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Abstract

Generating whole-brain 4D fMRI sequences conditioned on cognitive tasks re-
mains challenging due to the high-dimensional, heterogeneous BOLD dynamics
across subjects/acquisitions and the lack of neuroscience-grounded validation. We
introduce the first diffusion transformer for voxelwise 4D fMRI conditional gen-
eration, combining 3D VQ-GAN latent compression with a CNN–Transformer
backbone and strong task conditioning via AdaLN-Zero and cross-attention. On
HCP task fMRI, our model reproduces task-evoked activation maps, preserves the
inter-task representational structure observed in real data (RSA), achieves perfect
condition specificity, and aligns ROI time-courses with canonical hemodynamic
responses. Performance improves predictably with scale, reaching task-evoked
map correlation of 0.83 and RSA of 0.98, consistently surpassing a U-Net base-
line on all metrics. By coupling latent diffusion with a scalable backbone and
strong conditioning, this work establishes a practical path to conditional 4D fMRI
synthesis, paving the way for future applications such as virtual experiments, cross-
site harmonization, and principled augmentation for downstream neuroimaging
models.

1 Introduction

Task-based fMRI (task-fMRI) offers a powerful lens on the spatio-temporal dynamics underlying
cognition. A critical frontier in cognitive neuroscience is to develop generative models that capture
the mapping between cognitive processes and whole-brain activity patterns. Such models would not
only synthesize realistic fMRI data but also enable in-silico experiments, providing a means to probe
brain dynamics under controlled cognitive manipulations [1, 2].

Despite this potential, generating voxel-level whole-brain 4D task-fMRI remains unsolved. Un-
like static 3D structural MRI, where diffusion models have successfully synthesized high-fidelity
brain anatomies [1, 3], fMRI poses dual challenges: extreme dimensionality and substantial inter-
subject and acquisition-related variability. These factors often obscure subtle task-evoked signals
(Appendix A.1), as emphasized in prior studies [4, 5, 6, 7]. Consequently, earlier work has avoided
voxel-level dynamics (see more related works on Appendix A.2), instead focusing on simplified
representations such as region-of-interest (ROI) time series [8, 9], functional connectivity [10], or
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Figure 1: Overview and sampled visual results compared against MONAI [13]. (a) Our architecture
follows recent advances in VQGAN [14] and Latent Diffusion [15], equipped with joint conditioning
for strong conditional generative performances. (b) Compared to the the closest baseline, MONAI,
our model generates superior spatial details and (c) conditional temporal BOLD dynamics as revealed
by a group-level GLM activation map (Section 3.2).

static 3D activation maps [11, 12]. To date, no method has successfully generated task-conditioned,
whole-brain 4D fMRI data using modern generative architectures.

In this work, we introduce the first conditional diffusion transformer for voxel-wise, 4D task-fMRI
synthesis. Our approach is designed to be both computationally efficient and scalable, directly
addressing the challenges of modeling high-dimensional spatio-temporal brain dynamics. Our
contributions are summarized as follows:

• First Conditional 4D fMRI Generative Model. We present the first voxel-level, whole-
brain 4D diffusion model conditioned on cognitive tasks, enabling realistic synthesis of
spatio-temporal brain dynamics.

• Scalable Hybrid Architecture. We propose a latent diffusion transformer that combines
3D VQ-GAN compression, a CNN–Transformer hybrid backbone, and enhanced condi-
tional injection via AdaLN and cross-attention. Ablation studies validate the role of each
component.

• Neuroscience-aligned Evaluation. We evaluate our model on seven HCP task-fMRI
paradigms and introduce neuroscience-aligned metrics—brain activation map correlation,
representational similarity analysis (RSA of inter-task structures), and condition speci-
ficity—to assess the fidelity of generated task-evoked brain responses. Our model consis-
tently outperforms a UNet diffusion baseline.

