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ABSTRACT

The proliferation of digital food content has intensified the need for robust and
accurate systems capable of fine-grained visual understanding and retrieval. In
this work, we address the challenging task of food image-to-text matching, a crit-
ical component in applications such as dietary monitoring, smart kitchens, and
restaurant automation. We propose F4-ITS: Fine-grained Feature Fusion for Food
Image-Text Search, a training-free, vision-language model (VLM)-guided frame-
work that significantly improves retrieval performance through enhanced multi-
modal feature representations. Our approach introduces two key contributions:
(1) a uni-directional(and bi-directional) multi-modal fusion strategy that combines
image embeddings with VLM-generated textual descriptions to improve query
expressiveness, and (2) a novel feature-based re-ranking mechanism for top-k re-
trieval, leveraging predicted food ingredients to refine results and boost precision.
Leveraging open-source image-text encoders, we demonstrate substantial gains
over standard baselines - achieving ∼10% and ∼7.7% improvements in top-1 re-
trieval under dense and sparse caption scenarios, and a ∼28.6% gain in top-k
ingredient-level retrieval. Additionally, we show that smaller models (e.g., ViT-
B/32) can match or outperform larger counterparts (e.g., ViT-H, ViT-G, ViT-bigG)
when augmented with textual fusion, highlighting the effectiveness of our method
in resource-constrained settings. Code and test datasets will be made publicly
available.

1 INTRODUCTION

Existing image-text models like CLIP Radford et al. (2021) have demonstrated remarkable capabil-
ities in aligning image and text embeddings across a vast range of general domains. However, their
performance often diminishes when confronted with the extreme fine-grained distinctions required
in specialized domains like food. The core challenge lies in bridging the semantic gap between
visual appearance and the precise textual nuances that define a specific dish or its components. For
instance, distinguishing between ”Chicken Curry with Basmati Rice” and ”Lamb Curry with Jeera
Rice” demands recognition of subtle meat and rice grain differences, alongside an understanding of
specific ingredient names.

Current methods often provide a fine-tuning strategy where image-text models(such as CLIP (Rad-
ford et al., 2021), SigLIP (Zhai et al., 2023)) are trained on in-domain semantically rich text de-
scriptions or combine vision-language models in a zero-shot manner to bridge this semantic gap.
However, there are two problems with these approaches: 1. The manual cost of creating such rich
food descriptions is quite high. 2. The accuracy of food description and ingredient caption retrieval
still requires a good amount of improvement as fusion of image and text features along with precise
ranking of food ingredients remain a challenging task.

This paper proposes a novel training-free system designed to overcome these challenges, focusing
on two key sub-problems: retrieving the single best holistic food description for a given food image,
and retrieving the top-k most relevant food ingredients. Our solution integrates image-text models
and the powerful VLMs and introduces two primary novelties to enhance the retrieval performance:

1. Uni and bi-directional multi-modal embedding fusion: We introduce a bi-directional fusion(in
addition to uni-directional) between the raw image embedding and a VLM-generated ”dense/rich
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Figure 1: Overview of the proposed F4-ITS: image-text feature fusion architecture for fine-grained
food image-text search For dish understanding. Given a set of food captions index and a query image
to match against, our system makes use of image-text models(CLIP) and VLMs together to generate
enhanced image and text representations which improves the overall retrieval.

food description” embedding. The fusion with the food descriptions bridges this semantic gap and
allows the system to capture the fine-grained, subtle food details. We show how this fusion strategy
helps smaller models(like ViT-B) perform on par or even better than the larger models(ViT-H, ViT-G,
ViT-bigG) enabling accurate real-time search systems. Our paper also presents thorough comparison
of using dense and sparse food captions and how having high signal captions improve the overall
search accuracy.

2. Feature re-ranking with ingredient-level embeddings: For top-k retrieval of food ingredients, we
propose a novel feature based re-ranking strategy. After an initial retrieval using a fused embedding,
we break down the VLM-generated ”sparse food ingredient description” into individual food item
embeddings. These fine-grained item embeddings are then used to re-score the top-k candidates,
identifying the most relevant captions by focusing on specific ingredient or dish component matches.

