
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BRIDGING INPUT FEATURE SPACES TOWARDS
GRAPH FOUNDATION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Unlike vision and language domains, graph learning lacks a shared input space,
as input features differ across graph datasets not only in semantics, but also in
value ranges and dimensionality. This misalignment prevents graph models from
generalizing across datasets, limiting their use as foundation models. In this
work, we propose ALL-IN, a simple and theoretically grounded method that
enables transferability across datasets with different input features. Our approach
projects node features into a shared random space and constructs representations
via covariance-based statistics, thus eliminating dependence on the original feature
space. We show that the computed node-covariance operators and the resulting node
representations are invariant in distribution to permutations of the input features.
We further demonstrate that the expected operator exhibits invariance to general
orthogonal transformations of the input features. Empirically, ALL-IN achieves
strong performance across diverse node- and graph-level tasks on unseen datasets
with new input features, without requiring architecture changes or retraining. These
results point to a promising direction for input-agnostic, transferable graph models.

1 INTRODUCTION

Foundation models have shown remarkable success in domains such as language and vision, where
large-scale pretraining enables strong performance across a wide range of downstream tasks. A
similar goal has emerged for graph learning: to develop graph foundation models that generalize
across tasks, domains, and datasets (Mao et al., 2024). However, a key obstacle in this direction is the
lack of transferability across graphs, as knowledge learned from one graph is often difficult to apply
to another due to fundamental differences in their structure and, critically, their input features.

Unlike vision or language data, graph datasets typically do not share a common input space. Node
features often differ significantly not only in distribution and semantics but also in dimensionality
from one graph to another. Furthermore, graphs themselves may vary in size, sparsity, and topological
patterns. These mismatches break many of the assumptions that underlie successful generalization in
other domains, making it difficult to define a common representation space or pretraining strategy.

Existing approaches to graph foundation models fall into two broad categories. The first integrates
LLMs by serializing graph data into text or designing prompt-based mechanisms (Liu et al., 2024;
Zhao et al., 2023; Chen et al., 2024b; Fatemi et al., 2024; Perozzi et al., 2024; Chen et al., 2024a; Zhao
et al., 2023; He and Hooi, 2024; Huang et al., 2023; Tang et al., 2024; Kim et al., 2024; Zhao et al.,
2024a; Gong et al., 2024; Sun et al., 2022; 2023), leveraging LLM capabilities but often discarding
fine-grained graph properties. The second direction aims to explicitly align or adapt feature spaces
across datasets using techniques like input projections (Xia and Huang, 2024; Yu et al., 2024; Zhao
et al., 2024a), specialized encoders (Lachi et al., 2024), structuralization (Frasca et al., 2024), or order
statistics (Shen et al., 2025). However, these methods often remain specialized to particular settings
or tasks, or may require careful adaptation to new scenarios.

In this work, we propose a novel approach, grounded in statistical principles, to overcome input
feature heterogeneity (Figure 1). Our method first projects potentially disparate node features into a
common, high-dimensional space using a stochastic projection matrix. We then leverage second-order
statistics within this space using covariance operators. Specifically, we model feature dimensions
as independent and identically distributed samples from an unknown distribution over the nodes,
and compute the empirical node-covariance matrix based on these projected representations. This

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

��������

���������

❌

✅

(a) Motivation: The challenge of varying input features

NodeCov
(
R(0)

)
NodeCov(AR(0)) NodeCov(A2R(0)) NodeCov(A3R(0))

NodeCov
(
R(0)

)
NodeCov(AR(0)) NodeCov(A2R(0)) NodeCov(A3R(0))

NodeCov
(
R(0)

)
NodeCov(AR(0)) NodeCov(A2R(0)) NodeCov(A3R(0))

(b) ALL-IN consistent node-covariance operators

Figure 1: Addressing feature heterogeneity with ALL-IN’s node-covariance operators. (a) When
a GNN is trained on graph data with node features X of dimension d, it cannot be directly applied on
graphs with features of a different dimensionality d′. (b) ALL-IN computes n× n node-covariance
operators, capturing node similarities, providing a common space that is independent of the original,
heterogeneous, feature spaces. Different node colors indicate distinct node features.

matrix captures pairwise node similarities based on how their projected features co-vary, providing a
representation inherently robust to changes in feature semantics, value, and dimensionality.

We introduce ALL-IN (All Input spaces), a graph learning framework built upon this principle.
Instead of directly processing raw node features in downstream layers, ALL-IN utilizes the computed
stochastic node-covariance matrix (and its higher-order variants), as shown in Figure 1, as a graph
operator within a graph neural network (GNN). This node-covariance matrix captures interactions
between nodes, specifically, how similar two nodes are in terms of their feature activations across
the feature dimensions. Our theoretical analysis reveals significant robustness properties: (a) The
computed operators and, critically, the resulting node representations throughout the GNN are
invariant in distribution to arbitrary permutations of the original input features; (b) The expected
operator is invariant to general orthogonal transformations (basis changes) of the input features;
(c) The overall method is inherently insensitive to dimensional mismatches across datasets. We further
identify qualitative conditions under which covariance-based representations retain task-relevant
information and enable transfer across datasets with different input features.

Our empirical results confirm the efficacy of this approach: ALL-IN achieves strong transfer perfor-
mance to new datasets with new input features across diverse node- and graph-level tasks. As a result,
ALL-IN offers a promising approach toward the development of graph foundation models.

2 RELATED WORK

Graph Foundation Models (GFMs). GFMs aim to learn representations that generalize across
datasets and tasks, but achieving robust generalization remains challenging, especially when node
features change. Some approaches integrate LLMs by converting graphs to text or embedding features
through prompt-based designs (Liu et al., 2024; Zhao et al., 2023; Chen et al., 2024b; Fatemi et al.,
2024; Perozzi et al., 2024; Chen et al., 2024a; Zhao et al., 2023; He and Hooi, 2024; Huang et al.,
2023; Tang et al., 2024; Kim et al., 2024; Zhao et al., 2024a; Gong et al., 2024; Sun et al., 2022; 2023),
or by generating or augmenting graphs with LLM guidance before training a graph encoder (Xia et al.,
2024), but this can lead to loss of structural details. Text-attributed GFMs further learn transferable
vocabularies or automatically search architectures on such LLM-derived features (Wang et al., 2024;
Chen et al., 2025a), which improves transfer within TAGs but does not directly handle non-textual
node attributes. Other works align feature spaces through projections (Xia and Huang, 2024; Yu
et al., 2024; Zhao et al., 2024a; Fang et al., 2023) and multi-domain feature or structure aligners with
prompts or mixtures-of-experts (Yu et al., 2025; Yuan et al., 2025), perceiver-based encoders (Lachi
et al., 2024), computing analytical solutions (in the case of node classification) (Zhao et al., 2024b),
encoding features into the graph structure (Frasca et al., 2024; Galkin et al., 2024; Wang and Luo,
2024; Franks et al., 2025) or learning shared structural vocabularies in Riemannian spaces (Sun et al.,
2025), or encoding feature relationships (Shen et al., 2025). While these methods advance GFM
capabilities, they often require task-specific adaptations, leaving a gap for truly input-space-agnostic

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

�������

Figure 2: The ALL-IN Architecture. Input node features X are first randomly projected into R(0).
This R(0) serves as initial node representations H(0). Concurrently, R(0) and its propagated versions
(e.g., R(p) = ApR(0)) are used to compute a set of node-covariance matrices {K(p)}kp=0 capturing
diverse orders of feature-based node similarities. These matrices are used as operators within different
GNN (sub-)layers, whose outputs are concatenated to form the updated node representation.

solutions. ALL-IN offers a distinct path: it creates transferable representations by processing arbitrary
input features through stochastic projections and node-covariance operators, enabling frozen-encoder
transfer without task- or domain-specific prompts or architectural changes.

Structural and Positional Encodings. Efforts to create universal graph representations include
transferable structural and positional encodings (SPEs) (Rampášek et al., 2022; Cantürk et al., 2024;
Chen et al., 2025b; Kim et al., 2024). SPEs aim to capture graph topology in a feature-agnostic
manner, often within Graph Transformers or GNNs. While such SPEs can complement node features,
ALL-IN directly addresses the challenge of heterogeneous node features themselves, transforming
them into a robust, transferable format using their covariance structure, irrespective of any additional
SPEs.

Covariance networks. Covariance matrices have also informed the design of neural networks. For
instance, coVariance Neural Networks (VNNs) (Sihag et al., 2022) process d× d sample covariance
matrices, with d the input feature dimension, which describe feature inter-correlations, offering
benefits like stability to varying sample sizes and inspiring extensions for fairness (Cavallo et al.,
2025) and sparsity (Cavallo et al., 2024). Other related efforts focus on transferring principal
components derived from data covariance (Hendy and Dar, 2024). While these methods analyze
relationships between features using sample covariance matrices, ALL-IN constructs an n× n node-
covariance matrix, with n number of nodes. This operator quantifies similarities between pairs of
nodes based on how their (randomly projected) features co-vary across dimensions. This distinct
formulation is tailored to building transferable representations from graphs with heterogeneous node
features, addressing a challenge different from that targeted by the aforementioned approaches.

3 METHOD

Our method, ALL-IN, replaces dataset-specific raw node features with covariance-based operators that
are better suited for generalization across input feature spaces. The approach comprises three main
stages: (1) Random Feature Projection to map input features to a shared space, (2) Node-Covariance
Operator computation to capture robust node similarities, and (3) Operator-based Propagation to
learn transferable node representations. An overview of ALL-IN can be found in Figure 2.

Random Feature Projections. Given a graph with n nodes and node feature matrix X ∈ Rn×d,
where the input dimension d may vary across graph datasets, we first apply a random linear trans-
formation to project the features into a unified fixed-dimensional space h that is shared across
datasets:

R(0) = XC, with vec(C) ∼ N (0, Idh) sampled at each forward pass, (1)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

that is, C ∈ Rd×h is an isotropic Gaussian random weight matrix sampled independently at each
forward pass. This step is key to ensuring that our approach is invariant (in distribution) to feature
permutations, as we discuss in Section 4.