2 Methods

Problem Formulation. We consider the task of conditional generation of 4D task-fMRI volumes
given a task label c. Each fMRI instance is a spatio-temporal tensor x ∈ RH×W×D×T , where
H,W,D denote spatial dimensions and T is the number of time points. Our goal is to model the
conditional distribution pθ(x | c), from which synthetic task-evoked fMRI volumes can be sampled
to faithfully reproduce spatio-temporal brain dynamics under condition c.
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Latent Diffusion Modeling We adopt a denoising diffusion probabilistic model (DDPM) [16].
A direct diffusion in voxel space is computationally infeasible due to the extremely high dimen-
sionality of fMRI volumes and the limited availability of training data. Following a latent diffusion
framework [15], each fMRI volume is first compressed by a pretrained 3D VQ-GAN [14], yielding
z ∈ RC×(H/4)×(W/4)×(D/4)×T , where C denotes the latent channel dimension.

The forward process gradually adds Gaussian noise: zt =
√
ᾱt z0 +

√
1− ᾱt ϵ, with ϵ ∼ N (0, I),

ᾱt =
∏t

s=1(1− βs), and schedule {βt}Tt=1. The reverse process is parameterized as

pθ(zt−1 | zt, c) = N
(
zt−1; µθ(zt, t, c), σ

2
t I

)
,

where the network predicts ϵθ(zt, t, c), from which µθ is derived. Training minimizes mean-squared
error between injected noise ϵ and predicted noise ϵθ(zt, t, c) with the simple objective Lsimple =

Ez0,ϵ,t,c

[
∥ϵ− ϵθ(zt, t, c)∥2

]
. Generation is performed by sampling zT ∼ N (0, I) and iteratively

denoised to z0, which is decoded by the VQ-GAN decoder into a 4D fMRI volume.

CNN–Transformer Hybrid Diffusion Backbone. To effectively model high-dimensional spatio-
temporal fMRI under limited data, our design seeks a balance between computational efficiency,
inductive bias, and scalability. We therefore adopt a hierarchical CNN–Transformer architecture (Ap-
pendix A.3), inspired by several previous designs [17, 18, 19, 20]. Within earlier layers, convolutional
residual blocks provide strong local spatio-temporal inductive bias, thereby reducing computation
cost and enabling stable training with limited data. For later layers, transformer blocks with global
attention capture long-range dependencies across space and time, leveraging the strong scalability of
diffusion transformers [21]. These components are organized in a UNet-like hierarchy, where features
from different resolutions are fused through concatenation, producing multi-scale representations
that integrate local detail with global context—an essential property for modeling distributed brain
activations in fMRI.

Conditioning Mechanisms. To mitigate inter-subject and acquisition variability and amplify subtle
task-specific signals, we adopt two complementary conditioning mechanisms. First, adaptive normal-
ization: Transformer blocks use AdaLN-Zero[21], modulating LayerNorm scale and shift from the
condition c, while convolutional residual blocks apply FiLM[22] for condition-dependent modulation.
Second, cross-attention directly exchanges information between condition embeddings and latent
tokens, injecting stronger task-specific signals that help overcome task-agnostic variability. As shown
in ablation studies (Table 1), combining normalization-based and cross-attention conditioning yields
more faithful task-specific synthesis than using AdaLN-Zero alone.

3 Experiments

3.1 Experimental Setup

Dataset and Implementation We evaluate our model on the Human Connectome Project (HCP)
task-fMRI dataset [23, 24], which comprises seven paradigms: working memory, emotion, lan-
guage, motor, relational, social, and gambling. For each paradigm, we select one representative
condition that reliably elicits the intended cognitive process, defining seven task-condition labels
(Appendix A.4). We use minimally preprocessed fMRI data [25] and apply further preprocessing to
reduce computational burden: downsampling to 3× 3× 3 mm3 spatial resolution, resampling to TR
= 1.44s, and cropping background voxels. Since HCP task fMRI follows a block design, we treat
each condition block as an instance, extracting approximately 18s (∼12 TRs) from onset for each
instance. This yields 34,632 instances from 1,083 participants. Data are split by subject into 90/5/5
train/validation/test sets, resulting in 31,168 training instances from 975 subjects.