2 RELATED WORK

CLIP Radford et al. (2021) and SigLIP Zhai et al. (2023) models are generally trained to align image
and text features, thereby enabling cross-modal retrieval(image-to-text as well as text-to-image).
However, the performance of these models are highly dependent on the training data distribution -
both the image and the captions. Most of these pre-trained models are trained on text descriptions
with high level concepts or coarse-grained(eg: rice with meat on a plate) and not at a fine-grained
level(eg: a plate with fried rice and chicken). The need for fine grained categorization has led
to the emergence of two major research directions: 1. Training based and 2. Zero-shot/training-
free methods that, on a high level, aim to better align image features with highly informative and
semantically rich textual descriptions.

Training based approaches such as ZS-CTIR Liu et al. (2024), DistillCLIP Csizmadia et al. (2025),
ADEM-VL Hao et al. (2024) and Everything can be described in words Bi & Xu (2025) explore
the image-text alignment problem using various supervised or distillation-based techniques. While
training-free methods such as PDV Tursun et al. (2025), TF-ZS-CIR Wu et al. (2025) has shown
that image-to-image retrieval can be enhanced by augmenting CLIP features with VLMs(through
averaging or weighted sum or concatenation), demonstrating how merging of image features with
text features can direct embedding towards the target features.

Vision-Language Models (VLMs) (Alayrac et al., 2022; Dai et al., 2023) have demonstrated strong
performance on tasks such as visual question answering and object recognition. However, while
they may not be inherently optimized for image-text retrieval, their strong generalization ability in
recognizing natural images, particularly food, makes them a valuable component in search systems.
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Our paper proposes a training-free zero-shot framework to not just retrieve(through uni and bi-
directional fusion) but also re-rank fine-grained textual descriptions(individual ingredients) from
images through VLM guidance. Although our method makes use of CLIP and VLMs features to-
gether as in the past methods, we differ from the problem domain of fine-grained food categorization
where highly informative captions matter more(than sparse captions which is experimentally proven)
and devise a bi-directional fusion and re-ranking algorithm for more precise image to text search.

3 PROBLEM FORMULATION

Given a query food image I and an index or retrieval corpus C consisting of food-related textual
descriptions, the objective is to retrieve a ranked list of captions from C that are most semantically
and visually relevant to the contents of Q. This task is particularly challenging in the food domain
due to the presence of subtle visual distinctions across dishes, variations in ingredients, and differing
levels of textual description granularity.

To address the need for both holistic dish understanding and fine-grained ingredient recognition, we
decompose the overall problem of food image-to-text retrieval into two complementary sub-tasks,
each tailored for a specific downstream purpose:

1. Single Image-Text Retrieval (Dense Caption Retrieval): This task involves re-
trieving the single most descriptive and semantically aligned caption for a given
food image. The caption set in this case consists of dense, highly informative
textual descriptions that capture not just the type of dish, but also detailed at-
tributes such as preparation style, presentation, and accompanying ingredients. Ex-
ample: "Hearty bowl of savory braised pork belly, tender glass
noodles, and green vegetables." The goal is to retrieve the top-1 caption that
best captures the full semantics of the visual input.

2. Top-k Image-Text Retrieval (Sparse Ingredient Retrieval): In this task, the captions
are sparse and correspond to individual food ingredients or components that are visually
present in the image. The aim is to retrieve the top-k most relevant ingredient-level cap-
tions from the index, capturing all (or most) of the distinct food items seen in the image.
Example: "black beans, corn, bell pepper, tomato." This task allows
evaluation of ingredient-level precision and is particularly important for applications such
as dietary tracking or nutritional analysis.

4 APPROACH

Our proposed multi-modal search system consists of three core components:

1. Fine-grained embedding extraction using image-text models.

2. Uni and bi-directional image-text feature fusion.

3. Feature re-ranking based on fine-grained food ingredients.

The process of extracting image representations + feature fusion with VLM textual description fol-
lowed by retrieval on captions remains common for both the sub-tasks(Figure 1 and 3). Only differ-
ence is in the type of captions(dense/sparse) used for these tasks. Additionally, for the top-k retrieval
task(Figure 3), we perform sparse text feature based re-ranking on the originally retrieved results.
Following sub-sections talks in detail about the approaches proposed for both the sub-tasks.