Node-Covariance Operators. We treat each column of R(0) as an i.i.d. signal over the nodes and
compute the node-covariance matrix to capture second-order relationships (node similarities) based
on feature co-variation across the latent dimensions:

K(0) = NodeCov(R(0)) =
1

h
R(0)

c R(0)
c

T
∈ Rn×n, (2)

where R
(0)
c ∈ Rn×h is the centered projected feature matrix defined by R

(0)
c = R(0) − 1nr̄ with

r̄ = 1
n

∑n
i R

(0)
i ∈ R1×h the empirical mean of the projected node features, and 1n ∈ Rn×1 the

all-ones vector. This centering operation is equivalent to pre-multiplying by the geometric centering
matrix Πc = In − 1

n1n1
T
n , i.e., R(0)

c = ΠcR
(0). The resulting K(0) is an n× n matrix reflecting

node similarities in the projected feature space. An interesting property is that if we consider two
nodes u and v with feature vectors Xu and Xv = −Xu, then their auto-covariance terms in K(p)

coincide, but their rows K(p)
u and K

(p)
v differ in the cross-covariance entries with other nodes because

their signs flip, so message passing based on K(p) can still distinguish them.

To integrate structural information with feature similarities, we compute higher-order covariance
matrices based on propagated features. Specifically, for each p = 1, 2, . . . , k, we first perform
message passing on the initial projected features R(0) using the graph’s adjacency matrix A:

R(p) = ApR(0).

Then, we compute the covariance matrix on these propagated, centered features R(p)
c = ΠcR

(p):

K(p) = NodeCov(R(p)) =
1

h
R(p)

c R(p)
c

T
∈ Rn×n. (3)

The operator K(p) captures node similarities based on features aggregated from neighborhoods up to
p hops away, thus encoding increasingly global structural context in the graph.

Node Representations. We collect a set of graph operators, which includes the identity matrix I ,
the adjacency matrix A, and the computed node-covariance matrices K = {K(p)}kp=0:

O = {I,A,K(0),K(1), . . . ,K(k)}. (4)

Instead of using the original node features, we rely on the random projections R(0), potentially
augmented with structural encodings, such as random-walk encodings (Dwivedi et al., 2022a). That
is, we let H(0) be

H(0) = R(0) ⊕ S (5)

where ⊕ indicates concatenation and S ∈ Rn×hs is a structural encoding matrix. We note that,
although the node-covariance operators K(p) capture second-order statistics, ALL-IN maintains
first-order information: the projected features R(0) are used directly as part of the initial node
representations H(0) in Equation (5). For example, if two nodes u and v have feature vectors Xu

and Xv = −Xu, then their projected features satisfy R
(0)
u = XuC and R

(0)
v = −XuC, so they

are distinguishable in H(0).

At each layer ℓ = 1, . . . , L, we propagate the current node representations using every operator
O ∈ O, and concatenate the outputs to obtain the updated representations:

H(ℓ) =
⊕

O∈O

GNNLayer(ℓ,O)(H(ℓ−1),O), (6)

where GNNLayer(ℓ,O) is the GNN layer associated with operator O ∈ O in layer ℓ, taking as
input H(ℓ−1) and performing message passing using O as the operator, using learnable weights
W (ℓ,O) ∈ Rh(ℓ−1)×h(ℓ)

and h(0) = h+ hs.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

In the presence of edge features, which, similarly to node features, may vary across datasets, we
employ an analogous strategy. Specifically, we first project the edge features into a fixed-dimensional
space using an isotropic Gaussian random weight matrix, yielding edge representations that are
independent of feature dimensionality. Then, we aggregate these projected edge features at the
node level (e.g., by averaging features of incoming edges for each node) to obtain node-level
representations R(0)

edge derived from edges. We then compute node-covariance matrices K(p)
edge based

on these aggregated (and potentially propagated) features, similar to Equation (3). Finally, we
add these edge-derived covariance operators Kedge = {K(0)

edge, . . . ,K
(k)
edge} to the operator set O

(Equation (4)). This allows the model (Equation (6)) to incorporate edge information while remaining
compatible across datasets with differing edge feature spaces.

4 THEORETICAL INSIGHTS

This section establishes the theoretical foundations underpinning the ability of ALL-IN to handle
heterogeneous input features and enable generalization across datasets. A core contribution is proving
the method’s robustness to variations in feature representation. We first demonstrate that the node-
covariance operators and the resulting node representations are invariant in distribution to arbitrary
permutations of the input features, providing robustness to feature re-ordering. We then show that
the expected node-covariance operator is invariant to general orthogonal transformations, ensuring
robustness to the choice of orthonormal basis (Section 4.1). Building on these properties, we validate
the stochastic training procedure using Jensen’s inequality under standard convexity assumptions
(Section 4.2). Finally, we discuss conditions supporting transferability, analyzing scenarios where the
operator remains stable across graphs with differing feature distributions and proving its consistency
for large projection dimensions (Section 4.3). All proofs are provided in Appendix B.

4.1 INVARIANCE TO FEATURE SPACE TRANSFORMATIONS

A primary obstacle to cross-dataset transfer is the lack of feature standardization, leading to arbitrary
differences in feature ordering and basis choice across datasets. Our approach, centered on node-
covariance after random projection, inherently addresses these issues through invariance properties.
First, the use of random isotropic Gaussian projections renders the process statistically insensitive to
the order of input features. We formalize this by showing that the distribution of the projected feature
matrix remains unchanged when the original features are permuted.
Proposition 4.1 (Distributional Invariance of Projected Features to Feature Permutation). Let X ∈
Rn×d be node features, P ∈ Rd×d be any permutation matrix, and h be the projection dimension.
Let C ∈ Rd×h be an isotropic Gaussian random matrix (i.e., vec(C) ∼ N (0, Idh). Define the
projected features as R(0) = XC and the features projected after permutation as R̄(0) = (XP )C.

Then R(0) and R̄(0) are equal in distribution: R(0) d
= R̄(0).

In essence, Proposition 4.1 establishes that random projections effectively “mix” features, rendering
their original ordering statistically irrelevant after projection. More importantly, the permutation
invariance is characterized in distribution, rather than pointwise: for a fixed random projection C, the
features in R(0) retain sensitivity to input permutations, thereby enabling a neural network to better
capture the relationships between node features and topology.

To illustrate this concept, consider three nodes u, v, w ∈ V with features Xu = (0, 1), Xv = (0, 1),
and Xw = (1, 0). Under strict (pointwise) permutation invariance, the embeddings of all nodes
would be equivalent, obscuring the key distinction that u and v share identical features, whereas w
has a different feature. In contrast, distributional invariance ensures that the distributions of R(0)

u ,
R

(0)
v , and R

(0)
w are identical, yet individual forward passes yield different outcomes: given C, we

have R
(0)
u = R

(0)
v ̸= R

(0)
w . This property preserves the model’s ability to distinguish between nodes

u and v (which share the same features) and node w (which has a different feature), while maintaining
symmetry in the model’s statistical behavior, thus striking a balance between permutation invariance
and expressive power.

Next, we show that the NodeCov operators applied to the sequence {R(p)}kp=0 (as defined in
Equation (3)) yield features that are also distributionally invariant.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Corollary 4.2 (Distributional Invariance of Node Covariance Operators to Feature Permutation).
Let X ∈ Rn×d be node features, and P ∈ Rd×d be any permutation matrix. Let R(0) = XC be
the initial projected features. Let K = {K(p)}kp=0 be the set of node-covariance operators, where
K(p) = NodeCov(ApR(0)) is computed using the deterministic function NodeCov (Equation (3)),
and A is the adjacency matrix. It follows directly from the distributional invariance of R(0) that the
entire set of operators K is also invariant in distribution to permutations of the input features X .
That is, if K̄ is the set of operators computed using XP instead of X , then K d

= K̄.

The significance of Proposition 4.1 and Corollary 4.2 is substantial: it guarantees that the complete
statistical behavior of R(0) and the operators K(p) central to ALL-IN is fundamentally robust to
arbitrary input feature ordering, directly addressing a key source of heterogeneity across graph
datasets. This distributional invariance also extends to the hidden representations H(ℓ), for all
ℓ = 1 . . . L derived from these operators, as shown in Theorem B.1 in Appendix B.

The stochastic projection matrix C plays a critical role beyond enabling the distributionally invariance
properties discussed earlier; its use is intrinsically linked to the expressive capability of the learning
framework. Training with node-covariance operators NodeCov(R(0)) derived from these stochastic
projections offers advantages over relying on a single, deterministically computed covariance oper-
ator, such as NodeCov(X). While NodeCov(X) provides a stable, pointwise feature-permutation
invariant view of node similarities, it can obscure subtle but important distinctions between nodes.
In contrast, individual stochastic realizations NodeCov(R(0)) = NodeCov(XC) (for a specific C)
can preserve these finer-grained distinctions, providing richer and more varied signals to the GNN.
Theorem 4.3 formalizes this concept by demonstrating that there exist instances where the stochastic
operator NodeCov(XC) can distinguish nodes that the deterministic operator NodeCov(X) cannot.

Theorem 4.3 (Distinguishability through C). There exist node features X ∈ Rn×d, nodes
u, v ∈ V with Xu ̸= Xv such that NodeCov(X) makes u, v indistinguishable (automorphic),
but NodeCov(XC) (for a.s. all C) makes u, v distinguishable (not automorphic).

Finally, while distributional invariance covers permutations, analyzing the expected operator reveals
broader robustness to basis changes and identifies the structure captured on average, as we show next.

