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Abstract
The recent development of knowledge em-001
bedding (KE) enables machines to repre-002
sent knowledge graphs (KGs) with low-003
dimensional embeddings, which facilitates uti-004
lizing KGs for various downstream natural005
language understanding (NLU) tasks. How-006
ever, less work has been done on systemat-007
ically evaluating the impact of KE on NLU.008
In this work, we conduct a comprehensive009
analysis of utilizing KE on four downstream010
knowledge-driven NLU tasks using two rep-011
resentative knowledge-guided frameworks, in-012
cluding knowledge augmentation and knowl-013
edge attention. From the experimental results,014
we find that: (1) KE models that have bet-015
ter performance on knowledge graph comple-016
tion do not necessarily help knowledge-driven017
NLU tasks better in the knowledge-guided018
frameworks; (2) KE could effectively benefit019
NLU tasks from two aspects including entity020
similarity and entity relation information; (3)021
KE could further benefit pre-trained language022
models which have already learned rich knowl-023
edge from pre-training. We hope the results024
could help and guide future studies to utilize025
KE in NLU tasks. Our source code will be re-026
leased to support further exploration.027

1 Introduction028

Knowledge graphs (KGs) organize entity knowl-029

edge and concept knowledge into structured re-030

lational data, potentially providing rich informa-031

tion for a variety of NLP tasks, such as informa-032

tion retrieval (Hu et al., 2009), information extrac-033

tion (Hoffmann et al., 2011), and question answer-034

ing (Bordes et al., 2014a,c). Both the research com-035

munity and the industry have built various large-036

scale KGs1 and intend to exploit the rich informa-037

tion in KGs to help natural language understanding.038

KG is a typical kind of non-Euclidean data,039

which is difficult for deep learning models to use di-040

1E.g., YAGO (Suchanek et al., 2007), Freebase (Bollacker
et al., 2008), and Wikidata (Vrandečić and Krötzsch, 2014).

rectly (Bronstein et al., 2017), while deep learning 041

has become the standard technique of NLP. Knowl- 042

edge embedding (KE) represents entities and rela- 043

tions in KGs as low-dimensional semantic embed- 044

dings in a Euclidean space, which clears the way 045

for injecting KGs into deep learning models. Re- 046

cently, many efforts have been devoted to KE (Min- 047

ervini et al., 2017; Guo et al., 2018; Padia et al., 048

2019) and KE has shown its strong ability to repre- 049

sent knowledge. Hence, it is feasible to integrate 050

KE in downstream NLP tasks. 051

Although some recent work has explored utiliz- 052

ing KE for NLP, these studies usually only focus on 053

a single task with a single KE (Weston et al., 2013; 054

Bordes et al., 2014a; Zhang et al., 2016; Xin et al., 055

2018). Less work has been done to systematically 056

evaluate the impact of KE on NLP. To advance the 057

utilization of KE, we need to understand how and 058

to what extent KE contributes to downstream NLP 059

tasks. 060

In this paper, we focus on the impact of KE on 061

language understanding. First, we summarize two 062

mainstream knowledge-guided frameworks based 063

on existing work: knowledge augmentation and 064

knowledge attention. Then, we perform a compre- 065

hensive analysis of utilizing KE on four knowledge- 066

driven NLU tasks. Specifically, we evaluate these 067

frameworks on the following two types of tasks: 068

(1) Entity-oriented tasks: relation extraction and 069

entity typing; (2) General NLU tasks: informa- 070

tion retrieval and fact verification. Besides, to in- 071

vestigate KE’s effect with various text encoders, 072

we implement three representative text encoders: 073

CNN (Kim, 2014), LSTM (Hochreiter and Schmid- 074

huber, 1997), and BERT (Devlin et al., 2019). We 075

have the following observations: 076

(1) In most cases, KE models can improve the 077

performance of the models that only use texts. 078

However, a KE model with better performance on 079

KGC does not necessarily better help NLU tasks. 080

(2) For what information of KE could help lan- 081
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guage understanding, our experiments show that082