Definitions:
Encoders: Image Encoder(IE) and Text Encoder(TE).
Index: Dense Caption Index(DCI) and Sparse Caption Index(SCI), used for single and top-k retrieval
tasks respectively.

4.1 EMBEDDING EXTRACTION

The system makes use of the pre-trained large-scale image-text models as the base image and text
embedding extractors. Given an index with a list of captions C, extract the text embeddings using

3
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the Text Encoder TE. These embeddings form our searchable database. In case of bi-directional
fusion, these embeddings are modified by fusing with the query image embedding at runtime.

4.2 SINGLE IMAGE-TEXT RETRIEVAL WITH MULTI-MODAL FUSION

In a single image-text retrieval setting, the objective is to retrieve a dense, rich food descrip-
tion/caption(from the dense caption index DCI) for a given query image. An image is of a dish
with multiple food items and a caption can be “The plate contains grilled chicken with potatoes and
garlic sauce.”

• Image Embedding Extraction: For the given query image IQ, we extract its image em-
bedding using the Image Encoder IE.

Eimg = ImageEncoder(IQ) (1)

• VLM generated rich item description: Utilizing a VLM, we generate a rich food dish
description DenseCaptionText, that is dense enough to capture various attributes of the
food dish - including the ingredients and arrangement of these ingredients in the image.

Edensecaption = TextEncoder(DenseCaptionText) (2)

• Image-Text Feature Fusion: We use a simple weighted sum fusion of image and text
embeddings. We set the weights w img=0.7 and w text=0.3, obtained through extensive
experiments.

Efused = wimg ∗ Eimg + wtext ∗ Edensecaption (3)

The above represents a uni-directional fusion where only the query representation is im-
proved. Another enhancement is to fuse the index embeddings(DCI and SCI) with the
query image embedding(bi-directional).

ECifused = wimg ∗ Eimg + wtext ∗ ECi (4)
Here, the weights used are w img=0.3 and w text=0.7.

• Retrieval: The system retrieves the best matching food description from the dense caption
index, DCI by computing cosine similarity for the fused embedding Efused against all the
text embeddings in the index.

Cbest = argmax(cosine similarity(Efused, ECi)) (5)

* We can use either uni-directional fusion or bi-directional fusion during the retrieval. For
simplicity, we show only uni-directional fusion based retrieval in the remainder of the pa-
per.

4.3 TOP-K RETRIEVAL WITH FEATURE RE-RANKING

In a top-k image-text retrieval setting, the objective is to retrieve the most relevant yet diverse in-
dividual food ingredient captions(from the sparse caption index SCI) for a given query image. An
image usually is of a dish with several food items and a caption can be “french toast”, “coffee”.

• Image Embedding Extraction: For the given query image IQ, we extract its image em-
bedding using the Image Encoder IE.

Eimg = ImageEncoder(IQ) (6)

• Initial top-k retrieval: First step in the top-k retrieval involves fusing the image embed-
ding Eimg with the sparse caption embedding EsparsecaptionV LM , generated by querying a
VLM asking for a “sparse item description”(only the individual food ingredients present in
the image). This description is concise, focusing on key entities or prominent components
(e.g., ”chicken, rice, curry leaves”) rather than a verbose sentence.

Esparsecaption = TextEncoder(SparseCaptionText) (7)
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We stick to the weights(w img=0.7, w text=0.3) for fusion as in top-1 retrieval.

Efused = wimg ∗ Eimg + wtext ∗ Esparsecaption (8)

Finally, we retrieve the top k matches using cosine similarity to form the candidate set
CTopN = C1, C2, ..., CN .

CTopN = topk(cosine similarity(Efused, Ecaptioni)) (9)

• Reranking through VLM generated item level descriptions: This represents our second
primary contribution, designed to precisely differentiate highly similar dishes within the
candidate set CTopN .

– Fine-Grained Item Extraction: We take the VLM-generated ”sparse item descrip-
tion” (e.g., ”chicken, rice, curry leaves”) and parse it into individual food item phrases,
ParsedItems. For each extracted phrase Pj (e.g., ”chicken,” ”rice,” ”curry leaves”), we
generate a separate item-specific embedding.

EPj = TextEncoder(Pj) (10)

– Max-Similarity Reranking: For each candidate caption Ck ∈ CTopN , we re-
evaluate its relevance by computing its maximum cosine similarity with all of the
individual food item embeddings EPj . This strategy ensures that captions contain-
ing any specific, strong matches to the identified food items in the image are highly
scored, even if other parts of the caption are less aligned.

