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Abstract

Document Layout Analysis technology is ad-
vancing rapidly thanks to the large amount of
high-quality labeled data. However, existing
datasets comprised of document collections
have shortcomings: (1) the hierarchical struc-
ture of papers is lost because labelling is done
in terms of pages rather than documents; (2)
content that is not part of the author’s text such
as page headers etc. is not filtered out; (3) pa-
pers included in a dataset are not likely to be up-
to-date, i.e. they are not necessarily the latest
version of a paper. We propose LATEX Rain-
bow, an open source annotation framework that
can automatically annotate any LATEX source
code. This tool extends existing annotation
methods by taking into account the properties
of different datasets. It can produce token-level
semantic structure annotations and preserve the
paper’s reading order as well as extract the table
of contents i.e. information about the article’s
structure. LATEX Rainbow enables anyone
to extend their datasets with the latest docu-
ments. This framework also has the flexibility
of modifiable parsing rules and the potential to
improve performance through parallelization.
The project is open sourced on Github1.

1 Introduction

Document Layout Analysis (DLA) is a critical tech-
nique in the realm of Natural Language Processing
(NLP) since it improves the way machines pro-
cess and understand text documents (Cui, 2021). A
DLA system identifies and assigns semantic labels
to diverse elements in a document. These elements
encompass text blocks, figures, mathematical for-
mulas, tables, among others. Each element has
unique properties and makes up the entire docu-
ment content.

DLA methods, which are fundamentally data-
driven, have undergone rapid development and re-
finement over the past few years (Wang et al., 2021).

1https://github.com/InsightsNet/texannotate

The emergence of new NLP models and pow-
erful computational infrastructures has expanded
the horizon of possibilities in DLA applications
(Huang et al., 2022). Moreover, the increasing
availability and abundance of data resources is a
cornerstone of DLA system development. Large
volumes of diverse datasets have fostered compre-
hensive learning, thereby enabling the models to
identify and categorize document elements more
accurately, and to even extract high-level logical
relationships between elements in documents.

As the field continues to evolve, the number of
such datasets is proliferating at a substantial rate.
The distinguishing factor among these datasets
lies in their specialized focus areas. For instance,
some datasets prioritize token-level annotation, en-
abling detailed element identification in a text doc-
ument. Some datasets have particularly extensive
document collections (Zhong et al., 2019). Oth-
ers emphasize specific tasks such as the extrac-
tion of mathematical formulas, which is crucial
for academic and research-related texts (Schmitt-
Koopmann et al., 2022; Anitei et al., 2023). Addi-
tionally, certain datasets cater to providing the read-
ing order, thereby enhancing document comprehen-
sion and navigation (Wang et al., 2021). However,
there exist gaps in the current DLA datasets.

One of the key issues is that current annotations
are made on a per page basis. There is no dataset
that explicitly labels whether a element spanning
two pages belongs to the same entity, e.g. a para-
graph or itemized list. This means that an ele-
ment spanning across multiple pages might be in-
terpreted as two distinct entities instead of one con-
tinuous element. The coherence and context of the
information could be compromised, which compli-
cates the process of document interpretation.

Another problem is that elements that are irrel-
evant to the main content of the paper, such as
watermarks, headers and page numbers, are not
filtered out. Their inclusion often leads to noise in
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the data.
In addition to this the number of scientific pub-

lications has been increasing year by year and is
showing no signs of slowing down. This means that
current datasets are unlikely to incorporate the most
recent papers. Moreover, authors of such resources
do not always publish the code used in compiling
the dataset, which hampers reproducibility of the
process of dataset building as well as impeding
scalability.

In this paper, we inherit several approaches for
automatic PDF annotation of datasets and introduce
a generalized framework that yields document-
oriented, fine-grained, reading-ordered annotations
that exclude extraneous content; the annotation
builds on LATEX source code directly. The output
of our framework is one CSV table per PDF docu-
ment and can be modified easily to suit the user’s
requirements. Our framework improves the ac-
curacy and robustness of document information
extraction, which we believe helps drive more ac-
curate document comprehension in DLA systems.
A more accurate and efficient document informa-
tion extraction is also beneficial in areas such as
automatic document summarization or information
retrieval. This project is free software and available
under the Apache 2.0 license.