the models using entity embeddings as external083

knowledge could effectively capture entity similar-084

ity and entity relation information.085

(3) Although previous work (Petroni et al., 2019)086

has revealed that pre-trained language models087

(PLMs) such as BERT could learn rich factual088

knowledge from the pre-training on large-scale cor-089

pora, our experiments indicate that KE is still valu-090

able for enhancing PLMs, and how to design a091

feasible way to combine KE and PLMs remains an092

exciting research direction.093

Hopefully, the results of our analysis would pro-094

vide some insights about how to better utilize KE095

for language understanding in the future.096

2 Background097

2.1 Knowledge Embedding098

In this subsection, we first introduce several repre-099

sentative KE models and then summarize the KE100

models chosen in our experiments.101

Linear Models utilize a linear combination of102

the relation embedding and head/tail entity em-103

beddings to model the probability of the relational104

fact (Bordes et al., 2011, 2012, 2014b). LFM (Je-105

natton et al., 2012; Sutskever et al., 2009) is a rep-106

resentative linear model, which employs a relation-107

specific bilinear form to consider the relatedness108

between entities and relations. DistMult (Yang109

et al., 2014) further reduces the number of relation110

parameters in LFM via simply restricting relation111

matrices to be diagonal matrices, resulting in a less112

complicated model and better performance.113

Translation Models regard the relation embed-114

ding as a translation between the head and tail en-115

tities’ embeddings. Bordes et al. (2013) propose116

the first translation model TransE, which is simple117

but effective. Although TransE achieves promising118

results, it cannot handle the complex relations in119

KGs well due to its simple structure. Various trans-120

lation models have been proposed to address this121

issue, such as TransH (Wang et al., 2014), Tran-122

sR/CTransR (Lin et al., 2015), TransD (Ji et al.,123

2015), TranSparse (Ji et al., 2016), KG2E (He et al.,124

2015), and ManifoldE (Xiao et al., 2016).125

Neural Models utilize neural networks to model126

the probability of the relational fact by taking the127

head/tail entity and relation embeddings as inputs.128

NTN (Socher et al., 2013) employs a bilinear ten-129

sor to combine two entities’ embeddings via multi-130

ple aspects. Moreover, HolE (Nickel et al., 2016)131

uses the circular correlation of vectors to repre- 132

sent pairs of entities, which could combine the 133

expressive power of the tensor product with the 134

efficiency and simplicity of TransE. In other work, 135

both NAM (Liu et al., 2016) and ConvE (Dettmers 136

et al., 2018) utilize multi-layer networks to capture 137

the interactions among entities and relations. We 138

find that most of neural models are designed for the 139

small-scale KG like FB15K-237. We have tried to 140

conduct experiments on neural KE and find that the 141

GPU memory cannot place our large-scale KG. We 142

think the feasibility for large-scale KGs is impor- 143

tant for KE algorithms in the application scenario, 144

and thus the neural KE models are not included. 145

Complex-Valued Models exploit complex em- 146

beddings to represent the entities and relations. 147

ComplEx (Trouillon et al., 2016) first considers 148

complex embeddings in KE models by employing 149

an eigenvalue decomposition model. Moreover, 150

RotatE (Sun et al., 2019b) defines each relation 151

as a rotation from the head entity to the tail entity 152

in a complex vector space. Benefiting from the 153

strong modeling ability of complex embeddings, 154

complex-valued models achieve quite good perfor- 155

mance compared with other KE models. 156

Notably, some hyperbolic models (Chami et al., 157

2020; Wang et al., 2020) have been proposed re- 158

cently, which are mainly designed for extremely 159

low-dimensional embeddings and cannot be easily 160

used by neural networks. Hence, we do not choose 161

this kind of models. 162

In this paper, we compare the most typical 163

KE models from each type, including (1) Linear 164

model: DisMult; (2) Translation model: TransE; 165

(3) Complex-valued model: RotatE. 166

2.2 Utilizing External Knowledge for NLP 167

This subsection introduces previous work on utiliz- 168

ing external knowledge in different tasks, including 169

entity-oriented and general NLP tasks. 170

What we call “Entity-oriented tasks” includes 171

most of the information extraction tasks (Chang 172

et al., 2006). These tasks naturally benefit from 173

external knowledge about entities, and thus there 174

are several methods using KGs for these tasks, such 175

as entity typing (Xin et al., 2018; Liu et al., 2019a), 176

and relation extraction (Weston et al., 2013; Han 177

et al., 2018a; Li et al., 2019). 178

There are also several general NLP tasks that do 179

not focus on entities but could effectively benefit 180

from the information of KGs, such as question an- 181
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swering (Bordes et al., 2014a; Miller et al., 2016;182

