
Under review as a conference paper at ICLR 2024

STRUCTURED PRUNING ADAPTERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Adapters are a parameter-efficient alternative to fine-tuning, which augment a
frozen base network to learn new tasks. Yet, the inference of the adapted model
is often slower than the corresponding fine-tuned model. To improve on this,
we introduce the concept of Structured Pruning Adapters (SPAs), a family of
compressing, task-switching network adapters, that accelerate and specialize net-
works using tiny parameter sets and structured pruning. Specifically, we propose
the Structured Pruning Low-rank Adapter (SPLoRA) and the Structured Pruning
Residual Adapter (SPPaRA) and evaluate them on a suite of pruning methods,
architectures, and image recognition benchmarks. Compared to regular struc-
tured pruning with fine-tuning, SPLoRA improves image recognition accuracy
by 6.9% on average for ResNet50 while using half the parameters at 90% pruned
weights. Alternatively, a SPLoRA augmented model can learn adaptations with
17× fewer parameters at 70% pruning with 1.6% lower accuracy. For ViT-b/16
models, SPLoRA improves accuracy by an average of 43%-points at 75% pruned
weights while learning 6.8× fewer parameters. Our experimental code and Python
library of adapters are available at link-available-upon-acceptance.

1 INTRODUCTION

Fine-tuning is an established approach to parameter-based transfer learning from a source model
pre-trained on a large dataset to a target task with limited training data. However, the resulting
model retains the same parameter count and computational characteristics as the source model,
even when solving a considerably simpler task. A group of fine-pruning methods (Li et al. (2017);
Molchanov et al. (2017); Sun et al. (2017); Yeom et al. (2021)) have combined pruning with fine-
tuning to produce highly accurate compressed models which are well-suited for resource-constrained
deployments such as mobile devices, robotics applications, and settings necessitating low latency.

Meanwhile, Adapters (Rebuffi et al. (2017; 2018)) have emerged as a viable alternative to fine-
tuning for multi-domain deep neural networks (DNNs), where a single source DNN is specialized
and sequentially used for multiple tasks. Instead of continuing training the source DNN weights
directly, Adapters introduce parameter-efficient layer add-ons, which are trained instead. As these
add-ons are much more compact than the source DNN weights, they can be transmitted and stored at
low cost. This is very useful, e.g., for edge devices and federated learning (McMahan et al. (2016)).
However, prior work has largely ignored the computational efficiency aspects of Adapters, which
either increase the complexity of the network (He et al. (2022); Zhu et al. (2021); Li & Liang (2021);
Houlsby et al. (2019); Pfeiffer et al. (2021); Mahabadi et al. (2021)) or leave it unaltered by utilizing
structures that can be fused with the original weights (Rebuffi et al. (2017; 2018); Hu et al. (2022)).

While the combination of pruning and fine-tuning can produce compressed models with good per-
formance at an order of magnitude fewer parameters compared to the source model, we show that
a Low-rank Adapter (Hu et al. (2022)) augmented with structured pruning of network channels,
i.e., a Structured Pruning Low-rank Adapter (SPLoRA), can improve upon this by another order of
magnitude for task-switching networks. Another SPA instantiation, the Structure Pruning Parallel
Residual Adapter (SPPaRA), achieves similar performance on convolutional architectures. This is
showcased through a comprehensive comparison to pruning with fine-tuning in weight-based trans-
fer learning from pretrained convolutional and transformer-based networks to a battery of five image
classification benchmarks, four different pruning methods, and four network architectures. Here, we
find that SPAs not only reduce parameter requirements per task massively, but also retain predictive
accuracy better than fine-tuning under aggressive pruning.

1

Under review as a conference paper at ICLR 2024

2 RELATED WORK

Adapter methods When multiple specialized versions of a network are deployed on the same
device and storage requirements are strict, Adapters (Rebuffi et al. (2017)) provide a low-parameter-
count alternative to fine-tuning. Instead of deploying multiple sets of full network weights, a single
set of full weights can be deployed alongside multiple adapter weights, which augment the main
network. For Convolutional Neural Networks (CNNs), point-wise convolutions can be introduced
in series (Rebuffi et al. (2017)) or parallel (Rebuffi et al. (2018)) with a residual connection to adapt
fixed source weights to new tasks. For Transformer-based networks, prior work explored bottleneck
projections with (Zhu et al. (2021)) and without (Hu et al. (2022)) low-dimensional non-linearity
in parallel with the fixed dense layers of the original network. Adapter blocks can also be inter-
spersed in series with existing layers (Houlsby et al. (2019); Pfeiffer et al. (2021); Mahabadi et al.
(2021)). Several works (Stickland & Murray (2019); Pfeiffer et al. (2021); Rücklé et al. (2021))
explored the use of multi-task adapters. While the above-described methods succeed in learning
parameter-efficient network add-ons with very small storage requirements, they often incur an ad-
ditional computational cost beyond the original network. Considering that the adapted target tasks
are usually simpler than the source task, it is reasonable to assume that a derived network adaptation
can be learned, which reduces computational complexity as well.

Efficiency approaches Multiple approaches have been proposed to reduce the compute and mem-
ory footprint of neural networks. Knowledge distillation (Hinton et al. (2015))utilizes a large net-
work as a teacher for a smaller network, which has more desirable memory and computational
characteristics. Efficient architectures (Tan & Le (2019); Feichtenhofer (2020)) define and opti-
mize expressive yet efficient architectural blocks from random initialization under a multi-metric
optimization goal. Low-rank factorizations (Tran et al. (2018); Guo et al. (2019)) approximate
large tensor weights by factorizing them into multiple lower-rank weights. Continual Inference Net-
works (Hedegaard & Iosifidis (2022); Hedegaard et al. (2023)) reuse the network weights of prior
DNNs with a temporal component and accelerate them for online stream processing via optimized
computational sequences and appropriate intra-layer caching. Quantization approaches (Gray &
Neuhoff (1998); Liang et al. (2021)) reduce model size and run-time costs via low-resolution nu-
merical representations of network weights. Finally, Pruning methods entirely remove unnecessary
network weight from a pre-trained model. While all of these are promising research avenues both in
isolation and combination, we focus on pruning-methods hereafter.

Pruning methods DNNs can be pruned at multiple levels: Unstructured pruning of individual
weights results in sparse weight matrices, which accelerate performance on CPU but do not generally
provide speedup on GPUs. On the other hand, structured pruning approaches, such as the pruning of
entire channels (Yeom et al. (2021)) or blocks (Lagunas et al. (2021)) of networks weights, provide
inference speedup across computational devices (Gray et al. (2017)). Chen et al. (2021) propose to
first partition a network into “zero-invariant groups” and subsequently train a group-sparse solution.