2 Related Work

2.1 DLA Datasets

DLA datasets have their own characteristics. Pub-
LayNet (Zhong et al., 2019) and DocLayNet (Pfitz-
mann et al., 2022) obtained particularly large
amounts of labeling using automated and manual
methods, respectively. XFUND (Xu et al., 2022)
and TableBank (Li et al., 2020a) specialize in table
extraction. FormulaNet (Schmitt-Koopmann et al.,
2022) and IBEM (Anitei et al., 2023) focus on
mathematical formulas, especially in-line formu-
las, which can easily be confused with plain-texts.
DocBank (Li et al., 2020b) extended from Table-
Bank, provides token-level labeling. ReadingBank
(Wang et al., 2021) is extracted from Microsoft
Word documents, which standardize the reading
order of blocks within a page. M6Doc (Cheng
et al., 2023) extracted large-scale data using a half
machine learning, half manual approach.

2.2 DLA Models

With the gradual enrichment of document lay-
out data resources, model development is driven

by increasingly larger datasets using different ap-
proaches. DocBank provides R-CNN models as
a baseline. LayoutLM (Xu et al., 2020) and its
variant VILA (Shen et al., 2022), make it possi-
ble to analyze layout from the 2D position of text.
LayoutXLM (Xu et al., 2021b) and LiLT (Wang
et al., 2022) implement multilingual layout recog-
nition. LayoutLMv2 (Xu et al., 2021a) and Doc-
Former (Appalaraju et al., 2021) combine a lan-
guage model and a visual coder to improve perfor-
mance by learning not just the location of text, but
also of non-textual visual features. LayoutLMv2
and LayoutLMv3 (Huang et al., 2022) use question
answering models to extract high level semantic
logical relationships in documents. DiT (Li et al.,
2022) combines multiple vision modeling struc-
tures. Donut (Kim et al., 2022), on the other hand,
changes the structure of model to a separate visual
encoder and language model decoder without ob-
taining textual features directly from the document.

3 Methodology

Our REDACTED framework is built around three
primary modules: the PDF compilation service, the
LATEX annotator, and the PDF extraction tool.

Figure 1 is a simplified representation of the
labeling process. The implementation details of
each module are explained in the next few sections.

3.1 PDF Compilation Service

Publications that accept submissions in the LATEX
format, including arXiv, often recommend using
pdftex as their preferred rendering engine. This
engine is integrated into the contemporary LaTeX
distribution, TeXLive. Given the complexities in
setting up this distribution, we opted for the Docker
image of TeXLive 2023 to establish our compila-
tion environment.

Automated LATEX compilation presents a chal-
lenge, especially in pinpointing the master source
file. This is because LATEX allows for multiple .tex
source files to be consolidated and compiled into
one overarching master PDF. To navigate this chal-
lenge, we integrated arXiv’s AutoTeX2 automatic
compilation system. AutoTeX, a Perl-based toolkit,
excels at discerning the primary source file within a
project. Our PDF compilation mechanism derives
some of its functionalities from an open-source
AutoTeX wrapper3.

2https://metacpan.org/pod/TeX::AutoTeX
3https://github.com/andrewhead/texcompile
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Figure 1: Labeling Process. (1) Initially, LATEX source code is compiled, extracting the inherent color of every page,
from the text color to the background color of rectangles on the page. This color information is pivotal as the process
of annotating the LATEX to PDF conversion primarily hinges on color alterations. Once compiled, the files undergo
parsing and color-coding. Body text is highlighted with distinct colors, while text that has not been authored by the
user remains unchanged. (2) Additionally, figures within the document are encased within borderless rectangles that
are filled with a unique background hue. Every designated color corresponds to a specific segment of the LATEX
source code, ensuring traceability. After these annotations are made, the source code undergoes a second round of
compilation into a PDF. Within this format, annotations are cross-referenced and aligned. (3) To finalize the process,
the framework exports the location details of every text token and figure from the PDF, alongside the hierarchical
relationship mapping between the annotations and the overall document.

