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ABSTRACT

Global co-occurrence information is the primary source of structural informa-
tion on multilingual corpora, which potentially gives useful structural similarities
across languages to the model for cross-lingual transfer. In this work, we push
MLM (masked language modeling) pre-training further to leverage global co-
occurrence information on multilingual corpora. The result is MLM-GC (MLM
with Global Co-occurrence) pre-training that the model learns local bidirec-
tional information from MLM and global co-occurrence information from a log-
bilinear regression. We find that analogical co-occurred words across languages
have similar co-occurrence counts/frequencies (normalized) giving weak but sta-
ble self-supervision for cross-lingual transfer. Experiments show that MLM-
GC pre-training substantially outperforms MLM pre-training for 4 downstream
multilingual/cross-lingual tasks and 1 additional monolingual task, showing the
advantages of capturing embedding analogies.

1 INTRODUCTION

MLM attempts to understand bidirectional information (Devlin et al., 2019) surrounding the masked
tokens without specifically setting the receptive field. Empirical studies (Lample et al., 2018a; Con-
neau et al., 2020a;c) show multilinguality and cross-linguality emerge from MLM pre-training on
multilingual corpora without any supervision. The model is trained/pre-trained as a generator that
yields masked token probabilities over the vocabulary. As an alternative, we present MLM-GC
(MLM with Global Co-occurrence) with the combined objective of the generator and a global log-
bilinear regression for multilingual pre-training. Our starting point is from two observations on
multilingual MLM pre-training.

Language’s structural information is every property of an individual language that is invariant to
the script of the language. Conneau et al. (2020c); Karthikeyan et al. (2020); Sinha et al. (2021);
Pires et al. (2019) show that structural similarities across languages can contribute to cross-lingual
transfer. n-gram or co-occurrence information is the primary source of structural information avail-
able to all methods. Some methods like span-based masking (Devlin et al., 2019; Joshi et al., 2020;
Levine et al., 2021) now exist to leverage this information for masking in monolingual MLM pre-
training, aiming at improving context understanding. However, in multilingual MLM pre-training,
the question still remains as to how meaning is generated from these statistics on multilingual cor-
pora, how the structural similarities could be learned from that meaning across languages, and how
cross-lingual transfer might be improved from that meaning.

Furthermore, we run naive MLM pre-training on {En,De} corpora in preliminary experiments.
Since MLM pre-training can form a cross-lingual embedding space (Lample & Conneau, 2019;
Artetxe et al., 2020a), ideally, analogical embeddings across languages should be clustered because
they potentially represent similar structural information and general meanings. However, the t-SNE
projection in Figure 1 (a) reports that they are not successfully clustered in the box. We suspect
that naive MLM pre-training on multilingual corpora cannot satisfactorily capture and understand
analogical embeddings and morphological variants across languages, which results in limitations
of cross-lingual transfer. Intuitively, leveraging global co-occurrence information might solve this
problem and then improve cross-lingual transfer on multilingual corpora, given that: 1) it is a proven
idea to search embedding analogies on monolingual corpora (Pennington et al., 2014); 2) analogical
words and co-occurred words across languages may have similar frequencies/counts on the multi-
lingual corpora as indicated by Zipf’s law (Ha et al., 2002; Søgaard, 2020), which allows for better
cross-lingual and multilingual representations.
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(a) MLM (b) MLM-GC

Figure 1: Preliminary experiment of MLM pre-training on {De,En} corpora and t-SNE visualiza-
tion. light: De, dark: En. Analogical embeddings are not clustered well after MLM pre-training.
By contrast, the clustering phenomenon is observed after MLM-GC pre-training. Further discus-
sions and full-sized figures are in the Cross-lingual Embedding experiment and Appendix §B.

To this end, we present MLM-GC to utilize global co-occurrence information. MLM-GC builds
on MLM with an extra objective of global log-bilinear regression that minimizes the error between
scores of the model’s pre-softmax linear transformation and the matrix of global co-occurrence
counts. Since MLM only needs to predict masked tokens, we factorize both the matrices, only
using vectors relating to the masked tokens. The result is MLM-GC pre-training with a combined
objective of MLM and the global log-bilinear regression in pre-training. The model is encouraged to
learn bidirectional information from MLM and the global co-occurrence information from the global
log-bilinear regression. On multilingual corpora, MLM-GC pre-training can improve cross-lingual
transfer because analogical co-occurred words across languages might have similar co-occurrence
counts/frequencies allowing for cross-lingual representations.

We have four contributions. 1) We present MLM-GC pre-training for multilingual tasks. The model
is additionally supervised by global co-occurrence information on multilingual corpora. 2) MLM-
GC pre-training outperforms MLM pre-training on 4 multilingual/cross-lingual tasks. The objective
of MLM-GC can be adapted to encoder-decoder-based MLM models, e.g., MASS (Song et al., 2019)
and encoder-based MLM models, e.g., XLM (Lample & Conneau, 2019). MLM-GC pre-training
can also work on monolingual corpora for language understanding tasks. 3) We report negative re-
sults of clustering embedding analogies after naive MLM pre-training. By contrast, the model is en-
couraged to understand embedding analogies across languages after MLM-GC pre-training, which
is potentially useful for cross-lingual and multilingual tasks. 4) We find that global co-occurrence
counts contribute to structural similarities across languages for cross-lingual transfer. Our empir-
ical study shows that analogical co-occurred words across languages have similar co-occurrence
counts/frequencies (normalized) giving weak but stable self-supervision for cross-lingual transfer.

2 RELATED WORK AND COMPARISON

Structural Similarity and Zipf’s Law Morphologies, word-order, word frequencies, and co-
occurred word frequencies are all parts of structure of a language and invariant to the script of
the language. Zipf’s law (Zipf, 1949; 2013) indicates that words or phrases appear with different
frequencies, and one may suggest analogical words or phrases appear with relatively similar fre-
quencies in other languages. In multilingual MLM pre-training, Conneau et al. (2020c); Karthikeyan
et al. (2020); Pires et al. (2019); Karthikeyan et al. (2020); Sinha et al. (2021) shed light on studying
structural information and find that structural similarities across languages are essential for cross-
linguality and multilinguality, where in this case, structural similarities might mean similar frequen-
cies as Zipf’s law indicated. We follow this line, consider structural similarities from co-occurrence
counts, and provide an empirical study to observe how the model learns structural similarities from
global co-occurrence counts (§3.3) on multilingual corpora. Meanwhile, GloVe (Pennington et al.,
2014) report that co-occurrence counts or frequencies can provide regularities for embeddings to un-
derstand word analogies and morphological variations for monolingual tasks. We extend the scope
of GloVe to contextualized representations and multilingual tasks, helping the model understand
analogical embeddings across languages in pre-training.