Many studies have proposed criteria on what to prune. Early methods (LeCun et al. (1989); Has-
sibi & Stork (1992)) proposed the use of second-order Taylor expansion of the loss Hessian for
weight selection. As computing the inverse of the Hessian may be computationally intractable,
another approach uses a first-order Taylor approximation of the loss change due to the pruning of
units (Molchanov et al. (2017)). Another work uses fast Hessian-vector products to retain low com-
plexity (Nonnenmacher et al. (2022)). Similarly, the gradient of a weight with respect to the loss
can be used for pruning selection (Sun et al. (2017)). Yeom et al. (2021) proposed an explainability-
inspired approach, computing the relevance of each network component by means of Layer-wise
Relevance Pruning (LRP). Among the simplest approaches is the use of weight magnitudes in prun-
ing selection (Han et al. (2015); Li et al. (2017)). Another consideration is whether to rank and
select structural units locally within a layer (keeping pruning evenly spread throughout the network)
or globally, with a contest among all network layers. We utilize global selection in our experiments.

Multiple studies have also investigated when to prune. A simple approach is to first prune the net-
work to the desired sparsity in one go and subsequently train the network on the target task. Another
popular approach is to use an iterative pruning and fine-tuning schedule, pruning a predefined frac-
tion of units at a time (Renda et al. (2020)). Alternatively, Automated Gradual Pruning (Zhu & Gupta
(2018)) allows all weights and masking choices to be altered throughout the pruning schedule.

2

Under review as a conference paper at ICLR 2024

3 TRANSFER-PRUNING

Pruning is useful not only for compressing a model while retaining predictive performance, but also
for transfer learning. In fact, a task can be “learned” simply by selecting the appropriate subset of
weights in a network (Mallya et al. (2018); Ramanujan et al. (2020)).

Consider a large (pre-trained) source model fs and a set of T target tasks for which we desire
specialized target models ft, t ∈ {1..T}. Under the framework of transfer learning with pruning
(transfer-pruning), we can concurrently update and mask weights from a source model to benefit
a target task t. Consider g : Ws × ∆Wt × Mt → Wt, a function that generates target model
weights Wt, given learned update weights ∆Wt, source weights Ws, and a learned masking set Mt

of retained weight indices. Given available source weights Ws, every task-specific model ft can be
stored as the parameters Φt = {∆Wt,Mt}.

Under fine-pruning (Sanh et al. (2020)), i.e., concurrent pruning and fine-tuning, g constitutes a
direct assignment of weights, Wt := g(Ws,∆Wt,Mt) = ∆Wt, where update weights are learned
based on a pruned subset, {W (i)

s , i ∈ Mt}. Here, the parameters of the task-specific model are
Φt = {Wt,Mt}, and the size of the target weights is determined by the weight density d ∈ (0, 1]
and the size of source weights, i.e., ∥Wt∥0 = d∥Ws∥0.

4 STRUCTURED PRUNING ADAPTERS

Although fine-pruning can successfully produce smaller target weights, the set of weights for all
tasks {Wt} may still consume an intractable amount of storage if many tasks T are involved and/or
the average density d̄ is large due to high predictive performance requirements. Instead, we seek to
utilize adapters alongside pruning to produce an extremely compressed parameter set. Consider the
concurrent pruning and adaptation of a frozen source projection matrix Ws ∈ Rn×m with an index
mask M ∈ {0, 1}n×m and an adapter function a. While different applicable adapters have been
extensively studied (see Section 2), we restrict ourselves to fusible parallel adapters to minimize the
run-time of the resulting model. Denoting element-wise multiplication by ⊙, Structured Pruning
Adapters (SPAs) take the following basic form:

Wt = (Ws + a(∆Wt))⊙M . (1)

Channel SPAs Channel pruning maps a dense source matrix to a dense pruned matrix with com-
putational improvements proportional to the number of removed parameters. A mask M in this case
can be decomposed as row and column masks min ∈ {0, 1}n×1 and mout ∈ {0, 1}m×1, respectively.
Then, Equation (1) can be expressed as

Wt = (Ws + a(∆Wt))⊙minm
⊤
out. (2)

Convolutional SPAs Beyond the adaptation of linear layers, a fusible parallel adapter can also be
embedded into a convolutional kernel. Consider the source kernel Ws ∈ Rk×···×ci,×co , with an odd
kernel size k and channel dimensions ci and co. Adopting the notation for convolutional parallel
residual adapters (Rebuffi et al. (2018)), where a matrix X is embedded diagonally in a zero-valued
higher-dimensional tensor

diagk(X)[x1,··· ,i,o] =

{
X [i,o], ∀jxj = (k − 1)/2 + 1

0, otherwise,

we can succinctly define the parallel residual adaptation of Ws with a a(∆Wt) ∈ Rci,×co under
pruning with M ∈ {0, 1}k×···×ci×co as

Wt = (Ws + diagk(a(∆Wt)))⊙ M. (3)

Structured Pruning Low-rank Adapter A simple realization of a fusible parallel adapter is the
Low-rank Adapter (LoRA) (Hu et al. (2022):

Wt = Ws +WdownWup, (4)

3

Under review as a conference paper at ICLR 2024

W ⊙m 1

x y

⊕

down in

in

out

out

W ⊙1m up

W⊙(m m) s

⊤

⊤

⊤

Figure 1: Structured Pruning Low-rank Adapter
(SPLoRA). Pruning of in/out channels affects the
adapter as well as source weights.

10 −2 2 5 10 −1 2 5 1

2

5

10 −3
2

5

10 −2
2

5

10 −1
2

5

1 Fine-pruning
Naïve LoRA / Parallel Adapter
SPLoRA

Weight density

Le
ar

ne
d

w
ei

gh
ts

 fr
ac

tio
n

r = 64

r = 32

r = 16

r = 8

r = 4

r = 2

r = 1

Figure 2: Learned weight fraction
(∥∆Wt∥0/∥Ws∥0) versus weight density
(∥Wt∥0/∥Ws∥0) for a linear layer with
768× 3072 weights.

where Wdown ∈ Rn×r and Wup ∈ Rr×m are adapter weights and r is the rank hyper-parameter.
Combining Equations 2 and 4 we define the Structured Pruning Low Rank Adapter (SPLoRA):

Wt = (Ws +WdownWup)⊙minm
⊤
out. (5)

Following the derivation in Appendix A, Equation (5) can be rewritten as

Wt = Ws ⊙mrowm
⊤
col + (Wdown ⊙mrow1

⊤)(Wup ⊙ 1m⊤
col). (6)

In this form, it is evident that channel-pruning affects not only the source weights Ws in the first
term, but also applies to the adapter parameters in the second term, Wup and Wdown, independently.
This effect is illustrated in Figure 1.

