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ABSTRACT

Graph neural networks (GNNs) with self-interpretability are pivotal in various
high-stakes and scientific domains. The information bottleneck (IB) principle
holds promise to infuse GNNs with inherent interpretability. In particular, the
graph information bottleneck (GIB) framework identifies key subgraphs from the
input graph G that have high mutual information (MI) with the predictions while
maintaining minimum MI with G. The major challenge is dealing with irregular
graph structures and gauging the conditional probabilities for evaluating MI be-
tween these subgraphs and G. Existing methods for estimating the MI between
graphs often present distorted and loose estimations, thereby undermining model
efficacy. In this work, we propose a novel framework GEMINI for training self-
interpretable graph models, which tackles the key challenge of graph MI estima-
tions. We construct a variational distribution over critical subgraphs, based on
which an efficient MI upper bound estimator for graphs is built. Besides the pro-
posed theoretical framework, we devise a practical instantiation of different mod-
ules in GEMINI. We compare GEMINI thoroughly with both self-interpretable
GNNs and post-hoc explanation methods on eight datasets with both interpreta-
tion and prediction performance metrics. Results reveal that GEMINI outperforms
state-of-the-art self-interpretable GNNs on interpretability and achieves compara-
ble prediction performance compared with mainstream GNNs.

1 INTRODUCTION

Graph data permeates various domains, from social media platforms (Nettleton, 2013; Knoke &
Yang, 2019; Xia et al., 2021) and transportation systems (Zhou et al., 2020; Wang et al., 2020)
to chemical compounds (Gilmer et al., 2017; Wieder et al., 2020; Hao et al., 2020). In light of
this, Graph neural networks (GNNs) have emerged as de facto models to encode graph-structured
data due to their great power of synthesizing graph structure and features (Kipf & Welling, 2016;
Hamilton et al., 2017; Veličković et al., 2017; Xu et al., 2018; Corso et al., 2020). Yet, beyond sheer
predictive prowess, there is an increasing emphasis on model interpretability and transparency. For
example, scientists identify important molecular functional groups or find some disorder-specific
regions of interest in biomedical analysis (Wencel-Delord & Glorius, 2013; Li et al., 2021; Cui
et al., 2022) with interpretable models. In the sphere of financial fraud detection, interpretable
models are paramount; their clarity can prevent false alarms, thereby safeguarding both customer
trust and corporate reputation (Rao et al., 2020; Yang et al., 2021; Wang et al., 2021).

GNNs achieve their expressiveness by the synthesis of graph structure and features. Yet, the syn-
thesis complicates the endeavor to interpret and understand the underlying model behaviors. In
response to such complexities, a considerable body of research has been devoted to developing
post-hoc explainers for GNNs, i.e., try to find critical subgraphs that primarily dominate model
predictions after training (Ying et al., 2019; Luo et al., 2020; Yuan et al., 2021; Shan et al., 2021;
Xia et al., 2022). Nonetheless, these post-hoc methods tend to suffer from sensitivity and reliance
problems (Adebayo et al., 2021). Given these challenges, there is a surging interest in architecting
GNNs that possess self-interpretability. Such interpretability aligns more closely with a model’s
intrinsic reasoning processes, potentially bolstering its robustness as well. Central to these efforts
is the incorporation of the Information Bottleneck (IB) theory (Tishby et al., 2000; Tishby & Za-
slavsky, 2015; Alemi et al., 2016) into the foundational architecture and optimization objectives of
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GNNs (Yu et al., 2021; 2020; Wu et al., 2020; Miao et al., 2022; Lee et al., 2023), i.e., the Graph
Information Bottleneck (GIB) framework.

The IB theory relies on gauging the mutual information (MI) between observed data variables and
models’ learned intermediate variables. In the context of the GIB framework, the objective is to
identify a critical subgraph Gsub among the input graph G, such that Gsub exhibits high MI with the
prediction variable Y , while maintaining a low MI with G, i.e., a parameterized conditional distri-
bution pϕ(Gsub|G) should be learned. Computing MI precisely for graph variables is challenging
because of the difficulty in the calculation of pϕ(Gsub|G) for non-Euclidean graph data. Existing
works largely overlooked the intrinsic subgraph matching problem when calculating pϕ(Gsub|G),
which we show is critical for graph MI estimation. Some works establish an upper bound by in-
troducing a prior marginal distribution, denoted as r(Gsub). This can be done either in the graph
space (Wu et al., 2020; Miao et al., 2022) or in the graph embedding space (Sun et al., 2022). Then
an upper bound of MI between Gsub and G is derived by computing the Kullback-Leibler (KL) di-
vergence from the prior distribution r(Gsub) to the conditional distribution pϕ(Gsub|G). Optimally,
r(Gsub) should align with p(Gsub), which is derived from p(G) and pϕ(Gsub|G), such that the KL
divergence equates the MI between Gsub and G (in expectation). However, the non-Euclidean na-
ture of graphs and variability in pϕ(Gsub|G) make approximation challenging. Existing approaches
implicitly ignore the subgraph matching problem when calculating pϕ(Gsub|G) and r(Gsub). This
introduces a significant deviation from the ideal prior, yielding a poor estimation. Another way is
to approximate the MI through the Donsker-Varadhan (DV) representation (Donsker & Varadhan,
1975) of the KL divergence. Nevertheless, these methods suffer from extremely high computational
cost and numerical instability during the model optimization procedure (Yu et al., 2020; 2021).