N-gram, Co-occurrence, and Regularity in MLM pre-training Studying co-occurrence or n-
gram is not a novel idea in MLM pre-training. Whole Word Masking (Devlin et al., 2019), Span-
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BERT (Joshi et al., 2020), and PMI-Masking (Levine et al., 2021) suggest n-gram spans across
several sub-tokens for masking to improve context understanding in monolingual tasks because the
model may only learn from easier multi-tokens instead of usefully hard context, where easier multi-
tokens are in a subset of the context and result in sub-optimization. By contrast, we show that
co-occurrence counts can refine contextualized representations for improving context understanding
and allow for cross-lingual representations, suggesting a new objective for MLM pre-training instead
of a new masking scheme to capture global co-occurrence information in multilingual pre-training.
On the other hand, for cross-lingual transfer, the contextualized representations could be further reg-
ularized and refined by aligning cherry-picked pairs after MLM pre-training on multilingual corpora
(Ren et al., 2019; Chaudhary et al., 2020; Wang et al., 2020; Cao et al., 2020; Aldarmaki & Diab,
2019; Artetxe et al., 2020a; Ai & Fang, 2021). Compared to that, MLM-GC pre-training does not
require dictionaries, translation tables, or statistical machine translation models.

3 APPROACH

3.1 GLOBAL REGRESSION MODELING IN MONOLINGUAL EMBEDDING SPACE

GloVe (Pennington et al., 2014) present a log-bilinear regression model:

L =

V∑
i,j=1

f(Xwiwj
)(ET

wi
Ewj

+ bwi
+ bwj

− logXwiwj
)2, (1)

where f(x) =

{
(x/xmax)

α, x < xmax

1, otherwise
, V is the vocabulary, Ew is the embedding of token w,

bwi and bwj are bias to restore the symmetry, X stands for the matrix of token-token co-occurrence
counts, entries Xwiwj tabulate the number of times token wj occurs in the context of token wi, and
xmax is empirically set to 100. The global regression model derives from the skip-gram softmax

probability Qwiwj
=

exp(ET
wi

Ewj
)∑V

k=1 exp(ET
wi

Ewk
)

and factorizes the log of the global co-occurrence matrix,

where Qwiwj
is a model for the probability that wj appears in the context of wi. The model is

encouraged to understand the correspondence between two embeddings Ewi
and Ewj

from the co-
occurrence counts Xwiwj

on the corpora.

3.2 GLOBAL CO-OCCURRENCE MODELING IN MULTILINGUAL MLM PRE-TRAINING

In MLM pre-training, when wt at the position t is replaced by the artificial masking token [M]t, the
output distribution for wt is obtained by applying a pre-softmax linear transformation O ∈ Rd×V

from the final hidden state or the contextualized representation H[M]t to the output vocabulary size
V , followed by a softmax operation which generates an output matrix normalized over its rows.

Specifically, Q[M]twt
=

exp(HT
[M]t

Owt )∑V
k=1 exp(HT

[M]t
Owk

)
is the model for the probability of wt in the context

of H[M]t , where Owt
and Owk

are a vector factorized from O, i.e., self-recognizing. Since wt

at position t is replaced by [M]t, the model is encourage to consider bidirectional information for
outputting H[M]t (Devlin et al., 2019). Considering the sub-optimization and limitation of capturing
co-occurrence or bidirectional information (Devlin et al., 2019; Joshi et al., 2020; Levine et al.,
2021), we further consider a model for the probability of a neighboring token wn to be considered
as the bidirectional information. In this way, the probability of wn in the context H[M]t is similar to
Qwiwj in the global regression model. Specifically, for wn, Q[M]twt

could be extended to:

Q[M]twn
=

exp(HT
[M]t

Own
)∑V

k=1 exp(H
T
[M]t

Owk
)
. (2)

For all the neighboring tokens wt±n of the input sentence at position [t−n, ..., t)∪ (t, ..., t+n], i.e.,
excluding position t, we have the model Q[M]twt±n

. Then, we employ the new global log-bilinear
regression model in MLM pre-training. Formally, given the factorized Owt±n and Xwtwt±n from O
and X respectively, we have the model:

LGC =
1

2n

∑
n

f(Xwtwt±n)(
HT

[M]t
Owt±n√
d

− logXwtwt±n)
2, (3)
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where d is the model dimension. Compared to Eq.1, we add scaling
√
d and weight 1

2n to make
training stable, where

√
d is inspired by scaled dot-product attention (Vaswani et al., 2017) to prevent

the dot products get large. They serve as hyperparameters for LGC .

To obtain the matrix of token-token co-occurrence counts on multilingual corpora for multilingual
tasks, we follow GloVe’s suggestion that a distance weight scheme is employed. Specifically, in
a context window of size 2n + 1, we calculate the token-token co-occurrence counts for positions
[k − n, ..., k, ..., k + n] with the rule [clang/n+ 1, ..., clang/2, 0, clang/2, ..., clang/n+ 1] over the
share vocabulary, which means we do not calculate the unigram counts or self-co-occurrence Xkk

for the centric token wk at position k. Meanwhile, we are aware that the probability is fake and is
equivalent to token-token co-occurrence counts, similar to GloVe, and not all the languages have the
same amount of samples in the corpora (e.g., low-resource v.s. high resource). Considering this,
we use the language-wise constant clang = CEn/Clang, where CEn is the total number of tokens
in English corpora, and Clang is the total number of tokens in the language lang. As Zipf’s law
holds for frequencies, clang extends Zipf’s law to counts when computing token-token co-occurrence
counts on the multilingual corpora, i.e., co-occurrence counts are normalized by clang.

3.3 MULTILINGUAL MLM-GC PRE-TRAINING

In pre-training, we have a combined objective of MLM and global co-occurrence modeling, attempt-
ing to train the model to understand the masked tokens from bidirectional information and linguistic
structures surrounding the masked tokens from global co-occurrence counts, and the resulting trainer
is our MLM-GC. Formally, we have the model:

LMLM−GC = LMLM + LGC

=
∑
t

(− logQ[M]twt
+

1

2n

∑
n

f(Xwtwt±n
)(
HT

[M]t
Owt±n√
d

− logXwtwt±n
)2).

(4)

In the early experiment, we add a hyperparameter λ ∈ {0.1, 0.5, 1, 2} to λLGC . We find λ = 1 is a
general choice for experiments. On the other hand, we find warm up (Vaswani et al., 2017) of lr,√
d, and 1

2n (Eq. 3) are significant. The model may collapse to LGC without warm up,
√
d, or 1

2n
because LGC converges too fast and is unstable. See the early experiment in Appendix E.

Improved Contextualized Representation Q[M]twt±n
considers the correspondence in the con-

text [t−n, ..., t)∪(t, ..., t+n] with an explicit objective. In this way, the model is encouraged to learn
from usefully hard context instead of easier multi-tokens under the supervision from co-occurrence
information, where easier multi-tokens are in a subset of the context and result in sub-optimization
(Levine et al., 2021) as discussed in §Related Work.

