9 3.8 17.2 3.5 50.5 36.8 36.7 57.1 87.0 9.1

Llama-3.2-1B-Inst 8.6 -2.1 11.1 0.6 8.7 0.2 9.5 -0.4 8.3 14.9 18.3 4.6 42.1 0.4
+InF-Embed 19.1 5.6 26.1 3.8 15.2 1.9 20.2 3.8 50.7 36.5 38.9 54.6 81.4 10.9

Qwen2.5-1.5B 4.7 -0.5 7.5 -0.2 5.9 1.6 6.0 0.3 1.0 2.7 2.4 1.5 5.5 0.2
+InF-Embed 16.8 4.9 14.1 2.7 12.7 1.9 14.5 3.2 42.0 27.2 36.0 43.5 45.2 8.5

Qwen2.5-1.5B-Inst 4.7 -1.2 9.8 2.3 6.4 0.8 7.0 0.6 0.5 2.2 2.4 1.6 4.4 0.1
+InF-Embed 17.9 3.9 17.5 0.7 13.6 3.8 16.3 2.8 48.4 35.3 35.3 39.0 40.6 8.4

Qwen2.5-3B 5.0 -0.8 8.3 0.8 5.8 1.1 6.3 0.4 1.0 3.2 2.3 1.5 7.5 0.2
+InF-Embed 17.6 4.3 19.5 1.1 12.2 3.6 16.4 3.0 49.2 30.1 34.0 53.2 75.3 10.5

Qwen2.5-3B-Inst 5.0 -1.3 9.7 2.4 6.6 -0.4 7.1 0.2 1.3 3.1 2.2 1.7 8.8 0.3
+InF-Embed 19.6 3.3 22.4 1.8 14.6 3.7 18.9 2.9 45.3 29.2 35.0 55.4 72.7 10.6
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Figure 5: Comparative analysis of instruction-following capabilities on the Follow-IR benchmark
across model architectures of varying scales. Models are grouped by parameter count and ranked by
p-MRR scores within each category. Standard retrieval metrics (score∗) are normalized by a factor of
10 to facilitate visual comparison with p-MRR values.

6.2 MAIN EXPERIMENT RESULTS

Table 2 presents comprehensive comparative results between various baselines and their corresponding
variants enhanced by our proposed InF-Embed. We observe several key findings: (i) Embedding-based
models trained on InF-IR achieve notable instruction-following improvements (+1.36@p-MRR)
and enhanced overall retrieval performance; (ii) Auto-regressive LMs, initially limited in retrieval,
significantly benefit from InF-IR, achieving retrieval effectiveness (@nDCG) comparable to similarly
sized embedding models; (iii) Fine-tuning previously trained retrievers (e.g., e5-base-v2) on InF-IR
further boosts retrieval scores (+14.3@nDCG) and substantially improves instruction-following
ability (+8.2@p-MRR), highlighting the broad utility and effectiveness of InF-Embed.

We also compare our best-performing checkpoints from various backbone models against state-of-the-
art retrieval models in Figure 5. The results show that the InF-Embed models consistently outperform
baseline retrievers of similar size and achieve competitive performance compared to larger-scale or
proprietary retrieval models. Additional experimental results are available in section G.

6.3 CONFIGURATION AND ABLATION STUDY

Effect of Objective Function. Table 3 compares contrastive loss configurations (section 5.2) on the
FollowIR benchmark, yielding four main insights: (i) Multivariate contrastive loss (ℓmulti

P,I ) outper-
forms other variants, underscoring the importance of simultaneously contrasting instructions and
passages as introduced in InF-IR. Instruction contrast explicitly guides instruction understanding,
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Table 3: Configuration comparison on Follow-IR (Weller et al., 2024) benchmarking multiple loss
function designs and varying sizes of backbone LMs.

Category (→) Encoder Decoder
Base Model (→) ModernBERT Llama-3.2 Llama-3.2 Qwen2.5 Qwen2.5 Qwen2.5 Qwen2.5
Model Size (→) 109M 1B 1B-Instruct 1.5B 1.5B-Instruct 3B 3B-Instruct
Config. (↓) score p-MRR score p-MRR score p-MRR score p-MRR score p-MRR score p-MRR score p-MRR

Base 4.76 -0.27 11.84 0.13 9.45 -0.43 6.03 0.29 6.98 0.63 6.33 0.38 7.07 0.24

w/ ℓuni
P 9.70 -0.22 17.15 3.48 19.81 3.76 14.28 2.27 16.34 2.76 16.46 1.12 16.61 2.46

w/ ℓuni
I 3.58 -1.00 9.17 -0.48 10.39 -0.10 9.29 -0.18 8.34 -0.73 7.91 -1.76 8.00 -1.01

w/ ℓuni
IQ 9.39 0.02 18.69 1.82 17.59 2.98 12.94 1.69 14.03 1.98 14.62 0.71 17.45 0.86

w/ ℓuni
P,I 8.25 1.08 17.98 2.11 19.59 2.89 14.38 2.00 15.12 1.61 15.34 2.87 18.40 1.27

w/ ℓuni
P,IQ 9.30 -0.03 17.23 1.12 18.48 3.21 13.64 1.46 14.05 2.62 15.57 2.08 16.73 2.13

w/ ℓuni
I,IQ 7.51 0.43 19.12 1.36 19.00 1.50 13.14 1.24 13.27 1.66 15.03 0.87 15.61 -0.08

w/ ℓuni
P,I,IQ 8.61 0.84 17.96 1.42 19.98 2.58 13.83 1.49 14.11 2.64 16.14 2.68 17.30 1.26

w/ ℓmulti
P,I 13.27 0.09 19.05 2.30 20.15 3.76 14.52 3.20 15.18 2.51 16.41 3.00 18.87 2.94

w/ ℓmulti
P,IQ 9.05 0.30 17.57 2.00 17.71 3.49 13.18 2.07 14.06 2.65 15.49 1.49 17.50 2.32

w/ ℓmulti
I,IQ 8.36 -0.12 19.21 0.38 19.22 1.63 14.07 1.09 13.61 2.20 14.00 1.32 16.03 1.20

w/ ℓmulti
P,I,IQ 8.58 1.09 18.75 2.11 19.76 2.31 12.83 1.65 14.22 2.65 16.25 1.44 17.62 2.25

Attn Base 3.66 -0.25 5.53 0.83 6.68 0.59 4.07 0.23 4.30 0.02 3.89 0.21 3.98 -0.03