Yang and Mitchell, 2017; Huang et al., 2019; Sun183

et al., 2019a; Verga et al., 2020; Yasunaga et al.,184

2021), fact verification (Thorne et al., 2018), in-185

formation retrieval (Xiong et al., 2017; Liu et al.,186

2018), recommendation systems (Zhang et al.,187

2016; Wang et al., 2018, 2019a,c; Xian et al., 2019;188

Wang et al., 2019b; Dhingra et al., 2020), language189

modeling (Ahn et al., 2016; Gu et al., 2018; Parvez190

et al., 2018), and dialog systems (He et al., 2017;191

Ghazvininejad et al., 2018). In general NLP tasks,192

KGs can provide external background knowledge193

to understand the context, such as in question an-194

swering and fact verification; or serve as external195

interactions between two texts for similarity mea-196

suring, such as for information retrieval and recom-197

mendation systems.198

3 Knowledge-Guided Frameworks199

We derive two general knowledge-guided frame-200

works based on previous work mentioned in the201

last section: knowledge augmentation framework202

and knowledge attention framework.203

In the scenario of knowledge-driven NLU, we204

aim to obtain the representations of the word se-205

quence Ow and entity sequence Oe and fuse them206

for prediction, where the entity sequence consists207

of entities appearing in text. The token sequence208

is denoted by {wi}ni=1, where n is the sequence209

length. Meanwhile, the entity sequence is denoted210

by {ei}mi=1, where m is the number of entities.211

For classification tasks, such as relation clas-212

sification, the representations of Ow and Oe are213

two vectors summarizing all information in the se-214

quence. To use them, we input the concatenation215

of these two vectors into a multi-layer perceptron216

(MLP) to predict labels. For matching tasks, such217

as information retrieval, the representations of Ow218

and Oe are two sequences of embeddings for each219

word or entity. To use them, we follow the kernel220

method proposed by Dai et al. (2018).221

Knowledge Augmentation Framework aims222

to directly integrate entity knowledge by treating223

entity sequences as external features. It could be224

generalized to a variety of existing work utilizing225

KE (Weston et al., 2013; Han et al., 2018a; Xiong226

et al., 2017; Liu et al., 2018). This framework for-227

mulates the entity representation Oe as228

Oe = Ence(e1, . . . , em), (1)229

where Ence is the entity encoder, which is usually230

an MLP, and ei is the entity embedding of ei. For231

classification tasks, Ence takes the concatenation 232

of entity embeddings as input. For matching tasks, 233

Ence is applied to each entity embedding. 234

Knowledge Attention Framework is expected 235

to capture semantic correlations of context and en- 236

tity knowledge. It utilizes entity information to 237

gather different aspects of semantic meanings in 238

the text sequence. This framework is also general- 239

ized to another part of knowledge-guided language 240

understanding models (Xin et al., 2018; Kumar 241

et al., 2018; Li et al., 2019). It treats entity embed- 242

dings as attention queries and word representations 243

as attention key-value pairs. The process to com- 244

pute the attention output hei of entity ei and the 245

general representation Oe is formulated as 246

hei = W T softmax(WAei),

Oe = Ence(he1 , . . . ,hem),
(2) 247

where A is a bi-linear matrix, Ence is identical to 248

that of knowledge augmentation framework, and 249

W = {w1, . . . ,wn} is the word representation 250

matrix. Note that the word representations can be 251

contextualized, such as outputs of CNN, LSTM, or 252

uncontextualized, such as GloVE. 253

4 Experimental Setup 254

KG Details. We adopt a sub-graph of Wikidata 255

to train the KE models. There are 5, 039, 998 en- 256

tities, 927 relations, and 24, 248, 796 fact triples. 257

Note that the triples appearing in the relation clas- 258

sification task are removed from this KG. 259

Training Details. The training details of KE 260

models and text encoders are introduced in Sec- 261

tion A of the Appendix due to the space limitation. 262

Frameworks. We denote the knowledge aug- 263

mentation framework by +Aug and the knowledge 264

attention framework by +Att. We can combine the 265

names of text encoders and frameworks to represent 266

instantiations of these frameworks, e.g., CNN+Aug 267

denotes the instance of CNN in the knowledge aug- 268

mentation framework. We also report the results of 269

only using KE or text in downstream tasks, which 270

is denoted by KE-Only or Text-Only. 271

Evaluation Datasets. We choose four typical 272

knowledge-driven NLU tasks, which can be di- 273

vided into two types: Entity-oriented tasks in- 274

cluding relation classification and entity typing, 275

and General NLU tasks including information re- 276

trieval and fact verification. Examples of these 277

tasks are shown in Figure 1. Unlike previous work 278

designing specific models for each task, this work 279

systematically evaluates two general knowledge- 280
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Relation Classification
Text: Newton served as the president of the Royal Society.
Relation: member_of
Entity Typing
Text: Newton served as the president of the Royal Society.
Type: organization
Information Retrieval
Query: How large was Medusa?
Document: Medusa, a reticulated python, clocked in at 7.67 meters 
(25 feet, 2 inches) long in its official world record measurement.
Relevance: high
Fact Verification
Statement: Home Alone was written by Barack Obama.
Correctness: false

Figure 1: Examples for the evaluation tasks. The under-
lined mentions are the entities appearing in the inputs.
The last line in each box is the corresponding label.

guided frameworks on these tasks.281

(1) Relation Classification aims to determine the282

correct relation between two entities in a given283

sentence, which is an important task for infor-284

mation extraction. In this work, we choose a285

large-scale human-annotated relation classification286

dataset FewRel (Han et al., 2018b), which consists287

of 56, 000 instances and 80 relation classes.288

(2) Entity Typing aims to infer the semantic type289

of the entity mention by its context. In this work,290

we adopt the large-scale entity typing dataset used291

by Xin et al. (2018), which contains 68 types,292

860, 011 training instances, 66, 860 development293

instances and 68, 242 testing instances.294

(3) Information Retrieval aims to capture the295

query-document relevancy by calculating the sim-296

ilarities between queries and documents. We use297

ClueWeb09 as the dataset since Xiong et al. (2017)298

have shown that the understanding of its many299

cases needs external knowledge. There are 200300

queries and we adopt the five-fold cross-validation.301

(4) Fact Verification aims to verify the cor-302

rectness of a given statement regarding entities.303

Here, we verify the statement without evidence and304

keep the statements with more than two entities in305

FEVER (Thorne et al., 2018) to evaluate the help of306

KE. There are 17, 918 instances for training, 2, 238307

instances for development and testing, respectively.308

We select these tasks for two reasons. First, there309

have been many works and datasets in these tasks310

for knowledge integration, making the comprehen-311

sive comparison available. Second, these four tasks312

are representative: entity typing focuses on a single313

entity; relation classification focuses on the relation314

between two entities; information retrieval focuses315

on the similarities between entities; and fact ver-316

ification focuses on the reasoning among entities.317

Notably, We exclude language modeling and dialog318

KE MRR HITS@1 HITS@3 HITS@10

DistMult 0.226 0.173 0.252 0.327
TransE 0.279 0.196 0.334 0.416
RotatE 0.302 0.234 0.345 0.418