All models were trained with AdamW for 400k steps using a linear diffusion noise schedule, class
dropout for classifier-free guidance, and exponential moving average (EMA) for sampling. Training
used a single NVIDIA A100 (40GB) with bfloat16 mixed precision. Full hyperparameters and model
specifications for both our models and MONAI baselines are provided in Appendix A.5.

Baseline Model. To benchmark our model, we selected a diffusion-based approach, which repre-
sents the state-of-the-art in generative modeling. Specifically, we employed a 3D U-Net conditional
diffusion model from the MONAI generative package [13], a framework well-validated for structural
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MRI synthesis (e.g., [1, 26]). To ensure a direct and fair comparison, we adapted this 3D baseline for
4D fMRI generation using the exact same strategy as our proposed method: stacking temporal frames
along the channel dimension and operating within the identical latent space from our VQ-GAN en-
coder. We note that while a prior study used an α-GAN for fMRI generation [27], its implementation
is not publicly available, preventing its replication for our analysis.

Scalability Study. We investigated scalability by progressively increasing model capacity from
tens to hundreds of millions of trainable parameters, by varying three factors: model width, condition
embedding dimension, and number of attention heads (Appendix A.5). This allows us to examine
whether generative performance scales predictably with model capacity, a hallmark of foundation
models.

3.2 Neuroscience-aligned Evaluation Metrics

Standard image metrics such as FID or Inception Score assess low-level realism but fail to test
whether generated fMRI preserves task-specific spatio-temporal dynamics. We therefore introduce
three neuroscience-aligned metrics: (i) brain activation map correlation (Corr): voxelwise Pearson
correlation between real and synthetic group-level generalized linear model (GLM) contrast maps
(z-maps), assessing fidelity of task-evoked activations. (ii) representational similarity analysis
(RSA): correlation between the off-diagonal entries of real and synthetic representational dissimilarity
matrices (RDMs), measuring preservation of inter-task representational geometry. (iii) condition
specificity (Top-1 Accuracy): fraction of generated samples whose activation map best matches the
correct real task map, with 1 indicating perfect specificity.

Together, these metrics evaluate fidelity at three levels: voxelwise activations, inter-task structure,
and task-specific identifiability. Full formulations are provided in Appendix A.6.

3.3 Results
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Figure 2: Generative performance as a function of model capacity. Performance is evaluated
using three neuroscience-aligned metrics: (a) GLM activation map correlation, (b) Representational
similarity analysis (RSA, Pearson), and (c) Condition specificity (Top-1 Accuracy).

Qualitative Evaluations. Fig. 1 provides an overview of our model and representative qualitative
results. Compared to the baseline (MONAI), our model generates fMRI sequences with sharper
spatial detail and more realistic temporal BOLD dynamics. In particular, group-level GLM contrasts
reveal that condition-specific task activations are faithfully reproduced across multiple paradigms
(Fig. 1c). These results demonstrate that the combination of latent diffusion with hybrid CNN–
Transformer backbones and joint conditioning yields substantial improvements in generative fidelity
and task-relevant modeling.

Model Scaling Behavior. Fig. 2 summarizes how generative performance scales with model
capacity. Across all three metrics, our conditional diffusion transformer exhibits consistent gains as the
number of trainable parameters scales. GLM activation map correlation steadily improves, indicating
that larger models more faithfully reproduce task-evoked spatiotemporal activation patterns. Similarly,
RSA scores hits the theoretical maximum level of 1.0, showing that inter-task representational
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relationship is increasingly preserved. Condition specificity also rises with scale, reaching perfect
Top-1 Accuracy for 340 M and larger models.