As stated above, the key challenge in applying the IB theory to graph domains is the computation
of the MI between Gsub and G. To address the shortcomings of previous works, we introduce a
novel approach called GEMINI, which achieves self-interpretable GNNs with an Enhanced Mutual
INformation estImator for both efficiency and effectiveness. This estimator is constructed through
the following key steps. Firstly, we leverage a MI upper bound estimator relying solely on the
conditional probability distribution pϕ(Gsub|G), which has been largely overlooked in existing GIB
literature. In this way, the obstacle of designating a prior graph distribution r(Gsub) and calculating
KL divergence between graph distributions could be circumvented. Secondly, computing the distri-
bution pϕ(Gsub|G) itself is also nontrivial since it relates to the generation procedure of Gsub and
is hindered by the NP-hardness of the subgraph matching problem. Because when calculating the
pϕ(Gsub|G) precisely based on learned structural probabilities, the position of Gsub on G should be
determined. However, the canonical position of a specific Gsub sample on G is unknown without im-
plicit and strict assumptions. Considering that, we develop a variational distribution qθ(Gsub|G) as
a substitute of pϕ(Gsub|G), as well as a specific training objective for qθ. Thirdly, the instantiation
of variational distribution qθ(Gsub|G) requires scrupulous attention to detail because the approxi-
mation quality of qθ(Gsub|G) directly affects the quality of MI upper bound estimations. To build
qθ(Gsub|G), we propose to extract graph representations of Gsub and G and construct probabil-
ity distributions in the representation space. During training, a generator determining pϕ(Gsub|G),
qθ(Gsub|G), and a predictor responsible for model’s predictive capability will be optimized alterna-
tively. Based on the new MI upper bound estimator, we efficiently and effectively incorporate the IB
theory into the graph domain, minimizing MI estimation bias for better interpretation and prediction.

We extensively evaluate GEMINI on eight datasets for interpretation (Sec. 5.2) and prediction (Sec.
5.3 ) metrics and investigate the effect of coefficient and randomness in GEMINI (Sec. 5.4). Results
reveal that GEMINI achieves a significant interpretation performance gain and remains a competitive
prediction performance compared with state-of-the-art interpretable as well as mainstream GNN
models. Interestingly, GEMINI could automatically learn to generate sparse critical subgraphs even
without explicit sparsity constraints. Furthermore, the best coefficient of our proposed MI upper
bound constraint varies across different datasets, which generally requires certain tuning.

2 NOTATIONS AND PRELIMINARIES

We first introduce key notations and concepts necessary. Let G = (V,E) denote a graph with
node set V and edge set E. G may contain node features {Xv ∈ Rd|v ∈ V } and edge features
{Xe ∈ Rd|v ∈ E} with feature dimension d. We denote neighbors of node i as N (i).
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The information bottleneck framework. The IB principle is grounded in mutual information
between random variables (Tishby et al., 2000). For random variables x and y, the MI is defined as
I(x; y) = Ep(x,y)

[
log p(y|x)

p(y)

]
. Generally, x represents the input feature random variable and y is

the label variable related to x. Given the data distribution p(x, y), the IB framework aims to learn
a conditional distribution pϕ(z|x) of an intermediate variable z, which has the minimal sufficient
information in x when inferring y. pϕ(z|x) is generally determined by a parameterized network
gϕ accompanied by a specific generation (or sampling) procedure 1. The optimization objective
of IB could be formulated in Eq. 1.

argmin
pϕ(z|x)

−I(z; y) + βI(x; z) (1)

where β is a hyper-parameter to trade off predictive performance against robustness and inter-
pretability. However, the exact calculation of MI is often prohibitive for IB in Eq. 1. Constructing
upper or lower bounds of these terms becomes a practical solution. For example, one can obtain a
widely adopted variational upper bound of I(x; z) by introducing a prior distribution r(z) (Alemi
et al., 2016): I(x; z) ≤ Ep(x) [KL(pϕ(z|x)∥r(z))].

Definitions of distributions. We adopt p to represent groundtruth distributions 2 and q to denote
variational distributions. Different subscripts of p and q indicate different networks. As shown in
Eq. 1 and Eq. 2, we denote pϕ(z|x) (or pϕ(Gsub|G) ) as the conditional probability distribution
of z (or Gsub) constructed by gϕ and the generation procedure. Once pϕ(z|x) is clarified, the joint
distribution p(x, z) and the marginal distribution p(z) are determined, i.e., p(x, z) ≜ p(x)pϕ(z|x),
p(z) ≜

∫
x
pϕ(z|x)dx. Further, the conditional probability p(y|z) is also settled correspondingly

according to the Bayes’ theorem and the data distribution p(x, y), i.e., p(y|z) ≜
∫
x
p(x|z)p(y|x) ≜∫

x
p(x)pϕ(z|x)

p(z) p(y|x). Note that x and z in the above distributions could be substituted with G and
Gsub respectively when considering the GIB framework.

Graph information bottleneck. To improve GNNs’ interpretability and robustness, recent works
(Wu et al., 2020; Yu et al., 2020) apply the IB principle in graph learning by instantiating z in IB
as a critical subgraph Gsub and x as the input graph G from which Gsub is generated. Hence, the
optimization objective of the GIB framework is

argmin
pϕ(Gsub|G)

−I(Gsub;Y ) + βI(G;Gsub) (2)

where G and Y are observed graph data and the corresponding graph label signal, respectively.
Gsub is regarded as self-interpretation of model’s prediction. We adopt Gsub, G to represent graph
random variables and gsub, g to indicate concrete instances. For rigorous definition of the graph
random variables and the probability space, please refer to Appendix A.1.

3 LIMITATION ANALYSIS OF EXISTING GRAPH MI ESTIMATIONS
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Figure 1: Subgraph matching in pϕ(gsub|g).

In this section, we elaborate on the limitations
of existing graph MI estimation methods. The
most widely adopted assumption is that the ex-
istence of edges is independent in the graph.
Thus, previous works first learn edge probabili-
ties and then sample each edge independently
to generate a subgraph (Miao et al., 2022).
pϕ(gsub|g) is the probability that gsub is a gen-
erated subgraph by g based on an underlying
subgraph generation process parameterized by
ϕ. Existing implementations regard gsub as a 0-
1 edge-weighted variant of g, where gsub and g
possess the same node set, as depicted in the

1Typically, gϕ is responsible for distribution parameters of pϕ(z|x), and the sampling process contains no
learnable parameters.