Table 1: Performance on knowledge graph completion.

system because we focus on NLU tasks here. 319

Evaluation Metrics. For relation classification 320

and fact verification, which are multi-class classifi- 321

cation tasks, we report the prediction accuracy. For 322

entity typing, which is a multi-label classification 323

task, we adopt micro averaged metrics to measure 324

the model performance. For information retrieval, 325

which is a ranking task, we adopt precision@20 326

(P@20) and NDCG@20 as evaluation metrics2. 327

5 Experimental Results 328

5.1 Effects of KE Models 329

We first investigate whether KE models can help 330

language understanding. To this end, we evaluate 331

the performance of different KE models on KGC 332

and the effects of these KE models with different 333

text encoders and knowledge-guided frameworks. 334

The performance on KGC is shown in Table 1. 335

From the table, we observe that RotatE achieves 336

the best results on all evaluation metrics. 337

For downstream NLU tasks, we report the results 338

of KE-Only, Text-Only and two knowledge-guided 339

frameworks based on three text encoders in Table 2. 340

The best performance of each text encoder is in 341

boldface. From the table, we find that: 342

(1) For CNN and LSTM, both knowledge aug- 343

mentation and knowledge attention frameworks 344

achieve better results compared to the Text-Only 345

models on almost every task. It shows the gener- 346

ality and effectiveness of two knowledge-guided 347

frameworks and the usefulness of KE models for 348

downstream NLU tasks. Besides, knowledge aug- 349

mentation works better than knowledge attention 350

for three text encoders in most of the tasks. This 351

suggests that directly using entity embeddings as 352

features is more suitable for integrating KE’s infor- 353

mation into conventional text encoders. 354

(2) Good performance on KGC does not corre- 355

late with good performance on NLU tasks. On the 356

one hand, RotatE, which achieves the best results 357

in KGC, does not have consistent superior perfor- 358

mance when applied to these NLU tasks. On the 359

2The evaluation toolkit provided by TREC (Van Gysel and
de Rijke, 2018) is used.
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Text Enc. Framework KE RC ET IR FV
Acc P R F1 P@20 NDCG@20 Acc

- KE-Only
DistMult 0.724 0.738 0.695 0.716 0.167 0.172 0.564
TransE 0.803 0.649 0.741 0.692 0.157 0.165 0.576
RotatE 0.683 0.364 0.704 0.480 0.168 0.180 0.580

CNN

Text-Only - 0.668 0.768 0.626 0.690 0.258 0.276 0.737

+Aug
DistMult 0.772 0.811 0.714 0.759 0.243 0.283 0.740
TransE 0.857 0.828 0.733 0.778 0.282 0.328 0.740
RotatE 0.796 0.812 0.675 0.738 0.271 0.320 0.743

+Att
DistMult 0.670 0.783 0.685 0.731 0.268 0.320 0.752
TransE 0.722 0.806 0.737 0.770 0.280 0.326 0.747
RotatE 0.673 0.797 0.721 0.757 0.276 0.317 0.754

LSTM

Text-Only - 0.619 0.754 0.668 0.708 0.228 0.241 0.733

+Aug
DistMult 0.753 0.797 0.714 0.753 0.228 0.272 0.723
TransE 0.848 0.830 0.720 0.771 0.274 0.322 0.736
RotatE 0.774 0.780 0.703 0.740 0.267 0.326 0.732

+Att
DistMult 0.645 0.795 0.722 0.757 0.235 0.255 0.750
TransE 0.660 0.809 0.735 0.770 0.260 0.301 0.747
RotatE 0.610 0.781 0.699 0.737 0.237 0.274 0.748

BERT

Text-Only - 0.849 0.769 0.755 0.762 0.294 0.332 0.831

+Aug
DistMult 0.858 0.767 0.758 0.762 0.295 0.330 0.831
TransE 0.859 0.764 0.751 0.758 0.307 0.348 0.832
RotatE 0.858 0.787 0.747 0.766 0.296 0.333 0.826

+Att
DistMult 0.843 0.748 0.749 0.748 0.288 0.321 0.827
TransE 0.845 0.745 0.731 0.738 0.280 0.326 0.826
RotatE 0.845 0.763 0.743 0.753 0.297 0.338 0.831

Table 2: Performance on four NLU tasks with different KE models and text encoders. RC: Relation Classification;
ET: Entity Typing; IR: Information Retrieval; FV: Fact Verification.