Attn Best 8.57 0.42 9.14 1.66 11.30 0.74 13.80 1.10 14.05 2.13 15.59 0.68 11.29 0.76

while passage contrast strengthens alignment between instruction-conditioned queries and relevant
passages; (ii) Multivariate objectives consistently surpass simpler univariate objectives, highlighting
the necessity of jointly modeling interactions among instructions, queries, and passages to improve
instruction-aware retrieval; (iii) Decoder-only models outperform encoder-only models in both re-
trieval quality and instruction-following, likely due to larger parameter capacity and richer pretraining
data, enabling better handling of complex instruction-based scenarios; and (iv) Joint encoding of
instruction and query (concatenation) surpasses separate encoding (attention-based), benefiting
from the autoregressive modeling capabilities of decoder-only architectures. However, joint encoding
complicates partial contrastive training. Thus, separately encoding instructions, queries, and passages
via attention may offer a more flexible and efficient approach for future contrastive objective designs.

Table 4: Different designs in InF-Embed.

Config. (→) Share Encoder Pooling Epoch p-MRR

Qwen2.5-1.5B ✓ last 2 2.27
Qwen2.5-1.5B ✓ avg. 2 -0.39
Qwen2.5-1.5B ✗ last 2 0.26
Qwen2.5-1.5B ✓ last 1 -0.06

e5-base qwen2.5-1.5B qwen2.5-1.5B
-Instruct

Llama-3.2-1B Llama3.2-1B
-Instruct

0

1

2

3

4

5

Av
g.

 p
-M

RR

InF-IR
InF-IR w/o filter

Figure 6: Effect of quality filtering.

Effect of Negative Pairs Synthesis. We analyze the impact of various training configurations in
Table 4, using Qwen2.5-1.5B as the base model. For decoder-only LLMs, our results indicate that
using a shared encoder for instruction-aware queries and passages, combined with last-token pooling,
consistently yields the best performance and is thus recommended as the default configuration.

Effect of Quality Check. We investigate the effectiveness of our data quality-check step by comparing
model performance trained on the original unfiltered data versus our quality-filtered InF-IR (Figure 6).
Despite the unfiltered dataset being substantially larger, its lower data quality significantly degrades
model performance under identical training conditions. This highlights the critical importance of
rigorous data validation in our synthesis pipeline.

7 CONCLUSION

In this paper, we introduce InF-IR, a large-scale, high-quality training corpus explicitly designed to
enhance instruction-following retrieval models. Built upon InF-IR, InF-Embed demonstrates robust
improvement in instruction-following capabilities across multiple retrieval benchmarks, achieving
substantial performance gains for both embedding-based (+9.0 p-MRR) and auto-regressive language
models (+4.2 p-MRR). In addition, we provide a systematic benchmarking of contrastive learning
objectives across various model architectures and sizes, establishing best practices that will accelerate
the development of next-generation instruction-following retrieval systems. An important line of
future work is to extend InF-IR and InF-Embed to reasoning-intensive retrieval models (Chen et al.,
2025; Jin et al., 2025; Guan et al., 2025) in instruction-following IR.
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ETHICS STATEMENT

All authors have read and followed the Code of Ethics. Our work uses public corpora (MS MARCO
and TREC) and synthetic text produced by LLMs. We respect the licenses of the source datasets. We
do not collect or release any personally identifiable information. When using hosted LLM APIs to
synthesize instructions and negatives, we followed the provider’s data-use policies and opted out of
human review according to the Azure OpenAI Additional Use Case Form. A small human annotation
study approved by IRB was conducted to check agreement with model judgments. Annotators were
three computer science major students; they received task instructions and examples, and they worked
only with public text passages and synthetic prompts. No demographic or sensitive attributes were
collected. The study did not involve medical, financial, or other sensitive content.

We are aware of risks related to bias and potential misuse. Synthetic data may reflect biases present
in web-scale models, and stronger instruction-following retrieval could be misused to surface harmful
content. To reduce these risks, we (i) filtered generations that drift from the intended task or include
unsafe content, (ii) validated positives and hard negatives with an independent reasoning model to
favor clear, task-relevant pairs, and (iii) will release data and checkpoints under a research license that
prohibits misuse and prohibits attempts to target individuals or protected classes. We also checked
for test-set contamination by string matching between our training data and the evaluation sets and
did not observe overlaps.

REPRODUCIBILITY STATEMENT

We designed the paper, appendix, and supplement to support full replication. Data curation steps,
including instruction synthesis, query poisoning, and hard-negative construction, are specified in
section 4.1. The prompts used to generate instructions and queries are provided verbatim in Ap-
pendix H. Rule-based filters and the model-based quality check are described in section 4.1 and
Appendix D, and the agreement study setup appears in Appendix F. Model architectures, interaction
mechanisms, and training losses are given in section 6 with complete loss definitions in Appendix B.
We list datasets, splits, and metrics in section 6 and Appendix F. Hyperparameters, optimizer settings,
batching, pooling choices, hardware, and training durations are documented in Appendix F.

The supplementary materials include an anonymous code repository with: scripts to recreate the
synthetic triples from the licensed sources, the exact prompts, configuration files for each backbone,
seeds, and evaluation code. Because MS MARCO and some TREC sources cannot be redistributed,
we provide document identifiers and instructions that download the originals from their hosts, followed
by our preprocessing scripts. We also include instructions to run the two instruction–query interaction
variants and both contrastive objectives. Pretrained checkpoints will be shared for research use under
terms consistent with the upstream licenses.
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A LIMITATIONS AND BROADER IMPACTS

A.1 LIMITATIONS

While our proposed dataset and methodology substantially advance instruction-following capabilities
in retrieval models, several limitations must be acknowledged: First, our negative sample generation
and rigorous quality checks involve advanced reasoning models like o3-mini, which are compu-
tationally intensive. Researchers with limited computational resources might find reproducing or
extending our dataset challenging. Secondly, our dataset primarily extends MS MARCO, which
is a general-domain dataset. While we demonstrate improvements across multiple general-domain
benchmarks, the effectiveness of our approach in highly specialized or domain-specific retrieval
tasks may require additional investigation and potential adaptation. Thirdly, although our marginal
sampling strategy significantly reduces complexity, scaling the multivariate contrastive objectives to
extremely large batch sizes or significantly larger model scales remains nontrivial. Future research
could explore further optimization techniques to enhance scalability.