ScoreRerank(Ck) = max
Pj∈ParsedItems

cosine similarity(ECk
, EPj

) (11)

This approach allows for highly discriminative semantic alignment at a granular level.
For example, if the image clearly depicts ”shrimp” and a candidate caption mentions
”shrimp,” it will receive a high reranking score, effectively distinguishing it from a
visually similar dish mentioning ”chicken.”

– The captions in CTopN are then re-ordered based on their ScoreRerank(Ck) values,
and the top-k (e.g., k=5 or k=10) captions from this refined list are presented as the
final search result. This hierarchical reranking significantly boosts precision by lever-
aging the fine-grained information extracted from the VLM outputs, which is crucial
for distinguishing between subtle food variations.

5 DATASET

VLM Metafood Challenge MetaFood25 (2025) focuses on the problem of cross modal re-
trieval(image to text captions) and provides two datasets - MTF25-VLM-Challenge-Web Rodrı́guez-
de-Vera (2025b) and MTF-25-VLM-Challenge-Synth Rodrı́guez-de-Vera (2025a), with 139K and
258K image and rich food caption pairs respectively. For the purpose of benchmarking, we take a
small subset of this dataset(13K and 15K image-caption pairs from Synth and Web splits) and per-
form evaluation under both single image-text and top-k retrieval settings. We present two evaluation
datasets - MTF25-VLM-Challenge-Dataset-Web-13K dataset consists of 12,680 images and caption
pairs and MTF25-VLM-Challenge-Dataset-Web-15K dataset consists of 15127 images and caption
pairs. Every image is associated with a densely rich and a sparse caption. We use synthetically gen-
erated captions as ground truth to circumvent the problem of noisy captions and for source-target
caption alignment.

6 EXPERIMENTS

We perform thorough experiments across different datasets, across various caption types(dense and
sparse) and fusion weights. We use OpenCLIP MLFoundations (2023) pre-trained models as our
base image-text encoders.

5
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6.1 SINGLE IMAGE-TEXT RETRIEVAL

The objective of this experiment(Table 1 and 4) is to evaluate how well our system is able to re-
trieve top-1 and top-5 food captions that best describes the image. Under single image-text retrieval,
we evaluate several pretrained open-source image-text models: CLIP, SigLIP and their fused coun-
terparts. We maintain two types of ground truth captions - a. Dense index captions(DCI) and b.
Sparse index captions(SCI). For each GT caption type, we perform fusion for dense as well sparse
text features(prediction) generated with the help of Gemini-2.5-FlashTeam (2025a)/Gemma-3nTeam
(2025b) and CLIP/SigLIP text encoders.

Under this experimental setting, we use w img = 0.7 and w text = 0.3 as fusion parameters(after
extensive experiments). Evaluation metric used are Recall@1(top-1, exact match) and Recall@5.

Note: Although the original problem setup involves matching with only dense captions(eg: ”Vi-
brant chicken salad with crisp greens, fresh tomatoes, and sweet bell peppers, garnished with olives
on a rustic table”), we also benchmark for matching with sparse captions(eg: ”chicken, salad, let-
tuce, tomato, bell pepper, olives”) to understand retrieval performance under different information
density.

Table 1: Dense index: Recall@1 and Recall@5 for single image-text retrieval on MTF25-VLM-
Challenge-Dataset-Web-13K and Synth-15K Datasets. Pretrained OpenCLIP variants and SigLIP
are evaluated using both dense and sparse captions(prediction). Bold indicates that feature fusion
significantly improves over the baseline, and underline highlights the overall best R@1 and R@5
across all evaluated models.