other hand, the performance of KE-Only is also in-360

consistent with two knowledge-guided frameworks.361

For example, in entity typing, DistMult performs362

best in KE-Only but TransE achieves the best result363

when applied in knowledge-guided frameworks.364

These observations indicate that the knowledge-365

driven frameworks may not be able to utilize the366

information of KE well.367

(3) For fact verification, there is a tiny difference368

between the performance of knowledge-guided369

models and Text-Only models. It suggests that370

only using entity embeddings could not benefit this371

task. We will further study this phenomenon in372

Section 5.4 to discuss how to combine language373

and knowledge information.374

To further investigate the performance mismatch375

between KGC and downstream tasks, we compare376

the distance of the semantic spaces between each377

KE model and GloVE (GloVE is the word em-378

bedding used by CNN and LSTM). We suppose379

that for a model using two sources (GloVE and380

KE), if two sources are closer to each other, the381

model will use them easier. Specifically, for each382

matched entity e, which has both word embedding383

and knowledge embedding, we use a unified lin-384

ear matrix M to transform its entity embedding 385

e into its corresponding word embedding we in 386

GloVE, and define the semantic distance of e as 387

||eM − we||2. The semantic space distance be- 388

tween KE and GloVE is defined as the average dis- 389

tance of all matched entities. We show the semantic 390

space distance of three KE models and visualize 391

the embeddings of 40 entities with t-SNE (Maaten 392

and Hinton, 2008) in Figure 2. From this figure, we 393

can see that: (1) The semantic space distances of 394

three KE models are more consistent with their per- 395

formance on NLU tasks than their performance on 396

KGC. (2) DistMult has the largest semantic space 397

distance with GloVE, which may be one reason 398

for its large performance gap between the KE-only 399

framework and two knowledge-guided frameworks. 400

According to this observation, to better utilize KE 401

in NLU tasks, a feasible solution is to build connec- 402

tions between KE and text representation by joint 403

training or designing specific fusion architectures. 404

We will discuss this more in Section 5.4. 405

5.2 Analysis on KE’s Helpful Information 406

Based on the promising results of KE models in Ta- 407

ble 2, we further raise a question: What informa- 408
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Figure 2: Visualization of GloVE and KE models. Dis-
tance: the semantic space distance. An entity in differ-
ent plots has the same color. The KE with a smaller
semantic distance with GloVE will plot more similarly.

tion of KE could help language understanding?409

This will help us figure out the possible directions410

to improve the utilization of KE. Due to the space411

limit, we only report the results using TransE, while412

the conclusion of our analysis is consistent among413

all KE models. For the results of DistMult and414

RotatE, please refer to Section B of the Appendix.415

From our study, there are two main kinds of infor-416

mation in KE benefiting language understanding:417

Entity Similarity Information. Intuitively, the418

similarities between different entities are the most419

important information provided by entity embed-420

dings. Based on the similarities, we can cluster421

similar entities together, which could be beneficial422

for entity typing, and directly using the similarities423

could benefit information retrieval.424

For entity clustering, we cluster entities with K-425

means (MacQueen et al., 1967), and assume the426

entities in the same cluster share the same infor-427

mation. To evaluate the effect of this information,428

we replace input entity embeddings with their cor-429

responding cluster embeddings (the average of all430

entity embeddings in the cluster). Here, we set431

the number of clusters as 100. From the results in432

Figure 3, we can see that:433

(1) In the entity typing (ET) task, the knowledge-434

guided frameworks using cluster embeddings per-435

form very closely to those with original entity em-436

beddings and the KE-Only model using cluster em-437

beddings even achieves better performance than438

the KE-Only model with original embeddings. It439
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Figure 3: Comparisons of the models using entity em-
beddings (Origin) and cluster embeddings (Cluster).

Text Enc. Framework Top 1 Top 5 NDCG@20

- KE-Only 12.71 12.95 0.165

CNN
Text-Only 11.42 11.54 0.276
+Aug 13.50 13.30 0.328
+Att 12.10 12.80 0.326

LSTM
Text-Only 11.79 12.29 0.241
+Aug 13.16 12.63 0.322
+Att 10.17 11.28 0.301

Ground Truth 13.33 -

Table 3: Average entity similarities of the query-
document pairs having high relevance scores. Groud
Truth is the entity similarities of ground truth pairs.

reveals that after removing the other information 440

from inputs, the models may further make full use 441

of the cluster information, which is related to the 442

entity type and entity typing mainly benefits from 443

the cluster information of KE. 444

(2) For the other tasks, using cluster embed- 445

dings can also bring improvements over Text-Only 446

(dashed lines), while there is a performance degra- 447

dation compared to the models using entity em- 448

beddings. It indicates the cluster information is 449

useful for these tasks, but there still exists other 450

information of KE that could help these tasks. 451

Directly using entity similarities may play an 452

important role in information retrieva, which em- 453

phasizes capturing the similarities between queries 454

and documents. To verify this, we calculate the en- 455

tity similarities of the top-5 query-document pairs 456

retrieved by the models. Specifically, given a query- 457

document pair, we calculate the cosine similarities 458

of all entity pairs between the query and document, 459

and average them out as the entity similarities. We 460

report the average results of query-document pairs 461

in Table 3. We observe that the entity similarities 462

of the ground truth are higher than those of most 463
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Figure 4: Comparisons of the models using entity em-
beddings (Origin) and relation embeddings (Relation).