Improved Cross-lingual Transfer With the objective of LGC , we aim at associating HT
[M]t

Owt±n

with HT
[M ]t̃

Ow̃t̃±n
of different languages if Xwtwt±n

= Xw̃t̃w̃t̃±n
, where co-occurred words wtwt±n

and co-occurred words w̃t̃w̃t̃±n are analogical in different languages. In this way, it underlies the
basic assumption that analogical co-occurred words across languages have similar co-occurrence
counts (normalized by clang), i.e., wtwt±n and w̃t̃w̃t̃±n are analogical co-occurred words =⇒
Xwtwt±n = Xw̃t̃w̃t̃±n

. Although Zipf’s law supports this assumption (Ha et al., 2002; Søgaard,
2020) in linguistics, we are still interested in the questions: how it reflects on the multilingual cor-
pora we use and whether analogical pair of wtwt±n and w̃t̃w̃t̃±n =⇒ Xwtwt±n

= Xw̃t̃w̃t̃±n
.

To answer this question, we extract all (1100k) the pairs of parallel co-occurred words in En and
De from the open-source translation tables (OPUS, Wikipedia v1.0)⋄, e.g., ”ist die” (De) and ”is
the” (En), and compute co-occurrence counts on {De,En} Wikipedia dumps (the same dataset
we use in our experiment of the Cross-lingual Embedding task). For any pair, we compute the
absolute difference |log(De) − log(En)|, the sum log(De) + log(En) (sorted into bins), and the
ratio |log(De) − log(En)|/(log(De) + log(En)) for statistics in Figure 2. The figure tells us that
the absolute difference avg and the ratio avg for all the pairs are relatively small and have narrow
confidence (95%) intervals. Although the absolute difference avg is proportional to the sum, the
ratio avg has no proportional relationship with the sum and is small throughout all the bins. Note
that some pairs have low translation scores resulting in large absolute differences. The absolute
difference avg is not 0, i.e., exact match for any pair. However, it still gives weak (not 0) but stable
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Figure 2: Study of co-occurrence counts of pairs across languages on {De,En} corpora.

(relatively small with high confidence) supervision for cross-lingual transfer and confirms that ana-
logical co-occurred words across languages have similar (but not identical) co-occurrence counts.
Meanwhile, the model is encouraged to distinguish relevant information from irrelevant informa-
tion and to discriminate between the two relevant information across languages from co-occurrence
counts and refine contextualized representations accordingly, which is beneficial for cross-lingual
transfer. For example, in our experiment (n = 2), given the translation pair ”ist die” (De) and
”is the” (En), the relevant pair ”ist die” and ”is a” (En), the irrelevant pair ”ist die” and ”locally
known” (En), we find |log(ist die) − log(is the)| = 0.67 < |log(ist die) − log(is a)| = 1.73 <
|log(ist die) − log(locally known)| = 5.45 < |log(ist die) − log(En avg)| = 5.58, where
log(En avg) is the avg of En co-occurrence counts.

Efficiency 1) LGC does not hurt training efficiency because of the factorization of O. In our
experiment, for the same configuration, LMLM−GC and LMLM need ≈ 720 ms and ≈ 670 ms
per training step time, respectively. 2) Computing the co-occurrence matrix is laborious on large
corpora. However, it requires a single pass through the entire corpora to collect the statistics, which
is a one-time up-front cost and is easy to obtain new information from new corpora for updating. 3)
For memories, the co-occurrence matrix is huge, e.g., ≈ 11 G for a 60k BPE vocabulary with float
32. However, it is somewhat trivial because the memory is allocated on CPUs not GPUs. This can
be automatically finished by DL platforms like Tensorflow. Also, the matrix can be formatted to
float 16 or even float 8 by pre-logging the co-occurrence counts, which will significantly reduce the
memory. 4) Meanwhile, we save the token-token co-occurrence matrix as dictionaries {(wi, wj):
token-token co-occurrence counts} so that querying the co-occurrence counts for Xwiwj

is O(1).

Tokenization Sub-token-level vocabularies may impact the co-occurrence counts. In extreme
cases, several connective tokens of co-occurrence may only come from one word. However, BERT
(Devlin et al., 2019) reports that whole-word prediction or masking is beneficial. Similarly, even in
this case, the model can be improved from the co-occurrence counts in MLM-GC pre-training.

4 EXPERIMENT

All the links of datasets, libraries, scripts, and tools marked with ⋄ are listed in Appendix G. A
preview version of the code is submitted, and we will open the source code on GitHub.

4.1 MLM INSTANCE, CONFIGURATION, DATA PREPROCESSING AND PRE-TRAINING

We use XLM (Lample & Conneau, 2019) and MASS (Song et al., 2019) as the MLM instances,
where XLM is a token-based encoder model, and MASS is a span-based encoder-decoder model
(see Appendix §C.1 for more details about MLM instances). The Transformer configuration is
identical to XLM and MASS, where the dimensions of word embeddings, hidden states, and filter
sizes are 1024, 1024, and 4096 respectively (default). Meanwhile, to be fair, we reimplement all
the baseline models on our machine with our configurations, using official XLM⋄, Tensor2Tensor⋄,
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and HuggingFace⋄ as references. We compare the results of our reimplementation with the reported
results on the same test set to ensure the difference less than 2% in overall performance (Appendix
F). For the window or context size 2n + 1 of the co-occurrence counts and Eq.4, we set n = 2 for
all the experiments, which is decided by our dev experiment.

Data preprocessing is identical to XLM and Mass. Specifically, we employ fastBPE⋄ to learn BPE
(Sennrich et al., 2016b) with a sampling criteria from Lample & Conneau (2019) for all the exper-
iments. To tokenize {Zh, Th,Ne}, we use Stanford Word Segmenter⋄, PyThaiNLP⋄, and Indic-
NLP Library⋄, respectively. For the others, we use the Moses tokenizer⋄ with default rules.

Our code is implemented on Tensorflow 2.6 (Abadi et al., 2016) with 4 NVIDIA Titan Xp 12G
GPU. We use Adam optimizer Kingma & Ba (2015) with β1 = 0.9,β2 = 0.999, ϵ = 1e − 8,
warm up = 10000 (Vaswani et al., 2017) and lr = 1e − 4. We set dropout regularization with a
drop rate rate = 0.1. We accumulate gradients of 2 mini-batches per pre-training step. Since we
have only 4 GPUs, this operation emulates 8 GPUs.

4.2 MULTILINGUAL TASK

Readers can refer to Appendix §C.2 or references for more introductions to these tasks.

Cross-lingual Embedding We attempt SemEval’17⋄ (Camacho-Collados et al., 2018) and
MUSE⋄ tasks (Lample et al., 2018a) that measure similarities between two paired words to generally
evaluate the degree of the isomorphism of languages’ embedding spaces. Meanwhile, as discussed
in Lample & Conneau (2019); Wang et al. (2020) and our preliminary experiment, the performance
of the isomorphism is potentially proportional to the performance of cross-lingual transfer learning
tasks. Therefore, we treat this experiment as our dev experiment to search n.