2The groundtruth means distributions determined by the generator pϕ(z) and p(x, y) in the IB framework.
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left part of Figure 1. Thus, the value of pϕ(gsub|g) is the product of edges probabilities in gsub. This
formulation implicitly assumes that the subgraph matching (a mapping between nodes that preserves
edge relations) is unique and known, as shown by the green arrows in the left part of Figure 1.

However, we argue that the subgraph matching between gsub and g can be non-unique when gsub
has fewer nodes than g (since nodes can also be sampled), as indicated in the right part of Figure
1. Even if gsub and g has identical node set, the subgraph matching can be non-unique as well.
Calculating the exact value of pϕ(gsub|g) needs to find all possible subgraph matchings between
gsub and g, which is impractical since subgraph matching for general graphs is NP-hard (Lewis,
1983). Moreover, established MI upper bounds generally rely on a prior r(Gsub). Computing the
prior distribution r(Gsub) over graphs is equally challenging as pϕ(Gsub|G). To conclude, existing
methods largely overlooked the intrinsic subgraph matching difficulty when calculating pϕ(Gsub|g)
for graph MI estimation, hence resulting in distorted estimations. Please refer to Appendix A.1 for
a rigorous formulation of pϕ(Gsub|G).

4 THE GEMINI FRAMEWORK

4.1 THEORETICAL MOTIVATION AND FORMULATION OF GEMINI

In the following, we delve into our treatments for I(Gsub;Y ) and I(G;Gsub) in GEMINI.

The predictive capability term I(Gsub;Y ). The first term I(Gsub;Y ) of GIB in Eq. 2 measures the
correlation between learned critical subgraph Gsub and prediction signal Y , i.e., model’s predictive
capability with Gsub. As stated in Sec. 2, once pϕ(Gsub|G) is settled, p(Gsub) and p(Y |Gsub) are de-
termined, hence the MI term I(Gsub;Y ) could be calculated deterministically. However, because of
the integral structure in p(Gsub) and p(Y |Gsub), directly calculating I(Gsub;Y ) is nontrivial. Hence,
we adopt a variational distribution qω(Y |Gsub) as a proxy for p(Y |Gsub) and induce an lower bound
of I(Gsub;Y ) correspondingly.

I(Gsub;Y ) = Ep(Gsub,Y )

[
log

qω(Y |Gsub)

p(Y )

]
+ Ep(Gsub) [KL(p(Y |Gsub)∥qω(Y |Gsub))]

≥ Ep(Gsub,Y )

[
log

qω(Y |Gsub)

p(Y )

]
= Ep(Gsub,Y ) [log qω(Y |Gsub)] +H(Y )

(3)

where H(Y ) indicates the entropy of label Y . Since H(Y ) is determined by the data distribution and
does not depend on qω , we thus focus on Ep(Gsub,Y ) [log qω(Y |Gsub)] when optimizing qω . When
adopting mini-batch samples, we define the loss LY as in Eq. 4.

LY =
1

K

K∑
i=1

[
log qω(Y

(i)|G(i)
sub)

]
(4)

which is responsible for the model’s predictive performance.

The MI constraint term I(G;Gsub). In light of the analysis of Sec. 3, we introduce a variational
distribution qθ(Gsub|G), which operates as a proxy of pϕ(Gsub|G) to address the challenges as de-
scribed in Sec. 3. Specifically, we construct qθ(Gsub|G) such that it could be computed efficiently for
arbitrary Gsub and G samples. Moreover, we introduce variational upper bounds of MI I(G;Gsub)
based solely on the constructed variational qθ(Gsub|G), instead of relying on a prior r(Gsub), which
can also be tricky and difficult to implement. We defer the detailed instantiation of qθ(Gsub|G) to
Sec. 4.2.

Once a practical qθ is constructed, we could adopt sample-based MI variational upper bounds based
merely on qθ, avoiding directly tackling with a specific prior r(Gsub). For example, we could upper-
bound I(G;Gsub) using the MI upper bound CLUB (Cheng et al., 2020) and adapt it for graphs:

I(G;Gsub) ≤ Ep(G;Gsub)
[log pϕ(Gsub|G)]− Ep(G)Ep(Gsub)

[log pϕ(Gsub|G)] (5)

Note that the ground truth distribution pϕ(Gsub|G) is required in Eq. 5. By substituting pϕ(Gsub|G)
with qθ(Gsub|G) and adopting mini-batch samples, we could construct the graph-based CLUB
(GCLUB) MI upper bound estimator:

ĨGCLUB(G;Gsub) ≜
1

K

K∑
i=1

log qθ(Gi
sub|Gi)− 1

K

K∑
j

log qθ(G
j
sub|G

i)

 ≜ LGCLUB (6)
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Figure 2: The framework of GEMINI which mainly consists of three modules gϕ, qθ, and qω .
Solid arrows are computation flows, while colored dotted arrows next to losses represent gradient
directions, indicating that modules with the same bounding color will be affected by specific losses.

The bound in Eq. 6 only relies on sampled (G,Gsub) pairs and the variational distribution qθ, leading
to convenient and efficient calculations in practical implementation. Note that we also define the loss
LGCLUB as ĨGCLUB(G;Gsub) for mini-batch samples. It is worth clarifying that the form of upper
bound estimator remains flexible in our GEMINI framework. One can directly plug in another
estimator which solely relies on pϕ(Gsub|G) and substitute pϕ with our qθ in GEMINI, for example,
the leave-one-out (LOO) MI upper bound estimator (Poole et al., 2019).