models. The knowledge augmentation framework,464

having the highest entity similarities among mod-465

els, achieves the best performance. It indicates that466

entity similarity is useful for information retrieval.467

However, we also need to consider both texts and468

entities’ information because KE-Only has high469

entity similarities but the worst performance.470

Entity Relation Information. Since KE is471

learned from relational data, the relation informa-472

tion of KE should be important when utilizing KE.473

For example, relation classification (RC) and fact474

verification (FV) require modeling the relations475

among entities in text. To extract the relation infor-476

mation of KE, we calculate the relation embeddings477

according to the scoring function of KE with the478

entity embeddings (e.g., the relation embedding479

in TransE is the difference between head and tail480

entity embeddings). We replace the entity embed-481

dings with the corresponding relation embeddings482

in the input. The results on relation classification483

and fact verification are reported in Figure 4. Fig-484

ure 3 and 4 show that the relation information of485

KE is more useful than the cluster information for486

relation classification. However, for fact verifica-487

tion, the benefit of the relation information is sim-488

ilar to that of the cluster information. The reason489

is that fact verification requires a more complex490

utilization of the information, which will be further491

discussed in Section 5.4.492

5.3 Utilizing KE for PLMs493

From Table 2, we notice that BERT, which is a494

representative pre-trained language model (PLM)495

having powerful representation ability, benefits lit-496

tle from the KE models, and is even slightly de-497

graded in fact verification. The reason is perhaps498

that PLMs such as BERT have learned rich factual499

knowledge through pre-training from large-scale500

corpora (Petroni et al., 2019). Hence, we consider501

a question: Could KE still benefit PLMs in lan-502

guage understanding? In other words, we explore503

how to effectively inject KE into PLMs.504

Text Enc. Framework RC ET IR FV
Acc F1 NDCG Acc

RoBERTa
Text-Only 0.852 0.765 0.350 0.841
+Aug 0.845 0.768 0.329 0.842
+Att 0.842 0.764 0.326 0.838

KEPLER
Text-Only 0.851 0.767 0.344 0.841
+Aug 0.845 0.772 0.342 0.840
+Att 0.848 0.780 0.339 0.836

BERT

Text-Only 0.849 0.762 0.332 0.831
+Aug 0.859 0.758 0.348 0.832
+Att 0.845 0.738 0.326 0.826

ERNIE 0.878 0.799 0.340 0.842

Table 4: The results of PLMs with different frame-
works on downstream tasks.

Firstly, we evaluate whether the pre-training task 505

will influence the ability to utilize KE. Hence, we 506

choose RoBERTa (Liu et al., 2019b), which adopts 507

a better pre-training paradigm than BERT, and KE- 508

PLER (Wang et al., 2019d), which adds a new 509

pre-training task based on KGs to RoBERTa. Sec- 510

ondly, we evaluate ERNIE (Zhang et al., 2019), 511

which injects KE into PLMs via designing speci- 512

fied model architectures. Note that ERNIE is based 513

on BERT and can be treated as a new knowledge- 514

guided framework. From the results in Table 4, we 515

observe that: (1) Similar to BERT, RoBERTa also 516

cannot benefit from the knowledge-guided frame- 517

works in all tasks. Besides, for entity typing, KE- 518

PLER+Att achieves more than 1% improvement 519

over KEPLER. Although the improvement is not 520

consistent across different tasks, it still suggests the 521

possibility of enhancing the ability to utilize knowl- 522

edge by pre-training. (2) ERNIE works well in all 523

tasks, which shows the effectiveness of designing 524

specific modules for knowledge-guided PLMs. 525

In summary, the designs of both pre-training 526

tasks and injection modules are promising for better 527

utilizing KE for PLMs and they still need further 528

research for new tasks and frameworks. 529

5.4 Error Analysis and Discussion 530

In this section, we analyze the errors of the knowl- 531

edge guided frameworks to discover their weak- 532

nesses for further research. According to the obser- 533

vation on the error cases, we categorize the errors 534

into three kinds: knowledge representation, knowl- 535

edge selection, knowledge utilization. The detailed 536

descriptions of these errors are shown in Table 5. 537

We also provide some examples in Section C of the 538

Appendix. We randomly sample 100 error cases 539

from four downstream NLU tasks used in this work 540
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Figure 5: Types of error cases in four knowledge-driven NLU tasks.

Knowledge Representation
1. Static Representation - The static representations
of entities, which ignore the text context, cannot sat-
isfy the demand of tasks.

Knowledge Selection
2. Linking Failure - The results of entity linking
contain some errors, which mislead the knowledge-
guided model.

Knowledge Utilization
3. Fusion Failure - The KE-Only model makes a
correct prediction while the fusion model does not.
4. Useless Knowledge - The model makes the correct
prediction with text while KE causes extra noise.
5. Insufficient Utilization - The instances needs both
text and KE information but the fusion model makes
a incorrect prediction.

Table 5: Descriptions for errors. (5 types, 3 categories.)