Convolutional Channel-Pruning Adapters The channel-pruning and adaptation of a linear layer
can be extended to the concurrent adaptation and pruning of convolutional kernels as well. Using
a(∆Wt) = Wa ∈ Rci×co and a channel pruning mask repeated accross all kernel dimensions,
repk(X)[k1,··· ,i,o] = X [i,o], we can extend the Parallel Residual Adapter (Rebuffi et al. (2018)) as a
Structure Pruning Parallel Residual Adapter (SPPaRA):

Wt = (Ws + diagk(Wa))⊙ repk(minmout). (7)

Similarly, the Low-rank Adapter a(∆Wt) = WdownWup can be embedded in a a channel-pruned
convolutional kernel to form the Convolutional SPLoRA:

Wt = (Ws + diagk(WdownWup))⊙ repk(minmout). (8)

Learned parameter count The adaptation of an n×m matrix with LoRA has r(n+m) learned
parameters, a fine-pruned weight has ∥min∥0∥mout∥0 learned parameters, and adaptation with
SPLoRA has r(∥min∥0 + ∥mout∥0) learned parameters. Comparisons of learned parameter count
therefore depend on both the weight density, weight matrix shape, and adapter bottleneck dimension
r. Figure 2 visualizes the fraction of learned parameters relative to the source weight parameter as a
function of weight density and r for a 768× 3072 matrix. SPLoRA requires fewer learned parame-
ters than either fine-pruning or regular adapters (e.g., naı̈ve LoRA and the Parallel Adapter (He et al.
(2022)).

A fine-pruned d-dimensional convolution with kernel size k has a parameter count of
kd∥min∥0∥mout∥0 under channel pruning. The parameter count of SPPaRA as found in Equation (7)
is ∥min∥0∥mout∥0 and that of the convolutional SPLoRA is r(∥min∥0 + ∥mout∥0).

4

Under review as a conference paper at ICLR 2024

5 EXPERIMENTS

We seek to compare structured pruning with fine-tuning to the use of SPAs. As both approaches have
identical acceleration benefits during inference, the experimental comparison focuses on predictive
performance and the number of learned parameters (∆Params).The remainder of this section com-
pares the adaptation of convolutional layers in CNNs (Section 5.1) and linear layers in transformer-
based networks (Section 5.2) using various criteria, architectures, and image classification datasets.

Datasets The considered models are pre-trained on ImageNet1k (Russakovsky et al. (2015))
and subsequently transfer-pruned to respectively CIFAR-10 (Krizhevsky (2009)), CIFAR-
100 (Krizhevsky (2009)), Oxford Flowers 102 (Nilsback & Zisserman (2008)), Cats and Dogs (El-
son et al. (2007)), or Stanford Cars (Krause et al. (2013))1.

5.1 ADAPTATION OF CONVOLUTIONAL NEURAL NETWORKS

Experiment setup We reuse and augment a previously reported setup (Yeom et al. (2021)) to
perform the transfer-pruning of convolutional channels using a filter global ranking criterion. We
first train the network without pruning for {30, 60, 100, 100, 100} epochs and subsequently prune
the model at increments of 5% until 5% of weights remain in total. The pruning is interspersed with
{20, 30, 50, 50, 50} epochs of training for the {CIFAR-10, CIFAR-100, Oxford Flowers 102, Cats
& Dogs, Stanford Cars} datasets. Appendix B presents an overview of training times. We employ
SGD with a momentum of 0.9, weight decay of 5 · 10−4, and learning rate of 0.01 at a batch size
256 or down-scaled rates following the linear scaling rule (Krizhevsky (2014)) when GPU memory
limitations must be accomodated. In each training block, we use a step learning rate reduction of
5× after each quarter of epochs. The above setup is used for either fine-pruning, in which all model
weights are updated, or adaptation and pruning, which freezes the original network weights and only
trains the adapter weights, normalization, and prediction head.

SPLoRA initialization and rank choice To gauge the sensitivity of SPLoRA hyper-parameters
and their effect on predictive performance, we perform a set of adaptation and pruning runs using
L2-normalized Taylor pruning (Molchanov et al. (2017)) on CIFAR-10 with a ResNet-18 network.
Here, we vary the rank r ∈ 2[0,6] and initialization range in 10[−6,−2] and evaluate along densities
{1.0, 0.5, 0.3, 0.2, 0.1}. As illustrated in Figure 4, we observe a clear and expected trend of increas-
ing accuracy as the rank is increased. The increases exhibit diminishing returns and have limited
benefit beyond r = 32 for CIFAR-10. While all tested ranks show similar accuracy at a density of
d = 1.0, the lowest-rank adapters are more severely affected by a lower d. This follows intuition,
considering that lower-rank adapters have fewer parameters that might prove redundant during prun-
ing. SPLoRA is generally robust to the chosen initialization range, showing no clear trends in favor
of particular ranges. We will use ∆W

(i,j)
t ∼ U(−10−4, 10−4) in subsequent experiments.

Effectiveness with different pruning criteria The choice of pruning criterion can have significant
impact on the quality of the resulting pruning. In this set of experiments we respectively fine-prune
and adapt-and-prune a ResNet-50 (He et al. (2016)) network using four structured pruning criteria,
namely, the normalized Weight (Li et al. (2017), Taylor (Molchanov et al. (2017)), Gradient (Sun
et al. (2017)), and LRP (Li et al. (2017)) methods. The comparison is conducted SPLoRA with the
ranks r = 8 and r = 32. To accommodate the stochastic nature of pruning and neural network
training, we repeat each experiment three times and report the mean and standard deviation of each
metric. The results of our experiments are presented in Table 1 for model densities of 100%, 30%,
and 10% retained weights2 and visualized for CIFAR-10 in Figure 3.

Comparing SPLoRA with fine-pruning, we observed competitive transfer adaptations on all pruning
criteria, even though SPLoRA uses but a fraction the trainable weights. While fine-pruning generally
resulted in higher accuracy at 30% model density (on average 0.6% and 1.6% higher than SPLoRA

1As no publicly available test split was available for Cats and Dogs, we defined train-test splits and pre-
processed data using DatasetOps (Hedegaard et al. (2022)) to match the 8005 training and 2023 test samples
reported previously byYeom et al. (2021). The other datasets are used with standard splits.

2We found LRP with fine-pruning to be unstable at low model densities for Cats & Dogs. Despite attempts
with multiple different seeds, results for Cats and Dogs could not be obtained (denoted by “-” in Table 1).

5

Under review as a conference paper at ICLR 2024

105 106 107

Learned parameters || Wt||0

86

88

90

92

94

96

98

A
cc

u
ra

cy
 (

%
)

Fine-pruning
SPLoRA r = 32
SPLoRA r = 8

0.2 0.4 0.6 0.8 1.0 1.2
FLOPs 1e9

86

88

90

92

94

96

98

A
cc

u
ra

cy
 (

%
)

Fine-pruning
SPLoRA r = 32
SPLoRA r = 8

(a) Weight pruning.

105 106 107

Learned parameters || Wt||0

86

88

90

92

94

96

98

A
cc

u
ra

cy
 (

%
)

Fine-pruning
SPLoRA r = 32
SPLoRA r = 8

0.2 0.4 0.6 0.8 1.0 1.2
FLOPs 1e9

86

88

90

92

94

96

98

A
cc

u
ra

cy
 (

%
)

Fine-pruning
SPLoRA r = 32
SPLoRA r = 8

(b) Gradient pruning.

105 106 107

Learned parameters || Wt||0

86

88

90

92

94

96

98

A
cc

u
ra

cy
 (

%
)

Fine-pruning
SPLoRA r = 32
SPLoRA r = 8

0.2 0.4 0.6 0.8 1.0 1.2
FLOPs 1e9

86

88

90

92

94

96

98

A
cc

u
ra

cy
 (

%
)

Fine-pruning
SPLoRA r = 32
SPLoRA r = 8

(c) Taylor pruning.