Since the bound in Eq. 6 is constructed based on the variational qθ(Gsub|G) which is different
from the ground truth pϕ(Gsub|G), qθ requires specific optimization to be a reasonable substitute of
pϕ(Gsub|G) and ensure the effectiveness of ĨGCLUB(G;Gsub). In the following, we will go into detail
about the optimization objective and training scheme of qθ.

The optimization of variational distribution qθ(Gsub|G). The goal of training qθ is to make
reasonable variational bounds when substituting pϕ by qθ in MI upper bound estimators in GEMINI.
Hence, we hope that the MI I(G;Gsub) determined by pϕ could be properly approximated by qθ,

i.e., I(G;Gsub) ≈ Ep(G,Gsub)

[
qθ(Gsub|G)
p(Gsub)

]
, meaning qθ is a good substitute for pϕ. We could derive

an optimization objective for qθ based on similar techniques as in Eq. 3

I(G;Gsub) = Ep(G,Gsub)

[
log

qθ(Gsub|G)

p(Gsub)

]
+ Ep(G) [KL(pϕ(Gsub|G)∥qθ(Gsub|G))]

= Ep(G,Gsub) [log qθ(Gsub|G)] +H(Gsub) + Ep(G) [KL(pϕ(Gsub|G)∥qθ(Gsub|G))]

(7)

Eq. 7 indicates that maximizing Ep(G,Gsub) [log qθ(Gsub|G)] w.r.t θ equals to minimizing the KL
divergence between pϕ(Gsub|G) and qθ(Gsub|G). However, in practical implementation, qθ is trained
using mini-batch samples, i.e., 1

K

∑K
i=1 log qθ(G

(i)
sub|G(i)). Because of the enormous and discrete

characteristic of graph space, such an objective will result in large variances during the training of
qθ. Inspired by MI lower bound estimation techniques (Poole et al., 2019), we adopt another scheme
to optimize qθ using the following objective:

Lqθ ≜ − 1

K

K∑
i=1

log
qθ(G

i
sub|Gi)

1
K

∑K
i=1 qθ(G

i
sub|Gj)

(8)

argmin
θ

Ep(G1,G1
sub)×···×p(GK ,GK

sub)
[Lqθ ] (9)

where G2, · · · , GK are K − 1 auxiliary graph random variables. The objective in Eq. 9 reduces the
variance and has the optimal point at qθ(Gsub|G) = pϕ(Gsub|G) (Poole et al., 2019; Ma & Collins,
2018). Hence, optimizing Lqθ w.r.t θ ensures the optimality of θ and improves the training stability,
which is adopted in our practical implementation of GEMINI. We defer the overall training scheme
of GEMINI in Algorithm 1 in Appendix A.4.
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4.2 INSTANTIATION OF GEMINI

In this subsection, we elaborate on detailed instantiations of the GEMINI framework. gϕ, qθ, and qω
are instantiated as independent networks containing GNN encoders and extra modules. We depict
the framework of GEMINI in Figure 2.

Instantiation of gϕ. Since Gsub should be a critical interpretable subgraph contained in the input
graph, we formulate Gsub as one generated by sampling nodes and edges on the input graph G. The
sampling probability is learned by the generator gϕ. After all probabilities are obtained, we sample
each edge and node independently to formulate the critical subgraph Gsub. Specifically, we calculate
edge probabilities using both nodes’ representations, and induce node probabilities based on edge
probabilities, as in Eq. 10. The node representation zi is extracted from a specific GNN encoder,
e.g., GCN (Kipf & Welling, 2016) or GIN (Xu et al., 2018).

zi, zj = GNN(X,E)

êij = Sigmoid(MLP([mean(zi, zj)∥max(zi, zj)∥min(zi, zj)]))
n̂i = max{êij |j ∈ N (i)}

(10)

In order to backpropagate gradients during the sampling, we adopt the Gumbel-Softmax trick (Jang
et al., 2016) in the forward computation. The combination of sampled values and the original graph
is regarded as an instance of the critical subgraph Gsub. Moreover, in order to support the instan-
tiation of subsequent modules qθ and qω , we alter the message-passing procedure correspondingly
which calculating representation of Gsub, as indicated in Eq. 11.

mk
ij = Msg({n̂i ⊙Xk

i , n̂j ⊙Xk
j } ∪ {êij ⊙Xk

ij})
Xk+1

i = Agg({n̂i ⊙Xk
i } ∪ {êij ⊙mk

ij |j ∈ Ni})
(11)

where ⊙ is element-wise multiplication, which applies sampled weights to the message generation
and aggregation of a GNN encoder.

Instantiation of qθ. Since qθ(Gsub|G) takes two graphs as input and should approximate a proba-
bility, we propose to model each graph as a Gaussian distribution in the embedding space.

z = GNN1(G), µ, σ = Mean1(z),Var1(z)
zsub = GNN2(Gsub), µsub = Mean2(zsub)

(12)

Once we obtain µ, σ and µsub, and qθ(Gsub|G) is formulated as qθ(Gsub|G) ≜ N (µsub;µ, σ). Instead
of predicting an independent value for each (G,Gsub) pair, the Gaussian formulation facilitates
probability computation for batched graph samples, as we only need to predict each graph’s mean
and variance and calculate the cross-pairs’ conditional probabilities in a closed-form manner.

Instantiation of qω . The instantiation of qω(Y |Gsub) is rather straightforward. We adopt a GNN
encoder combined with an MLP module to output predictions, i.e., Ŷ = MLP(GNN(Gsub)).

