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Abstract

The recent development of knowledge em-
bedding (KE) enables machines to repre-
sent knowledge graphs (KGs) with low-
dimensional embeddings, which facilitates uti-
lizing KGs for various downstream natural
language understanding (NLU) tasks. How-
ever, less work has been done on systemat-
ically evaluating the impact of KE on NLU.
In this work, we conduct a comprehensive
analysis of utilizing KE on four downstream
knowledge-driven NLU tasks using two rep-
resentative knowledge-guided frameworks, in-
cluding knowledge augmentation and knowl-
edge attention. From the experimental results,
we find that: (1) KE models that have bet-
ter performance on knowledge graph comple-
tion do not necessarily help knowledge-driven
NLU tasks better in the knowledge-guided
frameworks; (2) KE could effectively benefit
NLU tasks from two aspects including entity
similarity and entity relation information; (3)
KE could further benefit pre-trained language
models which have already learned rich knowl-
edge from pre-training. We hope the results
could help and guide future studies to utilize
KE in NLU tasks. Our source code will be re-
leased to support further exploration.

1 Introduction

Knowledge graphs (KGs) organize entity knowl-
edge and concept knowledge into structured re-
lational data, potentially providing rich informa-
tion for a variety of NLP tasks, such as informa-
tion retrieval (Hu et al., 2009), information extrac-
tion (Hoffmann et al., 2011), and question answer-
ing (Bordes et al., 2014a,c). Both the research com-
munity and the industry have built various large-
scale KGs' and intend to exploit the rich informa-
tion in KGs to help natural language understanding.

KG is a typical kind of non-Euclidean data,
which is difficult for deep learning models to use di-

lE.gA, YAGO (Suchanek et al., 2007), Freebase (Bollacker
et al., 2008), and Wikidata (Vrandeci¢ and Kro6tzsch, 2014).

rectly (Bronstein et al., 2017), while deep learning
has become the standard technique of NLP. Knowl-
edge embedding (KE) represents entities and rela-
tions in KGs as low-dimensional semantic embed-
dings in a Euclidean space, which clears the way
for injecting KGs into deep learning models. Re-
cently, many efforts have been devoted to KE (Min-
ervini et al., 2017; Guo et al., 2018; Padia et al.,
2019) and KE has shown its strong ability to repre-
sent knowledge. Hence, it is feasible to integrate
KE in downstream NLP tasks.

Although some recent work has explored utiliz-
ing KE for NLP, these studies usually only focus on
a single task with a single KE (Weston et al., 2013;
Bordes et al., 2014a; Zhang et al., 2016; Xin et al.,
2018). Less work has been done to systematically
evaluate the impact of KE on NLP. To advance the
utilization of KE, we need to understand how and
to what extent KE contributes to downstream NLP
tasks.

In this paper, we focus on the impact of KE on
language understanding. First, we summarize two
mainstream knowledge-guided frameworks based
on existing work: knowledge augmentation and
knowledge attention. Then, we perform a compre-
hensive analysis of utilizing KE on four knowledge-
driven NLU tasks. Specifically, we evaluate these
frameworks on the following two types of tasks:
(1) Entity-oriented tasks: relation extraction and
entity typing; (2) General NLU tasks: informa-
tion retrieval and fact verification. Besides, to in-
vestigate KE’s effect with various text encoders,
we implement three representative text encoders:
CNN (Kim, 2014), LSTM (Hochreiter and Schmid-
huber, 1997), and BERT (Devlin et al., 2019). We
have the following observations:

(1) In most cases, KE models can improve the
performance of the models that only use texts.
However, a KE model with better performance on
KGC does not necessarily better help NLU tasks.

(2) For what information of KE could help lan-



guage understanding, our experiments show that
the models using entity embeddings as external
knowledge could effectively capture entity similar-
ity and entity relation information.

(3) Although previous work (Petroni et al., 2019)
has revealed that pre-trained language models
(PLMs) such as BERT could learn rich factual
knowledge from the pre-training on large-scale cor-
pora, our experiments indicate that KE is still valu-
able for enhancing PLMs, and how to design a
feasible way to combine KE and PLMs remains an
exciting research direction.

Hopefully, the results of our analysis would pro-
vide some insights about how to better utilize KE
for language understanding in the future.

2 Background
2.1 Knowledge Embedding

In this subsection, we first introduce several repre-
sentative KE models and then summarize the KE
models chosen in our experiments.

Linear Models utilize a linear combination of
the relation embedding and head/tail entity em-
beddings to model the probability of the relational
fact (Bordes et al., 2011, 2012, 2014b). LEM (Je-
natton et al., 2012; Sutskever et al., 2009) is a rep-
resentative linear model, which employs a relation-
specific bilinear form to consider the relatedness
between entities and relations. DistMult (Yang
et al., 2014) further reduces the number of relation
parameters in LFM via simply restricting relation
matrices to be diagonal matrices, resulting in a less
complicated model and better performance.