A.2 BROADER IMPACTS

Potential Positive Societal Impacts. Our contributions significantly improve the capability of IR
systems to accurately interpret and follow user instructions. This enhancement can lead to higher
efficiency and precision in information retrieval tasks across various real-world applications, includ-
ing personalized web search, educational content discovery, and knowledge-intensive professional
settings. By ensuring retrieval outputs closely align with explicit user instructions, InF-IR and
InF-Embed contribute to reducing user effort and frustration, thereby positively influencing user
experience and productivity.

Potential Negative Societal Impacts. Improved instruction-following retrieval systems could
inadvertently amplify existing biases or misinformation if the training data inherently contains biased
or incorrect information. Given that InF-IR and InF-Embed leverage synthetic generation techniques
and LLMs trained on web-scale data, there remains a risk of propagating undesirable stereotypes or
inaccuracies present in these sources. Additionally, enhanced retrieval models might facilitate misuse,
such as targeted misinformation dissemination or unauthorized data retrieval, emphasizing the need
for responsible deployment and continual oversight.

A.3 DATA PRIVACY AND LICENSING

InF-IR creation relies on publicly available datasets, specifically MS MARCO and datasets from
the TREC collections, each of which comes with specific licensing terms that we have strictly
followed. MS MARCO is distributed under a non-commercial license, and any derived datasets,
including ours, must adhere to similar terms. Researchers aiming to use InF-IR and InF-Embed
should ensure compliance with the respective licenses of these original sources. Additionally, while
leveraging LLMs such as gpt-4o-mini and o3-mini to generate synthetic instructions and queries,
we have carefully avoided generating personally identifiable or sensitive information. Nevertheless,
practitioners must exercise caution when extending our methods to datasets involving sensitive or
private data, ensuring strict adherence to data privacy regulations and ethical standards relevant to
their application contexts.

A.4 ETHICAL STATEMENTS

Throughout our dataset creation and model training, we strictly adhered to the licensing agreements
of all source datasets (e.g., MS MARCO and TREC collections). In addition, we conducted thorough
checks to prevent any form of contamination of the test set. Despite these measures, practitioners
using our dataset and methods must ensure compliance with privacy standards and ethical guidelines
relevant to their specific applications, especially when dealing with sensitive or user-specific data.
InF-IR involves the usage of OpenAI APIs. To prevent any potential information leakage, we strictly
follow data usage guidelines of Microsoft Azure’s Open AI API service and have withdrawn from
the human review process by completing and submitting the Azure OpenAI Additional Use Case
Form. We do not foresee other ethics issues.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B InF-IR: ADDITIONAL DATA CURATION DETAILS

B.1 ADDITIONAL DATA QUALITY CHECKS

Beyond the quality assurance steps described in Section 4.1, we employ a rule-based filtering step to
further enhance sample quality. Specifically, we truncate synthetic instructions and queries at the first
occurrence of a newline character (\n), ensuring the removal of irrelevant or extraneous text.

B.2 ADDITIONAL DATA SOURCES

While the primary InF-IR builds upon MS MARCO, we are also extending our curation approach to
additional datasets, including TREC Robust 2004 (Voorhees, 2004), Leetcode, and MetaMath (Yu
et al., 2023). For Robust 2004, we utilize the identical data curation process applied to MS MARCO.
In the case of Leetcode and MetaMath, queries are derived from problem descriptions, while passages
correspond to their respective solutions. Synthetic instructions for Leetcode explicitly include the
programming language and specify the intended technical solution approach. For MetaMath problems,
instructions emphasize the mathematical strategy or method. When generating negative examples for
Leetcode, we ensure the programming language (e.g., Python, Java, C++) remains constant between
positive and negative instructions to prevent the model from relying solely on language cues to
differentiate samples. All other data curation procedures remain consistent across datasets.

C InF-Embed: ADDITIONAL METHOD DETAILS

C.1 UNIVARIATE CONTRASTIVE LOSS DETAILS

Here are the detailed definitions of univariate contrastive objective functions:

ℓuni
P = −Ei∼B

[
log

exp(sim(pi,iqi,i))∑
m∼B

exp(sim(pm,iqi,i))

]
, (8)

ℓuni
I = −Ei∼B

[
log

exp(sim(pi,iqi,i))∑
j∼B

exp(sim(pi,iqj,i))

]
, (9)

ℓuni
IQ = −Ei∼B

[
log

exp(sim(pi,iqi,i))∑
k∼B

exp(sim(pi,iqk,k))

]
, (10)

ℓuni
P,I = −Ei∼B

[
log

exp(sim(pi,iqi,i))∑
m∼B

exp(sim(pm,iqi,i))
+ log

exp(sim(pi,iqi,i))∑
j∼B

exp(sim(pi,iqj,i))

]
, (11)

ℓuni
P,IQ = −Ei∼B

[
log

exp(sim(pi,iqi,i))∑
m∼B

exp(sim(pm,iqi,i))
+ log

exp(sim(pi,iqi,i))∑
k∼B

exp(sim(pi,iqk,k))

]
, (12)

ℓuni
P,I,IQ = −Ei∼B

[
log

exp(sim(pi,iqi,i))∑
j∼B

exp(sim(pi,iqj,i))
+ log

exp(sim(pi,iqi,i))∑
k∼B

exp(sim(pi,iqk,k))

]
, (13)

ℓuni
P,I,IQ = −Ei∼B

[
log

exp(sim(pi,iqi,i))∑
m∼B

exp(sim(pm,iqi,i))
+ log

exp(sim(pi,iqi,i))∑
j∼B

exp(sim(pi,iqj,i))
+ log

exp(sim(pi,iqi,i))∑
k∼B

exp(sim(pi,iqk,k))

]
,

(14)

C.2 MULTIVARIATE CONTRASTIVE LOSS DETAILS

Here are the detailed definitions of multivariate contrastive objective functions:

ℓmulti
P = −Ei∼B

[
log

exp
(
sim(pi,iqi,i)

)
∑

m∼B
exp

(
sim(pm,iqi,i)

)], (15)
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ℓmulti
I = −Ei∼B

[
log

exp
(
sim(pi,iqi,i)

)
∑
j∼B

exp
(
sim(pi,iqj,i)

)], (16)

ℓmulti
IQ = −Ei∼B

[
log

exp
(
sim(pi,iqi,i)

)
∑

k∼B
exp

(
sim(pi,iqk,k)

)], (17)