105 106 107

Learned parameters || Wt||0

86

88

90

92

94

96

98

A
cc

u
ra

cy
 (

%
)

Fine-pruning
SPLoRA r = 32
SPLoRA r = 8

0.2 0.4 0.6 0.8 1.0 1.2
FLOPs 1e9

86

88

90

92

94

96

98

A
cc

u
ra

cy
 (

%
)

Fine-pruning
SPLoRA r = 32
SPLoRA r = 8

(d) LRP pruning.

Figure 3: CIFAR-10 accuracy versus total learned parameter count ∥∆Wt∥0 (top row) and FLOPs
(bottom row) for (a) Weight (Li et al. (2017)), (b) Gradient (Sun et al. (2017)), (c) Taylor (Molchanov
et al. (2017)), and (d) LRP (Yeom et al. (2021)) channel-pruning methods.

Table 1: Channel-based transfer-pruning from ResNet-50 pre-trained on ImageNet to Cats & Dogs,
Oxford Flowers, and CIFAR-10 using Weight (Li et al. (2017)), Gradient (Sun et al. (2017)), Tay-
lor (Molchanov et al. (2017)), and LRP (Yeom et al. (2021)) pruning. Note that SPLoRA and LoRA
are identical at 100% density. ∆Params and FLOPs are shown for CIFAR-10. Mean ± standard
deviation is shown for each metric. Best metric per pruning-method and density is highlighted.

Pruning Dens. Learning ∆Params FLOPs Acc. (%)
method method (k) (M) CIFAR-10 Flowers Cats & Dogs Avg.

100%
Fine-tuning 23,520.8±0.0 1,304.7±0.0 97.10±0.12 92.20±0.00 99.30±0.02 96.20

None LoRA-r32 1,644.5±0.0 1,304.7±0.0 95.32±0.13 78.57±5.93 98.60±0.43 90.83
LoRA-r8 466.3±0.0 1,304.7±0.0 95.35±0.10 80.96±5.83 98.84±0.52 91.72

Weight 30%
Fine-pruning 4,427.1±72.5 785.4±5.4 96.38±0.12 93.64±2.15 98.64±0.04 96.22
SPLoRA-r32 618.3±2.5 778.6±2.9 95.59±0.22 94.57±0.58 98.43±0.13 96.20
SPLoRA-r8 210.0±1.9 773.4±2.1 94.91±0.24 92.13±0.15 98.40±0.12 95.15

10%
Fine-pruning 599.1±20.1 352.1±3.9 87.23±2.00 72.83±0.93 95.42±0.31 85.16
SPLoRA-r32 294.8±0.4 335.4±7.3 93.04±0.37 89.36±1.09 96.25±0.99 92.88
SPLoRA-r8 128.9±0.1 338.9±7.0 91.24±0.51 86.49±0.74 96.07±0.69 91.27

Gradient 30%
Fine-pruning 3,719.8±59.2 571.9±6.5 95.95±0.09 94.21±0.74 98.22±0.00 96.13
SPLoRA-r32 601.0±0.4 564.6±1.5 94.91±0.09 93.58±0.43 98.17±0.08 95.55
SPLoRA-r8 205.2±0.2 565.2±4.1 94.09±0.28 91.60±0.30 98.15±0.07 94.61

10%
Fine-pruning 615.7±4.3 244.7±3.3 91.83±1.17 73.06±0.70 95.84±0.20 83.58
SPLoRA-r32 293.1±0.4 244.0±1.9 93.65±0.36 91.35±0.47 97.54±0.17 94.18
SPLoRA-r8 128.3±0.0 245.4±4.0 91.25±0.20 87.46±0.71 97.19±0.28 91.97

Taylor 30%
Fine-pruning 3,392.8±81.1 559.9±0.7 95.71±0.02 92.91±0.56 98.22±0.18 95.61
SPLoRA-r32 599.7±0.9 555.5±6.7 94.88±0.21 93.41±0.06 97.84±0.48 95.37
SPLoRA-r8 205.3±0.1 566.2±10.9 93.98±0.24 91.51±0.49 97.90±0.13 94.46

10%
Fine-pruning 576.8±9.9 236.9±3.3 88.07±0.66 65.67±4.12 95.30±0.21 83.01
SPLoRA-r32 292.6±0.5 242.0±1.5 93.27±0.12 91.30±0.10 97.21±0.10 93.93
SPLoRA-r8 128.4±0.1 243.2±9.8 91.22±0.32 86.76±0.42 96.83±0.30 91.60

LRP 30%
Fine-pruning 4,428.1±20.6 719.9±0.7 96.54±0.14 95.37±0.08 98.65±0.07 96.85
SPLoRA-r32 592.6±0.9 585.5±6.7 94.85±0.13 93.62±0.38 98.09±0.11 95.52
SPLoRA-r8 203.3±0.5 591.1±12.4 93.53±0.18 91.26±0.19 97.80±0.20 94.20

10%
Fine-pruning 608.4±6.3 301.6±2.3 93.52±0.05 87.56±2.75 − 90.54
SPLoRA-r32 290.9±0.2 270.4±6.4 93.47±0.36 91.22±0.46 97.01±0.27 93.90
SPLoRA-r8 128.0±0.1 281.6±1.7 90.94±0.39 85.69±1.39 96.88±0.52 91.17

ranks 32 and 8), SPLoRA had far fewer learned parameters (on average 6.2× and 17.0×). At
10% density, SPLoRA was both more robust to pruning (achieving 6.9% and 4.7% higher average
accuracy than fine-pruning for ranks 32 and 8), while reducing the number of learned parameters by

6

Under review as a conference paper at ICLR 2024

1 2 4 8 16 32 64
Rank (r)

65

70

75

80

85

90

A
cc

u
ra

cy
 (

%
)

Init range
1e-6
1e-5
1e-4
1e-3
1e-2

Density
1.0
0.5
0.3
0.2
0.1

Figure 4: ResNet-18 accuracy on CIFAR-10 using
SPLoRA of varying ranks (r) and adapter weight
initialization ranges at different model densities
(d). Point size ∝ d with transparency ∝ −d.

0 20 40 60 80 100
Density (%)

10

20

30

40

50

60

70

80

A
cc

u
ra

cy
 (

%
)

Fine-pruning
SPLoRA r = 32
SPLoRA r = 8

Figure 5: Accuracy/density tradeoff for
transfer-pruned ViT-b/16 on CIFAR-100.

2.0× and 4.2× on average. As floating point operations (FLOPs) follow model densities, these are
approximately equal for each learning method given equal densities.

Generalization to different architectures We evaluate the learning methods fine-pruning, con-
volutional SPLoRA (Equation (8)), and SPPaRA (Equation (7)) with Gradient pruning (Sun et al.
(2017)) on the VGG-16 (Simonyan & Zisserman (2015)), ResNet-50, and EfficientNetV2-M (Tan
& Le (2021)) architectures. We utilize the same hyper-parameters a those reported in the respec-
tive works, but scale learning rates linearly to accommodate batch size constrains. Given the low
standard deviations observed in Table 1, we only run each experiment configuration with one seed.