Translation Models regard the relation embed-
ding as a translation between the head and tail en-
tities” embeddings. Bordes et al. (2013) propose
the first translation model TransE, which is simple
but effective. Although TransE achieves promising
results, it cannot handle the complex relations in
KGs well due to its simple structure. Various trans-
lation models have been proposed to address this
issue, such as TransH (Wang et al., 2014), Tran-
sR/CTransR (Lin et al., 2015), TransD (Ji et al.,
2015), TranSparse (Ji et al., 2016), KG2E (He et al.,
2015), and ManifoldE (Xiao et al., 2016).

Neural Models utilize neural networks to model
the probability of the relational fact by taking the
head/tail entity and relation embeddings as inputs.
NTN (Socher et al., 2013) employs a bilinear ten-
sor to combine two entities” embeddings via multi-
ple aspects. Moreover, HolE (Nickel et al., 2016)

uses the circular correlation of vectors to repre-
sent pairs of entities, which could combine the
expressive power of the tensor product with the
efficiency and simplicity of TransE. In other work,
both NAM (Liu et al., 2016) and ConvE (Dettmers
et al., 2018) utilize multi-layer networks to capture
the interactions among entities and relations. We
find that most of neural models are designed for the
small-scale KG like FB15K-237. We have tried to
conduct experiments on neural KE and find that the
GPU memory cannot place our large-scale KG. We
think the feasibility for large-scale KGs is impor-
tant for KE algorithms in the application scenario,
and thus the neural KE models are not included.

Complex-Valued Models exploit complex em-
beddings to represent the entities and relations.
ComplEx (Trouillon et al., 2016) first considers
complex embeddings in KE models by employing
an eigenvalue decomposition model. Moreover,
RotatE (Sun et al., 2019b) defines each relation
as a rotation from the head entity to the tail entity
in a complex vector space. Benefiting from the
strong modeling ability of complex embeddings,
complex-valued models achieve quite good perfor-
mance compared with other KE models.

Notably, some hyperbolic models (Chami et al.,
2020; Wang et al., 2020) have been proposed re-
cently, which are mainly designed for extremely
low-dimensional embeddings and cannot be easily
used by neural networks. Hence, we do not choose
this kind of models.

In this paper, we compare the most typical
KE models from each type, including (1) Linear
model: DisMult; (2) Translation model: TransE;
(3) Complex-valued model: RotatE.

2.2 Utilizing External Knowledge for NLP

This subsection introduces previous work on utiliz-
ing external knowledge in different tasks, including
entity-oriented and general NLP tasks.

What we call “Entity-oriented tasks” includes
most of the information extraction tasks (Chang
et al., 2006). These tasks naturally benefit from
external knowledge about entities, and thus there
are several methods using KGs for these tasks, such
as entity typing (Xin et al., 2018; Liu et al., 2019a),
and relation extraction (Weston et al., 2013; Han
et al., 2018a; Li et al., 2019).

There are also several general NLP tasks that do
not focus on entities but could effectively benefit
from the information of KGs, such as question an-



swering (Bordes et al., 2014a; Miller et al., 2016;
Yang and Mitchell, 2017; Huang et al., 2019; Sun
et al., 2019a; Verga et al., 2020; Yasunaga et al.,
2021), fact verification (Thorne et al., 2018), in-
formation retrieval (Xiong et al., 2017; Liu et al.,
2018), recommendation systems (Zhang et al.,
2016; Wang et al., 2018, 2019a,c; Xian et al., 2019;
Wang et al., 2019b; Dhingra et al., 2020), language
modeling (Ahn et al., 2016; Gu et al., 2018; Parvez
et al., 2018), and dialog systems (He et al., 2017;
Ghazvininejad et al., 2018). In general NLP tasks,
KGs can provide external background knowledge
to understand the context, such as in question an-
swering and fact verification; or serve as external
interactions between two texts for similarity mea-
suring, such as for information retrieval and recom-
mendation systems.

3 Knowledge-Guided Frameworks

We derive two general knowledge-guided frame-
works based on previous work mentioned in the
last section: knowledge augmentation framework
and knowledge attention framework.

In the scenario of knowledge-driven NLU, we
aim to obtain the representations of the word se-
quence O,, and entity sequence O, and fuse them
for prediction, where the entity sequence consists
of entities appearing in text. The token sequence
is denoted by {w;}7_,, where n is the sequence
length. Meanwhile, the entity sequence is denoted
by {e;}™ |, where m is the number of entities.

For classification tasks, such as relation clas-
sification, the representations of O,, and O, are
two vectors summarizing all information in the se-
quence. To use them, we input the concatenation
of these two vectors into a multi-layer perceptron
(MLP) to predict labels. For matching tasks, such
as information retrieval, the representations of O,,
and O, are two sequences of embeddings for each
word or entity. To use them, we follow the kernel
method proposed by Dai et al. (2018).

