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Abstract

Manifold learning (ML), also known as nonlinear dimension reduction, is
a set of methods to find the low-dimensional structure of data. Dimen-
sion reduction for large, high-dimensional data is not merely a way to
reduce the data; the new representations and descriptors obtained by ML
reveal the geometric shape of high-dimensional point clouds and allow
one to visualize, denoise, and interpret them. This review presents the un-
derlying principles of ML, its representative methods, and their statistical
foundations, all from a practicing statistician’s perspective. It describes the
trade-offs and what theory tells us about the parameter and algorithmic
choices we make in order to obtain reliable conclusions.
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1. INTRODUCTION

Modern data analysis tasks often face challenges in high dimensions. Thus, nonlinear dimension
reduction techniques emerge as a way to construct maps from high-dimensional data to corre-
sponding low-dimensional representations. Finding such representations is beneficial in several
aspects. Reducing dimension while preserving the relevant geometric features of the data saves
space and processing time.More importantly, the low-dimensional representation frequently pro-
vides a better understanding of the intrinsic structure of data, which often leads to better features
that can be fed into further data analysis algorithms; Figure 1 illustrates such a case. This article
reviews the mathematical background, methodology, and recent developments in nonlinear di-
mension reduction techniques. These techniques have been developed for two decades since the
publication of two seminal works, Tenenbaum et al. (2000) and Roweis & Saul (2000), and are
widely used in various data analysis tasks, especially in scientific research.

Before nonlinear dimension reduction emerged, principal component analysis (PCA) was al-
ready widely accepted ( Jolliffe 2002). Intuitively, PCA assumes that high-dimensional data living
in RD lie around a lower-dimensional linear subspace of RD. It aims to identify a linear subspace
such that data points projected onto this subspace have minimal reconstruction error. Nonlinear
dimension reduction algorithms extend this idea by assuming data are supported on smooth, non-
linear low-dimensional geometric objects (i.e., manifolds embedded in RD) and find maps that
send the samples into lower-dimensional coordinates while preserving some intrinsic geometric
information.

In this review, we start with a brief introduction to the central differential geometric concepts
underlying ML, elaborating on the geometric information that manifolds carry (Section 2).
Then, in Section 3, we describe the paradigm of manifold learning (ML), with three possible
subparadigms, each producing a different representation of the data manifold. The rest of the

Ethanol molecule
2-manifold estimated from

50,000 configurations of the ethanol molecule

H(9)H(6)
H(7)

H(8)

H(4)

H(5)

O(3)
C(2)

C(1)

Figure 1

(Left) The ethanol molecule has 9 atoms; a spatial configuration of ethanol has D = 3 × 9 dimensions. The
CH3 group (comprising atoms 2, 6, 7, and 8) and the OH group (atoms 3 and 9) can rotate with respect to
the middle group (atoms 1, 4, and 5), and the blue and orange lines represent these angles of rotation. (Right)
A 2-manifold estimated from 50,000 configurations of the ethanol molecule. The manifold has the topology
of a torus, and the color represents the rotation of the OH group, pointing out that the two above rotation
angles are sufficient to approximate any molecular configuration in these data. The sharp corners are
distortions introduced by the embedding algorithm (explained in Section 5.1). Figure 6 shows the original
data; the dataset is from Chmiela et al. (2017). Right panel was created by Samson J. Koelle and adapted with
permission from Koelle et al. (2022), copyright 2022.
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Smooth: a function f
is smooth when it is
differentiable and its
derivatives are
continuous

article focuses on one of these, the so-called embedding algorithms. In Section 4, we survey
representative embedding algorithms and their variants. We also discuss the parameter choices
and some pitfalls, which leads to the discussion in Section 5, where we present the statistical
aspects and statistical results supporting these choices. This section also includes the estimation of
crucial manifold descriptors from data: the Laplace–Beltrami operator, Riemannian metrics, and
intrinsic dimension. Section 6 discusses applications, connecting with related statistics problems,
and Section 7 concludes the review. For a more technical treatment of Sections 2, 3, and 5, the
reader is referred to Meilă & Zhang (2023).

2. MATHEMATICAL BACKGROUND: MANIFOLDS, COORDINATE
CHARTS, EMBEDDINGS

2.1. Manifolds and Coordinate Charts

Readers are referred to Lee (2003) and do Carmo (1992) for a rigorous introduction to manifolds
and differential geometry and to Meilă & Zhang (2023) for a slightly more detailed presentation.
Intuitively, a manifold is a generalization of curves and surfaces with coordinate systems (called
charts). On objects like a sphere or torus (Figure 2), one cannot maintain a globally continuous
single coordinate system; hence, a manifold is described by multiple charts, as in Figure 3. Below,
we explain what charts are and why and when they can be ignored in everyday work with manifold
data.

Mathematically,M is a (smooth) manifold of dimension d when it can be covered by patches
(open sets) U so that: (a) For each U there is an invertible mapping φ : U→ φ(U ) ⊂ Rd , so that
both φ, φ−1 are smooth. Such a pair (U, φ) is called a chart; φ(p) ∈ Rd is the local coordinate of
p ∈M. (b) Whenever two charts (U, φ) and (V, ϕ) overlap, the change of coordinates ϕ + φ−1 is
smooth on φ(U ) V ) and has a smooth inverse.

Hence, a manifold has a Euclidean coordinate system (the chart) locally around every point,
but the coordinate system may not extend to the whole manifold. In this case, transitions between
charts are seamless.

The simplest example of a manifold is Rd itself, which has a single, global coordinate chart.
The Swiss roll in Figure 2 is a 2-manifold (i.e., a manifold of dimension 2) that also admits a
global coordinate chart (into R2, by simply unrolling it). A sphere and a torus (Figure 2) are
also 2-manifolds, but they cannot be covered by a single chart (they each require at least two), as
cartographers well know.

Swiss roll Torus
Data on torus

sectioned by a plane

Figure 2

Examples of manifolds with intrinsic dimension d = 2. (Left) A Swiss roll. (Middle) A torus (hollow). (Right)
1,000 points sampled from a torus sectioned by a plane.

www.annualreviews.org • Manifold Learning 395
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U

V

V

φ(U )

( )

φ

φ –1

2Coordinates in       for points in U

2Coordinates in       for points in V‘

Coordinate change

Figure 3

Manifold and charts. The torus is a manifold with intrinsic dimension d = 2 situated within the ambient space R3. The entire torus
cannot be unfolded on the R2 plane without cutting or collapsing it, but patches of it, such as U and V, can. The price paid is that each
patch now has a different coordinate system, and to travel on the torus, one must apply coordinate changes. The dotted areas represent,
from left to right, the points in U ) V, their mapping into R2 by φ, and the mapping of the same by ϕ. The coordinate change is
ϕ + φ−1: φ(U ) V)→ ϕ(U ) V).

Coordinate charts are not unique; there are infinitely many coverings of a manifold with
patches U, and changes of variables for each φ. While this multiplicity of charts and coordinate
functions can be daunting at first sight, the framework of differential geometry is set up so that
most geometric quantities related to a manifold M are independent of the coordinates chosen.
For example, the compatibility of charts shows that the dimension d must be the same for all
charts. Hence, d is called the intrinsic dimension of the manifold M. For a data scientist, this im-
plies that (a) they can work in the coordinate system of their choice, and intrinsic quantities like
d will remain invariant, but (b) care must be taken when the outputs of two different algorithms
or from different samples are being compared because these may not be in the same coordinate
system.