As presented in Table 2, we observe that fine-pruning achieves higher average accuracy than
(SP)LoRA and (SP)PaRA on the ResNet-50 and EfficientNetV2-M architectures at high (100%) and
medium (30%) model density. This performance gap is closed and reversed at low density (10%)
where the SPAs generally outperform fine-pruning. For VGG-16, fine-pruning performed worse
than either of the SPAs on all model densities3. Learned parameter count was significantly lower for
the SPAs than for fine-pruning in all cases. Comparing SPPaRA, SPLoRA-r32, and SPLoRA-r8,
the predictive accuracy and parameter-count follow a common trend: SPLoRA-r32 has most param-
eters and achieves the highest accuracy, SPPaRA has fewer parameters and scores slightly worse,
and SPLoRA-r8 has fewest parameters, and scores the lowest average accuracy of the three SPAs.
The choice of learning method should thus depend on the desired parameter count.

Do adapters retain knowledge better than fine-tuning during pruning? Our experimental re-
sults on varying pruning criteria and CNN architectures show that SPAs have a somewhat surprising
robustness to pruning compared with fine-tuning at low model densitites. To offer an explanation
of why this phenomenon occurs, consider the following: An adapter is fundamentally anchored to
the source weights and will slowly revert to the initial position due to the weight decay loss term if
another learning signal does not prevent it from doing so. Even if an aggressive pruning iteration
disrupts or invalidates the learned adaptations from a prior iteration the adapted weights will remain
achored to the source weights. Regular fine-tuning, does not have this capability and once the model
weights are fitted to a particular sparsity pattern, they cannot revert to the outset. This was experi-
mentally corroborated by a comparison iterative pruning with one-shot pruning in Appendix C.

5.2 ADAPTATION OF VISION TRANSFORMERS

This section offers an experimental comparison of fine-pruning and SPLoRA for the linear layers
of a Vision Transformer (ViT) (Dosovitskiy et al. (2021)). Here, a ViT-b/16 model pre-trained on
ImageNet1k is transfer pruned to {Oxford Flowers 102 , Cats & Dogs, CIFAR-100, and Stanfard
Cars} using {20, 50, 50, 50} initial epochs followed by iterative pruning steps with {10, 20, 20,
20} training epochs. A one-cycle learning rate scheduler with 30% warm-up and cosine annealing

3A significant portion of VGG-16 parameters reside in linear layers, which were not pruned in these experi-
ments. While the parameter savings of using a convolutional SPA was not large for VGG-16, a linear SPLoRA
can be used to reduce the learned parameter count substantially.

7

Under review as a conference paper at ICLR 2024

Table 2: Channel-based transfer-pruning from convolutional architectures, VGG-16, ResNet-50,
and EfficientNetV2-M, pretrained on ImageNet1k to CIFAR-10, OxfordFlowers 102, Cats & Dogs,
CIFAR-100 and Stanford Cars using Gradient pruning (Sun et al. (2017)). Learned parameters
(∆Par.) and floating point operations (FLOPs) are shown for CIFAR-100. Best metric per pruning-
method and density is highlighted. Note that VGG-16 contains 119,955k linear ∆Par. which are not
pruned. Moreover, SPLoRA/LoRA and PaRa/SPPaRA, respectively, are identical at 100% density.

Arch. Dens. Learning ∆Par. FLOPs Acc. (%)
method (k) (M) C10 Flwrs C&D C100 Cars Avg.

100%

Fine-tuning 134,670 434 89.08 87.90 98.71 69.56 58.33 80.72
PaRA 134,797 434 91.85 90.62 98.96 74.77 67.23 84.69
LoRA-r32 120,234 434 91.87 90.51 99.01 75.17 67.29 84.78
LoRA-r8 120,054 434 91.84 90.56 98.96 74.63 66.98 84.59

30%

Fine-pruning 121,106 248 58.55 37.09 81.94 29.02 7.94 42.91

VGG-16 SPPaRA 119,994 238 89.79 77.85 95.19 72.17 68.87 80.77
SPLoRA-r32 120,032 231 90.33 78.29 95.73 72.75 70.51 81.52
SPLoRA-r8 119,975 228 89.39 77.69 96.63 69.64 65.85 79.84

10%

Fine-pruning 120,075 170 16.63 3.11 48.02 2.10 0.85 14.14
SPPaRA 119,967 165 88.45 70.26 92.61 70.13 64.40 77.17
SPLoRA-r32 119,981 164 88.49 71.26 92.91 71.46 66.90 78.20
SPLoRA-r8 119,962 162 86.30 69.81 93.11 66.62 57.40 74.65

100%

Fine-tuning 23,705 1,305 97.10 92.20 99.30 84.22 88.91 92.35
PaRA 1,191 1,305 93.52 80.65 98.81 79.31 75.31 85.52
LoRA-r32 1,824 1,305 95.32 78.57 98.60 79.47 87.24 87.84
LoRA-r8 632 1,305 95.35 80.96 98.84 79.22 86.22 88.12

30%

Fine-pruning 3,923 548 95.95 94.21 98.22 79.24 91.70 91.86

ResNet-50 SPPaRA 522 549 92.73 93.80 98.02 77.17 88.96 90.14
SPLoRA-r32 784 552 94.91 93.58 98.17 78.53 90.05 91.05
SPLoRA-r8 389 543 94.09 91.60 98.15 73.92 86.02 88.76

10%

Fine-pruning 814 235 91.83 73.06 95.84 67.60 76.94 81.05
SPPaRA 367 234 90.52 90.67 97.87 71.72 86.46 87.45
SPLoRA-r32 477 239 93.65 91.35 97.54 75.14 88.72 89.28
SPLoRA-r8 312 230 91.25 87.46 97.19 66.31 80.31 84.50

100%

Fine-tuning 992,450 120 98.37 97.54 99.40 88.33 91.69 95.07
PaRA 8,440 120 97.28 94.19 99.45 86.24 85.31 92.49
LoRA-r32 15,061 120 96.96 95.10 99.36 86.35 85.06 92.57
LoRA-r8 5,450 120 96.92 94.71 99.45 85.97 85.10 92.43

30%

Fine-pruning 98,600 73 96.75 97.04 99.16 84.36 92.16 93.89

EffNetV2-M SPPaRA 2,511 69 93.83 95.85 98.31 78.15 90.57 91.34
SPLoRA-r32 4,566 69 93.22 96.60 98.31 79.19 90.29 91.52
SPLoRA-r8 1,489 68 92.88 95.51 98.51 77.07 89.03 90.60

10%

Fine-pruning 7,984 43 95.35 80.49 97.62 82.53 86.07 88.41
SPPaRA 1,156 41 92.24 90.89 97.02 73.84 86.55 88.11
SPLoRA-r32 1,846 42 92.06 92.66 97.17 76.13 88.37 89.28
SPLoRA-r8 812 41 90.91 89.88 97.57 71.31 83.59 86.65

is used for each training block and learning rates were selected based a grid search from 10−4 to
10. For fine-pruning, we utilize a maximum learning rate of 0.0125 during the initial training and
a maximum learning rate of 0.00125 after pruning at a batch size of 32. For SPLoRA, we found
higher maximum learning rates of 0.375 and 0.125 to be beneficial. This discrepancy can be partly
explained by the adapter initialization, which has a similar effect to changes in learning rate (Hu
et al. (2022)), and partly by the following intuition: During fine-tuning, the learning process should
gently nudge existing weights and avoid catastrophic forgetting of prior knowledge. Adapters, on
the other hand, are anchored around the source weights and can more easily “regain knowledge”,
should the adaptation go slightly astray.