Moreover, we add another information constraint Lsp accompanied by the objective in Eq. 6 during
training gθ. The construction of Lsp is Lsp =

∑
e∈E KL(Bern(ê)∥Bern(τ)), where Bern(τ)

indicates the Bernoulli distribution with parameter τ . Lsp is essentially a sparsity constraint, as in
most scenarios a sparse subgraph is expected for interpretation. The sparsity objective can also be
approximately regarded as an MI constraint under some specific assumptions and simplifications
(Miao et al., 2022). Therefore, the overall optimization objective for gϕ is:

Lgϕ = −LY + λLGCLUB + γLsp (13)

where λ and γ are hyper-parameters. Based on the derived training objectives and instantiations
above, we summarize the training procedure of GEMINI in Algorithm 1.

5 EXPERIMENTS

In this section, we evaluate the proposed instantiation of GEMINI. We mainly investigate prediction
and interpretation performance, which is followed by analysis of different MI regularizations.
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5.1 EXPERIMENTAL SETTINGS

Datasets. We adopt eight datasets for the evaluation: (1) MUTAG (Debnath et al., 1991), (2)
MNIST-75sp (Knyazev et al., 2019), (3) MOLHIV (Wu et al., 2018; Hu et al., 2020), (4) Graph-
SST2 (Yuan et al., 2020), (5-8) Spurious-Motif (Ying et al., 2019; Wu et al., 2022). Note that in the
Spurious-Motif dataset, there is a parameter b controlling the strength of spurious correlation within
the dataset. We denote this dataset with parameter b as SPMotif (b) and set b to 0.3, 0.5, 0.7, 0.9 to
form four datasets. We defer the details of these datasets in Appendix A.5.

Baselines. Since our framework concerns both interpretation and prediction performance, we com-
pare it with graph interpretation and prediction models. For interpretation evaluation, We take both
post-hoc GNN interpretation methods and self-interpretable methods as baselines. For post-hoc
methods, baselines include GNNExplainer (Ying et al., 2019) and PGExplainer (Luo et al., 2020).
For self-interpretable methods, baselines include GSAT (Miao et al., 2022) and DIR (Wu et al.,
2022). For prediction evaluation, we take both backbone models and self-interpretable models as
prediction performance baselines. Backbone models include GIN (Xu et al., 2018) and PNA (Corso
et al., 2020). Self-interpretable models are GSAT (Miao et al., 2022) and DIR (Wu et al., 2022).

Setup. We compare GEMINI with baselines with both interpretation and prediction metrics. For
GEMINI, we adopt GIN (Xu et al., 2018) and PNA (Corso et al., 2020) as backbones, following
the setup in Miao et al. (2022). For the GSAT baseline, we adopt the same backbones. λ is set
to 0.05 and γ is set to 1.0 by default. We use the original hyper-parameters for other baselines.
We adopt the ACC for prediction and AUC for interpretation metrics respectively. Note that the
interpretation performance is calculated based on learned edge/node probabilities and groundtruth
edge/node interpretation labels (if exist). We repeat all experiments three times to report mean values
and standard deviations. The best results are in bold and the second best are underlined.

Table 1: Interpretation performance comparison.
MUTAG MNIST-75sp SPMotif (0.3) SPMotif (0.5) SPMotif (0.7) SPMotif (0.9)

GNNExplainer 61.77±0.95 52.88±0.11 50.55±0.10 44.25±0.53 47.72±0.34 46.36±0.23
PGExplainer 60.34±0.12 59.40±0.17 60.79±0.42 34.69±0.59 32.30±0.34 31.40±0.53

DIR 53.04±0.17 60.61±0.13 74.75±0.11 74.91±0.12 73.70 ±0.18 76.56±0.12
GSAT-PNA 99.49±0.12 63.40±7.14 67.03±14.27 62.68±9.24 48.52±6.09 68.18±12.15
GSAT-GIN 98.37±0.47 60.14±1.14 76.44±11.7 81.16±2.30 83.01±0.55 76.20±8.39
OURS-PNA 99.54±0.24 59.42±8.39 56.17±4.10 64.28±13.90 65.68±11.19 65.05±12.47
OURS-GIN 99.10±0.33 61.45±4.00 81.09±3.66 82.40±0.16 88.58±8.92 79.65±3.68

Table 2: Prediction performance comparison. AUC is adopted for MOLHIV for class imbalance.
MOLHIV (AUC) Graph-SST2 MINIST-75sp SPMotif (0.3) SPMotif (0.5) SPMotif (0.7)

GIN 76.82±0.38 81.91±0.54 94.36±0.31 82.74±2.07 84.56±0.84 81.86±0.76
PNA 75.01±0.99 80.85±0.36 88.02±1.44 66.37±2.46 69.41±2.61 65.79±2.47
DIR 76.34±1.01 82.32±0.85 88.51±2.57 34.70±0.16 33.53±0.32 32.90±0.81

GSAT-PNA 70.88±0.53 83.83±0.25 90.38±2.66 74.59±14.69 70.51±11.75 57.74±4.64
GSAT-GIN 74.23±1.44 83.70±0.17 96.68±0.17 68.56±11.1 81.21±5.50 80.57±9.10
OURS-PNA 70.01±3.34 81.74±1.56 89.65±3.68 69.61±11.47 72.71±19.42 80.06±12.62
OURS-GIN 73.88±2.96 83.37±1.20 95.57±0.53 76.21±14.1 92.01±2.24 89.19±4.24