2.2. Embeddings

In differential geometry, an embedding is a smooth map F : M→ N between two manifolds
whose inverse F−1 : F (M) ⊂ N →M exists and is also smooth.Commonly in statistics, the high-
dimensional data lie originally in RD. Then D is called the ambient dimension (of the data). The
ML algorithms under consideration aim to find an embedding F : M→ Rm, where m ≥ d and
m j D. Notably, if m = d, the embedding F represents a (global) coordinate chart.

An advantage of embeddings is that one can avoid using multiple charts to describe a manifold.
Instead, one can find a global mapping F : M ⊂ RD → N ⊂ Rm, whereN is easier to understand.
Whitney’s embedding theorem (Lee 2003) states that every d-dimensional manifold can be em-
bedded into R2d . Therefore, if one can find a valid embedding, a significant dimension reduction
can be achieved [from D to O(d)]. This is one of the major targets of ML algorithms.

2.3. Tangent Spaces

The tangent space TpM at a point p ∈M is a d-dimensional vector space of tangent vectors toM.
The canonical basis of TpM is given by the tangents to the coordinate functions seen as curves on
M, while the tangent vectors can be seen as tangents (or velocity vectors) at p to smooth curves
on M passing through p.
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3. PREMISES AND PARADIGMS IN MANIFOLD LEARNING

3.1. The Manifold Assumption

Supposewe are given data {xi}ni=1 where each data point xi ∈ RD. It is assumed that data are sampled
from a distribution P that is supported on, or close to, a d-dimensional manifoldM embedded in
RD. This is the manifold assumption. Throughout this review, with a few exceptions, we discuss
the no-noise case when the data lie on M.

3.2. Manifold Learning

AnML algorithm can be thought of as a mapping F of xi ∈ RD to yi ∈ Rm. The embedding dimen-
sionm is usually much smaller thanD but could be higher than the intrinsic dimension d.When P
is supported exactly onM, and the sample size n→∞, a validML algorithm F should converge to
a smooth embedding function F. This implies that the algorithm should be guaranteed to recover
the manifold M, regardless of the shape of M.

3.3. Can a Manifold be Estimated?

Themanifold assumption itself is testable. For example, Fefferman et al. (2016) test whether, given
an independent and identically distributed sample, there exists a manifoldM that can approximate
this sample with tolerance ε. These results are currently not practically useful, as several usually
unknown manifold parameters (d, volume, etc.) must be known or estimated. However, they, as
well as Genovese et al. (2012), give us the confidence to develop and useML algorithms in practice.

3.4. Neighborhood Graphs

Practically all ML algorithms start with finding the neighbors of each data point xi. This leads to
the construction of a neighborhood graph; this graph,with suitable weights, summarizing the local
geometric and topological information in the data, is the typical input to a nonlinear dimension
reduction algorithm. Every data point xi represents a node in this graph, and an edge connects
two nodes if their corresponding data points are neighbors. In the following, we use Ni to denote
the neighbors of xi and ki = |Ni| the number of neighbors of xi (including xi itself ).

There are two usual ways to define neighbors. In a radius-neighbor graph, x j is a neighbor of xi
iff ||xi − x j|| ≤ r.Here r is a parameter that defines the neighborhood scale, similar to a bandwidth
parameter in kernel density estimation. Consistency of ML algorithms is usually established as-
suming an appropriately selected neighborhood size that decreases slowly with n (see Section 5.2).
In the k-nearest neighbor (k-NN) graph, x j is the neighbor of xi iff x j is among the closest k points
to xi. Since this relation is not symmetric, usually, the neighborhoods are symmetrized.

The k-NN graph has many computational advantages with respect to the radius neighbor
graph; it is more regular, and often connected when the latter is not. More software is available
to construct (approximate) k-NN graphs fast for large samples. Nevertheless, theoretically, it is
much more challenging to analyze, and fewer consistency results are known for k-NN graphs
(Sections 5.1 and 5.4). Intuitively, ki, the number of neighbors in the radius graph, is proportional
to the local data density, and manifold estimation can be analyzed through the prism of kernel
regression. In contrast, the k-NN graph either is asymmetric or, if symmetrized, becomes more
complicated to analyze. The distances between neighbors are stored in the distance matrix A, with
Aij being the distance ||xi − x j|| if x j ∈ Ni, and infinity if x j is not a neighbor of xi.

Some algorithms weight the neighborhood graph by weights that are nonincreasing with dis-
tances; the resulting n× nmatrix is called the similarity matrix (or sometimes kernel matrix). The

www.annualreviews.org • Manifold Learning 397
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weights are given by a kernel function,

Ki j :=
{
K

( ||xi−x j ||
h

)
, x j ∈ Ni,

0, otherwise.
1.

The kernel function here is almost universally the Gaussian kernel, defined as K(u) =
exp(−u2) (Belkin et al. 2006, Coifman & Lafon 2006, Ting et al. 2010, Singer & Wu 2012). In
the above, h, the kernel width, is another hyperparameter that must be tuned. Note that, even if
Ni would trivially contain all the data, the similarity Kij vanishes for far-away data points. There-
fore, Equation 1 effectively defines a radius-neighbor graph with r ∝ h. Hence, a rule of thumb is
to select r to be a small multiple of h (e.g., 3 − 10h).

It is sometimes also useful to have kernel function K(u) = 1. Then the similarity matrix K is
the same as the unweighted adjacency matrix of the neighborhood graph. By construction, K is
usually a sparse matrix, which is useful to accelerate the computation.

When the data dimensionD and sample size n are large—the latter being essential for manifold
recovery—constructing the neighborhood graph often becomes the algorithm’s most computa-
tionally demanding step. Fortunately, much work has been devoted to speeding up this task, and
approximate algorithms are now available, which can run in almost linear time in n and have very
good accuracy (Ram et al. 2009).

3.5. Linear Local Approximation and Principal Curves and Surfaces

Here we quickly review two methods for manifold estimation: local linear approximation reduces
the dimension locally but offers no global representation, while principal curves produce a global
representation but do not reduce dimension (more details about these can be found in Meilă &
Zhang 2023). Then, from Section 4, we focus on the third class, consisting of algorithms that pro-
duce embeddings, global representations in low dimensions.The three paradigms are summarized
in Table 1.

3.5.1. Linear local approximation. The idea of linear local approximation is derived from
classical PCA, which identifies a global optimal linear subspace to approximate the data. In linear
local approximation, PCA is performed on a weighted covariance matrix, with weights decaying
away from any point x; this approximates data locally around x on a curved manifold and can
produce a chart around a specific fixed reference point. To cover the entire manifold, one needs
to obtain multiple such charts.

3.5.2. Principal curves and principal d-manifolds. In the paradigm of principal curves and
principal d-manifolds, noise is assumed. Consider data of the form xi = x∗i + ϵi, where ϵi repre-
sents 0-mean noise, and the x∗i are sampled from a curve, for instance. This data density has a
ridge M̃, called the principal curve, and the Subspace Constrained Mean Shift (SCMS) algorithm
of Ozertem & Erdogmus (2011) maps each xi iteratively to a point yi ∈ RD lying on the principal
curve. This concept can be extended to principal surfaces and principal d-manifolds.

Usually, the ridge does not coincide with themean of the data, and the bias depends on theman-
ifold’s curvature: The density is higher on the inside of the curve. However, for their smoothing

Table 1 Three main paradigms for nonlinear dimension reduction

Paradigm Representation
Linear local approximation D→ d, local coordinates only
Principal curves and surfaces D→ D, global coordinates, noise removal
Embedding D→ m, with D k m ≥ d, global coordinates (or charts)

398 Meilă • Zhang
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property, principal d-manifolds are remarkably useful in analyzing manifold estimation in noise
(Genovese et al. 2012, Mohammed & Narayanan 2017).