ℓmulti
P,I = −Ei∼B

[
log

exp
(
sim(pi,iqi,i)

)
∑

m∼B
exp

(
sim(pm,iqi,i)

)
+

∑
j∼B

exp
(
sim(pi,iqj,i)

)], (18)

ℓmulti
P,IQ = −Ei∼B

[
log

exp
(
sim(pi,iqi,i)

)
∑

m∼B
exp

(
sim(pm,iqi,i)

)
+

∑
k∼B

exp
(
sim(pi,iqk,k)

)], (19)

ℓmulti
I,IQ = −Ei∼B

[
log

exp
(
sim(pi,iqi,i)

)
∑
j∼B

exp
(
sim(pi,iqj,i)

)
+

∑
k∼B

exp
(
sim(pi,iqk,k)

)], (20)

ℓmulti
P,I,IQ = −Ei∼B

[
log

exp
(
sim(pi,iqi,i)

)
∑

m∼B
exp

(
sim(pm,iqi,i)

)
+

∑
j∼B

exp
(
sim(pi,iqj,i)

)
+

∑
k∼B

exp
(
sim(pi,iqk,k)

)], (21)

D EVALUATION DATASET DETAILS

Here are the details for each instruction-following retrieval dataset used in our experiments:

• FollowIR (Weller et al., 2024) assesses IR models based on their responsiveness to detailed
and realistic instructions extracted from TREC narrative annotations. These narratives encom-
pass explicit inclusion and exclusion criteria. It features queries sourced from TREC Robust
2004 (Voorhees, 2004), TREC Common Core 2017 (Allan et al., 2017), and TREC News
2021 (Soboroff, 2022), enriched with professional narrative annotations and further refined
through targeted human reviews. It employs pairwise annotations to effectively measure models’
adaptability to evolving instructions.

• MAIR (Sun et al., 2024) provides a comprehensive evaluation of instruction-tuned IR models
across 126 distinct tasks spanning multiple domains such as academic literature, code retrieval,
legal documents, finance, and medical search. It incorporates 10,038 queries paired with 805
distinct instructions sourced from public datasets, TREC tracks, and established IR benchmarks.
Each task features meticulous manual annotations that define relevance across diverse query-
document-instruction contexts.

• Bright (Su et al., 2024) presents reasoning-intensive retrieval tasks that extend beyond con-
ventional lexical or semantic matching, incorporating complex scenarios from diverse domains
such as coding, mathematics, economics, and science. Bright contains 1,384 real-world queries
drawn from 12 varied datasets, including StackExchange, LeetCode, and AoPS, among others.
Documents consist of referenced web pages, programming syntax manuals, and solution expla-
nations unified by shared logical, algorithmic, or theoretical foundations. Relevance labels are
human-validated, ensuring alignment with intricate reasoning criteria.

E BASELINE DETAILS

Here are the details for each instruction-following retrieval baseline used in our experiments:

• Contriever (Izacard et al., 2021) is a bi-encoder dense retriever trained via unsupervised con-
trastive learning on large text corpora, providing general-purpose semantic representations for
zero-shot retrieval.
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• FLAN-T5 (Chung et al., 2022) is an instruction-finetuned variant of T5 designed for zero-shot
generalization. It employs an encoder-decoder architecture to generate relevance judgments
through prompting without retrieval-specific fine-tuning.

• E5 (Wang et al., 2022a) models (base and large) are dual-encoder retrieval systems fine-tuned on
extensive weakly supervised contrastive pairs. They excel in embedding-based retrieval tasks,
explicitly leveraging query and passage instructions for generalized semantic representation.

• MonoT5 (Nogueira et al., 2020) is a cross-encoder reranker using the T5 framework to jointly
model queries and documents, producing highly accurate relevance scores through generation-
based prompting.

• Bge (Xiao et al., 2024) employs RoBERTa-based dual encoders fine-tuned with contrastive
learning, optimized for stable and accurate dense retrieval without explicit task instructions.

• Instructor (Oh et al., 2024) generates task-specific embeddings conditioned on natural language
instructions, trained with contrastive learning across diverse NLP tasks, allowing flexible zero-
shot application in retrieval and similarity tasks.

• Tart-contriever (Asai et al., 2022) extends Contriever with instruction-aware embedding genera-
tion via multi-task distillation, enhancing zero-shot retrieval capabilities across varied domains.

• GritLM (Muennighoff et al., 2024) integrates generative and embedding-based tasks into a
single LLaMA-based instruction-tuned model, achieving state-of-the-art embedding benchmarks
while supporting flexible instruction-based retrieval.

• Repllama (Ma et al., 2024) fine-tunes the LLaMA-2 model for dense retrieval, leveraging
contrastive training on retrieval tasks to encode comprehensive document-level information into
embeddings, demonstrating strong zero-shot retrieval performance.

F IMPLEMENTATION DETAILS

F.1 ADDITIONAL IMPLEMENTATION DETAILS

Model training and testing are conducted on 8 NVIDIA A100 80G GPUs. We use the AdamW
optimizer with an initial learning rate of 5× 10−5 for both embedding models and LMs. The batch
size is set to 4 per device. To prevent test set contamination (Oren et al., 2023) in external evaluations,
we have conducted a string-matching analysis, where we do not observe any overlap between the
training data in InF-IR and the evaluation datasets utilized in this study.

F.2 HUMAN AGREEMENT STUDY DETAILS

To rigorously validate the reliability and effectiveness of our data quality-check procedure, we
performed a human annotation study involving expert annotators. We invite 3 collaborators and
coauthors to attend the annotation, including 1 senior graduate student, a junior graduate student,
and 1 undergraduate student. All three students CS majored and are all familiar with information
retrieval tasks to independently assess a subset of our dataset. Annotators were presented with a
randomly sampled selection of instruction-query pairs paired with passages including the original
positive passages, synthetically generated negative passages, and randomly sampled in-batch negative
distractors from MS MARCO. Each annotator independently identified the passage they thought
most relevant to the given instruction-query context. To ensure high annotation quality, all annotator
underwent training sessions involving clear task instructions and illustrative examples prior to
beginning the main annotation task. Then, we feed the same data to the LLM-based annotators,
including o3-mini used in this work and other design choices of gpt-4o and gpt-4o-mini.