5.2 INTERPRETATION PERFORMANCE

We list interpretation performance comparison in Table 1. The results reveal that GEMINI could
achieve the best interpretation performance in most datasets, except the MNIST-75sp dataset. The
largest improvement over the self-interpretable GSAT is about 11% on the SPMotif(0.9) dataset.
In most datasets, GSAT achieves the second-best interpretation performance. If we consider only
post-hoc methods, the improvement is even more significant, e.g., up to 40 ∼ 50% on spurious
motif datasets. The reason is that the explanation quality of post-hoc explainers is susceptible to
not only graph instances but also trained models. DIR is worse than our method and the GSAT
baseline (with the GIN backbone). The results indicate that learning causal components and the
environmental intervention simultaneously in the DIR framework may be challenging and volatile.
Moreover, we notice the PNA backbone is worse than the GIN backbone generally. We consider
that the reason comes from the removal of scalars used in PNA in our adaptation, which is necessary
in our framework but may degrade the performance of PNA architecture.
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Figure 3: (a) The comparison of interpretation and prediction performance of GEMINI under dif-
ferent coefficients λ. (b) The comparison of edge and node probabilities on the validation set during
model training (SPMotif0.7) for varying λ. (c) The comparison of interpretation and prediction
performance of GEMINI under W/O sampling settings. (d) The comparison of edge and node prob-
abilities during model training on the validation set (SPMotif0.7) under W/O sampling settings.
Note that GSAT solely learns edge probabilities and node probabilities remain 1. Hence the curve
of GIN overlaps over GSAT.

5.3 PREDICTION PERFORMANCE

As shown in Table 2, the interpretability could also improve the prediction performance in most
cases. The proposed method achieves the best result or the second-best performance in four datasets
and comparable results in other datasets. Compared with the self-interpretable GSAT, the improve-
ment of GEMINI is more significant on spurious correlation datasets e.g., ∼ 9% for the GIN back-
bone. Compared with pure GNN backbones, GEMINI could also enhance the prediction perfor-
mance in most datasets, e.g., on SPMotif(0.5), the improvement is ∼ 8% for GIN and ∼ 3% for
PNA. Note that the GIN backbone could also achieve competitive performance in several datasets,
especially the MOLHIV, for which the class imbalance is severe, and subtle perturbation of the graph
could degrade the model’s prediction capability. For the invariant learning baseline, DIR performs
worse even than GIN on the spurious correlation datasets, indicating that it may not separate causal
and spurious parts well on these graphs. Moreover, both GEMINI and GSAT have better perfor-
mance when adopting the GIN as backbone compared with the PNA backbone. These differences
are generally consistent with results in Table 1. Hence, a proper GNN backbone for calculating
graph representations is also significant for interpretation and prediction performance.

5.4 ANALYSIS

Effect of the LGCLUB term. To investigate the effect of the IB upper bound loss LGCLUB more
thoroughly, we remove the Lsp term and report model performance under different coefficients of
LGCLUB on the Spurious-Motif datasets. The interpretation and prediction performance is reported
in Fig. 3(a). Further, we record the learned average edge and node probabilities on the validation
set of SPMotif (0.7), which is shown in Fig. 3(b) (the curves are similar on other SPMotif datasets).
We can conclude that a proper setting of λ could improve both model’s prediction and interpretation
performance, e.g., 0.05 for SPMotif (0.5) and SPMotif (0.7). With the increase of λ in the range
[0.001, 0.05], the model’s interpretation and prediction performance improves on SPMotif (0.5). For
SPMotif (0.7), the interpretation performance remains generally unchanged while prediction perfor-
mance improves. The prediction performance degrades for λ in the range [0.001, 0.05], which may
be caused by the relatively large information constraint since the spurious correlation is weaker than
the other two datasets. Moreover, a too-large coefficient of LGCLUB may degrade the model’s per-
formance, for example, with the λ set to 0.1, the model’s interpretation and prediction decreases on
both SPMotif (0.5) and SPMotif (0.7) dataset. We argue that as a mutual information regularizer, a
large LGCLUB will impose strong constraints on the representations model learned, i.e., losing more
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information about the original data and label signal, which may be harmful to both interpretation
and prediction. Hence, a proper parameter searching for λ is necessary for different datasets.

Effect of the sampling procedure. In this part, we aim to investigate the effect of Gumbel-Softmax
sampling for Gsub as well as learned subgraph probability distributions. We compare GEMINI w/o
the sampling procedure with GSAT and a pure GNN (GIN) on the Spurious-Motif datasets. For the
no-sampling version of GEMINI, we regard the learned edge/node probabilities as weights in mas-
sage passing procedures. The performance comparison is illustrated in Fig. 3(c), and edge and node
probabilities during training are demonstrated in Fig. 3(d) (on the validation set of SPMotif (0.7)).
From Fig. 3(c), we can find that the no-sampling version of GEMINI achievers better prediction
performance in all cases, and better interpretation performance in SPMotif (0.3) and SPMotif (0.5).
Results suggest that GEMINI generally has better performance without sampling when generating
critical subgraphs. We conjecture the reason is that removing the sampling makes the training of
GEMINI more stable. Since the MI constraint IGCLUB is based on multiple samples of critical
subgraphs, the Gumbel-Softmax sampling will result in a larger variance compared with directly
using probabilities as weights. Moreover, Fig. 3(d) indicates that the no-sampling version of GEM-
INI achieves smaller edge and node probabilities than the counterpart with sampling and the GSAT
baseline. The results indicate that Lsp term is relatively more important in the no-sampling version
of GEMINI because of more stable training as well, resulting in lower edge and node probabilities
which are favorable to interpretability. Furthermore, smaller edge probabilities in Fig. 3(d) are also
consistent with better interpretation AUCs in Fig. 3(c).