Theorem 4.4 (Expected Invariance to Orthogonal Transformations). Let X ∈ Rn×d be node features,
Q ∈ Rd×d be an orthogonal matrix, and h be the projection dimension. Consider a random projection
matrix C ∈ Rd×h with vec(C) ∼ N (0, Idh). Let NodeCov(R(0)) = 1

h (ΠcR
(0))(ΠcR

(0))T be the
Node Covariance operator (Equation (2)), where Πc = In − 1

n1n1
T
n is the centering matrix. Then,

the expected Node Covariance computed from the stochastically projected features is invariant to the
orthogonal transformation Q:

EC [NodeCov(XQC)] = EC [NodeCov(XC)] = ΠcXXTΠc (7)

where the expectation EC [·] is over the random sampling of C, and ΠcXXTΠc is the Gram matrix
of the centered original features.

Theorem 4.4 demonstrates that the expected operator is agnostic to any choice of orthonormal basis
(rotations, reflections, permutations) for the input features. Furthermore, identifying this stable
expectation as the Gram matrix of centered original features (ΠcXXTΠc) reveals that ALL-IN, on
average, recovers intrinsic, basis-invariant pairwise node similarities directly reflecting the original
data structure, irrespective of the specific random projection used.

4.2 TRAINING OBJECTIVE UPPER BOUND

ALL-IN computes the feature projection R(0) and node-covariance operator K(0) = NodeCov(XC)
using a stochastic projection matrix C sampled in each forward pass. We now validate this prac-
tical training approach by showing its connection to performance on the stable, expected final
representation EC [H(L)], assuming common convexity conditions for the final prediction layer.

Theorem 4.5 (Loss Upper Bound). Let H(L) ∈ Rn×h(L)

be the final node representations computed
by ALL-IN, dependent on the initial random projection C. Let ϕ : Rn×h(L) → Rn×t be the final
prediction layer, and let L(·,Y ) be the loss function comparing predictions to ground truth labels Y .

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance of ALL-IN on pre-training datasets compared to ALL-IN-SPECIALIZED which
is trained separately on each individual dataset. ALL-IN maintains highly competitive performance.

Method ZINC MOLESOL MOLHIV MOLTOX21 MNIST CIFAR10 MODELNET CUNEIFORM MSRC 21
(MAE ↓) (RMSE ↓) (ROC-AUC ↑) (ROC-AUC ↑) (ACC ↑) (ACC ↑) (ACC ↑) (ACC ↑) (ACC ↑)

TRAINED PER DATASET
ALL-IN-SPECIALIZED (0 props) 0.1480 1.22 72.65 69.37 94.03 39.96 37.24 85.19 91.65
ALL-IN-SPECIALIZED 0.1195 1.19 73.78 70.04 94.77 40.03 39.81 87.20 94.16

TRAINED ON ALL DATASETS
ALL-IN (0 props) 0.1557 1.28 72.74 68.19 94.57 40.11 37.11 89.88 97.51
ALL-IN 0.1237 1.29 74.49 68.20 95.22 40.08 39.37 91.17 98.08

Assume that the composite function f(H(L)) = L(ϕ(H(L)),Y ) is convex with respect to the final
node representations H(L). Then, our stochastic optimization objective provides an upper bound for
the loss of the expected representation:

L(ϕ(EC [H(L)]),Y )︸ ︷︷ ︸
Loss of Expected Representation

≤ EC [L(ϕ(H(L)),Y )]︸ ︷︷ ︸
Expected Loss (Training Objective)

(8)

where the expectation EC [·] is taken over the random projection matrix C.

This holds, for instance, if ϕ is a linear map or linear plus softmax, and L is cross-entropy or mean
squared error. Theorem 4.5 provides theoretical support for training with stochastic projections.
Equation (8) establishes that the expected loss minimized during training (RHS) serves as an upper
bound for the loss evaluated on the stable, expected final representation (LHS). Thus, minimizing the
empirical average loss (approximating the RHS) acts as a theoretically sound surrogate objective,
implicitly minimizing the loss associated with the expected representation, validating our stochastic
approach.

4.3 CONDITIONS FOR TRANSFERABILITY AND OPERATOR CONSISTENCY

Beyond invariance, achieving transfer across graphs with fundamentally different feature distributions
(X(1),X(2) for graphs G1, G2) relies on the stability of the underlying structure captured by the
expected operator, EC [K(0)] = ΠcXXTΠc. We posit that such stability can arise when graphs
share intrinsic properties. Plausible scenarios where such stability in the expected operator might arise
include graphs exhibiting similar relational structures tied to node features (e.g., comparable label
homophily if features reflect labels), originating from a shared underlying generative process (e.g.,
common SBM or graphon influencing features), or possessing similar distributions of node roles (e.g.,
hubs, bridges) if features are role-informative. In these cases, even if the specific feature realizations
differ, the resulting ΠcX

(i)(X(i))TΠc matrices may capture analogous relational structures.

For this potential transfer to be practically realized, the stochastic operator K(0)
h computed using a

finite projection dimension h must reliably estimate its expectation. This holds for large h.
Proposition 4.6 (Consistency of Projected Node Covariance). Let X ∈ Rn×d be node features. For
a projection dimension h, let C ∈ Rd×h be such that vec(C) ∼ N (0, Idh). Define the stochastic
node-covariance operator K

(0)
h = NodeCov(XC) = 1

h (ΠcXC)(ΠcXC)T , where Πc is the
centering matrix. Then, K(0)

h converges in probability to its expected value as h → ∞:

K
(0)
h

p−→ EC [K
(0)
h ] = ΠcXXTΠc as h → ∞. (9)

This consistency connects theory to practice. It shows that for a sufficiently large h, the operator
accurately reflects the stable expected operator ΠcXXTΠc. Therefore, if two graphs have aligned
expected operators (due to shared properties), using a large enough h allows ALL-IN to effectively
leverage these shared underlying structures, facilitating transfer across disparate feature spaces.

5 EXPERIMENTS

In this section, we empirically evaluate the ability of ALL-IN to learn transferable representations
from diverse graph datasets, and, critically, its capability to generalize to new datasets presenting
entirely new input features. Our experiments are designed to answer two primary research questions:

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Performance on unseen node classification datasets with new input features. ALL-IN
effectively transfers to new datasets with new features, often outperforming or matching SOTA.

Method CORA CITESEER PUBMED
(ACC ↑) (ACC ↑) (ACC ↑)

NON-PARAMETRIC BASELINES
LABEL PROPAGATION (Zhu and Ghahramani, 2002) 69.20 ± 0.00 51.30 ± 0.00 71.40 ± 0.00

SUPERVISED BASELINES
MLP 48.42 ± 0.63 48.56 ± 0.27 66.26 ± 1.53
GCN (Kipf and Welling, 2017) 78.86 ± 1.48 64.52 ± 0.89 74.49 ± 0.99
GIN (Xu et al., 2019) 67.10 ± 3.00 58.80 ± 2.20 68.40 ± 2.70

LLM-AUGMENTED GNNS
OFA (Liu et al., 2024) 76.10 ± 4.11 73.04 ± 2.88 75.61 ± 5.06
GLEM-LM (Chen et al., 2024b) 67.55 ± 3.53 66.00 ± 5.66 62.12 ± 0.07

LLM-BASED
GRAPHTEXT (Zhao et al., 2023) 75.41 ± 2.08 58.24 ± 0.26 63.70 ± 0.29
RWNN-LLAMA3-8B (Kim et al., 2024) 72.29 N/A N/A

GNN-BASED
ANYGRAPH (Xia and Huang, 2024) 62.60 ± 0.14 19.32 ± 0.37 70.73 ± 4.13
GRAPHANY (Zhao et al., 2024b) 79.36 ± 0.23 68.42 ± 0.39 76.30 ± 0.41
MDGPT (Yu et al., 2024) 43.36 ± 8.92 42.50 ± 9.78 51.91 ± 9.00
GCOPE (Zhao et al., 2024a) 35.54 ± 2.09 31.18 ± 4.35 32.87 ± 4.08
GPPT (Sun et al., 2022) 43.15 ± 9.44 37.26 ± 6.17 48.31 ±17.72
ALL-IN-ONE (Sun et al., 2023) 52.39 ±10.17 40.41 ± 2.80 45.17 ± 6.45
GPROMPT (Gong et al., 2024) 56.66 ±11.22 53.21 ±10.94 39.74 ±15.35
GPF (Fang et al., 2023) 38.57 ± 5.41 31.16 ± 8.05 49.99 ± 8.86
GPF-PLUS (Fang et al., 2023) 55.77 ±10.30 59.67 ±11.87 46.64 ±18.97
ULTRA (3G) (Galkin et al., 2024) 79.40 ± 0.00 67.40 ± 0.00 77.90 ± 0.00
SCORE (Wang and Luo, 2024) 81.80 ± 1.02 71.33 ± 0.27 82.93 ± 0.55
OpenGraph (Xia et al., 2024) N/A 58.58 58.40
RiemannGFM (Sun et al., 2025) N/A 66.38 76.20
AutoGFM (Chen et al., 2025a) 80.32 ±1.12 N/A 78.28 ±1.40

ALL-IN (0 props) 79.26 ± 1.08 65.96 ± 1.25 77.30 ± 0.47
ALL-IN 82.13 ± 0.97 69.12 ± 0.89 78.03 ± 0.82

(Q1) How does a single ALL-IN model, pre-trained jointly on a diverse collection of graph
datasets (each with its own input features and task), perform on these individual source
datasets compared to training a separate model for each dataset?

(Q2) How effectively do the representations learned by a pre-trained ALL-IN model transfer to
new, unseen datasets that may have entirely different input features and downstream tasks?

Next, we report our main experiments and refer to Appendix C for additional results (including time
complexity). Implementation details, dataset statistics, and hyperparameter configurations are in
Appendices D and E.