4. EMBEDDING ALGORITHMS

The term manifold learning was proposed in the works of Roweis & Saul (2000) and Tenenbaum
et al. (2000), who introduced the Locally Linear Embedding (LLE) and Isomap1 algorithms, inau-
gurating the modern era of nonlinear dimension reduction. In this section, we introduce classical
ML algorithms that aim to find a global embedding y1, . . . yn, also denoted Y ∈ Rn×m (with yi
representing row i of Y), of dataset D.

Algorithms can be broadly categorized into one-shot algorithms, which derive embedding co-
ordinates from principal eigenvectors of a matrix associated with the neighborhood graph or by
solving some other global (usually convex) optimization problem, and attraction–repulsion algo-
rithms, which proceed from an initial embedding Y (often produced by a one-shot algorithm) and
improve it iteratively.While this taxonomy can rightly be called superficial, at present, it represents
a succinct and relatively accurate summary of the state of the art.

No matter what the approach, given the neighborhood information summarized in the
weighted neighborhood graph, an embedding algorithm’s task is to produce a smooth mapping
F of x1, . . . xn that distorts the neighborhood information as little as possible. The algorithms that
follow differ in their choice of information to preserve and in the sometimes implicit constraints
on smoothness.

4.1. One-Shot Embedding Algorithms

In this section,we focus on the best-studied one-shot embedding algorithm,DiffusionMaps (DM)
(Coifman & Lafon 2006), and its variant, Laplacian Eigenmaps (LE) (Belkin & Niyogi 2003).
Other one-shot embedding algorithms include Isomap (Tenenbaum et al. 2000) and local tangent
space alignment (LTSA) (Zhang & Zha 2004), described in Supplemental Appendix A, along
with PCA and multidimensional scaling.

DM, as well as most one-shot embedding methods, works with a sparse matrix derived from
the similarity matrix K; namely, DM uses the eigenvectors of the Laplacian matrix L to embed
the data (see the sidebar titled Laplacian Matrix).

To construct a Laplacian matrix, define di =
∑

j∈Ni
Ki j as the degree of node i and set

D = diag{d1, . . . , dn}. Then, multiple choices of graph Laplacian exist:

■ Unnormalized Laplacian: Lun = D − K
■ Normalized Laplacian: Lnorm = I − D−1/2KD−1/2

LAPLACIAN MATRIX

A Laplacian matrix is a specialization of the Laplacian differential operator 1 f =∑
j

∂2 f
∂x2j

to a graph. To see this,

consider the graph 1–2– . . . –i– . . . –n (a chain) with edge length h and a function fwith fi = f (i). By finite differences,
we have 1 f (i) = 1

h

[ fi+1− fi
h − fi− fi−1

h

] = 1
h2

( ∑
j∈Ni

f j − di fi
) = Lun f (i) for all i = 2, . . . , n − 1, because di = 2 for

these nodes.

1Throughout this article, names in small capitals (e.g., Isomap) designate algorithms that appear in the text or
the Supplemental Appendix.
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■ Random-walk Laplacian: Lrw = I − D−1K
■ Renormalized or DM Laplacian L, as defined in Algorithm 1 below

Algorithm 1 (Laplacian).
Input: Similarity matrix K, kernel bandwidth h

Normalize columns: d j =
∑n

i=1 Ki j , K̃i j = Ki j/d j for all i, j = 1, . . . n
Normalize rows: d ′i =

∑n
j=1 K̃i j , Pi j = K̃i j/d ′i for all i, j = 1, . . . n

Output: L = (I − P)/h2

Why choose oneLaplacian rather than another? Even though in simple examples the difference
is hard to spot, as more samples are collected, one needs to ensure that the limit of theseLmatrices
is well defined and the embedding algorithm is unbiased (see Sections 5.1 and 5.4). It is easy
to see that Lnorm and Lrw are similar matrices. Moreover, whenever the degrees di are constant,
L ∝ Lrw ∝ Lun, hence all Laplacians produce the same embedding. Differences arise when data
density is nonuniform,making the degrees di larger in regions of higher density.The seminal work
of Coifman & Lafon (2006), which introduced renormalization, showed that the eigenvectors of
Lnorm and Lrw are biased by the sampling density and that renormalization removes this bias. This
is illustrated in Section 5.4 (and especially the accompanying Figure 6).

Using the defined graph Laplacian matrix L, we can summarize theDM procedure, presented
in Algorithm 2.

Algorithm 2 (Diffusion Maps/Laplacian Eigenmaps).
Input: Laplacian L (or Lnorm), embedding dimension m

1.Compute {vi}mi=0, eigenvectors of smallest m + 1 eigenvalues of L, with vi ∈ Rn.
2.Discard v0 (this is typically a constant vector; see Meilă & Shi 2001).
3. Represent each data point j by y j = (v1j , . . . , v

m
j )
⊤ ∈ Rm.

Output: Y

Similar to PCA, the data are mapped to the principal directions of a positive definite matrix.
While in PCA, these eigenvectors represent directions of maximum variance, in DM they rep-
resent the smoothest (least varying) eigenvectors of L; therefore, they correspond to the lowest
eigenvalues (see also Section 6.1).The LE algorithm resembles DMbut uses a different Laplacian,
namely Lnorm above.

The idea of spectral embedding also appeared independently in graph visualization, then was
used by Shi & Malik (2000) as a method for clustering, and was then generalized as a data
representation method by Belkin & Niyogi (2003) as LE. They connect the Laplacian ma-
trix with the Laplace–Beltrami operator 1M of manifold M (Rosenberg 1997). Estimating the
Laplace–Beltrami operator itself is an important geometric estimation problem that is reviewed
in Section 5.4.

4.2. Horseshoe Effects, Neighbor Embedding Algorithms, and Selecting
Independent Eigenvectors

Now we turn to attraction–repulsion algorithms, sometimes known as neighbor embedding algo-
rithms.We start by highlighting a pitfall of standard one-shot algorithms that attraction–repulsion
algorithms usually avoid. After these algorithms are presented, we briefly return to describe how
one-shot algorithms may be corrected, too.

4.2.1. The repeated eigenvectors problem. Algorithms that use eigenvectors, such asDM,are
among the most promising and well-studied in ML (see Sections 5.1, 5.2, and 5.4). Unfortunately,
such algorithms fail when the data manifold has a large aspect ratio, such as a long, thin strip
or a slender torus. This problem has been called the repeated eigendirections problem (REP) by
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DM with eigenvectors
v1 and v2

UMAP UMAP with selected eigenvectors
v1 and v3

DM with eigenvectors
v1 and v2

DM with selected eigenvectors
v1 and v3

Embeddings of
a Swiss roll

Embeddings of
galaxy spectra

a

e

b c

d

Figure 4

Examples of embedding algorithms failing to find a full-rank mapping, if they greedily select the first m = 2 eigenvectors, and of
corrections by a more refined choice of eigenvectors. (a) Embeddings of a Swiss roll with length seven times the width by DM. The first
two eigenvectors form a 1-dimensional curve—a horseshoe. Hence, v2 does not add a new dimension, but repeats v1. (b) When the
same data are embedded with UMAP, repulsion expands the curve to a strip, but is not able to produce a full-rank embedding
everywhere. The knots, the horseshoe, and the three clusters are all artifacts. (c) UMAP embedding of the same data as in panel a, with
selection of eigenvectors by Chen & Meilă (2019). In panels d and e, galaxy spectra from the SDSS (Section 6) are embedded by DM. In
panel d, the first two eigenvectors, v1 and v2, are used, and the embedding results in a horseshoe, while in panel e, eigenvectors v1 and
v3, selected by Chen & Meilă (2019), are used. Plots by Yu-Chia Chen, adapted with permission from Chen & Meilă (2019).
Abbreviations: DM, Diffusion Maps; UMAP, Uniform Manifold Approximation and Projection; SDSS, Sloan Digital Sky Survey.