Importantly, these improvements follow a clear scaling trend, consistent with observations from
foundation model research in vision and language. In contrast, the MONAI baseline, despite having
comparable parameter count, lags behind our models in all metrics, underscoring the effectiveness of
our hybrid diffusion-transformer design for modeling spatio-temporal brain dynamics.

Table 1: Ablation studies on backbone and conditioning mechanisms. For conditioning, the full and
no cross-attention models differ in parameter count due to the presence of cross-attention, but model
widths were matched for fair comparison.

Model Backbones Params Corr (↑) Top-1 (↑) RSA (↑)

Hybrid (CNN early + Transformer mid/high) 236.5M 0.7006 0.8571 0.9526
All-CNN 235.0M 0.6289 0.7143 0.9195
All-Transformer 238.0M 0.6734 0.7143 0.9448

Conditioning Mechanisms
Full conditioning (AdaLN-Zero + Cross-Attn) 151.5M 0.6267 0.5714 0.9207
No cross-attention (AdaLN-Zero only) 110.5M 0.5066 0.7143 0.9001

Ablations. Table 1 details our architectural ablation study, which compares several backbone
variants, and the conditioning mechanisms. An All-CNN model yielded the weakest task fidelity,
whereas an All-Transformer model marginally improves performance. Our proposed hybrid de-
sign—employing convolutions in early stages and transformers in later stages—achieved the optimal
balance between performance and efficiency.

Beyond the backbone, removing cross-attention and relying solely on AdaLN-Zero with FiLM, despite
reducing parameters, led to a notable performance drop. This result highlights the necessity of strong
conditional injection to capture subtle task-specific activations. Such a mechanism is particularly
critical for fMRI data, where task-evoked signals are often weak compared to inter-subject and
acquisition variability. This suggests that future generative fMRI architectures will similarly benefit
from explicit and powerful conditioning.

4 Discussion and Conclusion

We introduced a conditional diffusion transformer for whole-brain 4D fMRI synthesis. Our results
highlight several insights. First, architectural design is critical: compared to U-Net baselines, trans-
former backbones provide strong scaling properties that enable synthesis of task-specific activations
despite immense subject- and acquisition-level variability. Yet, a pure transformer backbone was
suboptimal—best performance and efficiency arose from a hierarchical CNN-Transformer hybrid ar-
chitecture, where convolutional residual blocks capture local structure in early stages and transformers
integrate long-range dependencies in higher stages, offering both inductive bias and scalability under
limited data. Second, strong task conditioning was found to be beneficial. Injecting conditioning
signals via both AdaLN and cross-attention helped capture subtle condition-specific variance. Third,
we observed that volume-wise compression with a 3D VQ-GAN, followed by latent diffusion, can
also support effective 4D synthesis—producing spatially coherent and temporally plausible BOLD
dynamics even without explicit 4D compression.

Taken together, these findings suggest four principles for future 4D fMRI generative modeling: (1)
ensure sufficient model capacity with scalable backbones, (2) introduce appropriate inductive bias
when data are limited, (3) enforce strong conditional injection to capture task-specific signals, and (4)
when high-quality 4D compression network is not available, volume-wise compression network such
as 3D VQ-GAN [14] may serve as practical alternative.

Finally, diffusion transformers exhibit clear and predictable scaling laws (Fig. 2), consistent with
trends seen in foundation models for vision and language. This indicates that generative neuroimaging
may similarly benefit from scaling, paving the way toward fMRI generative foundation models. Such
models could serve not only as data augmentation tools but also as scientific instruments—enabling
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virtual experiments, cross-site harmonization, simulation-based inference, and ultimately precision
psychiatry. Future work will explore training across larger datasets, integration of multimodal signals,
and downstream applications in neuroscience and medicine.
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A Appendix

A.1 Inter-subject and Acquisition-related Variabilities

To quantify the relative sources of variability in HCP task-fMRI data, we performed PCA on voxelwise
BOLD signals restricted to the brain. As shown in Fig. 3, the largest variance component is explained
by individual subject differences, followed by phase encoding direction (LR vs. RL), with task-
evoked variability only emerging as a weaker source of variance. This analysis illustrates that
inter-subject and acquisition-related factors dominate over task-related signals, underscoring the
challenge of modeling condition-specific fMRI responses.