We computed pairwise agreement scores between human annotators and LLMs using Cohen’s Kappa
statistics, which measures inter-rater reliability while accounting for agreement occuring by chance.
Subsequently, we computed the average consistency between human judgments and predictions from
several large language models, including o3-mini, FollowIR-7B, gpt-4o-mini, and gpt-4o. As
shown in Figure 3, o3-mini consistently achieved the highest Cohen’s Kappa scores with human
annotators, outperforming the other models evaluated. These results underline the alignment of
o3-mini’s judgments with human intuition and confirm the robustness and effectiveness of our
automated filtering strategy for maintaining high-quality synthetic datasets.
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G ADDITIONAL EXPERIMENTAL RESULTS

G.1 ADDITIONAL INSTRUCTION-FOLLOWING IR RESULTS

Table 5: Additional results of various baselines on multiple instruction-following IR datasets.

Evaluation Datasets (→) Robust04 News21 Core17 FollowIR DD-15 DD-16 DD-17 FR-21 FR-22 MAIR
Baselines (↓) / Metrics (→) MAP p-MRR nDCG p-MRR MAP p-MRR score p-MRR nDCG nDCG nDCG nDCG nDCG nDCG

Sparse Retrieval

BM25 (2009) 12.1 -3.1 19.3 -2.1 8.1 -1.1 13.2 -2.1 – – – – – –

Base Size: < 1B parameters

e5-base-v2 (109M) (2022a) 13.4 -6.7 20.9 -2.0 14.0 -2.9 16.1 -3.9 40.3 31.5 32.7 29.4 61.5 39.1
InF-Embed (e5-base-v2) 14.0 6.9 23.8 3.2 11.6 5.3 16.5 5.1 47.5 35.5 32.9 49.8 78.9 48.9
contriever (109M) (2021) 19.7 -6.1 22.9 -2.8 15.3 -2.5 19.3 -3.8 – – – – – –
bge-base-en(v1.0/1.5) (109M) (2024) 16.8 -6.5 20.0 -0.1 14.6 -2.7 17.1 -3.1 21.0 16.7 33.5 25.1 29.6 25.2
tart-contriever (109M) (2022) 14.3 -9.0 21.8 -3.0 13.3 -3.0 16.5 -5.0 – – – – – –
instructor-base (109M) (2023) 17.2 -10.4 22.1 -1.8 15.5 -1.1 18.3 -4.4 – – – – – –
monot5-base (220M) (2020) 15.7 -6.2 11.0 5.0 12.2 -4.1 13.0 -1.8 46.7 28.5 31.8 18.3 68.5
flan-t5-base (248M) (2022) 6.4 5.3 6.1 -0.1 6.5 -3.3 6.3 0.6 – – – – – –
monobert (330M) (2020) 21.0 -9.4 25.1 -0.8 18.4 -0.2 21.5 -3.5 – – – – – –
e5-large-v2 (330M) (2022a) 17.4 -4.2 24.3 0.9 17.0 0.1 19.6 -1.1 41.1 35.6 32.7 15.6 51.1 35.2
InF-Embed (e5-large-v2) 17.49 9.4 26.6 2.0 16.0 7.1 20.0 6.2 51.4 37.9 34.7 57.0 89.2 54.0
bge-large-en (335M) (2024) 17.5 -7.8 22.3 0.6 15.0 0.1 18.3 -2.4 18.8 22.9 35.5 17.8 26.3 24.3
flan-t5-large (783M) (2022) 14.7 3.9 8.0 8.9 11.4 1.3 11.4 4.7 – – – – – –

Large Size: 1-5B parameters

InF-Embed (Llama-3.2-1B) 16.8 6.0 20.8 0.7 13.9 3.8 17.2 3.5 50.5 36.8 36.7 57.1 87.0 53.6
InF-Embed (Qwen2.5-1.5B) 16.8 4.9 14.1 2.7 12.7 1.9 14.5 3.2 44.2 23.4 35.4 52.6 85.1 48.1
instructor-xl (1.5B) (2023) 19.7 -8.1 26.1 -0.9 16.8 0.7 20.9 -2.8 – – – – – –
tart-flan-t5-xl (2.85B) (2022) 24.6 -0.7 12.8 2.0 17.0 2.8 18.1 1.4 – – – – – –
monot5-3B (2020) 27.3 4.0 16.5 1.8 18.2 1.8 20.7 2.5 – – – – – –

XL Size and Proprietary LLMs: >5B parameters (for reference)

e5-mistral (7B) (2023a) 23.1 -9.6 27.8 -0.9 18.3 0.1 23.1 -3.5 50.3 33.7 35.1 58.3 84.8 52.4
InF-Embed (e5-mistral) 25.5 6.2 23.9 1.5 23.0 6.3 24.1 4.7 52.0 37.3 37.4 58.4 89.1 54.8
Qwen2.5-7B 10.1 1.0 13.8 3.1 7.3 -0.3 10.4 1.3 2.6 5.5 3.4 1.9 12.9 5.3
InF-Embed (Qwen2.5-7B) 26.7 6.4 25.6 1.8 23.4 6.5 25.2 4.9 47.6 32.1 36.8 51.5 86.6 50.9
GritLM-7B (2024) 28.6 -1.7 24.4 -1.0 20.8 2.6 24.6 -0.0 52.3 36.0 36.3 58.3 82.7 53.1
NV-Embed-v1 (7B) (2024) – – – – – – – – 45.0 31.5 30.8 43.0 84.7 47.0
repllama-v1-7b (2024) 24.0 -8.9 24.5 -1.8 20.6 1.3 23.0 -3.1 – – – – – –
promptriever-llama2-7b (2025) 28.3 11.7 28.5 6.4 21.6 15.4 26.1 11.2 – – – – – –
OpenAI-v3-large 27.2 -5.8 27.2 -2.0 21.6 -0.2 25.3 -2.7 – – – – – –
cohere-embed-english-v3.0 22.3 -3.6 28.3 0.2 20.6 2.8 23.7 -0.2 – – – – – –
google-gecko (2024) 23.3 -2.4 29.5 3.9 23.2 5.4 25.3 2.3 – – – – – –

Table 5 presents additional results of various baselines on instruction-following IR datasets. Key
additional insights from this evaluation include:

• Sparse vs. Dense Retrieval. Dense retrieval models consistently outperform traditional sparse
retrieval methods such as BM25, particularly in instruction-following tasks, highlighting the advantage
of semantic embedding-based approaches.