UNMT UNMT (unsupervised neural machine translation) (Lample & Conneau, 2019; Lample
et al., 2018b; Song et al., 2019; Liu et al., 2020) tackles bilingual translation (Bahdanau et al., 2015;
Vaswani et al., 2017) on non-parallel bilingual corpora without any cross-lingual signal.

Cross-lingual Classification We consider XNLI⋄ (Conneau et al., 2020b) on 15 languages (in-
cluding English) under the cross-lingual transfer setting. The model is pre-trained on multilingual
corpora and fine-tuned on the English dataset, aiming at zero-shot classification for other languages.

Cross-lingual Question Answering We attempt MLQA⋄ (Lewis et al., 2020b) on 7 languages
(including English). This task requires identifying the answer to a question as a span in the corre-
sponding paragraph. The model is pre-trained on multilingual corpora and fine-tuned on the English
dataset, then attempting zero-shot prediction for other languages.

4.3 SECONDARY MONOLINGUAL TASK

Recall that, as presented in Eq.2, H[M]t is the contextualized representation or the final hidden state.
Therefore, MLM-GC pre-training is general and can work for other MLM instances such as BERT
(Devlin et al., 2019), mBART (Liu et al., 2020), SpanBERT (Joshi et al., 2020), BART (Lewis et al.,
2020a), and ALBERT (Lan et al., 2020). Meanwhile, MLM-GC pre-training is substantially better
than MLM pre-training beyond multilingual tasks. We provide further experiments on monolingual
tasks including SQuAD v1&v2 Rajpurkar et al. (2016) in Appendix §D, building on ALBERT.

5 RESULT

5.1 CROSS-LINGUAL EMBEDDING AND UNDERSTANDING CO-OCCURRENCE

Setup We configure an identical MLM instance to XLM with a 12-layer Transformer encoder.
However, instead of 80K BPE and 15 languages in the original work, we learn 60K BPE and pre-
train the model on Wikipedia dumps⋄ of the 2 languages. After 300K pre-training steps, we extract
the embeddings required by the test set from the embedding space of the model. For words split
into 2+ sub-tokens, we average all the sub-token embeddings. See details in Appendix C.2.1. As
mentioned early, this experiment is our dev experiment.
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Table 1: Results on SemEval’17 and MUSE tasks. This is our dev experiment for n.

MUSE task SemEval’17 task
# Model cos similarity L2 distance Pearson correlation
1 MUSE 0.38 5.13 0.65
2 NASARI (SemEval’17 baseline) 0.60
3 XLM (reported on 15 languages) 0.55 2.64 0.69

12-layer Transformer encoder, 60K BPE and Wikipedia dumps in {De,En}. See texts for details.
4 XLM (reimplemented on 2 languages) 0.55 1.87 0.68
5 XLM + OURS n = 2 (default) 0.63 1.31 0.72
6 XLM + OURS n = 1 0.61 1.73 0.69
7 XLM + OURS n = 3 0.62 1.59 0.71
7 XLM + OURS n = 4 0.62 1.51 0.71

Performance We follow the instruction to compute the cosine similarity and L2 distance for the
MUSE task and Pearson correlation for the SemEval’17 task, reporting the result in Table 1 for
En ↔ De test sets. MLM-GC pre-training outperforms the baseline model in all the metrics with
different n. A large n does not consistently improve performance. We suspect that a large n may
impact the capacity of the contextualized representation H[M]t , which makes the model hard to be
trained. Furthermore, n = 2 shows the best performance, and we may explain that in our comparison
of co-occurrence counts (Figure 2), n = 2 has slightly smaller absolute difference avg and the ratio
avg and narrower confidence (95%) intervals in large-count bins (> log(1e7)) contributing to over
45% co-occurrence counts on the multilingual corpora. Since we do not inject any cross-lingual
supervision into the embedding space, this test can quantitatively report how MLM-GC refines the
language spaces from co-occurrence counts for the isomorphic space and multilinguality.

Visualization We visualize all the embeddings from the MUSE test sets. Since the task is origi-
nally designed for word translation including nouns, verbs, and other meaningful words, analogical
words should be clustered in the embedding space. As reported in Google’s NMT (Johnson et al.,
2017), analogical embeddings, morphological variants, and other embeddings of similar linguistic
properties and meanings should be clustered in the t-SNE visualization. Then, we employ the t-SNE
visualization to observe the clustering phenomenon. Figure 1 shows that embeddings after MLM
pre-training are not clustered well. By contrast, we can see a clustering phenomenon after MLM-GC
pre-training that indicates the model is encouraged to understand analogical embeddings.

Multilingual Embedding Analogy Besides, we consider the classic analogy test: ”English: King
- Man + Woman = Queen and German: König-Mann+Frau = Königin”, showing results in Table
2. MLM-GC pre-training consistently improves the performance on monolingual tests (only En-
glish or German) and multilingual tests (mixing English with German). Then, we can confirm the
effectiveness of our method on multilingual embedding analogy and linguistic structures.

Table 2: Word analogy: King - Man + Woman = Queen (German: König-Mann+Frau = Königin).

X cos (X , Queen) cos(X , Königin)
XLM XLM+OURS XLM XLM+OURS

mono: King-Man+Woman 0.44† 0.58† 0.35 0.52
mono: König-Mann+Frau 0.33 0.51 0.45† 0.58†
multi: King-Man+Frau 0.34 0.53 0.33 0.50
multi: King-Mann+Woman 0.45 0.54 0.33 0.51
multi: King-Mann+Frau 0.42 0.56 0.35 0.52
multi: König-Man+Woman 0.35 0.46 0.44 0.49
multi: König-Man+Frau 0.25 0.48 0.40 0.50
multi: König-Mann+Woman 0.38 0.50 0.43 0.53

5.2 UNMT

Setup&Training We consider three similar language pairs {Fr,De,Ro} ↔ En from WMT⋄
(Bojar et al., 2018) and a dissimilar language pair En ↔ Ne (Nepali) from FLoRes⋄ (Guzmán et al.,
2019). Transformer, configurations, corpora, and BLEU scripts are identical to XLM and Mass. We
pre-train the model around 400K iterations on only monolingual corpora of the two languages. In
the training phase, we use Adam optimizer with parameters β1 = 0.9, β2 = 0.997 and ϵ = 10−9,
and a dynamic learning rate with warm up = 8000 (learning rate ∈ (0, 7e−4]) is employed. We
set dropout with rate = 0.1 and label smoothing with gamma = 0.1. After MLM-GC pre-training,
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Table 3: Results of UNMT. ⋆ is reimplemented.