To perform our pruning, we utilize the Torch Pruning Python library (Fang et al. (2023)) and a
weight magnitude pruner with consistent structural sparsity and channel rounding to the number
attention heads. Initial runs using multiple seeds showed accuracy standard deviations of less than
0.1%-points. Given the low variance, the reported runs are conducted with only a single seed.

8

Under review as a conference paper at ICLR 2024

Table 3: Channel-based transfer-pruning from ViT-b/16 pre-trained on ImageNet1k to OxfordFlow-
ers 102, Cats & Dogs, CIFAR-100 and Stanford Cars using weight magnitude pruning. Learned
parameters (∆Par.) and floating point operations (FLOPs) are shown for CIFAR-100. Best metric
per density is highlighted with bold.

Density FLOPs Learning ∆Par. Acc. (%)
(G) method (k) Flwrs C&D C100 Cars Avg.

100% 17.6
Fine-tuning 85,286 97.00 99.46 83.59 85.98 91.51
LoRA-r32 5,659 95.76 99.31 81.97 86.78 90.96
LoRA-r8 1,678 95.37 99.51 82.64 86.67 91.05

48% 8.9
Fine-pruning 42,237 89.63 94.20 28.53 48.94 65.33
SPLoRA-r32 4,232 90.96 97.83 64.77 81.72 83.82
SPLoRA-r8 1,218 91.22 97.33 64.82 80.01 83.35

24% 4.6
Fine-pruning 21,409 44.68 64.71 12.68 4.72 31.70
SPLoRA-r32 3,416 82.70 93.43 51.32 69.98 74.36
SPLoRA-r8 955 82.75 93.97 50.01 41.28 67.00

The results in Table 3 shows similar trends as the adaptation of CNNs: Prior to pruning, simple fine-
tuning slightly outperforms LoRA. However, after a few pruning steps, the accuracy drop for fine-
pruning outpaces that of SPLoRA. At 24% density, the fine-pruning accuracy is severely diminished
to 31.70% average accuracy, while the SPLoRA-r32 configuration achieves 74.36% average accu-
racy; 42.66%-points higher while using 6.3× fewer learned weights. A detailed accuracy/density
trade-off for the CIFAR-100 dataset is illustrated in Figure 5 and shows the evident discrepancy in
capability between fine-pruning and SPLoRA under iterative pruning.

5.3 LIMITATIONS AND FUTURE WORK

Predictive superiority may depend on the pruning approach While this work has covered a
multitude of pruning criteria and architectures on a suite of datasets, the experiments were nearly all
conducted using iterative pruning. Only a few training runs used other approaches (see Appendix C)
and further work is thus requires to state predictive superiority in general.

Deployment format For T models deployed on one device, the adapter format saves space when
T > 1/d, assuming that available source weights, Ws, are available as well. The superiority of
the adapter storage format thus depends on the average density d, with more aggressive pruning
requiring more deployed models for SPA formats to consume less storage space.

Pruning of adapter-specific parameters While this work has focused on pruning of the fused
weights, Wt, the adapters could also be subject to pruning themselves, as explored by Rücklé et al.
(2021). For instance, the SPLoRA bottleneck channels could pruned. While such intra-adapter
pruning does not speed up inference, it could be an interesting avenue of future work to explore its
impact on parameter count and accuracy.

6 CONCLUSION

We proposed Structured Pruning Adapters (SPAs) as an alternative to fine-tuning during structured
pruning. Instead of updating all model weights, SPAs consist of prunable lightweight add-on mod-
ules, which are learned in place of the original weights but can be fused with them at run-time to
obtain the same computational enhancements as regular structured pruning with fine-tuning. Our
channel-based SPAs were shown to achieve competitive performance across a battery of pruning
methods and architectures on computer vision benchmarks while requiring a fraction of the learned
parameters per task. For highly pruned models, SPAs significantly outperform fine-pruning. Thus,
SPAs are ideal for task-switching storage-constrained and/or network-limited usage scenarios, where
the per-model size should be small, as well as the adaptation of networks under aggressive pruning.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Tianyi Chen, Bo Ji, DING Tianyu, Biyi Fang, Guanyi Wang, Zhihui Zhu, Luming Liang, Yixin
Shi, Sheng Yi, and Xiao Tu. Only train once: A one-shot neural network training and pruning
framework. In Proceedings of the 35th Conference on Neural Information Processing Systems,
2021. 2

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recogni-
tion at scale. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=YicbFdNTTy. 7

Jeremy Elson, John (JD) Douceur, Jon Howell, and Jared Saul. Asirra: A captcha that exploits
interest-aligned manual image categorization. In Proceedings of 14th ACM Conference on Com-
puter and Communications Security (CCS). Association for Computing Machinery, Inc., 2007.
5

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao Wang. Depgraph: Towards
any structural pruning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 16091–16101, 2023. 8

Christoph Feichtenhofer. X3d: Expanding architectures for efficient video recognition. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June
2020. 2

R.M. Gray and D.L. Neuhoff. Quantization. IEEE Transactions on Information Theory, 44(6):
2325–2383, 1998. doi: 10.1109/18.720541. 2

Scott Gray, Alec Radford, and Diederik P. Kingma. Gpu kernels for block-sparse weights. OpenAI,
2017. URL https://cdn.openai.com/blocksparse/blocksparsepaper.pdf. 2

Kailing Guo, Xiaona Xie, Xiangmin Xu, and Xiaofen Xing. Compressing by learning in a low-rank
and sparse decomposition form. IEEE Access, 7:150823–150832, 2019. doi: 10.1109/ACCESS.
2019.2947846. 2

Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights and connections
for efficient neural networks. In Proceedings of the 28th International Conference on Neural
Information Processing Systems (NeurIPS), pp. 1135–1143. MIT Press, 2015. 2

Babak Hassibi and David G. Stork. Second order derivatives for network pruning: Optimal brain
surgeon. In Proceedings of the 5th International Conference on Neural Information Processing
Systems, NIPS’92, pp. 164–171, 1992. ISBN 1558602747. 2

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards
a unified view of parameter-efficient transfer learning. In International Conference on Learning
Representations, 2022. 1, 4

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, Los Alamitos,
CA, USA, jun 2016. IEEE Computer Society. doi: 10.1109/CVPR.2016.90. URL https:
//doi.ieeecomputersociety.org/10.1109/CVPR.2016.90. 5