Dsilva et al. (2018). The REP has been demonstrated theoretically for DM/LE, LTSA, and LLE
(Goldberg et al. 2008), and in real datasets.

From a mathematical standpoint, the REP is due to eigenvectors (or eigenfunctions, in the
limit) that are harmonics of previous ones, as shown in Figure 4. Consider, for example, the rect-
angle [0, l] × [0, 1] in (x1, x2) space, where the length l > 1; l, in this case, is the aspect ratio. It is
easy to show that (in the continuum limit) the first ⌈l ⌉ − 1 eigenvectors vary in the x1 direction,
as shown in the top row of Figure 4. Hence, if we use (v1, v2 ) in the DM algorithm, we obtain a
1-dimensional mapping, even though the rectangle is 2-dimensional.

Moreover, in this simple case, the scatterplot of (v1
i , v

2
i )i=1,...n from step 3 of the DM follows a

parabola. This is a relevant diagnosis for the REP in practice: When an embedding looks like a
horseshoe, this may represent not a property of the data but an artifact signaling that one of the
data dimensions is collapsed or poorly reflected in the embedding (Diaconis et al. 2008).

4.2.2. Relaxation-based neighbor embedding algorithms. The pervasiveness of the REP
stimulated the development of algorithms that balance attraction between neighbors in the
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original space with repulsion between neighbors in the embedding space (van der Maaten &
Hinton 2008, Carreira-Perpiñan 2010, Jacomy et al. 2014, Im et al. 2018, McInnes et al. 2018).
Usually, the embedding coordinates Y are optimized iteratively until equilibrium is reached.

The t-SNE algorithm of van der Maaten & Hinton (2008), one variant of which we briefly
describe here (Böhm et al. 2022), exemplifies this approach.Hinton & Roweis (2002) proposed to
match the (normalized) data similarities by (normalized) output similarities around each embed-
ded point yi, which motivates the name stochastic neighbor embedding (SNE) (Hinton & Roweis
2002). van der Maaten & Hinton (2008) proposed using a Student’s t-distribution to model the
output similarities and, as t-SNE, this algorithm became widely used.

Algorithm 3 (t-SNE).
Input: Similarity matrix K (from k-nearest neighbor graph), initial embedding y1, . . . yn, step size η,

repulsion parameter ρ

1.Compute normalized input similarity V = (D−1K + KD−1)/(2n)
2. while not converged do
3.Compute all squared distances in embedding space Aout

i j = ∥yi − y j∥2, for i, j = 1, . . . n

4.Compute similarities in embedding space Wi j = 1
1+Aout

i j
, for i, j = 1, . . . n, wtot =

∑n
i, j=1 Wi j

5.Update embedding by yi ← yi + η
[∑

j∈Ni
Vi jWi j (yi − y j )− n

ρ

∑n
j=1

Wi j
wtot

(yi − y j )
]

6. end while

Output: Y

Uniform Manifold Approximation and Projection (UMAP) (McInnes et al. 2018) is another
popular heuristic method. On a high level, UMAP minimizes the mismatches between topolog-
ical representations of high-dimensional dataset {xi}ni=1 and its low-dimensional embeddings yi.
Theoretical understanding of UMAP is still limited.

The t-SNE algorithm has the advantage of being sensitive to local structure and to clusters
in data (Linderman & Steinerberger 2019, Kobak et al. 2020) but does not explicitly preserve the
global structure. We note that the propensity for finding clusters comes partly from the choice
of neighborhood graph (Section 5.1). However, this is not the whole story. Recently, it has been
shown that this property stems from the last term of the update in step 5 of Algorithm 3. The
first term in the change of yi is an attraction between graph neighbors, while the second repre-
sents repulsive forces between the embedded points y1:n (Böhm et al. 2022, Zhang et al. 2022).
The parameter ρ (originally called early exaggeration) controls the trade-off between attraction
and repulsion. Böhm et al. (2022) show that varying ρ from small to large values decreases the
cluster separation and makes the embedding more similar to the LE embedding. Moreover, quite
surprisingly, Böhm et al. (2022) show that by varying ρ, the t-SNE can emulate a variety of other
algorithms,most notablyUMAP (McInnes et al. 2018) and ForceAtlas ( Jacomy et al. 2014).Zhang
& Steinerberger (2022) also analyze the attraction–repulsion behavior of t-SNE. One yet un-
solved issue with t-SNE is the choice of the number of neighbors k. Most applications use the
default k= 90 (Poličar et al. 2019); this choice, as well as other behaviors of this class of algorithms,
are discussed by Zhang et al. (2022).

Finally, in Minimum Variance Unfolding (MVU) (Weinberger & Saul 2006, Arias-Castro &
Pelletier 2013), repulsion is implemented via a semidefinite program; hence, the embedding Y is
obtained by solving a convex optimization. This algorithm can be seen both as a one-shot and as
an attraction–repulsion algorithm; Diaconis et al. (2008) show that MVU is related to the fastest
mixing Markov chain on the neighborhood graph. Note also that since the REP can be inter-
preted as extreme distortion, the RiemannianRelaxation algorithm of McQueen et al. (2016) (see
also Section 5.5) can also be used to improve the conditioning of an embedding in an iterative
manner.

402 Meilă • Zhang
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4.2.3. Avoiding the repeated eigendirections problem in spectral embeddings. The REP
has a theoretically straightforward solution for algorithms likeDM andLTSA. From the sequence
of eigenfunctions F1, . . . ,Fm′ on M (or eigenvectors v1, . . . , vm′ in the finite sample case), with
m′ >m, sorted by their corresponding eigenvalues, one needs to select F j1 = F1, then (recursively)
F j2 , . . .F jm so that the rank of the Jacobian matrix [(dF1 )p, . . . (dF jm )p] is d at every point p ∈M.
For example, for the l × 1 rectangle, eigenvectors v1 and v⌈l⌉ should be selected. This is called
independent eigendirection selection (IES). In a finite sample, the rank conditionmust be replaced
with the well-conditioning of the Jacobian at the data points. Dsilva et al. (2018) proposed to
measure dependence by regressing v jk+1 on the previously selected v j1 ,... jk ; Chen & Meilă (2019)
derived a condition number from the embedding metric (Section 5.5) and used it to evaluate
entire sets of m eigenvectors. The manifold deflation method (Ting & Jordan 2020) proposes to
bypass eigenvector selection by choosing a linear combination of all eigenvectors optimized with
respect to rank. Finally, Low Distortion Local Eigenmaps (LDLE) (Kohli et al. 2021) solves the
REP by essentially covering the data manifold with contiguous patches (discrete versions of the
U neighborhoods) and performing IES on each patch separately. LDLE avoids the REP and is a
first step toward the algorithmic use of charts and atlases to complement global embeddings.