Figure 3: Principal component analysis (PCA) of HCP task-fMRI volumes. (Left) Clustering by
subject shows that individual differences dominate the data variance. (Middle) Phase encoding
direction (LR vs. RL) explains the second-largest variability component. (Right) Task conditions
contribute only weaker variance. These results indicate that subject- and acquisition-related factors
obscure task-evoked signals, consistent with prior findings.

A.2 Additional Related Work

Generative Models for fMRI Early approaches to fMRI synthesis relied on forward models with
explicit statistical assumptions. Simulators like SimTB [28] and fmrisim [29] generate data from
user-defined spatial sources and temporal dynamics. While useful for validating analysis pipelines,
they cannot capture the complex, heterogeneous data distributions of real fMRI. More recent deep
learning generative methods have learned data distributions from real data but have largely avoided
the complexity of full 4D modeling. Many studies reduce the data to simplified representations, such
as generating ROI- or parcel-based time series [8, 9, 30], functional connectivity matrices [10], or
flattened spatial inputs [31]. Another popular approach is to generate static, 3D contrast maps derived
from GLM analyses [11, 12, 32, 33]. While successful in their respective scopes, these methods lose
the rich, voxel-level spatio-temporal information that is critical for understanding brain dynamics. A
single study attempted voxel-level 4D generation with an α-GAN [34, 27], but it was designed for
data augmentation and, like many GANs, faced challenges in training stability and sample diversity.

Diffusion Models in Neuroimaging Diffusion models [16] have emerged as the state-of-the-art
for high-fidelity generative modeling. In neuroimaging, their success has been most prominent
in the domain of structural MRI. By conditioning on covariates like age and sex, these models
can synthesize realistic 3D brain anatomies [1, 3]. This has enabled a variety of applications,
including data augmentation, modality conversion [14], super-resolution [35], and simulating disease
progression [26]. Inspired by their success in vision, Diffusion Transformers [21] have recently
demonstrated remarkable performance and predictable scaling laws, establishing them as a promising
architecture for foundation models. Their ability to handle long-range dependencies makes them
particularly suitable for the spatio-temporal dynamics of 4D fMRI. Our work is the first to adapt and
scale this architecture for the unique challenges of conditional, voxel-level fMRI generation.

A.3 Neural Architectures

Figure 4 provides a schematic of our diffusion model backbone architecture.
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Figure 4: Detailed architecture of the proposed CNN–Transformer hybrid backbone. (a) UNet-
style hierarchy integrating convolutional (yellow) and transformer (green) stages with downsam-
pling/upsampling paths. (b) residual block with FiLM-based conditioning. (c) transformer block
with AdaLN-Zero and cross-attention conditioning. This design balances between computational
efficiency, inductive bias, and scalability.
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A.4 Task-Condition Selection

The HCP task-fMRI dataset [23, 24] consists of seven paradigms, each designed to elicit specific
cognitive processes. For our experiments, we selected one representative condition per paradigm that
reliably induces the intended cognitive process. Table 2 summarizes the chosen task-condition pairs
used as labels for conditional generation.

Table 2: Selected task-conditions from the HCP task-fMRI dataset. One representative condition was
chosen for each paradigm.