6-layer Transformer encoder-decoder, 60K BPE for each bilingual UNMT. See Appendix C.2.2.
Language pair Fr ↔ En De ↔ En Ro ↔ En Ne ↔ En
Test set newstest2014 newstest2016 FLoRes⋄
Corpora News Crawl ⋄ from 2007 to 2017 FLoRes⋄

default multi-BLEU.perl⋄
XLM 33.3 33.4 34.3 26.4 31.8 33.3 0.5 0.1
XLM + word translation tables ⋆ 35.1 27.4 33.6 34.4 4.1 2.2
XLM + n-gram translation tables 34.9 35.4 35.6 27.7 34.1 34.9 4.8⋆ 2.4⋆
XLM + OURS 35.2 35.8 36.0 27.8 33.7 35.2 5.2 2.8
MASS 34.9 37.5 35.2 28.3 33.1 35.2
MASS + OURS 35.9 38.2 36.7 28.7 34.3 36.8 7.1 3.1

default sacreBleu⋄:nrefs:1—case:mixed—eff:no—tok:13a—smooth:exp—version:2.0.0
mBART + CC25 corpora 34.0 29.8 30.5 35.0 10.0 4.4
XLM + OURS 34.9 35.6 35.7 27.6 33.4 34.9 5.0 2.7
MASS +OURS 35.6 38.0 36.4 28.5 34.2 36.5 6.9 2.9

Table 4: Results of cross-lingual classification on XNLI. ⋆ is reimplemented.

Model en fr es de el bg ru tr ar vi th zh hi sw ur Avg
baseline 73.7 67.7 68.7 67.7 68.9 67.9 65.4 64.2 64.8 66.4 64.1 65.8 64.1 55.7 58.4 65.6
mBERT 82.1 73.8 74.3 71.1 66.4 68.9 69.0 61.6 64.9 69.5 55.8 69.3 60.0 50.4 58.0 66.3

12-layer Transformer encoder, 80K BPE, and 15 XNLI languages from Wikipedia dumps downloaded by WikiExtractor⋄. See Appendix C.2.3.
XLM 83.2 76.5 76.3 74.2 73.1 74.0 73.1 67.8 68.5 71.2 69.2 71.9 65.7 64.6 63.4 71.5
XLM + PMI-masking ⋆ 84.1 78.4 77.8 76.6 75.1 75.5 74.9 69.7 70.8 73.0 70.7 73.4 68.1 66.1 65.3 73.3
XLM + OURS 84.8 79.7 79.1 77.1 76.2 77.0 76.2 71.5 72.2 74.2 72.3 75.2 69.4 68.2 67.5 74.7

+ Parallel Sentences from OPUS⋄
XLM + TLM 85.0 78.7 78.9 77.8 76.6 77.4 75.3 72.5 73.1 76.1 73.2 76.5 69.6 68.4 67.3 75.1
XLM + TLM + OURS 85.0 79.9 79.2 78.5 77.1 78.0 76.4 73.1 74.0 76.7 73.9 76.8 70.2 68.8 67.9 75.7

we follow XLM and MASS to train the model for translation from pre-trained weights. After around
400K iterations, we report results. See details in Appendix C.2.2.

Performance In Table 3, we report multi-BLEU.perl⋄ to compare with XLM and MASS and
sacreBleu⋄ to compare with mBART (Liu et al., 2020) so that the evaluation is based on the same
BLEU script. MLG-GC pre-training consistently improves the performance of baseline models on
all the similar language pairs by 3% ∼ 8% and on the dissimilar pair by 2.0 ∼ 5.0 BLEU. The
performance on the dissimilar pair is somewhat comparable to SOTA: mBART and is better than
mBART on similar language pairs, but mBART uses CC25 (Wenzek et al., 2020) for pre-training
and obtains benefits from more languages (25 languages) and samples. Surprisingly, our method
even slightly outperforms two dictionary-based works (Ren et al., 2019; Chaudhary et al., 2020)
which require static translation tables from pre-trained n-gram models, golden dictionaries, or bilin-
gual lexicon induction (available on OPUS⋄). Intuitively, as reported in Artetxe et al. (2020b);
Kementchedjhieva et al. (2019); Czarnowska et al. (2019); Vania & Lopez (2017), such translation
tables are reported to misrepresent morphological variations and are not contextualized properly,
which limit the improvements for sentence translation. By contrast, the global co-occurrence in-
formation is general for analogical words and morphological variations and allows for cross-lingual
representations, which eventually helps the model understand translation knowledge. Meanwhile,
we observe substantial gains on MASS + OURS (and ALBERT Lan et al. (2020) in Appendix D),
where MASS is based on span masking. As discussed in §Related Work and Introduction, span-
based masking (also including Whole Word Masking and PMI-masking) implicitly leverages co-
occurrence information for improving context understanding. In addition to the empirical study in
Figure 2, the gain further confirms that global co-occurrence information significantly injects some
signals for cross-lingual transfer beyond improving context understanding.

5.3 CROSS-LINGUAL CLASSIFICATION

Setup&Fine-tuning The model configuration, preprocessing, and corpora are identical to XLM1.
For the classification objective, we deploy a linear classification layer on top of the encoder. After
pre-training, we deploy the randomly initialized linear classifier and fine-tune the encoder and the
linear classifier on the En NLI dataset with mini-batch size 16. We use Adam optimizer with
lr = 5× 10−4 and linear decay of lr. After fine-tuning, we make zero-shot prediction for the other
14 languages. See details in Appendix C.2.3.

1In the literature, this setup also refers to XLM-15.
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Table 5: Results of cross-lingual question answering on MLQA. We report the F1 and EM (exact
match) scores for zero-shot prediction. ⋆ is reimplemented.

Model en es de ar hi vi zh Avg
mBERT-102 77.7 / 65.2 64.3 / 46.6 57.9 / 44.3 45.7 / 29.8 43.8 / 29.7 57.1 / 38.6 57.5 / 37.3 57.7 / 41.6
12-layer Transformer encoder, 80K BPE, and and 15 XNLI languages from Wikipedia dumps downloaded by WikiExtractor⋄. See Appendix C.2.4.
XLM 74.9 / 62.4 68.0 / 49.8 62.2 / 47.6 54.8 / 36.3 48.8 / 27.3 61.4 / 41.8 61.1 / 39.6 61.6 / 43.5
XLM + PMI-masking ⋆ 76.0 / 63.9 69.2 / 50.2 64.1 / 48.0 55.8 / 38.0 49.8 / 28.5 62.9 / 42.2 63.3 / 40.5 63.1 / 44.4
XLM + OURS 77.5 / 65.6 71.4 / 50.9 65.3 / 48.6 57.1 / 39.6 51.1 / 29.9 64.1 / 43.0 64.5 / 41.7 64.4 / 45.7