In summary, attraction–repulsion algorithms such as t-SNE, which are heuristic, enjoy large
popularity due in part to their immunity to the REP, while eigenvector-based methods, al-
though better grounded in theory, are less useful in practice without postprocessing by an IES
method. On the other hand, unlike global search in eigenvector space, a local relaxation algo-
rithm cannot resolve the rank deficiency globally, and it may become trapped in a local optimum
(Figure 4).

4.3. Summary of Embedding Algorithms

A variety of embedding algorithms have been developed. Here, we present representative algo-
rithms of two types. One-shot algorithms (typically) embed the data by eigenvectors, of which
Isomap, DM, and LTSA are the best understood and most computationally scalable. The main
drawback of this class of algorithms is the REP, which requires postprocessing of the eigenvectors.
Neighbor embedding algorithms are (typically) iterative, starting with the output of a one-shot
algorithm (LE forUMAP) or even PCA.The presence of repulsionmakes these algorithms robust
to the REP affecting one-shot algorithms. Quantifying the repulsion, smoothness, large-sample
limits, and other properties of the neighbor embedding algorithms is less developed. Hence, for
the moment, neighbor embedding algorithms remain heuristic for ML, while they remain useful
for visualization and clustering (for which guarantees exist; see, e.g., Linderman & Steinerberger
2019).

Neither algorithm guarantees against local singularities, such as the knots in Figure 4. It is not
known how these can be reliably detected or avoided. Additionally, all algorithms distort distances
except in special cases (as illustrated in Figure 5 and discussed in Section 5.5).

All algorithms depend on hyperparameters: intrinsic dimension d (Section 5.3) or embedding
dimensionm, and k or r for the neighborhood scale (Section 5.2). Iterative algorithms often depend
on additional parameters controlling the repulsion (such as ρ in t-SNE) or the step size η.

With respect to computation, constructing the neighborhood graph is the most expensive step,
typically for large n. To compound this problem, finding k or r in a principled way often requires
constructing multiple graphs, one for each scale. One-shot algorithms that compute eigenvec-
tors are quite efficient for n up to 106 when the neighborhood graph is not dense (McQueen
et al. 2016a). Neighbor embedding algorithms work, in theory, with dense matrices (e.g., W);
however, accelerated approximate versions for these algorithms have been developed, such as the
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Isomap LE LLE

LTSA t-SNE UMAP

Figure 5

Embeddings of the sectioned torus data from Figure 2 by various algorithms; Isomap and LTSA are
described in Supplemental Appendix A. This manifold cannot be embedded isometrically in d = 2
dimensions; each algorithm distorts (stretches or contracts) it differently. Figure 7 visualizes the local
distortions. Abbreviations: LE, Laplacian Eigenmaps; LLE, Locally Linear Embedding; LTSA, Local
Tangent Space Alignment; UMAP, Uniform Manifold Approximation and Projection.

Barnes-Hut trees approximation (van der Maaten 2014) and the negative sampling heuristic for
UMAP (McInnes et al. 2018, Böhm et al. 2022).

5. STATISTICAL BASIS OF MANIFOLD LEARNING

The output or result of ML algorithms depends critically on algorithm parameters such as the
type of neighborhood graph (k-NN or radius neighbor), the neighborhood scale (k or r), and the
embedding dimension m (and intrinsic dimension d, in some cases).

This section is concerned with making these choices in a way that ensures some statistical
consistency, whenever possible. Neglecting statistical consistency and theoretical guarantees in
general is risky. In the worst case, it can lead to methods that have no limit when n→∞ [e.g.,
for LLE without any regularization (Ting et al. 2010)], and in milder cases to biases (e.g., due to
variations in data density) and artifacts, i.e., features of the embedding, such as clusters, arms, and
horseshoes that have no correspondence in the data.

Here, we discuss in more general terms what is known about graph construction methods
(Section 5.1), the neighborhood scale (Section 5.2), and the intrinsic dimension (Section 5.3).We
revisit the estimation of themanifold Laplacian1M (the limit ofL) as the natural representation of
the manifold geometry, and the basis for theDM embedding, which can be seen as the archetypal
embedding, in Section 5.4. Finally, in Section 5.5, we turn to mitigating the distortions induced
by embedding algorithms. For a slightly more technical treatment of Sections 5.2–5.5, the reader
is referred to Meilă & Zhang (2023).
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Figure 6

Effects of graph construction and renormalization, when the sampling density is highly nonuniform,
exemplified on the configurations of the ethanol molecule shown in Figure 1. (Left) The original data, after
preprocessing, is a noisy torus (shown here in the first two principal components), with three regions of high
density, around local minima of the potential energy. (Middle) Embeddings by DM (gray), and by the LE,
which uses the singly normalized Lrw (green). The sparse regions are stretched, while the dense regions
appear like corners of the embedding. Note that DM should be immune to the effects of the density; in this
case, the variations in density are so extreme that a slight effect persists. (Right) Embedding byDM (gray) and
Algorithm 2 with L constructed from the k-nearest neighbor graph (green). Abbreviations: DM, Diffusion
Maps; LE, Laplacian Eigenmaps. Data are from Chmiela et al. (2017).

5.1. Biases in Manifold Learning: Effects of Sampling Density
and Graph Construction

It is little known in practice and not intuitively obvious that the shape of the embedding y1, . . . , yn
reflects not only the shape of the original manifold, but also the way the data were sampled, and
whether a radius-neighbor or a k-NN graph was used.

5.1.1. Biases due to nonuniform density. Many embedding algorithms tend to contract re-
gions of M where the data are densely sampled and to stretch the sparsely sampled regions. In
attraction–repulsion algorithms, such as t-SNE, this is explained by the repulsive forces between
every pair of embedding points yi, y j , while the attractive forces act only along graph edges, be-
tween neighbors. If fewer graph edges connect two dense regions, repulsion will push them apart,
exaggerating clusters.

For one-shot algorithms, the effect is similar, albeit less intuitive to explain, as shown in
Figure 6. For DM, LE, and their Laplacian matrices, the effect was calculated by Coifman &
Lafon (2006); they also showed that renormalization removes this bias (asymptotically).Moreover,
the degree values d ′i obtained in theLaplacian algorithm are estimators of the density around data
point xi. An alternative method, applicable to low d, is to use a simple estimator of the local density
and to use it to renormalize Lrw (Luo et al. 2009).

If enough samples are available, one can resample the data to obtain an approximately uniform
distribution. For example, the farthest point heuristic chooses samples sequentially, with the next
point being the farthest away from the already chosen points.

5.1.2. Effect of neighborhood graph. Ting et al. (2010), and later Calder & Trillos (2022),
showed that the k-NN graph, with the similarity matrix with constant kernel K(u) = 1, exhibits
qualitatively similar biases from nonuniform sampling as the normalized radius-neighbor graphs,
as seen in Figure 6 (right panel).

5.2. Choosing the Scale of Neighborhood

Whatever the task, an ML method requires the user to provide an external parameter, be it the
number of neighbors k or the kernel bandwidth h, that sets the scale of the local neighborhood.

www.annualreviews.org • Manifold Learning 405
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5.2.1. Asymptotic results andwhat theymean. The asymptotic results ofGiné&Koltchinskii
(2006), Hein et al. (2007), Ting et al. (2010), and Singer (2006) provide the necessary rates of
change for h with respect to n to guarantee convergence of the respective estimate. For instance,
Singer (2006) proves that the optimal bandwidth parameter for Laplacian estimation is h ∼ n−

1
d+6

when using a random-walk Laplacian. For the k-NN graph, Calder & Trillos (2022) show that the
number of neighbors k must grow slowly with n, and a recommended rate is k ∼ n

4
d+4 (log n)

d
d+4 ,

again for Laplacian estimation. The hidden constant factors in these rates are not completely
known, but they depend on the (typically not known) manifold volume, curvature, and injectiv-
ity radius τ (Lee 2003). Even so, these statistical results suggest that, in practice, the number of
neighbors k should be sufficiently large and grow with n (Linderman & Steinerberger 2019).