Lukas Hedegaard and Alexandros Iosifidis. Continual 3d convolutional neural networks for real-
time processing of videos. In European Conference on Computer Vision (ECCV), pp. 1–18, 2022.
2

Lukas Hedegaard, Illia Oleksiienko, and Christian Møldrup Legaard. DatasetOps, 2022. URL
https://github.com/lukashedegaard/datasetops. 5

Lukas Hedegaard, Arian Bakhtiarnia, and Alexandros Iosifidis. Continual Transformers:
Redundancy-free attention for online inference. In International Conference on Learning Repre-
sentations (ICLR), 2023. 2

10

https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://cdn.openai.com/blocksparse/blocksparsepaper.pdf
https://doi.ieeecomputersociety.org/10.1109/CVPR.2016.90
https://doi.ieeecomputersociety.org/10.1109/CVPR.2016.90
https://github.com/lukashedegaard/datasetops

Under review as a conference paper at ICLR 2024

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network.
CoRR, abs/1503.02531, 2015. URL http://arxiv.org/abs/1503.02531. 2

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
NLP. In Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pp. 2790–2799, 2019. 1, 2

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022. 1, 2, 3, 8

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In 2013 IEEE International Conference on Computer Vision Workshops, pp. 554–
561, 2013. doi: 10.1109/ICCVW.2013.77. 5

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical re-
port, University of Toronto, 2009. URL https://www.cs.toronto.edu/˜kriz/
learning-features-2009-TR.pdf. 5

Alex Krizhevsky. One weird trick for parallelizing convolutional neural networks. preprint,
arXiv:1404.5997, 2014. doi: 10.48550/ARXIV.1404.5997. 5

François Lagunas, Ella Charlaix, Victor Sanh, and Alexander Rush. Block pruning for faster trans-
formers. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pp. 10619–10629, Online and Punta Cana, Dominican Republic, November 2021.
Association for Computational Linguistics. 2

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. In D. Touret-
zky (ed.), Advances in Neural Information Processing Systems, volume 2. Morgan-
Kaufmann, 1989. URL https://proceedings.neurips.cc/paper/1989/file/
6c9882bbac1c7093bd25041881277658-Paper.pdf. 2

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. In International Conference on Learning Representations (ICLR), 2017. URL
https://openreview.net/forum?id=rJqFGTslg. 1, 2, 5, 6, 14

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pp. 4582–4597, 2021. 1

Tailin Liang, John Glossner, Lei Wang, Shaobo Shi, and Xiaotong Zhang. Pruning and quantization
for deep neural network acceleration: A survey. Neurocomputing, 461(C):370–403, oct 2021.
ISSN 0925-2312. doi: 10.1016/j.neucom.2021.07.045. URL https://doi.org/10.1016/
j.neucom.2021.07.045. 2

Congcong Liu and Huaming Wu. Channel pruning based on mean gradient for accelerating con-
volutional neural networks. Signal Processing, 156:84–91, 2019. ISSN 0165-1684. doi:
https://doi.org/10.1016/j.sigpro.2018.10.019. URL https://www.sciencedirect.com/
science/article/pii/S0165168418303517. 14

Rabeeh Karimi Mahabadi, James Henderson, and Sebastian Ruder. Compacter: Efficient low-rank
hypercomplex adapter layers. In Advances in Neural Information Processing Systems, 2021. 1, 2

Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggyback: Adapting a single network to multi-
ple tasks by learning to mask weights. In Proceedings of the European Conference on Computer
Vision (ECCV), September 2018. 3

H. B. McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In International
Conference on Artificial Intelligence and Statistics, 2016. 1

11

http://arxiv.org/abs/1503.02531
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://proceedings.neurips.cc/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://proceedings.neurips.cc/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://openreview.net/forum?id=rJqFGTslg
https://doi.org/10.1016/j.neucom.2021.07.045
https://doi.org/10.1016/j.neucom.2021.07.045
https://www.sciencedirect.com/science/article/pii/S0165168418303517
https://www.sciencedirect.com/science/article/pii/S0165168418303517

Under review as a conference paper at ICLR 2024

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. In International Conference on Learning Repre-
sentations (ICLR), 2017. 1, 2, 5, 6, 14

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing,
pp. 722–729, 2008. doi: 10.1109/ICVGIP.2008.47. 5

Manuel Nonnenmacher, Thomas Pfeil, Ingo Steinwart, and David Reeb. SOSP: Efficiently cap-
turing global correlations by second-order structured pruning. In International Conference on
Learning Representations (ICLR), 2022. URL https://openreview.net/forum?id=
t5EmXZ3ZLR. 2

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych. Adapter-
Fusion: Non-destructive task composition for transfer learning. In Proceedings of the 16th Con-
ference of the European Chapter of the Association for Computational Linguistics: Main Volume,
pp. 487–503, 2021. 1, 2

Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kembhavi, Ali Farhadi, and Mohammad Raste-
gari. What’s hidden in a randomly weighted neural network? In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), June 2020. 3

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Learning multiple visual domains with
residual adapters. In Advances in Neural Information Processing Systems, volume 30, 2017. 1, 2

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Efficient parametrization of multi-
domain deep neural networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2018. 1, 2, 3, 4

Alex Renda, Jonathan Frankle, and Michael Carbin. Comparing rewinding and fine-tuning in neural
network pruning. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=S1gSj0NKvB. 2

Andreas Rücklé, Gregor Geigle, Max Glockner, Tilman Beck, Jonas Pfeiffer, Nils Reimers, and
Iryna Gurevych. AdapterDrop: On the efficiency of adapters in transformers. In Proceedings of
the 2021 Conference on Empirical Methods in Natural Language Processing, 2021. 2, 9

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-
Fei. Imagenet large scale visual recognition challenge. International Journal of Computer Vision
(IJCV), 115(3):211–252, Dec 2015. ISSN 1573-1405. doi: 10.1007/s11263-015-0816-y. URL
https://doi.org/10.1007/s11263-015-0816-y. 5

Victor Sanh, Thomas Wolf, and Alexander M. Rush. Movement pruning: Adaptive sparsity by
fine-tuning. In Proceedings of the 34th Conference on Neural Information Processing Systems
(NeurIPS), 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
eae15aabaa768ae4a5993a8a4f4fa6e4-Abstract.html. 3

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In Yoshua Bengio and Yann LeCun (eds.), 3rd International Conference on Learning
Representations (ICLR), 2015. 7

Asa Cooper Stickland and Iain Murray. BERT and PALs: Projected attention layers for efficient
adaptation in multi-task learning. In Proceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning Research, pp. 5986–5995, 2019. 2

Xu Sun, Xuancheng Ren, Shuming Ma, and Houfeng Wang. meProp: Sparsified back propagation
for accelerated deep learning with reduced overfitting. In Proceedings of the 34th International
Conference on Machine Learning (ICLR), volume 70 of Proceedings of Machine Learning Re-
search, pp. 3299–3308, International Convention Centre, Sydney, Australia, 2017. 1, 2, 5, 6, 7,
8