and report the statistics of the errors in Figure 5.541

From the statistics, we observe that these three542

kinds of errors account for a great portion of the543

error cases. For fact verification, where knowledge-544

guided frameworks do not work well, the knowl-545

edge information is still needed. Based on the546

results, we discuss several promising directions547

requiring further efforts for each kind of errors:548

(1) For knowledge representation, the error of549

static representation appears in all four downstream550

tasks. Existing work (Wang et al., 2014; Zhang551

et al., 2015; Xu et al., 2016) have preliminarily552

verified the effectiveness of joint learning, which553

can build connections between knowledge and lan-554

guage. Nevertheless, how to represent knowledge555

based on the context is an important problem for556

further research, which is similar to contextualized557

word representation (Peters et al., 2018).558

(2) For knowledge selection, linking failure ap-559

pears in information retrieval and fact verifica-560

tion where linking results are not human-annotated.561

This emphasizes the importance of entity linking.562

Inspired by end-to-end relation extraction (Li and563

Ji, 2014; Miwa and Bansal, 2016), which jointly564

extracts entity mentions and relations, we believe565

entity linking can be integrated into knowledge-566

guided frameworks for better results. Know- 567

BERT (Peters et al., 2019) is pioneering work, 568

which introduces a soft entity linking mechanism. 569

(3) For knowledge utilization, in each task, this 570

kind of errors accounts for more than 50% and 571

three sub-types of error have similar portion. Al- 572

though we have shown that text encoders can ben- 573

efit from KE, they cannot make full use of KE 574

and sometimes fail in knowledge fusion. What’s 575

worse, some cases indeed need external knowl- 576

edge but the insufficient utilization makes it work 577

not well. Meanwhile, directly using KE will in- 578

troduce useless knowledge to the model in some 579

cases. Hence, we need to explore how to better 580

encode both knowledge and text information simul- 581

taneously. Recently, ERNIE (Zhang et al., 2019) 582

and KnowBERT (Peters et al., 2019) provide us 583

a novel perspective to fuse knowledge and lan- 584

guage in pre-training. Besides designing novel 585

pre-training objectives, we could also design more 586

suitable model architectures for utilizing KE. There 587

exist some works investigating novel model archi- 588

tectures to encode relational knowledge, such as 589

memory-based models (Yang and Mitchell, 2017; 590

Mihaylov and Frank, 2018), graph neural network- 591

based models (Sun et al., 2018), retrieval-based 592

models (Guu et al., 2020), etc. Nevertheless, the 593

problem of how to effectively fuse knowledge in 594

language understanding still remains unsolved. 595

6 Conclusion 596

In this work, we seek to better understand how 597

KE could benefit language understanding in four 598

knowledge-driven NLU tasks. Our comprehensive 599

evaluation reveals (1) the performance inconsis- 600

tency between knowledge graph completion and 601

downstream NLU tasks; (2) two main kinds of 602

useful information of KE in downstream NLU 603

tasks; (3) how KE could benefit powerful PLMs. 604

These observations can provide some insights for 605

the follow-up researchers to better exploit KE in 606

language understanding tasks. 607
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A Experimental Setup955

Training Details of KE models. The sub-graph956

of Wikidata 3 is extracted by (Zhang et al.,957

2019). We divide these fact triples into two parts:958

24, 247, 796 triples for training and 1, 000 triples959

for validation.960

In this work, we evaluate three typical KE961

models: DistMult, TransE, and RotatE. We use962

GraphVite (Zhu et al., 2019), a high-performance963

KE system, to train these models. We follow964

most of hyper-parameters provided by GraphVite965

for large-scale KE and only search for the best966

learning rate based on the result of validation, 0.6967

from {0.2, 0.4, 0.6, 0.8} for DistMult, 0.008 from968

{0.004, 0.008, 0.01, 0.02} for TransE, 0.01 from969

{0.008, 0.01, 0.02, 0.04} for RotatE. We set the di-970

mension of KE as 128, which achieves the best971

performance on downstream NLP tasks.972

Training Details of Text Encoders. In this973

work, we evaluate three typical text encoders. All974

models are optimized by Adam (Kingma and Ba,975

2014) except for CNN and LSTM in information976

3https://www.wikidata.org
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Figure 6: Comparisons of the models using entity em-
beddings (Origin) and cluster embeddings (Cluster).
The KE model is DistMult.
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Figure 7: Comparisons of the models using entity em-
beddings (Origin) and cluster embeddings (Cluster).
The KE model is RotatE.

retrieval, which use SGD. The hyperparameters for 977

these models are as follows: (1) CNN. We adopt a 978

single layer CNN. The hidden size of CNN is 100. 979

We set the batchsize as 32 for relation classification 980

and 100 for the others. We train the models with the 981

learning rate of 0.001 for Adam and 0.1 for SGD. 982

The input word embeddings are GloVe (Pennington 983

et al., 2014) with the dimension of 50. (2) LSTM. 984

We adopt a single layer bi-directional LSTM. The 985

hyper-parameters of LSTM are as the same as those 986

of CNN. (3) BERT. We use BERTBASE released 987

by Google and follow most of hyper-parameters 988

provided by (Devlin et al., 2019) except that the 989

training epoch, which varies in different tasks (10 990

for relation classification, 3 for entity typing, 2 for 991

information retrieval, 30 for fact verification). The 992

learning rate is searched from {2e-5,3e-5,5e-5}. 993

The hyper-parameters of RoBERTa and KEPLER 994
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Figure 8: Comparisons between the models using the
original entity embeddings and the models using the
relation information of DistMult.
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Figure 9: Comparisons between the models using the
original entity embeddings and the models using the
relation information of RotatE.