Model
MTF25-VLM-Web-13K MTF25-VLM-Synth-15K
Dense Sparse Dense Sparse

R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

ViT-B-32
(baseline, w/o fusion) 0.335 0.581 - - 0.339 0.630 - -
F4-ITS(+ Gemma-3n) 0.444 0.689 0.385 0.636 0.438 0.707 0.399 0.673
F4-ITS(+ Gemini) 0.512 0.752 0.420 0.673 0.449 0.724 0.384 0.664

ViT-g-14 0.451 0.702 - - 0.442 0.724 - -
F4-ITS(+ Gemma-3n) 0.538 0.776 0.488 0.736 0.513 0.771 0.476 0.742
F4-ITS(+ Gemini) 0.587 0.813 0.527 0.772 0.525 0.783 0.472 0.743

ViT-bigG-14 0.442 0.688 - - 0.415 0.698 - -
F4-ITS(+ Gemma-3n) 0.468 0.711 0.453 0.696 0.429 0.698 0.430 0.701
F4-ITS(+ Gemini) 0.499 0.730 0.468 0.713 0.428 0.705 0.414 0.691

ViT-H-14-378-quickgelu 0.519 0.761 - - 0.498 0.770 - -
F4-ITS(+ Gemma-3n) 0.568 0.790 0.512 0.751 0.537 0.794 0.496 0.761
F4-ITS(+ Gemini) 0.609 0.820 0.534 0.771 0.547 0.801 0.481 0.747

ViT-L-16-SigLIP2 0.525 0.759 - - 0.488 0.758 - -
F4-ITS(+ Gemma-3n) 0.560 0.783 0.455 0.692 0.507 0.765 0.423 0.689
F4-ITS(+ Gemini) 0.586 0.80 0.466 0.702 0.507 0.763 0.395 0.658

6.2 TOP-K RETRIEVAL

The objective of this experiment(Table 2) is to evaluate how well our system can retrieve and rank
individual ingredients from food images. Similar to single image-text retrieval setting, we evaluate
pre-trained image-text models along with the fused variants, but only with an index of sparse cap-
tions(SCI) containing individual ingredients. We maintain one GT sparse caption index and perform
fusion using sparse text features(prediction) generated with the help of Gemini-2.5-Flash/Gemma-
3n and CLIP/SigLIP text encoders.

6
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Under this experimental setting, we use w img = 0.7 and w text = 0.3 as fusion parameters(after
extensive experiments). Evaluation metric used is mAP. The value of k varies for each image and
is decided based on the number of items returned in the GT sparse caption. For eg: ”scallop,
cauliflower, greens, herb oil” will have k=4.

0.0 0.2 0.4 0.6 0.8 1.0
w_text

0.35

0.40
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0.50

0.55
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ll@
1
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ViT-H-14-quickgelu
ViT-L-16-SigLIP2-512

Figure 2: Feature fusion accuracy over different w text values. Over fusion(and no fusion) of text
features leads to accuracy drop, while 20-30% text fusion guides the model towards better retrieval.

7 RESULTS

7.1 SINGLE IMAGE-TEXT RETRIEVAL

Weighted image-text fusion shows significant increase in accuracy when fused with VLM textual
descriptions - for both Gemini-2.5-Flash as well as Gemma-3n. We observe a minimum increase(in
Recall@1) of 5.7%(ViT-bigG-14) and maximum increase of 17.7%(ViT-B-32) for DCI(Table 1)
and a min and max increase of 3.4%(ViT-big-14) and 14.1%(ViT-B-32) respectively, for SCI(Table
4). Heterogeneous matching of DCI with sparse caption predictions and SCI with dense caption
predictions does not provide a major boost(as compared to the homogeneous matching) - 1.1% to
3.5%.

One sharp observation is that, smaller models perform on par or sometimes even better than the
larger ones in case of fusion. For eg: In Table 1, ViT-B-32 shows a top-1 accuracy of 51.2% while
ViT-bigG-14 stands at 49.9%. Our framework shows that the performance of these models can
improve without any finetuning by simply adding more information produced by another powerful
model. This also helps in deploying smaller models that are as accurate as the larger models but can
run at a much lower compute.

Another key observation is that, dense captions are much more rich in signal(which is straight-
forward) and works better than using sparse captions. Figure 4. shows that feature fusion with
dense captions improves over sparse captions by an average of 8%, ranging from 3.7%(min) to
14.3%(max) difference for Recall@1.

We see that more weighting for text for smaller models and less weighting for larger models is
optimal(Table 1 and 4) as the observation is that these larger models(ViT-L, ViT-H and ViT-bigG)
are already well aligned and able to capture the fine-grained pattern differences to a reasonable
extent. Figure 2 shows how over fusion(or no fusion of text features) causes accuracy drop while
moderate fusion(at 0.2-0.3) leads to optimal fusion.