However, during our practice, we observed Au-
toTeX’s compilation regulations as overly stringent.
There were instances when it halted the compila-
tion due to minor errors, even when the same con-
tent had successfully passed arXiv’s publication
standards. To mitigate this, we refined AutoTeX’s
original code, allowing it to overlook certain errors
and continue the PDF generation.

In conclusion, we combine TeXLive 2023, Auto-
TeX, and a Python-based API service into a single
container. This container, accessible via HTTP,
accepts source code and efficiently returns the com-
pilation outcomes.

3.2 LATEX Parsing and Annotation

This module processes the source code to assign
color labels. Initially, it identifies the name of the
main file based on the output from the PDF compi-
lation service. For instance, if the service returns
a file named main.pdf, the corresponding entry
source file is main.tex.

To initiate the process, two specific lines of code
are introduced at the start of the source file. The
line \pdfoutput=1 instructs the compiler to pro-
duce a PDF instead of Postscript, an alternative
electronic publication format. On the other hand,
\interactionmode=1 signals the compiler to per-
sist with the output generation, even if it encounters
an error on a page.

Subsequently, we employ the Python package
pylatexenc4 to methodically traverse and parse
the LATEX source code, character by character.

4https://github.com/phfaist/pylatexenc

We’ve enhanced the system by integrating and ex-
tending the parsing rules from pylatexenc to en-
sure greater compatibility.

Broadly, the source code comprises four seg-
ments: macro, environment, body, and com-
ments. A macro in LATEX begins with a back-
slash, and its arguments are encompassed within
curly braces. We focus on labeling certain macros
such as \title{} and \author{}, attributing
their parameter literals with relevant semantic
structure labels. The environment segment con-
sists of entities encapsulated between starting
and ending markers. For example, inside the
\begin{figure} ... \end{figure}. Within this
segment, elements are recursively analyzed.

Every identified text segment undergoes
tokenization using the Spacy5 tokenizer. For
every recognized token, it gets substituted
with {\color[RGB]{0,0,1}<TOKEN>}, while
each identified figure is replaced with code
\colorbox[rgb]{0,0,0.1}{<FIGURE>}.

The color RGB that can be assigned to the to-
ken ranges from #000000 to #fffff and it totals
16777216, the rbg that can be assigned to the fig-
ures ranges from (0,0,0) to (1,1,1) in steps of 0.1
and it totals 1331. Distinct colors are allocated to
each segment. See Appendix A for detail.

We also insert rules that ensure any rectangle
placed beneath an image does not disrupt the docu-
ment’s original layout. Concurrently, the article’s
hierarchical structure is captured and preserved
within a tree data structure.

5https://spacy.io/
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3.3 PDF Extraction and Annotation Export
This module is designed to extract page elements
from the PDF file. It begins by identifying the
position of each rectangle and then matches it to the
respective figure element in the annotated source
code by referencing its fill color. Following this,
the module determines the color and position of
each letter, utilizing the letter’s color to match the
corresponding annotation. Details of the extraction
of colors are described in Appendix A.

During the export phase, the outputs are pre-
sented in a DataFrame. The initial part of the ex-
port showcases the table of contents’ tree, which
was created during the annotation process. This
structured approach ensures that the succeeding
page elements to be exported can be systematically
assigned to their respective nodes. The DataFrame
is finally saved as a CSV file.

4 Capabilities Overview

The tool generates a CSV file for every input LATEX
source project. This CSV file has two sections:

1. The initial rows represent the Table of Con-
tents nodes. Here, each line denotes a tree
node, with every node possessing a unique ID
and an ID indicating its parent.

2. Every subsequent row denotes either a figure
or token extracted from the PDF. These to-
kens are allocated a number indicating their
reading order and a section ID, if they are part
of the author’s main content, starting from
0. A value of -1 in reading order indicates
elements not penned by the author, and auto-
generated by the LATEX template. This facili-
tates a straightforward exclusion of such ele-
ments during further analysis. The label col-
umn encompasses semantic structure labels
including: Abstract, Author, Caption, Equa-
tion, Figure, Footer, List, Paragraph, Refer-
ence, Section, Table, and Title.

5 Known Issues and Future Work

For extensive projects, consider the example of
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume
1: Long Papers), which comprises 912 papers. The
cumulative number of tokens in such projects might
surpass the maximum number of colors that can be
allocated. In these cases, the REDACTED frame-
work is unable to perform the annotation. Our next

steps include refining the color system to enhance
its usability and distinctiveness.