• Model Size and Effectiveness. Larger model sizes generally exhibit stronger retrieval and
instruction-following performance. Models in the XL size category (over 5B parameters), such
as GritLM-7B and promptriever-llama2-7b, deliver state-of-the-art results, demonstrating the
benefit of increased parameter count and training scale.

• Impact of Instruction-Tuning. Instruction-tuned modele.g., FLAN-T5, Instructor, and GritLM)
significantly outperform models without explicit instruction-tuning. These improvements underscore
the critical role of task-specific instructions in enhancing retrieval capabilities and aligning model
outputs more closely with user intentions.

G.2 ADDITIONAL CONFIGURATION BENCHMARKS

Table 6 benchmarks various contrastive loss configurations (Section 5.2) with detailed comparisons
on the FollowIR dataset. Our key observations are as follows:

• Contrastive Loss. Models trained with ℓmulti
P,I achieve the highest performance. This result highlights

the critical role of simultaneously contrasting instructions and passages: instruction contrasts enable
the model to understand their guiding function, while passage contrasts reinforce the alignment
between instruction-aware queries and relevant passages.

• Univariate vs. Multivariate Loss. Empirical results demonstrate clear advantages of multivariate
contrastive objectives over simpler univariate objectives, including those used by Promptriever (Weller
et al., 2025). The superior performance emphasizes the importance of jointly modeling the interactions
among instructions, queries, and passages.
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Table 6: Detailed configuration comparison on Follow-IR (Weller et al., 2024) benchmarking multiple
loss function designs and varying sizes of backbone LMs.

Base Model (→) ModernBERT Qwen2.5-1.5B

Dataset (→) Robust04 News21 Core17 Overall Robust04 News21 Core17 Overall
Config. (↓) MAP p-MRR nDCG p-MRR MAP p-MRR score p-MRR MAP p-MRR nDCG p-MRR MAP p-MRR score p-MRR

Base 4.29 -5.75 4.27 -1.44 5.73 -0.53 4.76 -0.27 4.71 -0.51 7.46 -0.16 5.91 1.56 6.03 0.29

w/ ℓuni
P 11.25 -1.75 6.80 0.36 11.04 0.72 9.70 -0.22 15.52 1.87 15.08 3.77 12.23 1.16 14.28 2.27

w/ ℓuni
I 3.80 -1.58 1.01 -0.51 5.94 -0.91 3.58 -1.00 8.77 -1.54 11.54 0.76 7.55 0.26 9.29 -0.18

w/ ℓuni
IQ 10.40 -2.04 7.55 0.62 10.22 1.48 9.39 0.02 14.89 2.45 12.2 1.09 11.73 1.53 12.94 1.69

w/ ℓuni
P,I 9.56 -0.04 6.10 1.40 9.09 1.88 8.25 1.08 15.93 1.74 13.99 1.57 13.22 2.69 14.38 2.00

w/ ℓuni
P,IQ 10.77 -1.31 6.63 0.31 10.51 0.92 9.30 -0.03 15.62 1.22 12.81 1.45 12.48 1.69 13.64 1.46

w/ ℓuni
I,IQ 8.41 -0.78 5.03 0.58 9.09 1.49 7.51 0.43 15.19 0.83 13.06 1.26 11.17 1.62 13.14 1.24

w/ ℓuni
P,I,IQ 9.74 -0.39 6.38 0.11 9.71 2.81 8.61 0.84 15.22 1.09 14.06 1.46 12.20 1.93 13.83 1.49

w/ ℓmulti
P,I 13.81 -0.36 14.97 -1.05 11.04 1.67 13.27 0.09 16.77 4.95 14.11 2.71 12.68 1.95 14.52 3.20

w/ ℓmulti
P,IQ 10.36 -0.92 6.36 0.39 10.42 1.41 9.05 0.30 15.69 3.32 11.85 1.43 11.99 1.47 13.18 2.07

w/ ℓmulti
I,IQ 9.10 -1.97 6.83 0.90 9.15 0.72 8.36 -0.12 15.18 1.51 15.34 0.62 11.68 1.13 14.07 1.09

w/ ℓmulti
P,I,IQ 9.96 0.28 5.99 0.06 9.79 2.92 8.58 1.09 14.13 1.72 12.57 1.16 11.78 2.05 12.83 1.65

Base Model (→) Qwen2.5-1.5B-Instruct Llama3.2-1B

Dataset (→) Robust04 News21 Core17 Overall Robust04 News21 Core17 Overall
Config. (↓) MAP p-MRR nDCG p-MRR MAP p-MRR score p-MRR MAP p-MRR nDCG p-MRR MAP p-MRR score p-MRR

Base 4.73 -1.19 9.82 2.30 6.40 0.78 6.98 0.63 8.04 -1.48 17.69 1.50 9.79 0.42 11.84 0.13

w/ ℓuni
P 17.91 3.86 17.52 0.65 13.59 3.79 16.34 2.76 16.75 5.98 20.80 0.65 13.89 3.81 17.15 3.48

w/ ℓuni
I 8.52 -1.43 9.20 -1.31 7.30 0.54 8.34 -0.73 7.60 -3.00 12.58 -1.39 7.32 2.94 9.17 -0.48

w/ ℓuni
IQ 15.07 3.36 14.97 1.68 12.06 0.90 14.03 1.98 17.18 1.76 24.80 0.46 14.10 3.25 18.69 1.82

w/ ℓuni
P,I 15.53 2.35 17.27 0.11 12.55 2.36 15.12 1.61 17.11 0.88 23.49 2.24 13.33 3.21 17.98 2.11

w/ ℓuni
P,IQ 16.30 3.71 13.83 1.56 12.03 2.60 14.05 2.62 16.15 -0.35 23.47 1.65 12.06 2.05 17.23 1.12

w/ ℓuni
I,IQ 14.91 2.52 13.62 0.72 11.28 1.73 13.27 1.66 18.08 -1.27 26.11 2.04 13.18 3.30 19.12 1.36

w/ ℓuni
P,I,IQ 16.25 3.10 13.72 0.86 12.35 3.94 14.11 2.64 18.06 -0.38 22.33 1.42 13.50 3.23 17.96 1.42

w/ ℓmulti
P,I 16.62 4.18 16.33 -0.13 12.59 3.49 15.18 2.51 19.19 0.89 23.65 3.02 14.33 2.99 19.05 2.30

w/ ℓmulti
P,IQ 15.67 2.16 14.29 2.65 12.22 3.13 14.06 2.65 16.02 3.03 23.83 1.05 12.85 1.92 17.57 2.00

w/ ℓmulti
I,IQ 14.95 3.90 13.76 1.36 12.13 1.34 13.61 2.20 19.36 -14.11 23.61 1.34 14.67 0.91 19.21 0.38

w/ ℓmulti
P,I,IQ 15.80 2.72 15.03 2.10 11.84 3.13 14.22 2.65 17.11 1.24 25.09 2.49 14.06 2.62 18.75 2.11