With these rate-wise optimal selections of k or r, the convergence rate for estimating
Laplacian operators, their eigenvectors, and so on can be established.These rates are nonparamet-
ric, implying that the sample size n must grow exponentially with the dimension d. For example,
using the previously mentioned rate of k, one can calculate that, for a 10-fold decrease in error,
n must increase ≈10(d+4)/3-fold.

For neighbor embedding algorithms, such as t-SNE, less is known theoretically; however,
practically, the defaults are for larger values of k, e.g., k= 90 (Poličar et al. 2019), and some research
(Linderman & Steinerberger 2019) suggests k ∼ n, which would create very dense graphs.

5.2.2. Practical methods. Unfortunately, cross-validation (CV), a widely valuable model selec-
tion method in, e.g., density estimation, is not applicable in ML due to the lack of a criterion to
cross-validate. [However, CV is still applicable in semisupervised learning on manifolds (Belkin
et al. 2006).] The ideas we describe below each mimic CV by choosing a criterion that measures
the self-consistency of an embedding method at a particular scale.

For the k-NN graph, Chen & Buja (2009) evaluate a given k with respect to the preservation
of k′ neighborhoods in the original graph. A problem to be aware of with this approach is that (see
Section 5.5) most embeddings distort the data geometry. Hence, Euclidean neighborhoods will
not be preserved, even at the optimal k. A variable k method based on topological data analysis
(see Wasserman 2018) was proposed by Berry & Sauer (2019).

For the radius-neighbor graph, Perrault-Joncas et al. (2017) exploit the connection between
manifold geometry, represented by the Riemannian metric (see Section 5.5), and the Laplacian
L. The radius neighbor graph width h affects the Laplacian’s ability to recognize the identity
mapping. This method is specific to the DM algorithm, but the h obtained can be used by other
embedding algorithms. Finally, we mention a dimension estimation algorithm proposed by Chen
et al. (2013); a by-product of this algorithm is a range of scales, r, where the manifold looks locally
linear, and hence these scales would also be correct for the neighborhood graph.

5.3. Estimating the Intrinsic Dimension

Knowing the intrinsic dimension of data is important in itself. Additionally, some embedding
algorithms (t-SNE, Isomap,LTSA) and all local PCA and principal d-manifolds algorithms require
the intrinsic dimension d as input.

5.3.1. How hard is dimension estimation? The dimension of a manifold is a nonnegative
integer, and therefore, intuitively, it should require fewer samples to estimate than a real-valued
geometric parameter. Indeed, the minimax rate for dimension estimation is exponential (i.e., the
error is proportional to qn for some q< 1) or faster (Koltchinskii 2000, Genovese et al. 2012, Kim
et al. 2019). Unfortunately, the empirical experience belies the optimistic theoretical results. Due
primarily to the presence of noise, which does not conform to simple assumptions, and secondarily
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Laplace–Beltrami
operator: 1M f ≡div
grad( f ), the extension
of the Laplace
operator 1 for
functions f : R→ R,
plays a central role in
modern differential
geometry

to nonuniform sampling, estimating d for real data is a hard problem for which no satisfactorily
robust solutions have been found yet (for some empirical results, see Altan et al. 2021).

5.3.2. Principles andmethods for estimating d. An idea that appears in various forms through
the dimension estimation literature is to find a local statistic that scales with d by a known law.
For example, the volume of a ball of radius r contained in a manifold M is proportional to rd.
Hence, log ki,r ≈ d log r + constant (where ki, r is the number of radius r neighbors of data point
xi), and a regression line of (log r, log avg(ki,r )) should have slope d. This is known as correlation
dimension (Grassberger & Procaccia 1983). Other methods consider statistics such as ki,2r

ki,r
≈ 2d ,

or covering number, which lead respectively to the so-called doubling dimensions (Assouad 1983),
and box counting dimension (Falconer 2003).

Modern estimators consider other statistics, such as distance to the kth nearest neighbor
(Pettis et al. 1979, Costa et al. 2005), the volume of a spherical cap (Kleindessner & von Luxburg
2015) (both statistics can be computed without knowing actual distances, just comparisons be-
tween them), or Wasserstein distance between two samples of size n onM, which scales like n−1/d

(Block et al. 2022). The algorithm of Levina & Bickel (2004), analyzed by Farahmand et al. (2007),
proposes a maximum likelihood method based on k-NN graphs.

An algorithm for dimension estimation in noise is proposed by Chen et al. (2013). The algo-
rithm is based on the maximum eigengap of the local covariance matrix at multiple scales. This
algorithm can be simplified by using a neighborhood radius selection algorithm such as that of
Perrault-Joncas et al. (2017) (Section 5.2).

5.4. Estimating the Laplace–Beltrami Operator

We have seen that the eigenvectors of the Laplace–Beltrami operator 1M (for details, see
Rosenberg 1997, Sogge 2014) can embed the data in low dimensions by the DM algorithm. Ad-
ditionally, graph Laplacian estimators of 1M are used in many different scenarios, described in
Section 6.1. The question is which of the Laplacian matrices L, Lnorm, Lrw, etc., converge to 1M

when the sample size n tends to infinity.
Denote the limit of the discrete operator Lrw by L∞, a continuous differential operator acting

on smooth functions. Two types of convergence have been investigated. Pointwise convergence
indicates the proximity of (Lrw f )i to L∞ f (xi ), while spectral convergence involves the similarity
between the eigenvalues of Lrw and the eigenvalues of L∞.

When a radius neighbor graph is used, L∞ = 1M is established for pointwise convergence in
the case of uniform sampling density, whileL∞ will be1M+ some density-related bias term in the
nonuniform case. Ting et al. (2010) proved the pointwise convergence of the random-walk graph
Laplacian to 1M scaled by p2/d for k-NN graphs, where p denotes the sampling density. Spectral
convergence is discussed by Belkin & Niyogi (2007), Berry & Sauer (2019), García Trillos &
Slepčev (2018), and García Trillos et al. (2020).

More broadly, an entire class of ML algorithms can be studied by similar theoretical meth-
ods. Many embedding algorithms, including LE (Belkin & Niyogi 2003), DM (Coifman & Lafon
2006), and LTSA (Zhang & Zha 2004), that use matrices derived from the similarityK (called lin-
ear smoothing algorithms) are related to a Laplacian-like second-order differential operator on
M. On the other hand, unregularized LLE fails to converge to any differential operator. Details
are provided by Ting & Jordan (2018).

5.5. Embedding Distortions: Is Isometric Embedding Possible?

Figure 5 shows the outputs of various embedding algorithms on a simple 2-manifold M ⊂ R3.
It is easily seen that the results depend on the algorithm (and parameter choices) and the input
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(manifold and sampling density onM).While most embedding algorithms work well in the sense
of producing smooth embeddings, the algorithm-dependent distortions, i.e., the local stretch-
ing or contraction—which amount to different coordinate systems—make these embeddings
irreproducible and incomparable.

Empirical observations commonly reveal the presence of distortion.The distortions do not dis-
appear when the sample size n increases, when the sampling density is uniform, or even when the
consistent graph and Laplacian are used.This section is concerned with recovering reproducibility
by preserving the intrinsic geometry of the data.