5.1 PERFORMANCE ON PRE-TRAINING SOURCE DATASETS (A1)

In this subsection, we assess the ability of ALL-IN to learn from a wide array of source datasets simul-
taneously, without significant performance degradation on the individual datasets it was pre-trained
on. This is needed for establishing its viability to obtain general-purpose pre-trained representations.

To test this, we pre-train a single ALL-IN encoder on a diverse corpus of nine graph datasets,
encompassing molecular data (ZINC (Dwivedi et al., 2023), OGBG-MOLHIV (Hu et al., 2020a),
OGBG-MOLESOL (Hu et al., 2020a), OGBG-MOLTOX21 (Hu et al., 2020a)), computer vision derived
graphs (MNIST (Dwivedi et al., 2023), CIFAR10 (Dwivedi et al., 2023), CUNEIFORM (Morris et al.,
2020), MSRC 21 (Morris et al., 2020)), and 3d shape (MODELNET (Wu et al., 2015)) with varying
tasks (classification and regression) and heterogeneous input features (differing dimensionalities,
types, value ranges and semantics). For each dataset-task pair, a dedicated prediction head is attached
to the shared ALL-IN component and trained to predict the corresponding target. We compare this
single, jointly-trained model against its specialist counterparts: nine separate instances of the ALL-IN
architecture, each trained from scratch on only one of the source datasets (ALL-IN-SPECIALIZED).

Results and Discussion. Table 1 confirms that ALL-IN not only successfully operates across datasets
with heterogeneous features but is also highly effective, achieving performance competitive with,

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

and at times superior to, specialized models. While the individually trained ALL-IN-SPECIALIZED
holds a slight edge on ZINC, MOLESOL, MOLTOX21, and MODELNET, the jointly-trained ALL-IN
demonstrates superior performance on the remaining 5 datasets. This advantage is particularly
notable on CUNEIFORM (91.17% vs. 87.20%) and MSRC 21 (98.08% vs. 94.16%), while also
outperforming ALL-IN-SPECIALIZED on MOLHIV, MNIST, and CIFAR10. We also observe a clear
advantage to using propagated operators, as the full model generally outperforms the (0 props) variant
(a version computed without propagated covariance operators) across the tasks.

Overall, these results strongly indicate that a single, jointly pre-trained ALL-IN encoder can learn
general-purpose representations from diverse data that remain highly competitive with, and in several
cases surpass, those obtained when learning on a single task.

5.2 TRANSFERABILITY TO UNSEEN DATASETS AND INPUT FEATURES (A2)

This subsection assesses the central hypothesis underlying our research: namely, that a single, pre-
trained ALL-IN model can effectively generalize to novel datasets characterized by distinct input
features. To evaluate this hypothesis, we maintain the pre-trained ALL-IN encoder frozen, thereby
ensuring that its learned representations remain unchanged. For each new dataset, which encompasses
a range of node and graph-level tasks and introduces previously unseen input features and target
label schemas, we instantiate and train a new prediction head using the frozen representations
extracted by ALL-IN. This approach enables us to isolate the generalizability of ALL-IN’s pre-trained
representations, providing a test of its ability to adapt to unfamiliar data distributions.

We compare ALL-IN against several categories of baselines: (1) the non-parameteric baseline Label
Propagation (Zhu and Ghahramani, 2002), on node classification tasks where it is applicable; (2)
standard supervised GNNs trained from scratch on the target datasets; (3) LLM-augmented GNNs; (4)
LLM-based methods; and (5) other GNN-based foundation models or transfer learning approaches.
We adhere to their prescribed protocols for adaptation on new datasets. We refer the reader to
Appendix C for this categorization.

Table 3: Performance on unseen graph classification
datasets with new input features. ALL-IN demonstrates
strong transferability to graph-level tasks with new fea-
tures, underscoring its versatility across different tasks
and its ability to handle different features.

Dataset MUTAG PROTEINS
(ACC ↑) (ACC ↑)

SUPERVISED BASELINES
MLP 67.20 ± 1.00 59.20 ± 1.00
GIN (Xu et al., 2019) 89.40 ± 5.60 76.20 ± 2.80

LLM-AUGMENTED GNNS
OFA (Liu et al., 2024) 61.04 ± 4.71 61.40 ± 2.99

GNN-BASED
MDGPT (Yu et al., 2024) 57.36 ±14.26 54.35 ±10.26
GPPT (SUN ET AL., 2022) 60.40 ±15.43 60.92 ± 2.47
ALL-IN-ONE (Sun et al., 2023) 79.87 ± 5.34 66.49 ± 6.26
GPROMPT (Gong et al., 2024) 73.60 ± 4.76 59.17 ±11.26
GPF (Fang et al., 2023) 68.40 ± 5.09 63.91 ± 3.26
GPF-PLUS (Fang et al., 2023) 65.20 ± 6.94 62.92 ± 2.78
ULTRA(3G) (Galkin et al., 2024) 63.33 ± 0.00 58.09 ± 0.00
SCORE (Wang and Luo, 2024) 85.33 ± 2.11 68.54 ± 1.47

ALL-IN (0 props) 92.50 ± 6.60 76.72 ± 3.19
ALL-IN 92.90 ± 6.34 78.20 ± 3.81

Results and Discussions. ALL-IN demon-
strates robust transferability across both
node-level (Table 2) and graph-level (Ta-
ble 3) tasks on unseen datasets with new
input features. ALL-IN not only signifi-
cantly surpasses the performance of stan-
dard supervised GNNs trained from scratch
on these target datasets, but also outper-
forms recent state-of-the-art graph foun-
dation models. On node classification
benchmarks (Table 2), ALL-IN consis-
tently demonstrates strong transfer capa-
bilities. For instance, on CORA (Kipf
and Welling, 2017), it obtains an ac-
curacy of 82.13% which not only sur-
passes standard supervised GCN (78.86%),
but it also exceeds leading baselines like
SCORE (Wang and Luo, 2024) (81.80%)
and GRAPHANY (Zhao et al., 2024b)
(79.36%). This strong performance ex-
tends to graph classification tasks (Table 3).
On MUTAG (Morris et al., 2020), ALL-IN
achieves 92.90% accuracy, exceeding both
the supervised GIN baseline (89.40%) and state of the art methods like SCORE (85.33%) and
ALL-IN-ONE (Sun et al., 2023) (79.87%). Furthermore, consistent with observations on the source
datasets in Section 5.1, the inclusion of propagated covariance operators in ALL-IN enhances transfer
performance compared to ALL-IN (0 props).

These results provide evidence that a single pre-trained ALL-IN encoder produces effective, general-
purpose representations. These representations readily adapt to both node and graph-level tasks on new

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

datasets with new features, maintaining a versatility that provides a strong advantage over specialized
models (GRAPHANY (Zhao et al., 2024b), GRAPHTEXT (Zhao et al., 2023), GCOPE (Zhao et al.,
2024a), ANYGRAPH (Xia and Huang, 2024)), only supporting node classification.

6 CONCLUSION

Input feature heterogeneity critically limits the development of Graph Foundation Models (GFMs).
Our ALL-IN offers a theoretically-grounded solution, processing arbitrary node features through
stochastic projections and node-covariance operators to build robust representations independent
of the original feature space. We prove that these representations achieve distributional invariance
to input feature permutations, and their underlying expected operator is invariant to orthogonal
basis changes, thereby helping capture robust intrinsic structures of the data. The empirical transfer
performance of ALL-IN across new datasets with disparate features demonstrates its potential to
mitigate the challenges posed by feature heterogeneity, contributing to the development of GFMs.

Limitations and Future Work. The scalability of ALL-IN on extremely large graphs may be
constrained by its dense covariance operators, in case direct access to the covariance operators are
required, similarly to graph transformers; developing sparse approximations presents a key avenue
for future research. Another promising direction involves exploring structured or learnable input
feature projections as alternatives to the random Gaussian projections. Notably, as discussed in
Appendix C.17, in common GNNs, we can avoid the storage of dense covariance operators, thereby
achieving improved scalability.

Reproducibility Statement. All code, model architectures, training scripts, and hyperparameter
settings will be made fully public upon acceptance. We carefully document dataset details in
Appendix D and implementation details in Appendix E.

Ethics Statement. Our work is primarily methodological and presents minimal direct ethical
concerns. All experiments are conducted on publicly available benchmark datasets widely used in
the graph machine learning community, and we have used these datasets in accordance with their
established licensing and terms of use. While our contribution is foundational, we advocate for
the responsible application of transferable graph models. We caution against their use in analyzing
sensitive social or personal data without appropriate safeguards and ethical oversight.

Usage of Large Language Models in This Work. LLMs were used in this work for text editing
suggestions. All concepts, theoretical analysis, code development, and original writing were carried
out by the authors.

REFERENCES

Beatrice Bevilacqua, Joshua Robinson, Jure Leskovec, and Bruno Ribeiro. Holographic node
representations: Pre-training task-agnostic node embeddings. In The Thirteenth International
Conference on Learning Representations, 2025.

Lukas Biewald. Experiment tracking with weights and biases, 2020. URL https://www.wandb.
com/. Software available from wandb.com.

Semih Cantürk, Renming Liu, Olivier Lapointe-Gagné, Vincent Létourneau, Guy Wolf, Dominique
Beaini, and Ladislav Rampášek. Graph positional and structural encoder. In Forty-first International
Conference on Machine Learning, 2024.

Andrea Cavallo, Zhan Gao, and Elvin Isufi. Sparse covariance neural networks. arXiv preprint
arXiv:2410.01669, 2024.

Andrea Cavallo, Madeline Navarro, Santiago Segarra, and Elvin Isufi. Fair covariance neural networks.
In ICASSP 2025-2025 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 1–5. IEEE, 2025.

Haibo Chen, Xin Wang, Zeyang Zhang, Haoyang Li, Ling Feng, and Wenwu Zhu. AutoGFM:
Automated graph foundation model with adaptive architecture customization. In Forty-second

10

https://www.wandb.com/
https://www.wandb.com/


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

International Conference on Machine Learning, 2025a. URL https://openreview.net/
forum?id=fCPB0qRJT2.