Paradigm Selected Condition
Working Memory 2-back places condition
Emotion Fear condition
Gambling Loss condition
Language Story condition
Relational Relation condition
Motor Right hand condition
Social Mental condition

A.5 Implementation Details

We fine-tuned the pretrained 3D VQ-GAN provided by [14] on individual HCP task-fMRI volumes
and subsequently fixed it as an encoder for latent extraction. Diffusion models were trained with
AdamW (learning rate 1×10−4, weight decay 0.01, β1=0.9, β2=0.99), batch size 16, and 400k steps.
We used T=1000 diffusion steps with a linear noise schedule (βstart=0.0015, βend=0.0195) and class
dropout rate 0.05. For sample generation, we used EMA models with decay 0.9999. All experiments
were run on a single NVIDIA A100 GPU (40GB) with bfloat16 automatic mixed precision (AMP).
Models were consistently evaluated at the 400k training checkpoint. Temporal frames were stacked
along the channel dimension to enable joint spatio-temporal modeling across all models.

Table 3: Model configurations for scalability study.
Model size base_ch cond_dim num_heads

38.1 M 128 512 8
85.4 M 192 768 12
151.5 M 256 1024 16
236.5 M 320 1280 20
340.3 M 384 1536 24
462.9 M 448 1792 28

Table 4: Baseline MONAI 3D U-Net diffusion model configurations.
Model size num_channels num_head_channels

41.3 M [64, 160, 224] [0, 160, 224]
83.7 M [96, 224, 320] [0, 224, 320]
141.0 M [128, 288, 416] [0, 288, 416]
237.4 M [192, 352, 544] [0, 352, 544]
475.8 M [256, 512, 768] [0, 512, 768]
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A.6 Evaluation Metrics

GLM Activation Maps. We fit first-level generalized linear models (GLMs) at the subject level
and second-level random-effects GLMs at the group level to obtain condition-specific statistical
contrasts (z-maps). For real data, GLMs were estimated on the held-out test set. For synthetic data,
we generated 100 samples per condition and computed their group-level GLM maps analogously.
Fidelity is measured as voxelwise Pearson correlation between real and synthetic group-level maps.

Representational Similarity Analysis (RSA). For each dataset (real, synthetic), we compute a
representational dissimilarity matrix (RDM) R ∈ RK×K , where K is the number of task conditions.
Each entry Rij is defined as the Pearson correlation between the group-level activation maps of task i
and j. We then vectorize the off-diagonal entries of the real and synthetic RDMs and compute their
correlation. A high correlation indicates that the model has captured the higher-order representational
geometry across tasks.

Condition Specificity (Top-1 Accuracy). For each generated condition, we compute voxelwise
correlations with all real group-level maps and rank them. Top-1 accuracy is the fraction of cases
where the correct condition achieves the highest correlation. This metric evaluates whether the
generative model produces samples that are specific and distinguishable for their intended task
condition.

A.7 Additional Results

Fig. 5 shows comparisons of GLM Activation Maps for the other four tasks that could not be fully
shown in Fig. 1c due to page limit.
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Figure 5: Additional visual results compared against MONAI [13].
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A.8 ROI Time-Series Analysis

To further evaluate whether our hybrid CNN–Transformer diffusion model captures task-specific
temporal dynamics of brain activations, we examined ROI mean time-series in regions known to
show significant activation or deactivation for each HCP task [24]. ROI extraction was performed
using the Harvard–Oxford cortical and subcortical atlas resampled to 3 mm resolution. For each task,
we selected three representative ROIs spanning distinct functional systems.

Figure 6 compares real fMRI data (test set not used in training) with synthetic data from our model
and the MONAI baseline. Real and synthetic time-courses are plotted as mean ± SEM across samples.
Across tasks, our model more faithfully reproduces the temporal profiles observed in real data,
whereas the baseline often underestimates or distorts condition-specific responses. These results
indicate that our approach not only preserves spatial activation patterns but also learns realistic
temporal dynamics of task-evoked BOLD signals.

Figure 6: ROI mean time-series (mean ± SEM) for representative regions across seven HCP task
contrasts (vs baseline). For each task, three ROIs were selected based on prior evidence of robust
activation or deactivation [24]. Real test data (blue), synthetic data from our model (green), and the
MONAI baseline (orange) are shown. Our model consistently better matches the temporal dynamics
of real fMRI compared to the baseline.
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