also follow the setting of BERT.995

Computing Infrastructure and Runtime. We996

use NVIDIA RTX 2080Ti GPUs and each experi-997

ment uses one GPU. The average runtime of LSTM998

and CNN varies from several minutes to several999

tens of minutes according to different tasks. And1000

the average runtime of BERT varies from several1001

tens of minutes to several hours.1002

Entity Linking. For information retrieval and1003

fact verification, which only provide the raw texts,1004

we use TAGME 4 to link the entities mentioned in1005

text to KGs. Meanwhile, we use the entity linking1006

provided by the datasets for RE and ET. To avoid1007

information leakage, we exclude the triples in the1008

test set of RE from the KG in the training of KE.1009

B Analysis of KE1010

The results about cluster information for DistMult1011

and RotatE are shown in Figure 6 and 7 respectively.1012

The results about entity similarity information for1013

DistMult and RotatE are shown in Table 6 and 71014

respectively. The results about relation information1015

for DistMult and RotatE are shown in Figure 8 and1016

9 respectively.1017

4https://tagme.d4science.org/tagme/

Text Enc. Framework Top 1 Top 5 NDCG@20

- KE-Only 13.10 12.40 0.172

CNN
Text-Only 9.56 9.94 0.276

+Aug 12.77 12.86 0.283
+Att 9.99 10.53 0.320

LSTM
Text-Only 10.51 10.60 0.241

+Aug 11.6 11.7 0.272
+Att 10.07 10.45 0.255

Groud Truth 11.92

Table 6: The entity similarity of the query-document
pairs having high relevance score for these models.
Groud Truth is the entity similarity of the ground truth
pairs. The KE model is DistMult.

Text Enc. Framework Top 1 Top 5 NDCG@20

- KE-Only 14.60 13.30 0.180

CNN
Text-Only 8.25 8.53 0.276

+Aug 9.88 9.55 0.301
+Att 9.23 9.86 0.322

LSTM
Text-Only 8.79 9.12 0.241

+Aug 11.3 10.8 0.326
+Att 9.54 8.89 0.274

Groud Truth 10.30

Table 7: The entity similarity of the query-document
pairs having high relevance score for these models.
Groud Truth is the entity similarity of the ground truth
pairs. The KE model is RotatE.

C Error Cases 1018

We provide some example of error cases for each 1019

task. 1020
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Type of Error Text Label Prediction KE Prediction Text Prediction
Static

Representation
Lin Liheng is the daughter of Lin Biao and Ye Qun, nicknamed "Dou 
Dou".

Fusion
Failure

The company 's first completed game was "Odin Sphere" for the 
PlayStation 2 , which was published by Atlus .

Useless
Knowledge

His next two films "Kutty" and "Uthama Puthiran", were both 
collaborations with director Mithran Jawahar.

Inefficient
Utilization

Alphonse John Smith was a 20th-century bishop in the Catholic 
Church in the United States. religion main_subject participant language_of_work

mother sibling spouse spouse

publisher developer developerpublisher

director screenwriter directorscreenwriter

Figure 10: Error cases of relation classification.

Type of Error Text Label Prediction KE Prediction Text Prediction
Static

Representation
The song begins as an acoustic guitar driven pop song and then 
shifts into a slower bridge section.

art;
genre;

Fusion
Failure

VET studies are offered Xavier is one of only fifteen schools in 
Victoria to offer Latin.

Useless
Knowledge

Denis Smith was born in Meir Stoke on Trent the second 
youngest of seven siblings.

citytown;
administrative_region

citytown;
administrative_region

Inefficient
Utilization

On 9 January 2012 Donadoni was unveiled as head coach of 
Serie A club Parma replacing Franco Colomba.

organization;
sports_league

language

sports_team

artlanguageart

administrative_region

artorganization profession

instrument instrument instrument

Figure 11: Error cases of entity typing.

Type of Error Text Label Prediction KE Prediction Text Prediction
Static

Representation
Query: Idaho state flower
Document: List of U.S. state flowers – Wikipedia …

high
relevance 

low
relevance 

low
relevance 

low
relevance 

Linking
Failure

Query: Dangers of asbestos
Document: … South Dakota … Idaho … South Carolina …
Hawaii … asbestos (missing) removal should only be performed by 
qualified professionals since the risks associate with an improperly 
conducted asbestos (missing) removal are quite high …

high
relevance 

low
relevance 

low
relevance 

low
relevance 

Fusion
Failure

Query: Poker tournaments
Document: Free Poker Tournaments - Free Poker Tournaments 
Freerolls play in a free poker tournament…

high
relevance 

low
relevanc

high
relevance

low
relevanc

Useless
Knowledge

Query: Website design hosting
Document: Taos Web Design , Taos Website Design , Taos Web site 
Design , Taos Web Hosting home news about us web design cms
website seo blog web hosting ecommerce …

high
relevance 

low
relevance 

low
relevance 

high
relevance 

Inefficient
Utilization

Query: Mothers day songs
Document: Children ‘s Lullabies : … lullabies that start with a all the 
pretty little horses all the pretty little ponies all the world loves to hear 
mothers sing all through the night version 1 …

low
relevance 

high
relevance 

high
relevance 

high
relevance 

Figure 12: Error cases of information retrieval.

Type of Error Text Label Prediction KE Prediction Text Prediction
Static

Representation
Connie Britton played a role in the first season of American Crime 
Story.

Linking
Failure

Hansel and Gretel is of Mexican (missing) origin.

Fusion
Failure

The New York Knicks compete in the National Basketball Association 
(NBA).

Useless
Knowledge

Live Through This has sold over 1.6 million copies in the United 
States.

true false false true

false true true true

false true truetrue

true false falsetrue

Inefficient
Utilization

Theodore Roosevelt attended Harvard College in 1824. false true true true

Figure 13: Error cases of fact verification.
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