Jialin Chen, Haolan Zuo, Haoyu Peter Wang, Siqi Miao, Pan Li, and Rex Ying. Towards a universal
graph structural encoder. arXiv preprint arXiv:2504.10917, 2025b.

Runjin Chen, Tong Zhao, Ajay Kumar Jaiswal, Neil Shah, and Zhangyang Wang. LLaGA: Large
language and graph assistant. In Forty-first International Conference on Machine Learning, 2024a.

Zhikai Chen, Haitao Mao, Hang Li, Wei Jin, Hongzhi Wen, Xiaochi Wei, Shuaiqiang Wang, Dawei
Yin, Wenqi Fan, Hui Liu, and Jiliang Tang. Exploring the potential of large language models (llms)
in learning on graphs. ACM SIGKDD Explorations Newsletter, 25(2):42–61, 2024b.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
graph neural network. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=n6jl7fLxrP.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Graph neural networks with learnable structural and positional representations. In International
Conference on Learning Representations, 2022a.

Vijay Prakash Dwivedi, Ladislav Rampášek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan Luu,
and Dominique Beaini. Long range graph benchmark. Advances in Neural Information Processing
Systems, 35:22326–22340, 2022b.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. Benchmarking graph neural networks. Journal of Machine Learning Research, 24
(43):1–48, 2023.

Taoran Fang, Yunchao Zhang, Yang Yang, Chunping Wang, and Lei Chen. Universal prompt tuning
for graph neural networks. Advances in Neural Information Processing Systems, 36:52464–52489,
2023.

Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi. Talk like a graph: Encoding graphs for large
language models. In The Twelfth International Conference on Learning Representations, 2024.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric, 2019.

Billy Joe Franks, Moshe Eliasof, Semih Cantürk, Guy Wolf, Carola-Bibiane Schönlieb, Sophie
Fellenz, and Marius Kloft. Towards graph foundation models: A study on the generalization of
positional and structural encodings. Transactions on Machine Learning Research, 2025. ISSN
2835-8856. URL https://openreview.net/forum?id=mSoDRZXsqj. Reproducibility
Certification.

Fabrizio Frasca, Fabian Jogl, Moshe Eliasof, Matan Ostrovsky, Carola-Bibiane Schönlieb, Thomas
Gärtner, and Haggai Maron. Towards foundation models on graphs: An analysis on cross-dataset
transfer of pretrained gnns. arXiv preprint arXiv:2412.17609, 2024.

Mikhail Galkin, Xinyu Yuan, Hesham Mostafa, Jian Tang, and Zhaocheng Zhu. Towards foundation
models for knowledge graph reasoning. In The Twelfth International Conference on Learning
Representations, 2024.

Jianfei Gao, Yangze Zhou, Jincheng Zhou, and Bruno Ribeiro. Double equivariance for inductive
link prediction for both new nodes and new relation types. arXiv preprint arXiv:2302.01313, 2023.

Vikas K. Garg, Stefanie Jegelka, and T. Jaakkola. Generalization and representational limits of graph
neural networks. In International Conference on Machine Learning, 2020.

Chenghua Gong, Xiang Li, Jianxiang Yu, Yao Cheng, Jiaqi Tan, and Chengcheng Yu. Self-pro: A
self-prompt and tuning framework for graph neural networks. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, pages 197–215. Springer, 2024.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 16000–16009, 2022.

11

https://openreview.net/forum?id=fCPB0qRJT2
https://openreview.net/forum?id=fCPB0qRJT2
https://openreview.net/forum?id=n6jl7fLxrP
https://openreview.net/forum?id=mSoDRZXsqj


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yufei He and Bryan Hooi. Unigraph: Learning a cross-domain graph foundation model from natural
language. ArXiv, abs/2402.13630, 2024.

Sharon Hendy and Yehuda Dar. Tl-pca: Transfer learning of principal component analysis. arXiv
preprint arXiv:2410.10805, 2024.

Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang, and Jie Tang.
Graphmae: Self-supervised masked graph autoencoders. In Proceedings of the 28th ACM SIGKDD
conference on knowledge discovery and data mining, pages 594–604, 2022.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in
neural information processing systems, 33:22118–22133, 2020a.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec.
Strategies for pre-training graph neural networks. In International Conference on Learning
Representations, 2020b. URL https://openreview.net/forum?id=HJlWWJSFDH.

Qian Huang, Hongyu Ren, Peng Chen, Gregor Kržmanc, Daniel Zeng, Percy S Liang, and Jure
Leskovec. Prodigy: Enabling in-context learning over graphs. Advances in Neural Information
Processing Systems, 36, 2023.

Xingyue Huang, Pablo Barceló, Michael M Bronstein, İsmail İlkan Ceylan, Mikhail Galkin, Juan L
Reutter, and Miguel Romero Orth. How expressive are knowledge graph foundation models?
arXiv preprint arXiv:2502.13339, 2025.

Jinwoo Kim, Olga Zaghen, Ayhan Suleymanzade, Youngmin Ryou, and Seunghoon Hong. Revisiting
random walks for learning on graphs. arXiv preprint arXiv:2407.01214, 2024.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017.

Divyansha Lachi, Mehdi Azabou, Vinam Arora, and Eva Dyer. GraphFM: a scalable framework for
multi-graph pretraining. arXiv preprint arXiv:2407.11907, 2024.

Jaejun Lee, Chanyoung Chung, and Joyce Jiyoung Whang. Ingram: Inductive knowledge graph
embedding via relation graphs. In International Conference on Machine Learning, pages 18796–
18809. PMLR, 2023.

Ron Levie. A graphon-signal analysis of graph neural networks. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023.

Renjie Liao, Raquel Urtasun, and Richard Zemel. A PAC-bayesian approach to generalization bounds
for graph neural networks. In International Conference on Learning Representations, 2021.

Hao Liu, Jiarui Feng, Lecheng Kong, Ningyue Liang, Dacheng Tao, Yixin Chen, and Muhan
Zhang. One for all: Towards training one graph model for all classification tasks. In The Twelfth
International Conference on Learning Representations, 2024.

Haitao Mao, Zhikai Chen, Wenzhuo Tang, Jianan Zhao, Yao Ma, Tong Zhao, Neil Shah, Mikhail
Galkin, and Jiliang Tang. Position: Graph foundation models are already here. In Forty-first
International Conference on Machine Learning, 2024.

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. In ICML 2020
Workshop on Graph Representation Learning and Beyond (GRL+ 2020), 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning
library, 2019.

12

https://openreview.net/forum?id=HJlWWJSFDH


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. In International Conference on Learning Representations, 2020.

Bryan Perozzi, Bahare Fatemi, Dustin Zelle, Anton Tsitsulin, Mehran Kazemi, Rami Al-Rfou, and
Jonathan Halcrow. Let your graph do the talking: Encoding structured data for llms. arXiv preprint
arXiv:2402.05862, 2024.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova.
A critical look at evaluation of gnns under heterophily: Are we really making progress? In The
Eleventh International Conference on Learning Representations, 2023.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural
Information Processing Systems, 35:14501–14515, 2022.

Yangyi Shen, Beatrice Bevilacqua, Joshua Robinson, Charilaos Kanatsoulis, Jure Leskovec, and
Bruno Ribeiro. Zero-shot generalization of gnns over distinct attribute domains. In International
Conference on Machine Learning, 2025.

Saurabh Sihag, Gonzalo Mateos, Corey McMillan, and Alejandro Ribeiro. covariance neural networks.
In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in
Neural Information Processing Systems, volume 35, pages 17003–17016. Curran Associates, Inc.,
2022.

Li Sun, Zhenhao Huang, Suyang Zhou, Qiqi Wan, Hao Peng, and Philip S. Yu. RiemannGFM:
Learning a graph foundation model from structural geometry. In THE WEB CONFERENCE 2025,
2025. URL https://openreview.net/forum?id=JrMdxOWILp.

Mingchen Sun, Kaixiong Zhou, Xin He, Ying Wang, and Xin Wang. Gppt: Graph pre-training and
prompt tuning to generalize graph neural networks. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pages 1717–1727, 2022.

Xiangguo Sun, Hong Cheng, Jia Li, Bo Liu, and Jihong Guan. All in one: Multi-task prompting
for graph neural networks. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 2120–2131, 2023.

Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Lixin Su, Suqi Cheng, Dawei Yin, and Chao Huang.
Graphgpt: Graph instruction tuning for large language models. In Proceedings of the 47th
International ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 491–500, 2024.

Antonis Vasileiou, Ben Finkelshtein, Floris Geerts, Ron Levie, and Christopher Morris. Cov-
ered forest: Fine-grained generalization analysis of graph neural networks. arXiv preprint
arXiv:2412.07106, 2024.

Antonis Vasileiou, Stefanie Jegelka, Ron Levie, and Christopher Morris. Survey on generalization
theory for graph neural networks. arXiv preprint arXiv:2503.15650, 2025.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph Attention Networks. International Conference on Learning Representations, 2018.

Kai Wang and Siqiang Luo. Towards graph foundation models: The perspective of zero-shot reasoning
on knowledge graphs. arXiv preprint arXiv:2410.12609, 2024.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon.
Dynamic graph cnn for learning on point clouds. ACM Transactions on Graphics (tog), 38(5):
1–12, 2019.

13

https://openreview.net/forum?id=JrMdxOWILp


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Zehong Wang, Zheyuan Zhang, Nitesh V Chawla, Chuxu Zhang, and Yanfang Ye. GFT: Graph
foundation model with transferable tree vocabulary. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024. URL https://openreview.net/forum?
id=0MXzbAv8xy.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong
Xiao. 3d shapenets: A deep representation for volumetric shapes. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 1912–1920, 2015.