For synthetic datasets, we see that the gains due to fusion are not as high as real images. This can be
attributed to the shift in training distribution as these open-source image-text models are in general
trained on large-scale real-world web image datasets.

7
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We also benchmark F4-ITS on the original noisy captions provided and notice that the fusion
works(not as effective as for clean captions) reasonably okay in case of noisy captions(Table 3).
Although the gains are 1-2%, our hypothesis of using VLM guidance for enhanced image represen-
tation stay true.

Table 2: Sparse index: mAP for top-k image-text retrieval on MTF25-VLM-Challenge-Dataset-
Web-13K and Synth-15K Datasets. Bold indicates that feature re-ranking significantly improves
over the baseline, and underline highlights the overall best mAP across all evaluated models.

Model MTF25-VLM-Web-13K MTF25-VLM-Synth-15K
mAP mAP

ViT-B-32 (baseline) 0.084 0.091
F4-ITS(+ Gemma-3n) 0.277 0.334
F4-ITS(+ Gemini) 0.379 0.378
ViT-g-14 0.064 0.074
F4-ITS(+ Gemma-3n) 0.264 0.340
F4-ITS(+ Gemini) 0.366 0.393
ViT-bigG-14 0.104 0.102
F4-ITS(+ Gemma-3n) 0.284 0.330
F4-ITS(+ Gemini) 0.380 0.375
ViT-H-14-378-quickgelu 0.106 0.113
F4-ITS(+ Gemma-3n) 0.269 0.293
F4-ITS(+ Gemini) 0.362 0.335
ViT-L-16-SigLIP2-512 0.136 0.170
F4-ITS(+ Gemma-3n) 0.286 0.364
F4-ITS(+ Gemini) 0.374 0.407

Finally, our bi-directional fusion strategy doesn’t really improve or decrease the performance over
the uni-directional fusion(where only the query is modified). It is also optimal to use uni-directional
for performance reasons.

7.2 TOP-K IMAGE-TEXT RETRIEVAL

Results for top-k retrieval shows significant improvements(especially in search precision) of upto
28.6%(mAP) over the traditional system without re-ranking(Table 2). Using feature re-ranking en-
sures that the top search results include the most relevant ones. Our feature re-ranking system, in
a way, acts as a high-recall -> high precision search system, leading to more user relevant search
results.

8 INTUITION

8.1 WHY DOES THE PROPOSED IMAGE-TEXT FEATURE FUSION WORK?

Image-text feature fusion has been well discussed in the literature where weighted sum, average
and concatenation are widely used strategies(training-free). There are also several training-based
methods innovating in cross attention across image and text modalities. The proposed feature fusion
strategy works because of target aligned text descriptions and usage of highly accurate VLMs for
description generation. The more the descriptions are aligned with the target index captions and the
more accurate they are, the better the fusion is(zero-shot).

8
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Table 3: Noisy (dense) index: Recall@1 and Recall@5 for single image-text retrieval on MTF25-
VLM-Challenge-Dataset-Web-13K. Numbers indicate that the noisy captions lead to little to no
improvement due to feature fusion(sometimes even lower than the baseline). Fusion parameters -
w img: 0.95 and w text: 0.05

Model MTF25-VLM Web 13K
R@1 R@5

ViT-B-32 (baseline) 0.341 0.582
F4-ITS(+ Gemini) 0.359 0.594
ViT-L-14 0.427 0.672
F4-ITS(+ Gemini) 0.431 0.668

ViT-H-14 0.466 0.715
F4-ITS(+ Gemini) 0.466 0.714

ViT-g-14 0.438 0.685
F4-ITS(+ Gemini) 0.445 0.685

ViT-bigG-14 0.497 0.744
F4-ITS(+ Gemini) 0.495 0.741

ViT-H-14-378-quickgelu 0.523 0.763
F4-ITS(+ Gemini) 0.527 0.759

ViT-L-16-SigLIP2-512 0.492 0.732
F4-ITS(+ Gemini) 0.491 0.732

8.2 WHY DENSE CAPTIONS ARE BETTER THAN SPARSE CAPTIONS?

Dense captions usually carry high signal(adding to the already present food items) compared to
their sparse counterpart. In addition to this, it also aligns well with how these foundation models
like OpenCLIP, SigLIP are trained - noisy web captions which are high in information. High signal
and alignment with training distribution helps in more accurate image-text search.