5.5.1. Geodesic distances, intrinsic geometry and isometry. For the data in Figure 1, a
scientist may be interested in the distance between two molecular configurations x1 and x2, seen
as points ofM ⊂ RD. Their Euclidean distance ∥x1 − x2∥ is readily available. However, this value
may not be of physical interest since most of the putative configurations along the segment x1 to
x2 in RD are not physically possible. To deform from state x1 to x2, the ethanol molecule must
follow a path contained in (or near) the manifold M of possible configurations, and the distance
dM(x1, x2 ) shall naturally be defined as the shortest possible length of such a path; this is the
geodesic distance. Geodesic distances, angles between curves in a manifold M, and volumes of
subsets of M represent intrinsic geometric quantities that can be defined without reference to
the ambient space RD and are independent of the choices of coordinate charts. Ideally, we would
like an embedding (algorithm) to preserve these, and we call such an embedding an isometric
embedding.

5.5.2. Attempts at isometric embedding. Isometric (i.e., distortionless) embedding is possible,
as proved by the celebrated Nash embedding theorem (Lee 2003) and more recently for DM by
Bérard et al. (1994) and Portegies (2016). Unfortunately, these remarkable mathematical results
are not easily amenable to numerically stable implementation.

Many ML methods focus on promoting isometry in local neighborhoods; MVU aims to pre-
serve local distances (Weinberger & Saul 2006); Conformal Eigenmap maps triangles in each
neighborhood, thus preserving angle (Sha & Saul 2005); and LTSA (Zhang & Zha 2004) and Lo-
cally Linear Embedding (Roweis & Saul 2000) preserve linear reconstructions. The works of Yu
& Zhang (2010) and Lin et al. (2013) approach global isometry by means of constructing nor-
mal coordinates recursively from a point p ∈M or, respectively, by mutually orthogonal parallel
vector fields, and Verma (2011) makes the first attempt to implement Nash’s construction. The
Isomap algorithm (Tenenbaum et al. 2000) aims to preserve all shortest paths. We note that, with
the exception of that of Verma (2011), and of Isomap for flat manifolds (i.e., manifolds that can
be unrolled into Rd without stretching), these methods do not guarantee isometric embedding
except in limited special cases.

5.5.3. Preserving isometry by estimating local distortion. While finding a practical isomet-
ric embedding algorithm has been unsuccessful so far, estimating the local distortions is possible.
Once the distortions are known, whenever a distance, angle, or volume is calculated, one applies
local corrections that amount to obtaining the same result as if the embedding was isometric. The
distortion at embedding point yi = F (xi ) ∈ Rm is a symmetric, positive m × m matrix Hi of rank
d. In Figure 7, the same embeddings of Figure 5 are shown, withHi at selected points visualizing
the local distortion induced by each algorithm. When the embedding F is isometric, and m = d,
Hi = Id denotes the unit matrix; otherwise,Hi’s eigenvalues and vectors define the principal axes
of stretch or compression around point i. A matrix function such asH on amanifold is called a Rie-
mannian metric (see, e.g., Perrault-Joncas & Meilă 2013, Lee 2003). The local correction at yi is
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Isomap LE LLE

LTSA t-SNE UMAP

Figure 7

The embeddings from Figure 5, with the distortion H estimated at a random subset of points. The principal
axes of the ellipses are proportional to the singular values ofH at each point. Note the very elongated ellipses
indicating extreme stretching especially in the LLE, t-SNE, and UMAP embeddings, as well as the random
directions of stretch for t-SNE. Abbreviations: LE, Laplacian Eigenmaps; LLE, Locally Linear Embedding;
LTSA, Local Tangent Space Alignment; UMAP, Uniform Manifold Approximation and Projection.

the pseudoinverseGi ofHi;Gi is also a Riemannian metric, called the embedding (push-forward)
Riemannian metric.

With Gi, the geodesic distance between yi and a neighbor y j is given (to first-order
approximation) by

d̂M( yi, y j )2 ≡ ∥y j − yi∥2Gi
= ( y j − yi )⊤Gi( y j − yi ). 2.

For any other yi, y j , the geodesic distance is the shortest path length from yi to y j with the cor-
rected distances above. The resulting distance is an undistorted approximation of the original.
Perrault-Joncas &Meilă (2013) proposed a method to estimateHi for every embedded data point
yi, using the renormalized Laplacian L described in Algorithm 1.2 Hence, for any Y = F(X) out-
put by an embedding algorithm, it is sufficient to estimate, at all points y1:n, the matrices G1:n,
which represent the auxiliary information allowing one to correct distance computations in the
nonisometric embedding F. The same G1:n can be used to preserve not only geodesic distances
but also other geometric quantities such as angles between curves in M or volumes of subsets
of M.

2To obtain Hi, Perrault-Joncas & Meilă (2013) apply L to a suitably chosen set of test functions fkl,i, with
1 ≤ k ≤ l ≤ m, and i = 1, . . . n, where fkl ,i = (Fk − Fk(xi ))(Fl − Fl (xi )) are pairwise products of coordinate
functions, centered at point xi. They show that 1

21M fkl ,i (xi ) = (Hi )k,l , the k, l entry in Hi (algorithmically,
this operation can be easily vectorized).
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Normal coordinate
chart: at point p, a
special coordinate
system such that
geodesics emanating
from p are straight
lines

Estimating the metrics H1:n and G1:n offers even more insights into the embedding. For in-
stance, the singular values of Hi (which has numeric rank m but theoretical rank d) may offer a
window into estimating d by enabling us to look for a singular value gap. The d singular vectors
form an orthonormal basis of the tangent space to F (M) at point yi, providing a natural framework
for constructing normal coordinate charts.

The singular values of H1:n can be used to evaluate the global distortion for an embedding as
a criterion for comparing various embeddings. By iteratively minimizing this, one can get a more
isometric embedding, such as in the RiemannianRelaxation algorithm of McQueen et al. (2016),
which can be seen as an alternative to UMAP or t-SNE.

6. APPLICATIONS OF MANIFOLD LEARNING

6.1. Manifold Learning in Statistics

ML with DM is closely related to spectral clustering (Shi & Malik 2000, Meilă & Shi 2001,
Ng et al. 2001, von Luxburg 2007, Meilă 2015) as both methods map data to lower dimensions
using the eigenvectors of a Laplacian. For clustering, it is preferable to employ Lrw, the random-
walk Laplacian, which considers data density and enhances cluster separation. By mapping data
to lower dimensions with Lrw, a continuum between separated clusters (in clustered data) and
smooth embedding (in regions where data lie on a manifold) can be observed. It even enables si-
multaneous embedding and clustering. Sufficient eigenvectors need to be calculated in such cases:
K − 1 eigenvectors indicate clustering for K clusters, and additional eigenvectors are required for
low-dimensional mapping within each cluster. Using fewer eigenvectors may recover the clusters
but not the intrinsic geometry within each cluster.

For a function f : M→ R, with f = [ f (xi )]i=1:n, the functional 1
2 f
⊤Lf approximates ∥∇ f ∥22

on the manifold, a measure of the smoothness of f (a function being smoother when its rate of
change is lower). This smoothness measure can serve as a regularizer in supervised or semisu-
pervised learning on manifolds (Belkin et al. 2006, Slepčev & Thorpe 2019), Bayesian priors
(Kirichenko & van Zanten 2017), and modeling Gaussian processes on manifolds (Borovitskiy
et al. 2020). If Lnorm is used instead of L then the smoothness is calculated with respect to the
sampling distribution onM (i.e., the rate of change is weighted more in regions with denser data).