6 RELATED WORK

Methods endowing GNNs with interpretability could be roughly divided into two categories, i.e.,
post-hoc and built-in interpretability. Post-hoc methods (or explainers) analyze a fixed GNN model
after training. These methods are generally implemented based on gradients (Sundararajan et al.,
2017; Selvaraju et al., 2017) or perturbations (Ying et al., 2019; Luo et al., 2020) For example,
GNNExplainer (Ying et al., 2019) generates a mask on the input graph based on an interpretation-
oriented objective. However, post-hoc methods suffer from the faithfulness and instability w.r.t
the model to be interpreted (Adebayo et al., 2021). Hence, GNNs with built-in interpretability are
attracting rising attention. Wu et al. (2022) learns an invariant subgraph for interpretability based on
invariant learning (IR). However, IR suffers from high computational costs and instability. Instead,
a bunch of works resort to GIB for self-interpretability. The key is to estimate MI between graph
variables. Yu et al. (2020; 2021) utilize the DV representation of KL divergence to estimate the MI
between graphs, which results in heavy computational cost in practical training. Another way of
bounding MI is to designate a prior distribution for critical subgraph either in graph space (Miao
et al., 2022; Wu et al., 2020) or in embedding space (Sun et al., 2022), However, the introduced
prior generally results in loose estimation of MI between graphs. Some works derive a closed-form
of MI upper bound under strict restrictions (Yu et al., 2022; Lee et al., 2023) based on noise injection
into node representations. However, the noise distribution should be designated as well and may be
biased. Moreover, the graph structure information cannot be masked out effectively in these works.
Briefly, existing works applying GIB suffer a lack of efficient estimation of upper bound MI between
graph variables. Our work tackles this challenge through a combination of MI upper bound estimator
and a variational distribution for graphs, which has largely been overlooked previously.

7 CONCLUSION

In this work, we have proposed a new framework of self-interpretable graph learning based on
the information bottleneck principle. The key challenge of implementing the information bottle-
neck principle on graphs lies in calculating the mutual information efficiently and effectively for
non-regular graph random variables. To overcome this obstacle, we develop a novel graph mu-
tual information upper bound estimator. We extensively evaluated the performance of GEMINI and
mainstream baselines on eight datasets with both interpretation and prediction metrics. Results re-
veal that the MI upper bound objective of GEMINI could improve the model’s interpretability over
graph sparsity constraints in most cases while maintaining comparable predictive capability.
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A APPENDIX

A.1 A DETAILED ANALYSIS ON THE CALCULATION OF pϕ(GSUB|G)

To rigorously illustrate the difficulty of calculating the exact values of P (Gsub|G) and the necessity
of the proposed variational distribution qθ(Gsub|G), we need to introduce several definitions first.
Note that we use upper case (e.g., G, Gsub) to represent graph random variables, and use lower case
(e.g., gsub, g, g1, g2) to indicate graph instances.

A.1.1 SUBGRAPH MATCHING

Let’s consider two graph instances, g1 and g2. The node sets of g1 and g2 are represented by V (g1)
and V (g2) respectively, while their edge sets are denoted by E(g1) and E(g2). We assume that
|V (g1)| ≤ |V (g2)|. A valid subgraph matching m from g1 to g2 is an injective function that maps
the nodes of g1 to nodes of g2, such that for each edge eu,v in E(g1), the mapped edge em(u),m(v) is
still in E(g2). The set of all possible subgraph matching from g1 to g2 is defined as Mg1→g2 , where

Mg1→g2 ≜ {m|for all (u, v) ∈ V (g1)× V (g1), em(u),m(v) ∈ E(g2) if eu,v ∈ E(g1), }.

A.1.2 RANDOM SUBGRAPH

Here we illustrate how to obtain an instance of the random subgraph Gsub from g. Given a graph
instance g, we assume that p(v) represents the probability that the node v is included in the subgraph,
and p(eu,v) as the probability that the edge eu,v is included. A common sampling procedure to obtain
a subgraph instance gsub is:

1. Each node v ∈ V (g) is sampled by a Bernoulli distribution Bern(p(v)).

2. For all sampled nodes in the first step, the edge eu,v is then sampled by the Bernoulli
distribution Bern(p(eu,v)). If there is no edge between u and v on g, p(eu,v) = 0.

Let pϕ(Gsub|g) denote the probability mass function of the above random graph. The parameter ϕ
in pϕ(Gsub|g) determines the values of p(v) and p(eu,v) in the sampling procedure. For example, ϕ
is the parameter set of a neural network that outputs these probabilities.

For a graph instance g, we regard Ωg as the sample space of Gsub from the above random sampling
procedure, satisfying that for any gsub ∈ Ωg , Mgsub→g ̸= ∅. Note that for a gsub ∈ Ωg , |V (gsub)| can
be smaller than |V (g)|.

A.1.3 THE EXACT CALCULATION OF pϕ(gSUB|g)

For a subgraph instance gsub, we define

PV
ϕ (gsub, g,m) =

∏
v∈V (gsub)

p(m(v))
∏

v∈V (g)/V (gsub)

(1− p(v))

to indicate the probability of nodes in gsub to be preserved from g under the mapping m. Similarly,
we define

PE
ϕ (gsub, g,m) =

∏
u,v∈V (gsub)

1(u,v)∈E(gsub)p(em(u),m(v)) + (1− 1(u,v)∈E(gsub))(1− p(em(u),m(v)))

to indicate the probability of edges on gsub to be preserved from g under the mapping m. Note that
if em(u),m(v) doesn’t exist on g, we can regard the probability p(em(u),m(v)) as 0. Overall, for a
subgraph instance gsub ∈ Ωg , the probability mass function pϕ(gsub|g) is calculated by

pϕ(gsub|g) =
∑

m∈Mgsub→g

PV
ϕ (gsub, g,m)× PE

ϕ (gsub, g,m)

The summation indicates that all possible subgraph matchings from gsub to g should be considered
when calculating the probability mass function pϕ(gsub|g).
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A.2 THE LIMITATION OF EXISTING WORKS

The main challenge in computing pϕ(gsub|g) lies in the Mgsub→g , which requires a subgraph matching
algorithm to find all valid matchings. In previous works, gsub is always regarded as an edge-weighted
variant of g, and the number of nodes in gsub is equivalent to that of g. In that case, the subgraph
matching set Mgsub→g degrades into a one-element set {m̄}, where m̄ is implicitly assumed to be
known. Specifically, m̄ is the mapping of each node of the weighted gsub to the corresponding node
of the unweighted g. However, for the smaller subgraphs gsub, where |V (gsub)| < |V (g)|, there may
exist multiple valid subgraph matchings, i.e., |Mgsub→g| > 1. Considering only one mapping m̄
leads to an inaccurate estimation of pϕ(gsub|g).
Moreover, defining a prior distribution r(Gsub) over graphs is equally challenging as computing
pϕ(gsub|g). Designating a real prior graph distribution requires defining a graph generation process,
and evaluating the likelihood of an instance under such a prior distribution encounters similar dif-
ficulties when calculating pϕ(gsub|g). Hence, avoiding the graph prior is crucial for the graph MI
estimation or calculating MI bounds.