Performance We report the result in Table 4. Our method consistently improves baseline models
by 4.5% (Avg). As discussed in previous models (Conneau et al., 2020b; Karthikeyan et al., 2020;
Wu & Dredze, 2019; Pires et al., 2019; Dufter & Schütze, 2020), multilinguality is essential for
this task. Then, we confirm that MLM-GC pre-training including global co-occurrence information
improves the cross-linguality and multilinguality learned in pre-training. Furthermore, our method
outperforms XLM + PMI-masking (span-based). Similar to the comparison between MASS and
MASS + OURS in UNMT, MLM-GC pre-training uses co-occurrence information for better con-
text understanding and cross-lingual transfer, whereas XLM+PMI-masking leverages co-occurrence
information for context understanding but performs worse for cross-lingual transfer because of the
lack of a mechanism to understand cross-lingual supervision. We also include XLM + TLM (Lample
& Conneau, 2019) for comparison. Recall that in UNMT, our method outperforms dictionary-based
methods. However, in this experiment, XLM + TLM using parallel sentences in pre-training out-
performs MLM-GC, which indicates the knowledge gap between co-occurrence information and
parallel sentences for cross-lingual supervision. Besides, when applying MLM-GC pre-training for
XLM + TLM, we still observe improvement. We attribute the additional gains to the morphologies
or the embedding space that is further refined by co-occurrence information to represent embed-
dings of similar meanings, e.g., embedding analogy. Intuitively, it indicates that the co-occurrence
information gives extra cross-lingual supervision beyond a limited amount of parallel sentences.

5.4 CROSS-LINGUAL QUESTION ANSWERING

Setup&Fine-tuning The setup is similar to Cross-lingual Classification. We follow the instruction
of SQuAD from BERT, fine-tuning the model with a span extraction loss on the English dataset. We
use Adam optimizer with lr = 5 × 10−5 and linear decay of lr. As suggested, we fine-tune the
model on the SQuAD v1.1 (Rajpurkar et al., 2016) dataset and then make zero-shot prediction for
the 7 languages of MLQA. See details in Appendix C.2.4.

Performance We show the results in Table 5. MLM-GC pre-training substantially improves the
Avg performance in both F1 and EM metrics by 4.5 % and 4.8 % respectively. Meanwhile, MLM-
GC pre-training yields more improvements for low-resource languages. We attribute all the im-
provements to the global co-occurrence objective the model learns in MLM-GC pre-training. Intu-
itively, spans of answers are most likely to consist of nouns and terms and can be easily represented,
clustered, and aligned by considering global unigram frequencies and co-occurrence frequencies
because these spans or a group of words from multiple languages are analogical. Therefore, consid-
ering embedding analogies is potentially beneficial for zero-shot cross-lingual transfer.

6 CONCLUSION

In this work, we leverage the global co-occurrence information from multilingual corpora in MLM
pre-training. The result is MLM-GC pre-training with a combined objective of MLM and global co-
occurrence modeling. Our experiments show that MLM-GC pre-training can substantially improve
the performance of naive MLM pre-training for 4 multilingual tasks, and additional experiments
show it can work for monolingual tasks. the model is encouraged to distinguish relevant infor-
mation from irrelevant information and to discriminate between the two relevant information across
languages from co-occurrence counts (normalized) and refine contextualized representations accord-
ingly. Eventually, the model learns to understand analogical embeddings, morphological variants,
and structural similarities across languages from co-occurrence counts. We believe it is an interest-
ing avenue for leveraging the primary source of information on multilingual corpora.
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• For the visualization and inspiration, please refer to §B.

• We provide details of our experiment in §C.

• We give supportive results in §D.

• We present early experiments in §E.

• We list all the sources we use for this work in §G.
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(a) MLM pre-training (b) MLM-GC pre-training

Figure 3: Preliminary experiment of multilingual MLM pre-training on {De,En} corpora and t-
SNE visualization for the MUSE task.

B INSPIRATION FROM VISUALIZATION

t-SNE Visualization We visualize the embedding space of the pre-trained model to observe the
alignment of embeddings, considering the test set De ↔ En from the cross-lingual embedding
MUSE (Lample et al., 2018a) task. We present the t-SNE visualization2 in Figure 3. In previous
multilingual models trained on parallel sentences like Johnson et al. (2017), t-SNE visualizations
are used to cluster semantically similar representations. In our case, semantically and linguistically
similar embeddings should be in the same cluster. In our experiments, embedding pairs are not
clustered well after MLM pre-training, which means embedding analogies and morphologies are
not represented well. By contrast, after MLM-GC pre-training, embeddings are clustered better,
which is beneficial for multilinguality.

Word Analogy and Morphological Variant on Multilingual Corpora As discussed in the main
paper, analogical words and morphological variants across languages potentially have similar fre-
quencies on multilingual corpora. We assume that they can further provide multilingual and cross-
lingual knowledge for learning. In previous works like GloVe (Pennington et al., 2014), using global
co-occurrence information is a proven idea to leverage this information, which inspires us to intro-
duce global co-occurrence information to the contextualized representation outputted by the final
layer.

Attention Visualization We visualize the attention weights for each position. As illustrated in
Figure 4 for a simple case study, given the parallel sentences in the figure, which have comparable
linguistic structures, the model shows similar behavior in information processing. Intuitively, it
tells us that the co-occurrence information is significant for the model and represents structural
similarities, and the model learns to understand n-co-occurrence information for restoring inputs in
MLM pre-training on multilingual corpora across languages. However, Levine et al. (2021) report
negative results of capturing occurrence information due to sub-optimization of token collocations.
Regularities for this information are potentially beneficial for downstream tasks (Cao et al., 2020;
Artetxe et al., 2020a).

C EXPERIMENT

C.1 MLM INSTANCE

We adapt our method to two MLM instances: XLM (Lample & Conneau, 2019) and MASS (Song
et al., 2019). We follow the instructions of BERT (Devlin et al., 2019) and these two MLM instances

2See introduction from https://distill.pub/2016/misread-tsne/.
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(a) De sentence (b) En sentence

Figure 4: Preliminary experiment of multilingual MLM pre-training on {De,En} corpora. Intu-
itively, the co-occurrence information surrounding each position is significant for the model. Multi-
linguality emerges from the structural similarity, where in this case, the structural similarity means
co-occurrence information.

that each selected token is replaced with the probabilities (p[unchanged], p[random], p[mask]) =
(0.1, 0.1, 0.8).

XLM XLM is similar to BERT (Devlin et al., 2019) but uses text streams of an arbitrary number of
sentences. Following the instruction, we randomly select 15% of the tokens from the input sentence
for replacing.

MASS MASS is different from XLM and BERT but similar to SpanBERT (Joshi et al., 2020),
using spans to replace consecutive tokens. Given an input sentence with length N , we randomly
select consecutive tokens with length N/2 for replacing.