Knowledge Augmentation Framework aims
to directly integrate entity knowledge by treating
entity sequences as external features. It could be
generalized to a variety of existing work utilizing
KE (Weston et al., 2013; Han et al., 2018a; Xiong
et al., 2017; Liu et al., 2018). This framework for-
mulates the entity representation O, as

Oe :Ence(elv"'vem)a (1)

where Enc, is the entity encoder, which is usually
an MLP, and e; is the entity embedding of e;. For

classification tasks, Enc, takes the concatenation
of entity embeddings as input. For matching tasks,
Enc, is applied to each entity embedding.

Knowledge Attention Framework is expected
to capture semantic correlations of context and en-
tity knowledge. It utilizes entity information to
gather different aspects of semantic meanings in
the text sequence. This framework is also general-
ized to another part of knowledge-guided language
understanding models (Xin et al., 2018; Kumar
et al., 2018; Li et al., 2019). It treats entity embed-
dings as attention queries and word representations
as attention key-value pairs. The process to com-
pute the attention output h., of entity e; and the
general representation O, is formulated as

he, = W1 softmax(W Ae;),
O, = Enc.(hc,,..., he,),

where A is a bi-linear matrix, Enc, is identical to
that of knowledge augmentation framework, and
W = {w;i,...,w,} is the word representation
matrix. Note that the word representations can be
contextualized, such as outputs of CNN, LSTM, or
uncontextualized, such as GloVE.

2

4 Experimental Setup

KG Details. We adopt a sub-graph of Wikidata
to train the KE models. There are 5, 039, 998 en-
tities, 927 relations, and 24, 248, 796 fact triples.
Note that the triples appearing in the relation clas-
sification task are removed from this KG.
Training Details. The training details of KE
models and text encoders are introduced in Sec-
tion A of the Appendix due to the space limitation.
Frameworks. We denote the knowledge aug-
mentation framework by +Aug and the knowledge
attention framework by +Att. We can combine the
names of text encoders and frameworks to represent
instantiations of these frameworks, e.g., CNN+Aug
denotes the instance of CNN in the knowledge aug-
mentation framework. We also report the results of
only using KE or text in downstream tasks, which
is denoted by KE-Only or Text-Only.
Evaluation Datasets. We choose four typical
knowledge-driven NLU tasks, which can be di-
vided into two types: Entity-oriented tasks in-
cluding relation classification and entity typing,
and General NLU tasks including information re-
trieval and fact verification. Examples of these
tasks are shown in Figure 1. Unlike previous work
designing specific models for each task, this work
systematically evaluates two general knowledge-



Relation Classification
Text: Newton served as the president of the Royal Society.

Relation:

Entity Typing

Text: Newton served as the president of the Royal Society.
Type:

Information Retrieval

Query: How large was Medusa?

Document: Medusa, a reticulated python, clocked in at 7.67 meters
(25 feet, 2 inches) long in its official world record measurement.
Relevance:

Fact Verification
Statement: Home Alone was written by Barack Obama.
Correctness:

Figure 1: Examples for the evaluation tasks. The under-
lined mentions are the entities appearing in the inputs.
The last line in each box is the corresponding label.

guided frameworks on these tasks.

(1) Relation Classification aims to determine the
correct relation between two entities in a given
sentence, which is an important task for infor-
mation extraction. In this work, we choose a
large-scale human-annotated relation classification
dataset FewRel (Han et al., 2018b), which consists
of 56, 000 instances and 80 relation classes.

(2) Entity Typing aims to infer the semantic type
of the entity mention by its context. In this work,
we adopt the large-scale entity typing dataset used
by Xin et al. (2018), which contains 68 types,
860,011 training instances, 66, 860 development
instances and 68, 242 testing instances.

(3) Information Retrieval aims to capture the
query-document relevancy by calculating the sim-
ilarities between queries and documents. We use
ClueWeb09 as the dataset since Xiong et al. (2017)
have shown that the understanding of its many
cases needs external knowledge. There are 200
queries and we adopt the five-fold cross-validation.

(4) Fact Verification aims to verify the cor-
rectness of a given statement regarding entities.
Here, we verify the statement without evidence and
keep the statements with more than two entities in
FEVER (Thorne et al., 2018) to evaluate the help of
KE. There are 17, 918 instances for training, 2, 238
instances for development and testing, respectively.

We select these tasks for two reasons. First, there
have been many works and datasets in these tasks
for knowledge integration, making the comprehen-
sive comparison available. Second, these four tasks
are representative: entity typing focuses on a single
entity; relation classification focuses on the relation
between two entities; information retrieval focuses
on the similarities between entities; and fact ver-
ification focuses on the reasoning among entities.
Notably, We exclude language modeling and dialog

KE ‘MRR HITS@1 HITS@3 HITS@10

DistMult | 0.226  0.173 0.252 0.327
TransE | 0.279  0.196 0.334 0.416
RotatE |0.302 0.234 0.345 0.418

Table 1: Performance on knowledge graph completion.

system because we focus on NLU tasks here.
Evaluation Metrics. For relation classification
and fact verification, which are multi-class classifi-
cation tasks, we report the prediction accuracy. For
entity typing, which is a multi-label classification
task, we adopt micro averaged metrics to measure
the model performance. For information retrieval,
which is a ranking task, we adopt precision@20
(P@20) and NDCG @20 as evaluation metrics>.