Different publisher templates interpret LATEX
terms uniquely, making it challenging for our
database to account for every variation. Thus, we
heavily depend on the open-source community to
contribute new rules. We also aim to glean insights
from the functionalities of contemporary LATEX
IDEs such as Overleaf6 or LaTeX-workshop7.

In the future, our primary goal is to expand the
REDACTED framework with parallelization ca-
pabilities. Given the containerized nature of our
PDF compilation services, this transition should
be seamless. We also plan to delve deeper into ex-
tracting layout semantics, such as pinpointing table
headers and discerning logical correspondences.

6 Conclusion

LATEX, a typesetting system commonly used for
the publication of scientific documents, represents
a highly valuable resource for Document Layout
Analysis (DLA). This value arises primarily from
the unique structure and nature of LATEX source
code. Unlike other document formats, LATEX files
include explicit markup that describes the structure
and formatting of the document, which, in a sense,
encapsulates the author’s intent in writing.

Scientific publications inherently maintain a hi-
erarchical and semantic structure, such as sections,
subsections, figures, tables, equations, etc. These
elements are all clearly labeled and defined within
the LATEX source code. This makes it considerably
simpler for a DLA system to identify and catego-
rize the diverse elements within a document, as they
are already explicitly delineated and classified by
the author’s markup. Moreover, the author’s intent
can be inferred more effectively from the structural
and semantic cues within the LATEX code, leading
to a more accurate and context-aware interpretation
of the document.

Our framework is more than just yet another
toolkit to the growing list of DLA resources. By
ensuring versatility and adaptability as well as scal-
ability, we aim for it to become a universal tool that
can facilitate enhanced document analysis across
multiple disciplines and applications. We sincerely
hope that the open source community can derive
many innovative uses and benefits from our solu-
tion.

6https://github.com/overleaf/overleaf
7https://github.com/James-Yu/LaTeX-Workshop
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A Annotation and Extraction of Colors
Between LATEX and PDF

For image annotations, we use the \color[rgb]{}
format in LATEX, spanning from (0, 0, 0) to (1, 1, 1)
in incremental steps of 0.1, which has 1331 colors
in the space. For token annotations, we use the
\color[RGB]{} format, ranging from (0, 0, 0) to
(255, 255, 255) with incremental steps of 1, yield-
ing a total of 16777216 colors.

The task of extracting colors from PDFs is effi-
ciently handled by the pdfplumber8 package. This
tool is proficient in pinpointing the position, font,
and color of every character on a page. Addition-
ally, it can determine the position and color at-
tributes of all rectangles on the page, which encom-
passes both border and fill colors.

By default, pdfplumber utilizes the DeviceRGB
color space, resulting in color extractions as tuples
comprising three floating-point numbers. However,
modern computer languages, including Python,
sometimes struggle with accurately storing floating-
point numbers. This inherent inaccuracy implies
that color matching based on these numbers might
be prone to errors, stemming from cumulative in-
accuracies.

Our tests confirmed that all 1331 colors within
image annotations’ range were correctly matched.
When pdfplumber extracts colors from token an-
notations’ range, each tuple value is incremented
in steps of 0.00392, for instance, (0, 1, 2) translates
to extracted values of (0, 0.00392, 0.00784). Given
that 1÷256 = 0.00390625, we are already dealing
with a discrepancy. To mitigate this, we employed

8https://github.com/jsvine/pdfplumber

matplotlib’s to_hex()9 method to ensure precise
RGB value matches.

We also experimented with the PyMuPDF10 pack-
age for color extraction, enticed by its capacity
to extract colors as integer values. However, it
uses the sRGB color space, which introduced mis-
matches between our annotations and extracted val-
ues. A notable misalignment was observed with
colors (0, 0, 0) and (0, 1, 0) both being miscon-
strued as the singular color #000000 in sRGB. We
will continue to study the impact of color for layout
analysis and adjust the implementation described
in this paper.

9https://matplotlib.org/stable/api/_as_gen/
matplotlib.colors.to_hex.html

10https://github.com/pymupdf/PyMuPDF
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