6.2. Manifold Learning for Visualization

Embedding algorithms are often used in the sciences for data visualization. The scientists, as well
as the statisticians, need to distinguish between an embedding as defined in Section 2, which pre-
serves the geometric and topological data properties, and other mappings (occasionally also called
embeddings) into low dimensions using embedding algorithms. The latter kind of dimension re-
duction is hugely popular, and its value for the sciences cannot be underestimated. However, the
users of dimension reduction for visualization should be cautioned that the scientific conclusions
drawn from these visualizations must be subject to additional careful scrutiny or a more rigorous
statistical and geometric analysis. One pitfall is that when data are mapped intom= 2 or 3 dimen-
sions for visualization, without estimating the intrinsic dimension d, the mapping may collapse
together data regions that are not close in the original manifold. When clusters are present, be-
cause separating the clusters usually requires at least 2 dimensions, most of the clusters’ geometric
structure is collapsed. Hence, once the data are separated into clusters, the cluster structure needs
to be studied by additional dimension reduction. A second pitfall is the presence of artifacts—
interesting geometric features caused by the embedding algorithm but not supported by the data.
These can be clusters (Figure 4), arms, holes, circles, and so on.

Before assigning scientific meaning to these features, a researcher should examine whether
they are stable by repeating the embedding with different initial points, algorithms, and algorithm
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parameters, as well as by perturbing or resampling the original data. To assess if the interesting
features are not large distortions, visualizing the distortion (Figure 7) can provide valuable di-
agnostics. For example, when a filament is produced by stretching a low-density region, a very
common effect (see Section 5.1), the estimated distortion will show the stretching (Figure 7),
while for a true filament, the distortion will be moderate.

6.3. Manifold Learning in the Sciences

Manifold learning has been used as a tool for scientific research due to its ability to reveal the
shape of complex data. Here, we provide some examples.

6.3.1. Astronomy and astrophysics. ML has been used to study data from extensive astro-
nomical surveys, like the Sloan Digital Sky Survey (SDSS). The mass distribution in the universe
reveals filaments, i.e., 1-dimensional manifolds, and dimension reduction methods, most often
principal curves, have been used to estimate them (Chen et al. 2015).

Spectra of galaxies are measured in thousands of frequency bands; they contain rich data about
galaxies’ chemical and physical compositions. By embedding these spectra in low dimensions,
as in Figure 4, one can analyze the main constraints and pathways in the evolution of galaxies
(Vanderplas & Connolly 2009).

6.3.2. Dynamical systems. Dynamical systems described by ordinary or partial differential
equations are intimately related to manifolds and exhibit multiscale behavior. Extensions of ML
can be used to understand partial differential equations with geometric structure (Nadler et al.
2006) and to study the long-term behavior of the system or the ensemble of its solutions (Dsilva
et al. 2016, 2018).

6.3.3. Chemistry. The accurate simulation of atomic and molecular systems plays a signifi-
cant role in modern chemistry.Molecular dynamics simulations from carefully designed, complex
quantic models can take millions of computer hours; however, simulations can still be less expen-
sive than conducting experiments, and they return data at a level of detail not achievable in most
experiments. ML is used to discover collective coordinates, i.e., low-dimensional descriptors that
approximate well the larger scale behavior of atomic, molecular, and other large particle systems
(Tribello et al. 2012,Boninsegna et al. 2015,Noé&Clementi 2017). In these examples, the systems
can be in equilibrium or evolving in time, and in the latter case, the collective coordinates describe
the saddle points in the trajectory or the folding mechanism of a large molecule (Rohrdanz et al.
2011, Das et al. 2006).

Manifold embedding is also used to create low-dimensional maps of families of molecules and
materials by the similarity of their properties (Ceriotti et al. 2013, Isayev et al. 2015).

6.3.4. Biological sciences. In neuroscience and the biological sciences, manifold embeddings
are widely used to summarize neural recordings (Cunningham&Yu 2014,Connor&Rozell 2016),
or to describe cell evolution (Herring et al. 2018).

7. CONCLUSION

In practice, ML is overwhelmingly used for visualization (Section 6) and with small datasets. But
ML can do much more. Efficient software now exists (McQueen et al. 2016b, Poličar et al. 2019)
that can embed huge, high-dimensional data (for example, from SDSS). In these cases, ML helps
practitioners understand the data, e.g., by its intrinsic dimension, or by interpreting the manifold
coordinates (Vanderplas & Connolly 2009, Boninsegna et al. 2015, Koelle et al. 2022). For real
data, anML algorithmhas the effect of smoothing the data and suppressing variation orthogonal to
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the manifold, which can be regarded as noise, just like in PCA. Finally, again similarly to PCA,ML
can effectively reduce the data tomjD dimensions while preserving features predictive for future
statistical inferences. Some inferences, such as regression, can be performed on manifold data
without manifold estimation, e.g., by local linear regression (Aswani et al. 2011) or via Gaussian
processes (Borovitskiy et al. 2020). Even when only visualization is desired, care must be taken
that the results are reproducible and free of artifacts, as discussed in Section 6.2.

7.1. What We Omitted

Among the topics we had to leave out, ML in noise is perhaps the most important. Noise makes
ML significantly more difficult by introducing biases and slowing the convergence of estimators.
This is an active area of research, but the estimation of geometric quantities like tangent space and
reach in the presence of noise have been studied by Aamari &Levrard (2018, 2019); the theoretical
results of manifold recovery in noise were mentioned in Section 3.

The reach, or injectivity radius τ (M), of a manifold measures how close to itselfM can be. In
other words, τ (M) is the largest radius a ball can have so that, for any p ∈M, if it is tangent to the
manifold in p, it does not intersect M in any other point. Large τ implies less curvature (a plane
has infinite τ ) and easier estimation of M (Genovese et al. 2012; Fefferman et al. 2016; Aamari
& Levrard 2018, 2019). A manifold can have borders, and ML with borders has been studied. For
example, Singer &Wu (2012) show that different convergence rates appear when data are sampled
close to the border.

A helpful task is to map a new data point x ∈ RD onto an existing embedding F (M); this is
often called Nystrom embedding (Chatalic et al. 2022). Conversely, if y ∈ Rm is a new point on
the embedding F (M), obtained, e.g., by following a curve in the low-dimensional representation
of M, how do we map it back to RD? This is usually done by interpolation.

Finally, we add a few words about neural network representations, such as auto-encoders
(Goodfellow et al. 2016), which could be seen as the fourth paradigm for ML. We have left
them out, partly for mathematical reasons—although these mappings are generally smooth, there
are no guarantees that they have constant rank d, even if the original data lie on a d-manifold.
However, the main reason is that we could not do them justice in this review. Deep learning
is an entirely different paradigm for nonlinear dimension reduction. The intuitions and formal
techniques for understanding neural networks’ internal representations are entirely different
from those surveyed here.

7.2. Open Problems

We surveyed the state-of-the-art knowledge of the main problems and methods of ML, focusing
on the algorithms proven to recover the manifold structure through learning a smooth embed-
ding. There are many open problems in this field, though. Statistically, understanding of t-SNE
and UMAP algorithms is still very limited, despite the fact that they are among the most popu-
lar visualization algorithms used today. More fundamentally, interpretation and validation of the
output of an ML algorithm are also of importance to practitioners. An essential input to any ML
algorithm is the distance used in finding neighbors and calculating the similarities. Currently,
defining this distance (for example, by selecting which features of data point i should be included
in xi, and in what units) is left entirely to the user.
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