5 Experimental Results

5.1 Effects of KE Models

We first investigate whether KE models can help
language understanding. To this end, we evaluate
the performance of different KE models on KGC
and the effects of these KE models with different
text encoders and knowledge-guided frameworks.

The performance on KGC is shown in Table 1.
From the table, we observe that RotatE achieves
the best results on all evaluation metrics.

For downstream NLU tasks, we report the results
of KE-Only, Text-Only and two knowledge-guided
frameworks based on three text encoders in Table 2.
The best performance of each text encoder is in
boldface. From the table, we find that:

(1) For CNN and LSTM, both knowledge aug-
mentation and knowledge attention frameworks
achieve better results compared to the Text-Only
models on almost every task. It shows the gener-
ality and effectiveness of two knowledge-guided
frameworks and the usefulness of KE models for
downstream NLU tasks. Besides, knowledge aug-
mentation works better than knowledge attention
for three text encoders in most of the tasks. This
suggests that directly using entity embeddings as
features is more suitable for integrating KE’s infor-
mation into conventional text encoders.

(2) Good performance on KGC does not corre-
late with good performance on NLU tasks. On the
one hand, RotatE, which achieves the best results
in KGC, does not have consistent superior perfor-
mance when applied to these NLU tasks. On the

*The evaluation toolkit provided by TREC (Van Gysel and
de Rijke, 2018) is used.



RC ET IR FV

TextEnc.  Framework  KE Acc | P R FI | P@20 NDCG@20 | Acc
DistMult | 0724 | 0.738 0695 0716 | 0.167 0172 | 0.564

] KE-Only  TransE | 0.803 | 0.649 0.741 0692 | 0157 0165 | 0.576
RotatE | 0.683 | 0364 0704 0480 | 0.168  0.180 | 0.580

Text-Only - 0.668 | 0.768 0.626 0.690 | 0258 0276 | 0.737

DistMult | 0772 | 0.811 0714 0759 | 0243 0283 | 0.740

NN +Aug TransE | 0.857 | 0.828 0733 0778 | 0282 0328 | 0.740
RotatE | 0796 | 0.812 0.675 0738 | 0.271 0320 | 0.743

DistMult | 0.670 | 0783 0.685 0731 | 0268 0320 | 0.752

+ALt TransE | 0722 | 0.806 0737 0770 | 0280 0326 | 0.747

RotatE | 0.673 | 0797 0721 0757 | 0276 0317 | 0.754

Text-Only - 0.619 | 0.754 0.668 0708 | 0228 0241 | 0.733

DistMult | 0753 | 0797 0714 0753 | 0228 0272 | 0.723

Lstv | HAug TransE | 0.848 | 0.830 0720 0771 | 0274 0322 | 0736
RotatE | 0.774 | 0780 0703 0740 | 0267 0326 | 0732

DistMult | 0.645 | 0795 0722 0757 | 0235 0255 | 0.750

+AL TransE | 0.660 | 0.809 0735 0770 | 0260 0301 | 0.747

RotatE | 0.610 | 0781 0.699 0737 | 0237 0274 | 0.748

Text-Only - 0.849 | 0769 0755 0762 | 0294 0332 | 0.831

DistMult | 0.858 | 0.767 0758 0762 | 0295 0330 | 0.831

sErT | tAue TransE | 0.859 | 0764 0751 0758 | 0.307 0348 | 0.832
RotatE | 0.858 | 0.787 0747 0766 | 0296 0333 | 0.826

DistMult | 0.843 | 0748 0749 0748 | 0288 0321 | 0.827

+ALt TransE | 0.845 | 0745 0731 0738 | 0280 0326 | 0.826

RotatE | 0.845 | 0763 0743 0753 | 0297 0338 | 0.831

Table 2: Performance on four NLU tasks with different KE models and text encoders. RC: Relation Classification;
ET: Entity Typing; IR: Information Retrieval; FV: Fact Verification.

other hand, the performance of KE-Only is also in-
consistent with two knowledge-guided frameworks.
For example, in entity typing, DistMult performs
best in KE-Only but TransE achieves the best result
when applied in knowledge-guided frameworks.
These observations indicate that the knowledge-
driven frameworks may not be able to utilize the
information of KE well.

(3) For fact verification, there is a tiny difference
between the performance of knowledge-guided
models and Text-Only models. It suggests that
only using entity embeddings could not benefit this
task. We will further study this phenomenon in
Section 5.4 to discuss how to combine language
and knowledge information.