C.2 MULTILINGUAL TASK

C.2.1 CROSS-LINGUAL EMBEDDING

We are interested in the isomorphism of languages’ embedding spaces. To investigate, we attempt
SemEval’17⋄ (Camacho-Collados et al., 2018) and MUSE⋄ tasks (Lample et al., 2018a) that mea-
sure similarities between two paired words. This test can generally evaluate the degree of the iso-
morphism of languages’ embedding spaces. Meanwhile, as discussed in Lample & Conneau (2019);
Wang et al. (2020) and our preliminary experiment, the performance of the isomorphism is poten-
tially proportional to the performance of cross-lingual transfer learning tasks. Therefore, we treat
this experiment as our dev experiment to search n.

Setup We configure a 12-layer Transformer encoder and use Moses tokenizer⋄ with default rules
for tokenization, identical to XLM (Lample & Conneau, 2019). For fast dev experiment, we employ
fastBPE⋄ to learn 60K BPE (Sennrich et al., 2016b) from concatenated corpora with a sampling
criterion from (Lample & Conneau, 2019) and pre-train the model on 2 languages instead of 80BPE
and 15 languages in the reported work.

Training In the pre-training phase, we pre-train the model on Wikipedia dumps⋄ of the two lan-
guages for 300K steps. After pre-training, we extract the words’ embeddings required by the test
set from the embedding space of the model. For words split into 2+ sub-tokens, we average all the
extracted embeddings of sub-tokens. We then evaluate paired embeddings in cosine similarity, L2
distance, and Pearson correlation.

C.2.2 UNMT

UNMT (unsupervised neural machine translation) (Lample & Conneau, 2019; Lample et al., 2018b;
Song et al., 2019; Liu et al., 2020) tackles bilingual translation (Bahdanau et al., 2015; Vaswani
et al., 2017) on non-parallel bilingual corpora without having access to any parallel sentence. In
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other words, there is no supervision for translation. The model requires pre-training to obtain some
initial multilingual knowledge for decent performance.

Setup We configure an identical Transformer model to XLM (Lample & Conneau, 2019) and
MASS (Song et al., 2019), which has 6 layers in both the encoder and decoder using default con-
figurations. We consider multiple families of languages. Specifically, we consider similar language
pairs {Fr,De,Ro} ↔ En, using the same dataset as previous works (Lample & Conneau, 2019).
The dataset consists of monolingual corpora {Fr,De,En} from WMT 2018⋄ (Bojar et al., 2018)
including all available NewsCrawl datasets from 2007 through 2017 and monolingual corpora Ro
from WMT 2016⋄ (Bojar et al., 2016) including NewsCrawl 2016. We report the performance
for Fr ↔ En on newstest2014 and {De,Ro} ↔ En on newstest2016. Meanwhile, we share
the FLoRes⋄ (Guzmán et al., 2019) task to evaluate on a dissimilar language pair Ne ↔ English
(Nepali). For tokenization, we use the Moses tokenizer⋄ developed by Koehn et al. (2007) with
default rules except for Ne that is tokenized by Indic-NLP Library⋄. We employ fastBPE⋄ to learn
60K BPE (Sennrich et al., 2016b) from concatenated corpora of paired languages, using the same
sampling criteria in Lample & Conneau (2019). We use learnable language embeddings and position
embeddings.

Training In MLM-GC pre-training, the model is pre-trained around 400K iterations on only
monolingual corpora of different languages. In the training phase, we use Adam optimizer (Kingma
& Ba, 2015) with parameters β1 = 0.9,β2 = 0.997 and ϵ = 10−9, and a dynamic learning rate with
warm up = 8000 Vaswani et al. (2017) (learning rate ∈ (0, 7e−4]) is employed. We set dropout
regularization with a drop rate rate = 0.1 and label smoothing with gamma = 0.1 (Mezzini, 2018).
On-the-fly back-translation (Sennrich et al., 2016a) (the inference mode of the model) performs to
generate synthetic parallel sentences that can be used for training of translation as NMT (neural
machine translation) is trained on genuine parallel sentences in a supervised manner. Meanwhile,
UNMT learns an objective of denoising language modeling (Vincent, 2010) to maintain language
knowledge in the training phase except for MASS. After around 400K iterations, we report BLEU
computed by multi-BLEU.perl⋄ and scareBLEU⋄ with default rules, according to baseline models.
In conclusion, in pre-training, we only have the objective of MLM-GC, and in training, we have the
two objectives: 1) denoising language modeling for XLM or MASS itself and 2) translation (i.e.,
NMT), where the translation objective is finished by using synthetic pairs sentences from on-the-fly
back-translation.

C.2.3 CROSS-LINGUAL CLASSIFICATION

We experiment on XNLI⋄ (Conneau et al., 2020b) that is a general cross-lingual classification task
on 15 languages (including English) under the cross-lingual transfer setting. The model takes in two
input sentences and is required to classify into one of the three labels: entailment, contradiction, and
neutral. The model is fine-tuned on the English dataset and then attempts zero-shot classification for
other languages.

Setup Following the previous work3 (Lample & Conneau, 2019), we use raw sentences including
15 XNLI languages from Wikipedia dumps downloaded by WikiExtractor⋄. We concatenate all
the downloaded corpora and then shuffle the concatenated corpus. The model configuration and
preprocessing are identical to XLM (Lample & Conneau, 2019) that we use a 12-layer transformer
encoder and 80K BPE. For the classification objective, we deploy a linear classification layer on
top of the encoder. To tokenize {zh, th}, we use Stanford Word Segmenter⋄ and PyThaiNLP⋄
respectively. For the others, we use the Moses tokenizer⋄ with default rules. Similar to the Cross-
lingual Embedding experiment, we use fastBPE⋄ and the sampling strategy to learn BPE.

Fine-tuning After pre-training on the corpora, we deploy a randomly initialized linear classifier
and fine-tune the encoder and the linear classifier on the En NLI dataset with mini-batch size 16.
We use Adam optimizer (Kingma & Ba, 2015) with lr = 5×10−4 and linear decay of lr. After fine-
tuning, we make zero-shot prediction for the other 14 languages. We use categorical cross-entropy
with three labels: entailment, contradiction, and neutral.

3In the literature, this setup also refers to XLM-15.
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Table 6: MLM-GC pre-training for ALBERT. ⋆ denotes the baseline models that are reimplemented.

Model SQuAD1.1 SQuAD2.0
(F1) (F1)

12-base-ALBERT Lan et al. (2020) 89.3 80.0
⋆12-base-ALBERT 89.4 80.0
12-base-ALBERT + OURS: 12-base-LT 89.7 80.6

C.2.4 CROSS-LINGUAL QUESTION ANSWERING

We consider the MLQA⋄ (Lewis et al., 2020b) dataset for a cross-lingual question answering task.
Given a question and a passage containing the answers, the aim is to predict the answer text span in
the passage. This task requires identifying the answer to a question as a span in the corresponding
paragraph. The evaluation data for English and 6 other languages are obtained by automatically
mining target language sentences that are parallel to sentences in English from Wikipedia, crowd-
sourcing annotations in English, and translating the question and aligning the answer spans in the
target languages. Similar to the cross-lingual classification task, the model is fine-tuned on the
English dataset, and then attempts zero-shot prediction for other languages.