Lianghao Xia and Chao Huang. Anygraph: Graph foundation model in the wild. arXiv preprint
arXiv:2408.10700, 2024.

Lianghao Xia, Ben Kao, and Chao Huang. Opengraph: Towards open graph foundation models. In
EMNLP, 2024.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In International conference on machine learning, pages 40–48. PMLR, 2016.

Xingtong Yu, Chang Zhou, Yuan Fang, and Xinming Zhang. Text-free multi-domain graph pre-
training: Toward graph foundation models. arXiv preprint arXiv:2405.13934, 2024.

Xingtong Yu, Zechuan Gong, Chang Zhou, Yuan Fang, and Hui Zhang. SAMGPT: Text-free graph
foundation model for multi-domain pre-training and cross-domain adaptation. In THE WEB CON-
FERENCE 2025, 2025. URL https://openreview.net/forum?id=eRljAllb2e.

Haonan Yuan, Qingyun Sun, Junhua Shi, Xingcheng Fu, Bryan Hooi, Jianxin Li, and Philip S.
Yu. How much can transfer? BRIDGE: Bounded multi-domain graph foundation model with
generalization guarantees. In Forty-second International Conference on Machine Learning, 2025.
URL https://openreview.net/forum?id=bjDKZ3Roax.

Kexin Zhang, Shuhan Liu, Song Wang, Weili Shi, Chen Chen, Pan Li, Sheng Li, Jundong Li,
and Kaize Ding. A survey of deep graph learning under distribution shifts: from graph out-of-
distribution generalization to adaptation. arXiv preprint arXiv:2410.19265, 2024a.

Yu Zhang and Qiang Yang. A survey on multi-task learning. IEEE transactions on knowledge and
data engineering, 34(12):5586–5609, 2021.

Yucheng Zhang, Beatrice Bevilacqua, Mikhail Galkin, and Bruno Ribeiro. TRIX: A more expressive
model for zero-shot domain transfer in knowledge graphs. In The Third Learning on Graphs
Conference, 2024b.

Haihong Zhao, Aochuan Chen, Xiangguo Sun, Hong Cheng, and Jia Li. All in one and one for all: A
simple yet effective method towards cross-domain graph pretraining. In Proceedings of the 30th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 4443–4454, 2024a.

Jianan Zhao, Le Zhuo, Yikang Shen, Meng Qu, Kai Liu, Michael Bronstein, Zhaocheng Zhu, and
Jian Tang. Graphtext: Graph reasoning in text space. arXiv preprint arXiv:2310.01089, 2023.

Jianan Zhao, Hesham Mostafa, Mikhail Galkin, Michael Bronstein, Zhaocheng Zhu, and Jian Tang.
Graphany: A foundation model for node classification on any graph. ArXiv, abs/2405.20445,
2024b.

Jincheng Zhou, Beatrice Bevilacqua, and Bruno Ribeiro. A multi-task perspective for link prediction
with new relation types and nodes. In NeurIPS 2023 Workshop: New Frontiers in Graph Learning,
2023.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations and effective designs. Advances in Neural
Information Processing Systems, 33, 2020.

Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with label propaga-
tion. ProQuest number: information to all users, 2002.

14

https://openreview.net/forum?id=0MXzbAv8xy
https://openreview.net/forum?id=0MXzbAv8xy
https://openreview.net/forum?id=eRljAllb2e
https://openreview.net/forum?id=bjDKZ3Roax


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A ADDITIONAL RELATED WORK

Generalization Theory of MPNNs. Significant theoretical progress has advanced our under-
standing of generalization in Message Passing Neural Networks (MPNNs). As discussed in recent
surveys (Vasileiou et al., 2025; Zhang et al., 2024a), these efforts often focus on how architectures and
graph properties (such as maximum degree) influence the generalization gap, employing analytical
tools like Rademacher complexity and PAC-Bayesian analysis to derive performance bounds (Garg
et al., 2020; Liao et al., 2021). Other lines of work, leveraging concepts like covering numbers
or graphon theory, investigate model stability and generalization under shifts in graph structure
or topology, particularly in large-scale or evolving graph scenarios (Levie, 2023; Vasileiou et al.,
2024). While these foundational theories provide important insights into GNN expressivity and their
ability to generalize, especially concerning structural variations, they typically assume a consistent
definition of the input feature space across different graphs. The cross-dataset generalization chal-
lenge that ALL-IN addresses is distinct: we specifically tackle scenarios where graphs present node
features from entirely different feature spaces, potentially varying in both the number of available
features (dimensionality) and their semantic meaning between train (source) and test (target) graphs.
Our theoretical framework (Section 4) therefore focuses on establishing principles for robustness
and transferability under such input feature space heterogeneity, aiming to complement existing
generalization theories that predominantly address structural changes.

Additional Efforts towards Graph Foundation Models. Another significant challenge in graph
transfer learning arises in settings like heterogeneous knowledge graphs, where models must gen-
eralize to unseen entities and relation types. Approaches such as ISDEA+ (Gao et al., 2023) and
MTDEA (Zhou et al., 2023) tackle this by employing set aggregation techniques over representa-
tions specific to edge types, aiming for equivariance to permutations of these types, supported by
a “double equivariance” theoretical framework. Similarly, methods like InGram (Lee et al., 2023),
ULTRA (Galkin et al., 2024), TRIX (Zhang et al., 2024b), and MOTIF (Huang et al., 2025) construct
explicit “relation graphs” to model interactions among different edge types. These works provide
valuable solutions for structural and relational heterogeneity. In contrast, ALL-IN primarily addresses
the distinct challenge of heterogeneity in input features, that is, varying feature dimensionalities
and semantics across graphs. While the aforementioned methods focus on generalizing over graph
schema and relation types (often assuming node features are not present), ALL-IN directly processes
arbitrary node features to derive transferable node-covariance operators and representations. Other
efforts in graph representation learning aim for transferability across diverse graph tasks. For example,
HoloGNN (Bevilacqua et al., 2025) proposes a framework to learn node representations that can be
applied to various downstream tasks on a given graph or graphs. However, such approaches typically
assume that the underlying node feature space remains consistent across these tasks. ALL-IN, con-
versely, is specifically designed to address the challenge of generalizing to new and unseen datasets
where the node features themselves can differ fundamentally in dimensionality and semantics, a
problem distinct from task-level transfer within a fixed feature domain.

B ADDITIONAL THEORETICAL CONSIDERATIONS AND PROOFS

Proposition 4.1 (Distributional Invariance of Projected Features to Feature Permutation). Let X ∈
Rn×d be node features, P ∈ Rd×d be any permutation matrix, and h be the projection dimension.
Let C ∈ Rd×h be an isotropic Gaussian random matrix (i.e., vec(C) ∼ N (0, Idh). Define the
projected features as R(0) = XC and the features projected after permutation as R̄(0) = (XP )C.

Then R(0) and R̄(0) are equal in distribution: R(0) d
= R̄(0).

Proof. Let C have columns c1, . . . , ch. Since the entries Cik are i.i.d N (0, 1), each column cj ∼
N (0, Id) and the columns are mutually independent.

Consider the matrix C̄ = P TC. Since P is a permutation matrix, P T is also a permutation matrix
and is orthogonal, that is P T (P T )T = P TP = Id.

The columns of C̄ are c̄j = P T cj . Since cj ∼ N (0, Id) and P T is orthogonal, then

c̄j ∼ N (P T0,P T Id(P
T )T ) = N (0,P TP ) = N (0, Id) (10)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Furthermore, since c1, . . . , ch are independent, the transformed columns c̄1, . . . , c̄h are also inde-
pendent. Thus, the matrix C̄ has the same distribution as C, i.e., C̄ d

= C.

Now consider R̄(0) = (XP )C. Since C
d
= C̄, we can write:

R̄(0) d
= (XP )C̄

Substitute C̄ = P TC:
R̄(0) d

= (XP )(P TC) = X(PP T )C

Since P is orthogonal, PP T = Id.

R̄(0) d
= XIdC = XC = R

Thus, R and R̄(0) are equal in distribution.

Corollary 4.2 (Distributional Invariance of Node Covariance Operators to Feature Permutation).
Let X ∈ Rn×d be node features, and P ∈ Rd×d be any permutation matrix. Let R(0) = XC be
the initial projected features. Let K = {K(p)}kp=0 be the set of node-covariance operators, where
K(p) = NodeCov(ApR(0)) is computed using the deterministic function NodeCov (Equation (3)),
and A is the adjacency matrix. It follows directly from the distributional invariance of R(0) that the
entire set of operators K is also invariant in distribution to permutations of the input features X .
That is, if K̄ is the set of operators computed using XP instead of X , then K d

= K̄.

Proof. Let gp(R(0)) = NodeCov(ApR(0)) be the deterministic function that computes the p-th
order node covariance operator from the initial projected features R(0). From Proposition 4.1, we
have R(0) d

= R̄(0). Since applying a deterministic function gp to random variables that are equal in

distribution results in outputs that are equal in distribution, we have gp(R
(0))

d
= gp(R̄

(0)), which

means K(p) d
= K̄(p) for each p = 0 . . . k. Furthermore, since all operators K(p) in K are derived

from the same R(0), and all operators K̄(p) in K̄ are derived from R̄(0), the distributional equality
extends to the joint distribution of the sets: K d

= K̄.

Theorem B.1 (Distributional Invariance of Hidden Representations to Input Permutation). Let
X ∈ Rn×d be node features, and P ∈ Rd×d be any permutation matrix. Let R(0) = XC be
the initial projected features, and K = {K(p)}kp=0 be the set of node-covariance operators. Let
the initial hidden representation be H(0) = R(0) ⊕ S, where S is a structural encoding matrix
independent of X . Subsequent hidden representations H(ℓ) for ℓ = 1, . . . , L are computed by a
deterministic GNN layer function.