To further investigate the performance mismatch
between KGC and downstream tasks, we compare
the distance of the semantic spaces between each
KE model and GloVE (GloVE is the word em-
bedding used by CNN and LSTM). We suppose
that for a model using two sources (GloVE and
KE), if two sources are closer to each other, the
model will use them easier. Specifically, for each
matched entity e, which has both word embedding
and knowledge embedding, we use a unified lin-

ear matrix M to transform its entity embedding
e into its corresponding word embedding w,. in
GloVE, and define the semantic distance of e as
||eM — we||a. The semantic space distance be-
tween KE and GloVE is defined as the average dis-
tance of all matched entities. We show the semantic
space distance of three KE models and visualize
the embeddings of 40 entities with t-SNE (Maaten
and Hinton, 2008) in Figure 2. From this figure, we
can see that: (1) The semantic space distances of
three KE models are more consistent with their per-
formance on NLU tasks than their performance on
KGC. (2) DistMult has the largest semantic space
distance with GloVE, which may be one reason
for its large performance gap between the KE-only
framework and two knowledge-guided frameworks.
According to this observation, to better utilize KE
in NLU tasks, a feasible solution is to build connec-
tions between KE and text representation by joint
training or designing specific fusion architectures.
We will discuss this more in Section 5.4.

5.2 Analysis on KE’s Helpful Information

Based on the promising results of KE models in Ta-
ble 2, we further raise a question: What informa-
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Figure 2: Visualization of GloVE and KE models. Dis-
tance: the semantic space distance. An entity in differ-
ent plots has the same color. The KE with a smaller
semantic distance with GloVE will plot more similarly.

tion of KE could help language understanding?
This will help us figure out the possible directions
to improve the utilization of KE. Due to the space
limit, we only report the results using TransE, while
the conclusion of our analysis is consistent among
all KE models. For the results of DistMult and
RotatE, please refer to Section B of the Appendix.
From our study, there are two main kinds of infor-
mation in KE benefiting language understanding:

Entity Similarity Information. Intuitively, the
similarities between different entities are the most
important information provided by entity embed-
dings. Based on the similarities, we can cluster
similar entities together, which could be beneficial
for entity typing, and directly using the similarities
could benefit information retrieval.

For entity clustering, we cluster entities with K-
means (MacQueen et al., 1967), and assume the
entities in the same cluster share the same infor-
mation. To evaluate the effect of this information,
we replace input entity embeddings with their cor-
responding cluster embeddings (the average of all
entity embeddings in the cluster). Here, we set
the number of clusters as 100. From the results in
Figure 3, we can see that:

(1) In the entity typing (ET) task, the knowledge-
guided frameworks using cluster embeddings per-
form very closely to those with original entity em-
beddings and the KE-Only model using cluster em-
beddings even achieves better performance than
the KE-Only model with original embeddings. It
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Figure 3: Comparisons of the models using entity em-
beddings (Origin) and cluster embeddings (Cluster).

Text Enc. Framework | Top I Top 5 | NDCG@20

- KE-Only ‘ 12.71 12.95 ‘ 0.165
Text-Only | 11.42 11.54 0.276
CNN +Aug 13.50 13.30 0.328
+Att 12.10 12.80 0.326
Text-Only | 11.79 12.29 0.241
LSTM +Aug 13.16 12.63 0.322
+Att 10.17 11.28 0.301
Ground Truth | 13.33 | -

Table 3: Average entity similarities of the query-
document pairs having high relevance scores. Groud
Truth is the entity similarities of ground truth pairs.

reveals that after removing the other information
from inputs, the models may further make full use
of the cluster information, which is related to the
entity type and entity typing mainly benefits from
the cluster information of KE.

(2) For the other tasks, using cluster embed-
dings can also bring improvements over Text-Only
(dashed lines), while there is a performance degra-
dation compared to the models using entity em-
beddings. It indicates the cluster information is
useful for these tasks, but there still exists other
information of KE that could help these tasks.

Directly using entity similarities may play an
important role in information retrieva, which em-
phasizes capturing the similarities between queries
and documents. To verify this, we calculate the en-
tity similarities of the top-5 query-document pairs
retrieved by the models. Specifically, given a query-
document pair, we calculate the cosine similarities
of all entity pairs between the query and document,
and average them out as the entity similarities. We
report the average results of query-document pairs
in Table 3. We observe that the entity similarities
of the ground truth are higher than those of most
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Figure 4: Comparisons of the models using entity em-
beddings (Origin) and relation embeddings (Relation).

models. The knowledge augmentation framework,
having the highest entity similarities among mod-
els, achieves the best performance. It indicates that
entity similarity is useful for information retrieval.
However, we also need to consider both texts and
entities’ information because KE-Only has high
entity similarities but the worst performance.

Entity Relation Information. Since KE is
learned from relational data, the relation informa-
tion of KE should be important when utilizing KE.
For example, relation classification (RC) and fact
verification (FV) require modeling the relations
among entities in text. To extract the relation infor-
mation of KE, we calculate the relation embeddings
according to the scoring function of KE with the
entity embeddings (e.g., the relation embedding
in TransE is the difference between head and tail
entity embeddings). We replace the entity embed-
dings with the corresponding relation embeddings
in the input. The results on relation classification
and fact verification are reported in Figure 4. Fig-
ure 3 and 4 show that the relation information of
KE is more useful than the cluster information for
relation classification. However, for fact verifica-
tion, the benefit of the relation information is sim-
ilar to that of the cluster information. The reason
is that fact verification requires a more complex
utilization of the information, which will be further
discussed in Section 5.4.