Setup The setup is similar to Cross-lingual Classification.

Fine-tuning We follow the instruction of SQuAD from BERT (Devlin et al., 2019), fine-tuning
the model with a span extraction loss on the English dataset. We use Adam optimizer (Kingma &
Ba, 2015) with lr = 5 × 10−5 and linear decay of lr. Meanwhile, as suggested, we fine-tune the
model on the SQuAD v1.1 (Rajpurkar et al., 2016) dataset and then make zero-shot prediction for
the 7 languages of MLQA. Given a sequence T , we only have a start vector S ∈ Rhidden and an
end vector E ∈ Rhidden during fine-tuning. The probability of word i being the start of the answer
span is computed as a dot product Ti and S d by a softmax over all of the words in the sequence
pi = eSTi∑

k∈T eETk
. Similarly, we can compute the end of the span. The score of a candidate span

from position i to position j is defined as STi +ETj and the maximum scoring span where j ≥ i is
used as a prediction.

D ADDITIONAL AND SUPPORTIVE RESULT

D.1 PRE-TRAINING FOR MONOLINGUAL TASK

Although we derive our method from the observation of multilingual models, MLM-GC pre-training
is substantially better than MLM pre-training. We provide further experiments on monolingual tasks
including SQuAD v1&v2 (Rajpurkar et al., 2016).

setup For this monolingual task, our configuration is identical to 12-base-ALBERT (Lan et al.,
2020). Specifically, We set the model dimension, word embedding dimension, and the maximum
number of layers to 768, 128, and 12. As recommended, we generate a masked span for the MLM
targets using the random strategy from Joshi et al. (2020), and we use LAMB optimizer⋄ with a
learning rate of 0.00176 (You et al., 2020) instead of Adam optimizer. Following the instructions,
we pre-train models on BooksCorpus⋄ Zhu et al. (2015) and English Wikipedia⋄ (Devlin et al.,
2019) for 140k steps.

Fine-tuning Similar to the cross-lingual question answering task, we fine-tune the pre-trained
model on SQuAD(v1.1 and v2.0)⋄ (Rajpurkar et al., 2016; 2018).

Result Table 6 shows that MLM-GC pre-training is substantially better than MLM pre-training,
when pre-training 12-base-ALBERT for monolingual tasks. These observations confirm the effec-
tiveness of MLM-GC pre-training on monolingual tasks.
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Table 7: Impact of Tokenization Method. ⋆ denotes reimplemented models.

Model De ↔ En
baseline (BPE-based) ⋆ 33.81 26.32
+ Ours 34.98 27.20
baseline (Word-level) ⋆ 33.01 25.79
+ Ours 34.15 26.61

D.2 IMPACT OF TOKENIZATION METHOD

We are interested in how the tokenization method affects the performance because it potentially
affects the token-token co-occurrence counts. For evaluation, we use all the configurations in UNMT
and additionally configure a word-level vocabulary for the model. The word-level vocabulary has
the same number of tokens as the BPE vocabulary. Table 7 shows that our method can work with
different tokenization methods. Our method can generally improve the performance, regardless of
the difference between the two baseline models in the same configuration.

E EARLY EXPERIMENT

Table 8: Early Emperiments on SemEval’17 and MUSE tasks.

MUSE task SemEval’17 task
# Model cos similarity L2 distance Pearson correlation
1 MUSE Lample et al. (2018a) 0.38 5.13 0.65
2 NASARI (SemEval’17 baseline)Camacho-Collados et al. (2018) 0.60
3 XLMLample & Conneau (2019) 0.55 2.64 0.69
4 XLM + OURS λ = 1 (default) 0.63 1.31 0.72
5 XLM + OURS λ = 0.1, 0.60 2.12 0.65
6 XLM + OURS λ = 0.5 0.63 1.43 0.71
7 XLM + OURS λ = 2 0.61 1.86 0.66
8 XLM + OURS λ = 2 and no warm up of learning rate fail
9 XLM + OURS λ = 2 and no

√
d fail

10 XLM + OURS λ = 2 and no 1
2n

fail

Setup The setup and training are identical to the experiment of the Cross-lingual Embedding task,
except that we add a hyper-parameter λ ∈ [0.1, 0.5, 1, 2] to λLGC .

Performance The result is presented in Table 8. We find λ is not that significant, but λ = 1 is a
general choice for experiments. We add scaling

√
d and weight 1

2n to make training stable (Eq.3),
where

√
d is inspired by scaled dot-product attention to prevent the dot products get large. They

serve as hyperparameters for LGC . Meanwhile, we find warm up steps (Vaswani et al., 2017)
of learning rate is significant. Without warm up,

√
d, or 1

2n , the model may collapse to LGC

because LGC converges too fast and is unstable. In this situation, the model ignores the objective of
MLM. Then, the model can only learn co-occurrence information and does not learn the language
knowledge.

F REIMPLEMENTATION

Language pair De ↔ En
multi-BLEU.perl⋄ with default rules

XLMLample et al. (2018b) reported 34.30 26.40
XLMLample et al. (2018b) ⋆ 33.90 26.30
XLM+OURS 35.95 27.42

multi-BLEU.perl⋄ with default rules
MASSSong et al. (2019) reported 35.20 28.30
MASSSong et al. (2019)⋆ 35.0 28.0
MASS+OURS 36.65 28.62

Table 9: Performance of UNMT. Baseline models (⋆) are reimplemented with our configurations.

We compare our reimplementation with reported results in Table 9.
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Table 10: Links of source.

Item Links
WMT 2016 http://www.statmt.org/wmt16/translation-task.html
WMT 2018 http://www.statmt.org/wmt18/translation-task.html
FLoRes https://github.com/facebookresearch/flores
Indic-NLP Library https://github.com/anoopkunchukuttan/indic nlp library
XLM https://github.com/facebookresearch/XLM
multi-BLEU.perl https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-BLEU.perl
Moses tokenizer https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
Kytea http://www.phontron.com/kytea/
XTREME https://github.com/google-research/xtreme
fastBPE https://github.com/glample/fastBPE
MUSE https://github.com/facebookresearch/MUSE
Cambridge Dictionary https://dictionary.cambridge.org/
SemEval’17 https://alt.qcri.org/semeval2017/task2/
WikiExtractor https://github.com/attardi/wikiextractor
PyThaiNLP https://github.com/PyThaiNLP/pythainlp
Stanford Word Segmenter Chang et al. (2008) https://nlp.stanford.edu/software/segmenter.html
Tensor2Tensor https://github.com/tensorflow
HuggingFace https://huggingface.co
ORPUS, Wikipedia v1.0 https://opus.nlpl.eu

G SOURCE

We list all the links of dataset, tools, and other sources in Table 10. Note that for multilingual tasks,
datasets can be downloaded from the XTREME link except for UNMT and cross-embeddings.
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