The initial hidden representation H(0) and all subsequent hidden representations H(ℓ) for ℓ =
1, . . . , L are invariant in distribution to permutations of the input features X . That is, if H̄(ℓ) are the
representations computed using XP instead of X , then H(ℓ) d

= H̄(ℓ) for all ℓ.

Proof. We proceed by induction on the layer index ℓ.

Base Case (ℓ = 0). Let R(0) = XC and R̄(0) = (XP )C. The initial hidden representations
are H(0) = R(0) ⊕ S and H̄(0) = R̄(0) ⊕ S. From Proposition 4.1, we know that R(0) d

= R̄(0).
Since the structural encoding S is assumed independent of X (and thus fixed with respect to the
permutation P ), and the concatenation operation ⊕ is a deterministic function, applying this function
preserves the distributional equality. Therefore, H(0) = R(0) ⊕ S

d
= R̄(0) ⊕ S = H̄(0). The base

case holds.

Inductive Hypothesis. Assume that for some layer ℓ− 1 ≥ 0, the hidden representations are equal
in distribution: H(ℓ−1) d

= H̄(ℓ−1).

Inductive Step (Layer ℓ). The hidden representations at layer ℓ are computed as:

H(ℓ) = Fℓ(H
(ℓ−1),O)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

H̄(ℓ) = Fℓ(H̄
(ℓ−1), Ō)

where Fℓ represents the deterministic computation performed by the ℓ-th GNN layer (given fixed
learned weights), O = {I,A} ∪ K with K = {NodeCov(ApR(0))}kp=0, and Ō = {I,A} ∪ K̄ with
K̄ = {NodeCov(ApR̄(0))}kp=0.

From Corollary 4.2, we know that the set of random operators K is equal in distribution to K̄, i.e.,
K d

= K̄. Since I and A are fixed, the full set of operators used by the layer also satisfies O d
= Ō.

Now consider the inputs to the function Fℓ. The pair (H(ℓ−1),O) determines H(ℓ), and the
pair (H̄(ℓ−1), Ō) determines H̄(ℓ). Both H(ℓ−1) and O are deterministic functions of the ini-
tial projection R(0) (and fixed elements S,A, I , and layer weights). Let J be the function
representing the computation up to layer ℓ − 1 and the computation of operators, such that
(H(ℓ−1),O) = J(R(0),S,A, I,Weights) Similarly, (H̄(ℓ−1), Ō) = J(R̄(0),S,A, I,Weights).

Since R(0) d
= R̄(0) (Proposition 4.1) and J is a deterministic function, it follows that the joint

distribution of the outputs is preserved:

(H(ℓ−1),O)
d
= (H̄(ℓ−1), Ō)

This establishes that the inputs to the deterministic layer function Fℓ are equal in distribution.
Applying the deterministic function Fℓ preserves this equality:

H(ℓ) = Fℓ(H
(ℓ−1),O)

d
= Fℓ(H̄

(ℓ−1), Ō) = H̄(ℓ)

Thus, the inductive step holds.

Theorem 4.3 (Distinguishability through C). There exist node features X ∈ Rn×d, nodes
u, v ∈ V with Xu ̸= Xv such that NodeCov(X) makes u, v indistinguishable (automorphic),
but NodeCov(XC) (for a.s. all C) makes u, v distinguishable (not automorphic).

Proof. We will show that there exists X , u, v such that (1) nodes u and v are automorphic within
NodeCov(X), and consequently, the GNN, when using NodeCov(X) as the operator and identical
initial embeddings, produces identical final representations for these nodes. (2) For the same X , with
probability 1 (over the draw of C), nodes u and v are not automorphic and therefore distinguishable
in NodeCov(XC). We provide a constructive example. Let n = 3 nodes {u, v, w} and d = 3
features. Consider the feature matrix X:

X =



XT

u

XT
v

XT
w


 =

(
1 0 1
0 1 1
1 1 0

)

Here, Xu = (1, 0, 1)T , Xv = (0, 1, 1)T , and Xw = (1, 1, 0)T . Clearly, Xu ̸= Xv .

Proof for item (1). The column means of X are X̄col = (2/3, 2/3, 2/3)T . The centered feature
matrix Xc = ΠcX = X − 13X̄

T
col is:

Xc =

(
1/3 −2/3 1/3
−2/3 1/3 1/3
1/3 1/3 −2/3

)

Then

NodeCov(X) =

(
2/9 −1/9 −1/9
−1/9 2/9 −1/9
−1/9 −1/9 2/9

)
.

In the weighted graph defined by NodeCov(X), all nodes are automorphic to each other. If a GNN
uses NodeCov(X) as its feature-derived operator and starts with identical initial embeddings for
all nodes, standard message passing layers will preserve this symmetry, leading to identical final
representations H(L)

u = H
(L)
v = H

(L)
w . Thus, such a GNN cannot distinguish u from v.

Proof for item (2). Let R(0) = XC. The rows of R(0) are R(0)
u = XT

u C, R(0)
v = XT

v C, R(0)
w =

XT
wC. Since Xu ̸= Xv and C is drawn from a continuous distribution (Gaussian entries), XT

u C ̸=

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

XT
v C with probability 1. Thus, R(0)

u ̸= R
(0)
v almost surely. Let R(0)

c = ΠcR
(0). The rows of Rc are

R
(0)
c,u,R

(0)
c,v,R

(0)
c,w. Since R(0)

u ̸= R
(0)
v , it follows that R(0)

c,u ̸= R
(0)
c,v almost surely (unless Πc projects

their difference to zero, which is a measure zero event for a fixed X and random C). The operator is
K(0) = NodeConv(XC) = 1

hRcR
T
c . An element (K(0))ij =

1
hR

(0)
c,i ·R

(0)
c,j . Consider the specific

symmetry that existed for NodeConv(X), e.g., (NodeConv(X))uw = (NodeConv(X))vw = −1/9.
For K(0), we compare (K(0))uw = 1

hR
(0)
c,u ·R(0)

c,w and (K(0))vw = 1
hR

(0)
c,v ·R(0)

c,w. These are equal
if (R(0)

c,u −R
(0)
c,v) ·R(0)

c,w = 0. Since R
(0)
c,u −R

(0)
c,v ̸= 0 almost surely, and R

(0)
c,w is a random vector

(whose distribution depends on C), the event that their dot product is exactly zero has probability
0 for continuous distributions unless one of them is deterministically zero (which is not the case
here a.s.). Therefore, with probability 1, (K(0))uw ̸= (K(0))vw. This breaks the specific symmetry
that made node u and node v have equivalent relational profiles to node w in NodeCov(X). More
generally, the matrix K(0) will not, with probability 1, exhibit the high degree of symmetry found
in NodeCov(X) for this specific X . Thus, nodes u and v will generally not be automorphic with
respect to K(0) in the same way they were for NodeCov(X). A GNN using this specific realization
K(0) (and identical initial embeddings, can now potentially produce H

(L)
u ̸= H

(L)
v because the

operator K(0) provides different relational information for u and v.

Theorem 4.4 (Expected Invariance to Orthogonal Transformations). Let X ∈ Rn×d be node features,
Q ∈ Rd×d be an orthogonal matrix, and h be the projection dimension. Consider a random projection
matrix C ∈ Rd×h with vec(C) ∼ N (0, Idh). Let NodeCov(R(0)) = 1

h (ΠcR
(0))(ΠcR

(0))T be the
Node Covariance operator (Equation (2)), where Πc = In − 1

n1n1
T
n is the centering matrix. Then,

the expected Node Covariance computed from the stochastically projected features is invariant to the
orthogonal transformation Q:

EC [NodeCov(XQC)] = EC [NodeCov(XC)] = ΠcXXTΠc (7)

where the expectation EC [·] is over the random sampling of C, and ΠcXXTΠc is the Gram matrix
of the centered original features.

Proof. Let R(0) = XC. Using the definition of the NodeCov operator and properties of the centering
matrix Πc:

NodeCov(R(0)) =
1

h
(ΠcR

(0))(ΠcR
(0))T

=
1

h
Πc(XC)(XC)TΠT

c

=
1

h
ΠcXCCTXTΠc

Taking the expectation over C:

EC [NodeCov(XC)] = EC

[
1

h
ΠcXCCTXTΠc

]

=
1

h
ΠcXEC [CCT ]XTΠc (by linearity of expectation)

We evaluate EC [CCT ]. Let cj ∈ Rd be the j-th column of C. Since the entries of C are i.i.d.
N (0, 1), each column vector cj follows cj ∼ N (0, Id). Therefore, E[cjc

T
j ] = Id. Using linearity

of expectation:

EC [CCT ] = EC




h∑

j=1

cjc
T
j


 =

h∑

j=1

EC [cjc
T
j ] =

h∑

j=1

Id = hId

Substituting this back:

EC [NodeCov(XC)] =
1

h
ΠcX(hId)X

TΠc = ΠcXXTΠc

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Now consider the transformed features X̄ = XQ. Let R̄(0) = X̄C = XQC. We compute
EC [NodeCov(R̄(0))]:

NodeCov(R̄(0)) =
1

h
(ΠcR̄

(0))(ΠcR̄
(0))T

=
1

h
Πc(XQC)(XQC)TΠc

=
1

h
ΠcXQCCTQTXTΠc

Taking the expectation over C:

EC [NodeCov(XQC)] =
1

h
ΠcXQEC [CCT ]QTXTΠc

=
1

h
ΠcXQ(hId)Q

TXTΠc (using E[CCT ] = hId)

= ΠcXQIdQ
TXTΠc

= ΠcX(QQT )XTΠc

= ΠcXIdX
TΠc (since Q is orthogonal, QQT = Id)

= ΠcXXTΠc

Thus, EC [NodeCov(XQC)] = EC [NodeCov(XC)] = ΠcXXTΠc.