A.3 THE RATIONALE OF THE qθ(gSUB|g) FOR APPROXIMATING pϕ(gSUB|g)

Instead of calculating pϕ(gsub|g) by finding the exact Mgsub→g , we approximate pϕ(gsub|g) by a
variational distribution qθ(gsub|g), which is implemented by graph neural networks. The reason is
that the computation of Mgsub→g is extremely time-consuming and intractable (NP-hard) for general
graphs. In addition, we use the CLUB to calculate the upper bound of I(Gsub;G), which solely
relies on qθ(gsub|g) and avoids considering the prior r(Gsub).

A.4 TRAINING ALGORITHM OF GEMINI

Algorithm 1: The training scheme of GEMINI
Input : Data distribution p(G, Y ), networks gϕ, qθ, and qω , number of training epochs NP ,

number of batches NB , batch size K.
Output: Optimized parameters ϕ, θ, ω.
for i = 1, · · · , NP do

for j = 1, · · · , NB do
Sample a mini-batch of data {(G(1), Y (1)), · · · , (G(K), Y (K))} from p(G, Y ).
Optimize qθ by minimizing the objective in Eq. 8; fix gϕ (and qω).
Optimize qω by maximizing the objective in Eq. 4; fix gϕ (and qθ).
Optimize gϕ by minimizing the objective in Eq. 13; fix qθ and qω .

end
end

A.5 DETAILS OF THE ADOPTED DATASETS.

We elaborate on the details of the adopted datasets in the experiments: (1) MUTAG (Debnath et al.,
1991) is a molecule property prediction dataset. Each molecule graph is labeled as mutagenic or not.
(2) MNIST-75sp (Knyazev et al., 2019) is an image classification dataset converted from images in
the MNIST dataset. Each graph is with no more than 75 superpixels in which digital superpixels in-
dicate ground truth explanations. (3) MOLHIV (Wu et al., 2018; Hu et al., 2020) is another molecule
dataset for which the goal is to predict whether a molecule has the ability to inhibit HIV replication.
(4) Graph-SST2 (Yuan et al., 2020) is a graph sentiment classification dataset in which each graph
is converted from a sentence. Nodes represent tokens and edges indicate token correlations. (5)
Spurious-Motif (Ying et al., 2019; Wu et al., 2022) s a synthetic dataset including specific motif
patterns that determine graph labels. Each graph instance also includes a background pattern, which
has a spurious correlation with the motif pattern. The spurious correlation strength is controlled by
a parameter b indicating that a motif and a specific background pattern exist simultaneously with
probability b. We denote this dataset with parameter b as SPMotif (b). Three kinds of motifs (the
5-node house, 5-node circle, and 5-node crane) and three background patterns (the tree, wheel, and
ladder) are predetermined. The spurious relation does not exist in the test set.
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Table 3: Comparison of spurious score between GEMINI and GSAT.
SPMotif (0.9) SPMotif (0.7)

Spurious Score Prediction Score Spurious Score Prediction Score
GSAT 0.0985 0.7517 0.0108 0.7711

GEMINI 0.0708 0.7776 0.0029 0.9123

A.6 SPURIOUS SCORE COMPARISON

To investigate the resistance to spurious signals appearing in datasets, we calculate the spurious score
and predictive score for the proposed method GEMINI and GSAT. We select three checkpoints from
SPMotif (0.9) and SPMotif (0.7) for both methods and randomly generate 3000 spurious graphs for
evaluation. Each spurious graph is generated by randomly selecting a motif graph and a base graph
and then assembling the two. For each spurious graph gi, we denote its label as yi (determined by
its motif graph) and its spurious-aligned class as si (determined by its base graph). The spurious-
aligned class is the label of motif graph with which a spurious base graph is correlated in the training
set SPMotif (0.9) and SPMotif (0.7). For example, in SPMotif (0.9), a spurious base graph tree has
a probability of 0.9 to appear with a motif graph house together. Since the label for house is 0,
the spurious-aligned class for tree is 0. In the evaluation dataset, we ensure yi ̸= si for each gi.
Referring to the established work (Adebayo et al., 2021), we define the spurious score as follows:

SpurScore =
1

N

N∑
i=1

f(gi)[si] (14)

where f(gi) is the output probabilities of a model, i.e., a three-dimensional vector in our setting.
N is the number of evaluation samples, i.e., 3000 in this experiment. The spurious score indicates
the average probability of a model mistakenly predicting a graph to its spurious class. Similarly, we
calculate the prediction score as follows.

PredScore =
1

N

N∑
i=1

f(gi)[yi] (15)

The prediction score indicates the average probability of a model correctly predicting a graph to its
groundtruth class.

The results are shown in Table 3, we can find that for models trained from both datasets, the spurious
score of GEMINI is smaller than that of GSAT. Moreover, the prediction score of GEMINI is sig-
nificantly better than that of GSAT, especially when the spurious signal is moderate, e.g., SPMotif
(0.7). These results verify the superior resistance and robustness against spurious signals compared
to GSAT. In the future, we hope to theoretically analyze the capability and possibility of the proposed
methods regarding the removal of spurious information.
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