Base Model (→) Llama3.2-1B-Instruct Qwen2.5-3B

Dataset (→) Robust04 News21 Core17 Overall Robust04 News21 Core17 Overall
Config. (↓) MAP p-MRR nDCG p-MRR MAP p-MRR score p-MRR MAP p-MRR nDCG p-MRR MAP p-MRR score p-MRR

Base 8.60 -2.07 11.05 0.63 8.72 0.15 9.45 -0.43 4.97 -0.82 8.27 0.83 5.76 1.14 6.33 0.38

w/ ℓuni
P 18.41 6.30 26.63 2.09 14.37 2.89 19.81 3.76 17.57 3.00 19.16 -1.53 12.66 1.90 16.46 1.12

w/ ℓuni
I 9.11 -2.05 13.43 1.04 8.62 0.71 10.39 -0.10 7.75 -2.76 9.33 -1.61 6.66 -0.91 7.91 -1.76

w/ ℓuni
IQ 17.63 3.00 22.32 3.89 12.81 2.03 17.59 2.98 15.35 0.41 16.62 0.49 11.89 1.22 14.62 0.71

w/ ℓuni
P,I 18.01 4.52 25.98 1.90 14.79 2.24 19.59 2.89 16.64 4.52 17.13 1.26 12.24 2.82 15.34 2.87

w/ ℓuni
P,IQ 17.23 3.65 24.20 2.89 14.02 3.08 18.48 3.21 17.44 3.05 16.81 1.34 12.45 1.84 15.57 2.08

w/ ℓuni
I,IQ 17.73 -0.59 24.58 2.77 14.68 2.33 19.00 1.50 16.61 0.00 16.23 0.89 12.25 1.73 15.03 0.87

w/ ℓuni
P,I,IQ 18.88 -0.19 24.79 3.67 16.27 4.25 19.98 2.58 17.67 4.58 17.31 0.79 13.44 2.67 16.14 2.68

w/ ℓmulti
P,I 19.12 5.58 26.12 3.80 15.22 1.90 20.15 3.76 17.58 4.28 19.48 1.09 12.18 3.62 16.41 3.00

w/ ℓmulti
P,IQ 18.12 4.42 21.80 2.82 13.20 3.23 17.71 3.49 15.60 1.93 19.11 1.41 11.76 1.14 15.49 1.49

w/ ℓmulti
I,IQ 19.03 -0.99 24.23 2.44 14.40 3.43 19.22 1.63 15.45 0.33 15.68 1.81 10.86 1.82 14.00 1.32

w/ ℓmulti
P,I,IQ 17.88 2.51 26.86 1.77 14.55 2.65 19.76 2.31 17.72 2.92 18.35 0.37 12.67 1.03 16.25 1.44

Base Model (→) Qwen2.5-3B-Instruct Average

Dataset (→) Robust04 News21 Core17 Overall Robust04 News21 Core17 Overall
Config. (↓) MAP p-MRR nDCG p-MRR MAP p-MRR score p-MRR MAP p-MRR nDCG p-MRR MAP p-MRR score p-MRR

Base 4.95 -1.30 9.68 2.42 6.58 -0.41 7.07 0.24 5.76 -1.87 9.75 0.87 6.98 0.44 7.49 0.14
w/ ℓuni

P 17.65 4.29 18.59 1.10 13.59 2.00 16.61 2.46 16.44 3.36 17.80 1.01 13.05 2.32 15.76 2.23
w/ ℓuni

I 7.76 -1.57 9.64 -0.93 6.60 -0.54 8.00 -1.01 7.62 -1.99 9.53 -0.56 7.14 0.30 8.10 -0.75
w/ ℓuni

IQ 19.67 1.83 20.65 1.58 12.05 -0.82 17.45 0.86 15.74 1.54 17.02 1.40 12.12 1.37 14.96 1.44

w/ ℓuni
P,I 19.69 2.02 20.90 -0.26 14.61 2.06 18.40 1.27 16.07 2.28 17.84 1.17 12.83 2.47 15.58 1.98

w/ ℓuni
P,IQ 19.08 3.87 17.96 0.54 13.16 1.98 16.73 2.13 16.08 1.98 16.53 1.39 12.39 2.02 15.00 1.80

w/ ℓuni
I,IQ 19.14 -1.68 15.65 0.91 12.03 0.52 15.61 -0.08 15.72 -0.14 16.33 1.31 11.95 1.82 14.67 1.00

w/ ℓuni
P,I,IQ 19.66 1.92 18.79 1.17 13.46 0.70 17.30 1.26 16.50 1.39 16.77 1.35 12.99 2.79 15.42 1.84

w/ ℓmulti
P,I 19.63 3.31 22.41 1.82 14.58 3.69 18.87 2.94 17.53 3.26 19.58 1.61 13.23 2.76 16.78 2.54

w/ ℓmulti
P,IQ 19.98 3.37 19.04 1.68 13.50 1.91 17.50 2.32 15.92 2.47 16.61 1.63 12.28 2.03 14.94 2.05

w/ ℓmulti
I,IQ 17.83 1.26 17.24 1.46 13.01 0.90 16.03 1.20 15.84 -1.44 16.67 1.42 12.27 1.46 14.93 1.10

w/ ℓmulti
P,I,IQ 20.05 2.98 18.90 1.95 13.92 1.82 17.62 2.25 16.09 2.05 17.54 1.41 12.66 2.32 15.43 1.93

• Encoder-Only vs. Decoder-Only Models. Our experiments reveal that decoder-only models
consistently outperform encoder-only models in retrieval effectiveness and instruction-following
tasks. We attribute this improvement primarily to the increased parameter capacity and extensive
pre-training data utilized in large language model training phases.

G.3 COMPARISON WITH RERANKING BASELINES

Retrieval and reranking have different, sequential roles. The first-stage retriever searches a large
corpus under strict latency and memory limits to return a compact candidate set. A reranker then
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Table 7: Comparison with reranking baselines on FollowIR (Weller et al., 2024) dataset.