9 F4-ITS AS A GENERAL PURPOSE IMAGE SEARCH SYSTEM

The paper proposes a framework for a training-free high accuracy image search - not just applicable
to image-to-text, but also to text-to-image and image-to-image search applications. The fusion of
image and text modalities guided by VLMs offers an effective way for fine-grained instance recog-
nition, while the reranking block(in text modality) helps refine the search results better, thereby
improving the overall precision. Although this paper focuses on a narrow domain of food image
search, the proposed system is much more general and can be applied to various domains including
retail etc.

10 CONCLUSION

We presented a novel training-free methodology for accurate food image-text search at a fine-grained
level. We observe that by efficiently fusing the image features from image-text models and text
features from VLM, we can extract significant gains in retrieval accuracy. A future scope of work is
adaptive fusion of image and text features, where the weights can be determined dynamically. We
believe this work can be applied in real world multi-modal search systems and improve the quality
of search results and thereby user experience.
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A APPENDIX

A.1 F4-ITS RE-RANKING ARCHITECTURE
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Figure 3: Overview of feature fusion + re-ranking architecture for fine-grained image-food ingre-
dient Search. Given a set of sparse caption index(food ingredients), our system uses the fusion
architecture followed by a feature re-ranker that improves relevance of search results.

A.2 FEATURE FUSION - DENSE VS SPARSE CAPTIONS

Fusion with Dense Captions
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Im
pr

ov
em

en
t o

ve
r S

pa
rs

e 
Ca

pt
io

ns
 (%

)

8.0%

Image-text fusion improvement with dense captions (with min-max range)

Figure 4: Feature Fusion with dense captions improves over sparse captions by an average of 8%,
ranging from 3.7% to 14.3%.
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A.3 EXPERIMENT RESULT: SINGLE IMAGE-TEXT RETRIEVAL WITH SPARSE INDEX

Table 4: Sparse index: Recall@1 and Recall@5 for single image-text retrieval on MTF25-VLM-
Challenge-Dataset-Web-13K and Synth-15K Datasets. Pretrained OpenCLIP variants and SigLIP
are evaluated using both dense and sparse captions(prediction). Bold indicates that feature fusion
significantly improves over the baseline. Underline highlights the overall best R@1 and R@5 across
all evaluated models.

Model
MTF25-VLM-Web-13K MTF25-VLM-Synth-15K

Dense Sparse Dense Sparse

R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

ViT-B-32
(baseline, w/o fusion) 0.205 0.416 - - 0.232 0.468 - -
F4-ITS(+ Gemma-3n) 0.294 0.525 0.332 0.554 0.306 0.556 0.341 0.590
F4-ITS(+ Gemini) 0.346 0.581 0.406 0.632 0.314 0.576 0.354 0.598

ViT-g-14 0.294 0.530 - - 0.306 0.568 - -
F4-ITS(+ Gemma-3n) 0.364 0.605 0.380 0.615 0.363 0.626 0.386 0.635
F4-ITS(+ Gemini) 0.410 0.651 0.448 0.677 0.375 0.638 0.401 0.651

ViT-bigG-14 0.305 0.541 - - 0.306 0.563 - -
F4-ITS(+ Gemma-3n) 0.324 0.556 0.387 0.623 0.301 0.560 0.377 0.634
F4-ITS(+ Gemini) 0.339 0.576 0.441 0.668 0.305 0.560 0.389 0.636

ViT-H-14-378-quickgelu 0.350 0.589 - - 0.365 0.638 - -
F4-ITS(+ Gemma-3n) 0.396 0.637 0.410 0.642 0.392 0.657 0.408 0.670
F4-ITS(+ Gemini) 0.428 0.670 0.466 0.688 0.402 0.665 0.413 0.665

ViT-L-16-SigLIP2 0.337 0.562 - - 0.331 0.596 - -
F4-ITS(+ Gemma-3n) 0.377 0.601 0.395 0.621 0.345 0.598 0.378 0.630
F4-ITS(+ Gemini) 0.390 0.620 0.433 0.658 0.352 0.604 0.385 0.630
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