5.3 Utilizing KE for PLMs

From Table 2, we notice that BERT, which is a
representative pre-trained language model (PLM)
having powerful representation ability, benefits lit-
tle from the KE models, and is even slightly de-
graded in fact verification. The reason is perhaps
that PLMs such as BERT have learned rich factual
knowledge through pre-training from large-scale
corpora (Petroni et al., 2019). Hence, we consider
a question: Could KE still benefit PLMs in lan-
guage understanding? In other words, we explore
how to effectively inject KE into PLMs.

RC ET IR FV

Text Enc. Framework Acc Fl NDCG Acc
Text-Only | 0.852 0.765 0.350 0.841

RoBERTa +Aug 0.845 0.768 0.329 0.842
+Att 0.842 0.764 0.326 0.838

Text-Only | 0.851 0.767 0.344 0.841

KEPLER +Aug 0.845 0.772 0.342 0.840
+Att 0.848 0.780 0.339 0.836

Text-Only |0.849 0.762 0.332 0.831

BERT +Aug 0.859 0.758 0.348 0.832
+Att 0.845 0.738 0.326 0.826

ERNIE \ 0.878 0.799 0.340 0.842

Table 4: The results of PLMs with different frame-
works on downstream tasks.

Firstly, we evaluate whether the pre-training task
will influence the ability to utilize KE. Hence, we
choose RoBERTa (Liu et al., 2019b), which adopts
a better pre-training paradigm than BERT, and KE-
PLER (Wang et al., 2019d), which adds a new
pre-training task based on KGs to RoBERTa. Sec-
ondly, we evaluate ERNIE (Zhang et al., 2019),
which injects KE into PLMs via designing speci-
fied model architectures. Note that ERNIE is based
on BERT and can be treated as a new knowledge-
guided framework. From the results in Table 4, we
observe that: (1) Similar to BERT, RoBERTa also
cannot benefit from the knowledge-guided frame-
works in all tasks. Besides, for entity typing, KE-
PLER+Att achieves more than 1% improvement
over KEPLER. Although the improvement is not
consistent across different tasks, it still suggests the
possibility of enhancing the ability to utilize knowl-
edge by pre-training. (2) ERNIE works well in all
tasks, which shows the effectiveness of designing
specific modules for knowledge-guided PLMs.

In summary, the designs of both pre-training
tasks and injection modules are promising for better
utilizing KE for PLMs and they still need further
research for new tasks and frameworks.

5.4 Error Analysis and Discussion

In this section, we analyze the errors of the knowl-
edge guided frameworks to discover their weak-
nesses for further research. According to the obser-
vation on the error cases, we categorize the errors
into three kinds: knowledge representation, knowl-
edge selection, knowledge utilization. The detailed
descriptions of these errors are shown in Table 5.
We also provide some examples in Section C of the
Appendix. We randomly sample 100 error cases
from four downstream NLU tasks used in this work
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Figure 5: Types of error cases in four knowledge-driven NLU tasks.

Knowledge Representation

1. Static Representation - The static representations
of entities, which ignore the text context, cannot sat-
isfy the demand of tasks.

Knowledge Selection

2. Linking Failure - The results of entity linking
contain some errors, which mislead the knowledge-
guided model.

Knowledge Utilization

3. Fusion Failure - The KE-Only model makes a
correct prediction while the fusion model does not.
4. Useless Knowledge - The model makes the correct
prediction with text while KE causes extra noise.

5. Insufficient Utilization - The instances needs both
text and KE information but the fusion model makes
a incorrect prediction.

Table 5: Descriptions for errors. (5 types, 3 categories.)

and report the statistics of the errors in Figure 5.

From the statistics, we observe that these three
kinds of errors account for a great portion of the
error cases. For fact verification, where knowledge-
guided frameworks do not work well, the knowl-
edge information is still needed. Based on the
results, we discuss several promising directions
requiring further efforts for each kind of errors:

(1) For knowledge representation, the error of
static representation appears in all four downstream
tasks. Existing work (Wang et al., 2014; Zhang
et al., 2015; Xu et al., 2016) have preliminarily
verified the effectiveness of joint learning, which
can build connections between knowledge and lan-
guage. Nevertheless, how to represent knowledge
based on the context is an important problem for
further research, which is similar to contextualized
word representation (Peters et al., 2018).