Model/p-MRR Robust04 News21 Core17 FollowIR

InF-Embed (e5-base-v2) 6.9 3.2 5.3 5.1
InF-Embed (e5-large-v2) 9.4 2.0 7.1 6.2

InF-Embed (Llama-3.2-1B) 6.0 0.7 3.8 3.5
InF-Embed (Qwen2.5-1.5B) 4.9 2.7 1.9 3.2

InF-Embed (e5-mistral) 6.2 1.5 6.3 4.7
InF-Embed (Qwen2.5-7B) 6.4 1.8 6.5 4.9

FLAN-T5-base 5.3 -0.1 -3.3 0.6
Llama-2-7B-chat 2.0 0.2 2.8 1.7
FLAN-T5-large 3.9 8.9 1.3 4.7

Table 8: Comparison with reranking baselines on MAIR (Sun et al., 2024) dataset.

Model/NDCG@10 DD-15 DD-16 DD-17 FR-21 FR-22 MAIR

InF-Embed (e5-base-v2) 47.5 35.5 32.9 49.8 78.9 48.9
InF-Embed (e5-large-v2) 51.4 37.9 34.7 57.0 89.2 54.0

InF-Embed (Llama-3.2-1B) 50.5 36.8 36.7 57.1 87.0 53.6
InF-Embed (Qwen2.5-1.5B) 44.2 23.4 35.4 52.6 85.1 48.1

InF-Embed (e5-mistral) 52.0 37.3 37.4 58.4 89.1 54.8
InF-Embed (Qwen2.5-7B) 47.6 32.1 36.8 51.5 86.6 50.9

Bge-reranker-v2-m3 53.4 35.7 42.3 45.4 85.7 52.5
Bge-reranker-v2-gemma 57.5 36.6 45.4 50.2 80.1 53.9
Mxbai-rerank-large-v1 49.2 29.4 37.9 18.5 66.4 40.3

reorders that set using more expressive but slower models. As a result, rerankers usually achieve
higher accuracy than standalone retrievers, but at higher computational cost and serving latency.

To compare fairly, we evaluate instruction-aware rerankers on FollowIR and MAIR using the same
inputs and candidate pools. For each query, we prompt the reranker with the instruction, the query,
and each candidate passage to obtain a relevance score, and then reorder the candidates. As shown
in Table 7 and Table 8, our InF-Embed retriever, which performs single-pass embedding retrieval,
matches or surpasses these rerankers while using far fewer compute-intensive operations. Adding
an instruction-aware reranker on top of InF-Embed yields further gains, indicating that InF-Embed
provides a strong first-stage representation for instruction-following search.

G.4 BROADER APPLICATIONS

Table 9: Model performance (NDCG@10) on broader applications in personalization.

Models PointRec CPCD

E5-base-v2 40.75 1.90
Inf-Embed (E5-base-v2) 46.22 2.23

E5-large-v2 40.37 3.70
Inf-Embed (E5-large-v2) 46.63 3.91

We further test InF-Embed on two personalization tasks: (1) PointRec (Afzali et al., 2021), a
benchmark for narrative-driven point-of-interest recommendation where instructions describe a user’s
situational needs; and (2) CPCD (Chaganty et al., 2023), a dataset for conversational playlist curation
that models preferences over sets of items. The results in Table 9 show consistent gains in NDCG@10
when training with InF-Embed, suggesting that instruction-aware representation learning is also
useful for downstream recommendation tasks without modifying the task model.

H PROMPT DETAILS

We include query-synthesis prompt details as follows:
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Query Synthesis Prompt – Part I

You are given a document along with a search query and an instruction
that retrieves this document.

Document: {document}
Positive Query: {query_positive}
Positive Instruction: {instruction_positive}

Your task is to generate a NEW search query that will lead to the
creation of DISTINCTLY DIFFERENT documents. The new query combined
with the original instruction needs to create documents that are
easily distinguishable from the original document when evaluated.

Query Synthesis Prompt – Part II

To create effective negative examples:
1. IDENTIFY KEY ELEMENTS: First , identify 2-3 core aspects/facts/claims

of the original document.
2. CREATE SEMANTIC OPPOSITES:

- Your new query should target information that contradicts or
significantly diverges from these core aspects

3. MAINTAIN DOMAIN RELEVANCE: Stay in a similar subject area but with
crucial differences:

- Change time periods , locations , entities , or outcomes
- Reverse cause -effect relationships
- Switch perspective (e.g., benefits vs. drawbacks , support vs.

opposition)
- Modify the granularity or specificity level

4. ENSURE CLEAR DISTINCTION: A human evaluator should be able to easily
determine which document is the original vs. synthetic based on

these key distinctions.

The goal is that when your NEW query is used with the ORIGINAL
instruction , they should produce documents that are clearly
distinguishable from the original document (at least 3 significant
differences).

Please provide your answer in the following format:
Query: <your new query >
Be concise but specific enough to ensure clear differentiation.

We include instruction-synthesis prompt details as follows:
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Instruction Synthesis Prompt – Part I

You are given a document along with a search query and an instruction
that retrieves this document.

Document: {document}

Positive Query: {query_positive}

Positive Instruction: {instruction_positive}

Your task is to generate a NEW instruction that will lead to the
creation of DISTINCTLY DIFFERENT documents. The new instruction
combined with the original query needs to create documents that are
easily distinguishable from the original document when evaluated.

To create effective negative examples:

1. IDENTIFY KEY ELEMENTS: First , identify 2-3 core aspects/facts/claims
of the original document.

2. CREATE SEMANTIC OPPOSITES:
- Your new instruction should target information that contradicts or

significantly diverges from these core aspects

Instruction Synthesis Prompt – Part II

3. MAINTAIN DOMAIN RELEVANCE: Stay in a similar subject area but with
crucial differences:

- Change time periods , locations , entities , or outcomes
- Reverse cause -effect relationships
- Switch perspective (e.g., benefits vs. drawbacks , support vs.

opposition)
- Modify the granularity or specificity level

4. ENSURE CLEAR DISTINCTION: A human evaluator should be able to easily
determine which document is the original vs. synthetic based on

these key distinctions.

The goal is that when your NEW instruction is used with the ORIGINAL
query , they should produce documents that are clearly
distinguishable from the original document (at least 3 significant
differences).

Please provide your answer in the following format:

Instruction: <your new instruction >

Be concise but specific enough to ensure clear differentiation.
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