12

https://openreview.net/forum?id=t5EmXZ3ZLR
https://openreview.net/forum?id=t5EmXZ3ZLR
https://openreview.net/forum?id=S1gSj0NKvB
https://openreview.net/forum?id=S1gSj0NKvB
https://doi.org/10.1007/s11263-015-0816-y
https://proceedings.neurips.cc/paper/2020/hash/eae15aabaa768ae4a5993a8a4f4fa6e4-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/eae15aabaa768ae4a5993a8a4f4fa6e4-Abstract.html

Under review as a conference paper at ICLR 2024

Mingxing Tan and Quoc Le. EfficientNet: Rethinking model scaling for convolutional neural net-
works. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th In-
ternational Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 6105–6114. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.
press/v97/tan19a.html. 2

Mingxing Tan and Quoc Le. Efficientnetv2: Smaller models and faster training. In Marina Meila
and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning,
volume 139 of Proceedings of Machine Learning Research, pp. 10096–10106. PMLR, 18–24 Jul
2021. 7

Dat Thanh Tran, Alexandros Iosifidis, and Moncef Gabbouj. Improving efficiency in convolutional
neural network with multilinear filters. Neural Networks, 105:328–339, 2018. 2

Seul-Ki Yeom, Philipp Seegerer, Sebastian Lapuschkin, Alexander Binder, Simon Wiedemann,
Klaus-Robert Müller, and Wojciech Samek. Pruning by explaining: A novel criterion for deep
neural network pruning. Pattern Recognition, 115, 2021. 1, 2, 5, 6, 14

Michael Zhu and Suyog Gupta. To prune, or not to prune: Exploring the efficacy of pruning for
model compression. In International Conference on Learning Representations (ICLR) Workshop
Track Proceedings, 2018. URL https://openreview.net/forum?id=Sy1iIDkPM. 2

Yaoming Zhu, Jiangtao Feng, Chengqi Zhao, Mingxuan Wang, and Lei Li. Counter-interference
adapter for multilingual machine translation. In Findings of the Association for Computational
Linguistics: EMNLP 2021, pp. 2812–2823, 2021. 1, 2

A SPLORA DERIVATION

Utilizing Equation (4) in the context of channel-SPAs of the form expressed in Equation (2), we
can derive the Structured Pruning Low-rank Adapter defined in Equation (6), where adapter param-
eters are pruned alongside source weights. This derivation is straightforward, considering that the
application of a structured pruning mask M = minm

⊤
out via Hadamard products is equivalent to a

projection with diagonalized masking vectors:

W ⊙minm
⊤
out = diag(min)W diag(mout). (9)

Similarly, a single diagonalized mask can be expressed via Hadamark products:

diag(min)W = W ⊙min1
⊤. (10)

Utilizing Equation (4), Equation (9), and Equation (10), we can rewrite Equation (2) as follows:

Wt = (Ws + a(∆Wt))⊙minm
⊤
out

= (Ws +WdownWup)⊙minm
⊤
out

= diag(min) (Ws +WdownWup) diag(mout)

= diag(min)Wsdiag(mout)

+ (diag(min)Wdown)(Wupdiag(mout))

= Ws ⊙minm
⊤
out + (Wdown ⊙min1

⊤)(Wup ⊙ 1m⊤
out),

where the final result is equivalent to Equation (6).

B TRAINING DURATIONS

In this section, we provide a brief overview of approximate training durations for the methods tested
in the present paper. As training times are comparable among different pruning methods, we report
a single metric approximated from multiple pruning methods. These are presented in Table 4 for
our experiments using ResNet-50 in image recognition tasks. Here, the pruning methods gradually
reduce the network density while producing pruned models at a predefined step reduction in density,
cycling the learning rate for each density reduction step. Accordingly, the noted training times for
the pruned learning methods in Table 4 includes the training of all models with densities ranging
from 100% to 5% at 5% intervals.

13

https://proceedings.mlr.press/v97/tan19a.html
https://proceedings.mlr.press/v97/tan19a.html
https://openreview.net/forum?id=Sy1iIDkPM

Under review as a conference paper at ICLR 2024

Table 4: Training durations for the ResNet-50 model on image recognition transfer tasks using a
NVIDIA RTX 2080 Ti GPU. For each dataset, the batch size (BS) and training duration (T) are
presented.

Pruning Learning CIFAR-10 Flowers C&D
method method BS T BS T BS T

Unpruned Fine-tuning 64 0:30h 64 1:05h 64 2:20h
SPLoRA-r32 64 0:30h 32 1:10h 32 2:30h
SPLoRA-r8 64 0:30h 32 1:10h 32 2:30h

Pruned Fine-pruning 64 10h 4 25h 6 42h
SPLoRA-r32 64 11h 4 33h 6 48h
SPLoRA-r8 64 11h 4 31h 6 45h

C SPAS RETAIN PERFORMANCE BETTER THAN FINE-PRUNING UNDER
REPEATED RE-TRAINING

To offer experimental support of the hypothesis that SPAs retain performance better than fine-
pruning under repeated re-training, we perform a set of experiments comparing iterative pruning,
i.e., the gradual pruning of 5% of model weights followed by model training at each iteration, with
one-shot pruning, i.e., pruning of all structural units in one go to hit the target density, in Appendix C.
Here, the models were trained for 40 epochs initially and for 20 epochs after each pruning iteration
under iterative pruning or for 40 epochs under one-shot pruning. The reader should bear in mind
that the model accuracy is significantly reduced right after pruning in either case (an illustration of
the accuracy over a complete training run is shown in Figure 7 for an example). This shows the
non-trivial impact of weight removal, even for a small weight-fraction at a time.

Figure 6 shows the relative model accuracy of a ResNet-18 model pretrained on ImageNet1k and
transfer-pruned to CIFAR-10 using Weight pruning (Li et al. (2017)) with both approaches. For fine-
pruning, the one-shot approach performs better than iterative approach, while the iterative setting
works better than the one-shot setup for SPLoRA. This is in line with the hypothesis that repeated
retraining can lead to catastrophic forgetting of the beneficial source knowledge for fine-pruning.
SPAs, on the other hand, do not suffer catastrophic forgetting with respect to source weights and
benefit from the additional training. This finding also suggests that prior methods using fine-tuning
with pruning (Molchanov et al. (2017); Liu & Wu (2019); Yeom et al. (2021)) might benefit from
either switching to one-shot pruning or using a Structured Pruning Adapter.

14

Under review as a conference paper at ICLR 2024

0 20 40 60 80 100
Density (%)

-10

0

-10

0

-10

0

A
cc

u
ra

cy
 (

%
)

Fine-pruning
SPLoRA r = 32
SPLoRA r = 8

Iterative
One-shot

Figure 6: Comparison of one-shot and iterative transfer-pruning of a ResNet-18 pre-trained on
ImageNet1k to CIFAR-10. The vertical axis denotes the accuracy relative to each learning method
at 100% density.

0 100 200 300 400 500
Epoch

20

40

60

80

100

%

Accuracy
Density

Figure 7: Iterative transfer pruning of a ResNet-18 pre-trained on ImageNet1k to CIFAR-10 using
SPLoRA-r32. Accuracy and model density are noted as percentages.

15