(2) For knowledge selection, linking failure ap-
pears in information retrieval and fact verifica-
tion where linking results are not human-annotated.
This emphasizes the importance of entity linking.
Inspired by end-to-end relation extraction (Li and
Ji, 2014; Miwa and Bansal, 2016), which jointly
extracts entity mentions and relations, we believe
entity linking can be integrated into knowledge-

guided frameworks for better results. Know-
BERT (Peters et al., 2019) is pioneering work,
which introduces a soft entity linking mechanism.
(3) For knowledge utilization, in each task, this
kind of errors accounts for more than 50% and
three sub-types of error have similar portion. Al-
though we have shown that text encoders can ben-
efit from KE, they cannot make full use of KE
and sometimes fail in knowledge fusion. What’s
worse, some cases indeed need external knowl-
edge but the insufficient utilization makes it work
not well. Meanwhile, directly using KE will in-
troduce useless knowledge to the model in some
cases. Hence, we need to explore how to better
encode both knowledge and text information simul-
taneously. Recently, ERNIE (Zhang et al., 2019)
and KnowBERT (Peters et al., 2019) provide us
a novel perspective to fuse knowledge and lan-
guage in pre-training. Besides designing novel
pre-training objectives, we could also design more
suitable model architectures for utilizing KE. There
exist some works investigating novel model archi-
tectures to encode relational knowledge, such as
memory-based models (Yang and Mitchell, 2017;
Mihaylov and Frank, 2018), graph neural network-
based models (Sun et al., 2018), retrieval-based
models (Guu et al., 2020), etc. Nevertheless, the
problem of how to effectively fuse knowledge in
language understanding still remains unsolved.

6 Conclusion

In this work, we seek to better understand how
KE could benefit language understanding in four
knowledge-driven NLU tasks. Our comprehensive
evaluation reveals (1) the performance inconsis-
tency between knowledge graph completion and
downstream NLU tasks; (2) two main kinds of
useful information of KE in downstream NLU
tasks; (3) how KE could benefit powerful PLMs.
These observations can provide some insights for
the follow-up researchers to better exploit KE in
language understanding tasks.
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A Experimental Setup

Training Details of KE models. The sub-graph
of Wikidata 3 is extracted by (Zhang et al.,
2019). We divide these fact triples into two parts:
24,247,796 triples for training and 1, 000 triples
for validation.

In this work, we evaluate three typical KE
models: DistMult, TransE, and RotatE. We use
GraphVite (Zhu et al., 2019), a high-performance
KE system, to train these models. We follow
most of hyper-parameters provided by GraphVite
for large-scale KE and only search for the best
learning rate based on the result of validation, 0.6
from {0.2,0.4,0.6,0.8} for DistMult, 0.008 from
{0.004,0.008,0.01,0.02} for TransE, 0.01 from
{0.008,0.01,0.02,0.04} for RotatE. We set the di-
mension of KE as 128, which achieves the best
performance on downstream NLP tasks.

Training Details of Text Encoders. In this
work, we evaluate three typical text encoders. All
models are optimized by Adam (Kingma and Ba,
2014) except for CNN and LSTM in information

*https://www.wikidata.org
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Figure 6: Comparisons of the models using entity em-
beddings (Origin) and cluster embeddings (Cluster).
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Figure 7: Comparisons of the models using entity em-
beddings (Origin) and cluster embeddings (Cluster).
The KE model is RotatE.

retrieval, which use SGD. The hyperparameters for
these models are as follows: (1) CNN. We adopt a
single layer CNN. The hidden size of CNN is 100.
We set the batchsize as 32 for relation classification
and 100 for the others. We train the models with the
learning rate of 0.001 for Adam and 0.1 for SGD.
The input word embeddings are GloVe (Pennington
et al., 2014) with the dimension of 50. (2) LSTM.
We adopt a single layer bi-directional LSTM. The
hyper-parameters of LSTM are as the same as those
of CNN. (3) BERT. We use BERTgasE released
by Google and follow most of hyper-parameters
provided by (Devlin et al., 2019) except that the
training epoch, which varies in different tasks (10
for relation classification, 3 for entity typing, 2 for
information retrieval, 30 for fact verification). The
learning rate is searched from {2e-5,3e-5,5e-5}.
The hyper-parameters of ROBERTa and KEPLER
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Figure 8: Comparisons between the models using the
original entity embeddings and the models using the
relation information of DistMult.
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Figure 9: Comparisons between the models using the
original entity embeddings and the models using the
relation information of RotatE.

also follow the setting of BERT.

Computing Infrastructure and Runtime. We
use NVIDIA RTX 2080Ti GPUs and each experi-
ment uses one GPU. The average runtime of LSTM
and CNN varies from several minutes to several
tens of minutes according to different tasks. And
the average runtime of BERT varies from several
tens of minutes to several hours.

Entity Linking. For information retrieval and
fact verification, which only provide the raw texts,
we use TAGME * to link the entities mentioned in
text to KGs. Meanwhile, we use the entity linking
provided by the datasets for RE and ET. To avoid
information leakage, we exclude the triples in the
test set of RE from the KG in the training of KE.

B Analysis of KE

The results about cluster information for DistMult
and RotatE are shown in Figure 6 and 7 respectively.
The results about entity similarity information for
DistMult and RotatE are shown in Table 6 and 7
respectively. The results about relation information
for DistMult and RotatE are shown in Figure 8 and
9 respectively.

*nttps://tagme.d4science.org/tagme/
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Text Enc.  Framework \ Topl Top5 NDCG@20
- KE-Only | 13.10 1240 0.172
Text-Only 9.56 9.94 0.276
CNN +Aug 12.77 12.86 0.283
+Att 999 10353 0.320
Text-Only | 10.51  10.60 0.241
LSTM +Aug 11.6 11.7 0.272
+Att 10.07 10.45 0.255

Groud Truth | 11.92

Table 6: The entity similarity of the query-document
pairs having high relevance score for these models.
Groud Truth is the entity similarity of the ground truth
pairs. The KE model is DistMult.

Text Enc.  Framework ‘ Topl TopS5 NDCG@20
- KE-Only | 14.60 13.30 0.180
Text-Only 8.25 8.53 0.276
CNN +Aug 9.88 9.55 0.301
+Att 9.23 9.86 0.322
Text-Only 8.79 9.12 0.241
LSTM +Aug 11.3 10.8 0.326
+Att 9.54 8.89 0.274

Groud Truth | 10.30

Table 7: The entity similarity of the query-document
pairs having high relevance score for these models.
Groud Truth is the entity similarity of the ground truth
pairs. The KE model is RotatE.

C Error Cases

We provide some example of error cases for each
task.


https://tagme.d4science.org/tagme/

Type of Error Text Label Prediction | KE Prediction | Text Prediction
Static Lin Liheng is the daughter of Lin Biao and Ye Qun, nicknamed "Dou R
Representation | Dou" mother sibling spouse spouse

Fusion The company 's first completed game was "Odin Sphere" for the . .
Failure PlayStati}())n; which wa:)publiqghed by Atlus P publisher developer publisher developer
Useless His next two films "Kutty" and "Uthama Puthiran", were both director | screenwriter | screenwriter director

Knowledge collaborations with director Mithran Jawahar.

Inefficient Alphonse John Smith was a 20th-century bishop in the Catholic - ) . .

Utilization Church in the United States. religion main_subject | participant [language_of_work

Figure 10: Error cases of relation classification.

Type of Error Text Label Prediction KE Prediction Text Prediction
Static . Th.e S(?ng begins as an acouxtzc.' guitar driven pop song and then art; instrument instrument instrument
Representation | shifts into a slower bridge section. genre;
Fusion VET studies are offered Xavier is one of only fifteen schools in language " language art
Failure Victoria to offer Latin. e ar e
Useless Denis Smith was qu Iin Meir Stoke on Trent the second ) f~it_\m'\\ n; . sports_team | administrative_region ) f'it_\ to.\\ n; )
Knowledge youngest of seven siblings. administrative_region administrative_region
Inefficient On 9 January 2012 Donadoni was unveiled as head coach of organization; izati ¢ fessi
Utilization Serie A club Parma replacing Franco Colomba. sports_league organization ar profession
Figure 11: Error cases of entity typing.
Type of Error Text Label Prediction | KE Prediction | Text Prediction
Static Query: Idaho state flower high low low low
Representation | Document: List of U.S. state flowers — Wikipedia ... relevance relevance relevance relevance
Query: Dangers of asbestos
A Document: ... South Dakota ... Idaho ... South Carolina ... .
Linking .. . high low low low
. Hawaii ... asbestos (missing) removal should only be performed by
Failure e — . . . : . relevance relevance relevance relevance
qualified professionals since the risks associate with an improperly
conducted asbestos (missing) removal are quite high ...
. Query: Poker tournaments . .
Fusion high low high low
. Document: Free Poker Tournaments - Free Poker Tournaments )
Failure . relevance relevanc relevance relevanc
Freerolls play in a free poker tournament...
Query: Website design hosting
Useless Document: Taos Web Design , Taos Website Design , Taos Web site high low low high
Knowledge Design , Taos Web Hosting home news about us web design cms relevance relevance relevance relevance
website seo blog web hosting ecommerce ...
Query: Mothers day songs
Inefficient Document: Children ‘s Lullabies : ... lullabies that start with a all the low high high high
Utilization pretty little horses all the pretty little ponies all the world loves to hear | relevance relevance relevance relevance
mothers sing all through the night version 1 ...

Figure 12: Error cases of information retrieval.

Type of Error Text Label Prediction | KE Prediction | Text Prediction
Static Connie Britton played arole in the first season of American Crime .
. false true true true
Representation | Story.
Lllfkmg Hansel and Gretel is of Mexican (missing) origin. false true true true
Failure
Fusion The New York Knicks compete in the National Basketball Association true false true false
Failure (NBA).
Useless Live Through This has sold over 1.6 million copies in the United true false false true
Knowledge States.
Inefficient Theodore Roosevelt attended Harvard College in 1824. .
. false true true true
Utilization

Figure 13: Error cases of fact verification.

14