Theorem 4.5 (Loss Upper Bound). Let H(L) ∈ Rn×h(L)

be the final node representations computed
by ALL-IN, dependent on the initial random projection C. Let ϕ : Rn×h(L) → Rn×t be the final
prediction layer, and let L(·,Y ) be the loss function comparing predictions to ground truth labels Y .
Assume that the composite function f(H(L)) = L(ϕ(H(L)),Y ) is convex with respect to the final
node representations H(L). Then, our stochastic optimization objective provides an upper bound for
the loss of the expected representation:

L(ϕ(EC [H(L)]),Y )︸ ︷︷ ︸
Loss of Expected Representation

≤ EC [L(ϕ(H(L)),Y )]︸ ︷︷ ︸
Expected Loss (Training Objective)

(8)

where the expectation EC [·] is taken over the random projection matrix C.

Proof. The proof follows directly from Jensen’s inequality for vector- or matrix-valued random
variables.

Let the random variable be the final hidden representation Z = H(L), which is a function of the
random projection matrix C.

By assumption, the function f is convex with respect to its input argument H(L). Jensen’s inequality
states that for a convex function f and a random variable Z with finite expectation, f(E[Z]) ≤
E[f(Z)]. Applying this with Z = H(L) and the defined function f , we get:

L(ϕ(EC [H(L)]),Y ) ≤ EC [L(ϕ(H(L)),Y )]

which is the desired result.

Proposition 4.6 (Consistency of Projected Node Covariance). Let X ∈ Rn×d be node features. For
a projection dimension h, let C ∈ Rd×h be such that vec(C) ∼ N (0, Idh). Define the stochastic
node-covariance operator K

(0)
h = NodeCov(XC) = 1

h (ΠcXC)(ΠcXC)T , where Πc is the
centering matrix. Then, K(0)

h converges in probability to its expected value as h → ∞:

K
(0)
h

p−→ EC [K
(0)
h ] = ΠcXXTΠc as h → ∞. (9)

Proof. Let C = [c1, . . . , ch] denote the random projection matrix, where each column cj ∈ Rd

is a random vector. Since the entries of C are sampled i.i.d. from N (0, 1), the columns cj are
independent and identically distributed according to cj ∼ N (0, Id).

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

The stochastic node-covariance operator K(0)
h (Equation (2)) can be rewritten as:

K
(0)
h =

1

h
(ΠcXC)(ΠcXC)T

=
1

h
(ΠcX[c1, . . . , ch])(ΠcX[c1, . . . , ch])

T

=
1

h
([ΠcXc1, . . . ,ΠcXch])([ΠcXc1, . . . ,ΠcXch])

T

=
1

h

h∑

j=1

(ΠcXcj)(ΠcXcj)
T (using block matrix multiplication definition)

Let us define the random matrix Yj ∈ Rn×n as:

Yj = (ΠcXcj)(ΠcXcj)
T

Since the columns cj are i.i.d. and Yj is a fixed function of cj (given the fixed matrices X and Πc),
the random matrices Y1,Y2, . . . ,Yh are also independent and identically distributed (i.i.d.).

The operator K(0)
h can thus be written as the sample mean of these i.i.d. random matrices:

K
(0)
h =

1

h

h∑

j=1

Yj

Now, we compute the expected value of Yj . Using the linearity of expectation and the property that
Πc and X are constant with respect to the expectation over C (and Πc = ΠT

c ):

E[Yj ] = E[(ΠcXcj)(ΠcXcj)
T ]

= E[ΠcXcjc
T
j X

TΠT
c ]

= ΠcXE[cjcTj ]XTΠc

Since cj ∼ N (0, Id), we know that E[cjcTj ] = Cov(cj) + E[cj ]E[cj ]T = Id + 00T = Id.
Substituting this in:

E[Yj ] = ΠcXIdX
TΠc = ΠcXXTΠc

Let Kexp = ΠcXXTΠc. We have shown that E[Yj ] = Kexp. Since X is a fixed finite matrix, and
the moments of Gaussian variables are finite, the expectation E[Yj ] exists and is finite.

We have K
(0)
h as the sample mean of h i.i.d. random matrices Yj , each with finite expectation

Kexp. By the Weak Law of Large Numbers, applicable to sums of i.i.d. random vectors or matrices
(considering convergence element-wise or in matrix norm), the sample mean converges in probability
to the expected value as the number of samples h goes to infinity. Therefore, for each entry (a, b) of
the matrices:

(K
(0)
h )ab =

1

h

h∑

j=1

(Yj)ab
p−→ E[(Yj)ab] = (Kexp)ab as h → ∞

This element-wise convergence implies convergence in probability for the matrix:

K
(0)
h

p−→ Kexp = ΠcXXTΠc as h → ∞.

This completes the proof.

C ADDITIONAL RESULTS

C.1 CATEGORIZATION AND DESCRIPTION OF BASELINES

Table 2 compares our approach against diverse families of baselines evaluated on node classification
benchmarks. We group methods into four primary categories: (i) SUPERVISED GNNS that are trained

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 4: Performance of ALL-IN on pre-training source datasets compared to specialized supervised
baselines trained individually per dataset (including our ALL-IN-SPECIALIZED which is trained
separately on each individual dataset). ALL-IN maintains highly competitive performance.

Method ZINC MOLHIV MOLESOL MOLTOX21 MNIST CIFAR10 MODELNET CUNEIFORM MSRC 21
(MAE ↓) (ROC-AUC ↑) (RMSE ↓) (ROC-AUC ↑) (ACC ↑) (ACC ↑) (ACC ↑) (ACC ↑) (ACC ↑)

TRAINED PER DATASET
GCN (Kipf and Welling, 2017) 0.3674 76.06 1.11 75.29 90.120 54.142 17.18 45.67 89.53
GAT (Veličković et al., 2018) 0.3842 76.00 1.05 75.21 95.535 64.223 65.20 78.60 82.10
GIN (Xu et al., 2019) 0.1630 75.58 1.17 74.91 96.485 55.255 73.13 79.05 86.31
ALL-IN-SPECIALIZED (0 props) 0.1480 72.65 1.22 69.37 94.03 39.96 37.24 85.19 91.65
ALL-IN-SPECIALIZED 0.1195 73.78 1.19 70.04 94.77 40.03 39.81 87.20 94.16

TRAINED ON ALL DATASETS
ALL-IN (0 props) 0.1557 72.74 1.28 68.19 94.57 40.11 37.11 89.88 97.51
ALL-IN 0.1237 74.49 1.29 68.20 95.22 40.08 39.37 91.17 98.08

from scratch on each dataset, (ii) LLM-AUGMENTED GNNS where the node features are enhanced
using language models, (iii) LLM-BASED REASONING that converts the graph into a compatible
input to pre-trained LLMs, and (iv) GNN-BASED methods.

SUPERVISED BASELINES include (a) MLP: a multi-layer perceptron directly on the target dataset
features without using graph structure; serves as a non-graph baseline. (b) GCN (Kipf and Welling,
2017): trained from scratch on the target dataset (c) GIN (Xu et al., 2019) trained from scratch,
included to represent expressive message-passing GNNs in supervised settings. These fall under
supervised baselines as they do not perform pretraining or transfer, and rely solely on training from
scratch on each dataset.

LLM-AUGMENTED GNNS include (a) OFA (Liu et al., 2024): constructs a prompt-augmented
graph using text nodes and pretrains an RGCN to enable in-context transfer across node/link/graph
tasks; falls here for fusing text prompts with GNN structure and relying on LLM embeddings.
(b) GLEM-LM (Chen et al., 2024b): Enhances GNNs using sentence-level text embeddings from
a frozen LLM; categorized here due to its augmentation of GNN input via LLM-derived features.
These are classified as LLM-Augmented GNNs since they incorporate LLMs to enrich graph inputs
or guide GNN training, but retain a GNN backbone.

LLM-BASED methods include (a) GRAPHTEXT (Zhao et al., 2023) that transforms k-hop neigh-
borhoods into textual prompts and performs zero/few-shot classification using frozen LLMs and
(b) RWNN (Kim et al., 2024) that converts random walks on graphs to node label anonymized
sequences and uses frozen LLMs for prediction. belong to this category due to their reliance on
prompt-based inference using LLMs without any GNNs.

GNN-BASED methods include (a) ANYGRAPH (Xia and Huang, 2024) that pretrains a graph mix-
ture-of-experts model using link prediction objective on diverse graphs that allows transfer to unseen
datasets, (b) GRAPHANY (Zhao et al., 2024b) that learns permutation-invariant attention over a
bank of pretrained LinearGNNs; (c) MDGPT (Yu et al., 2024) pretrains a GCN on multiple datasets
with SVD-projected features and prompt vectors; (d) GCOPE (Zhao et al., 2024a) constructs a
universal pretraining graph with virtual nodes and uses contrastive learning to train a shared GNN;
(e) GPPT (Sun et al., 2022) introduces task-specific graph prompts for node task and link-prediction
alignment; (f) GPROMPT (Gong et al., 2024) utilizes prompt vectors into graph pooling via element–
wise multiplication (g) ALL-IN-ONE (Sun et al., 2023) combines token graphs with original graph
as prompts (h) GPF (Fang et al., 2023) introduces prompt tokens and GPF-PLUS trains multiple
independent basis vectors and combines them using attention (i) ULTRA (Galkin et al., 2024) learns
transferable graph representations by conditioning on relational interactions. (j) SCORE (Wang and
Luo, 2024) introduces zero-shot reasoning on knowledge graphs using graph topology. All of these
are grouped under GNN-BASED baselines as they rely on pretraining GNNs (often with auxiliary
components like prompts or experts) to enable generalization to new graphs.

C.2 COMPARISON TO METHODS TRAINED ON EACH INDIVIDUAL DATASET

In this section, we compare the performance of ALL-IN to that of standard supervised GNN baselines
(GCN (Kipf and Welling, 2017), GAT (Veličković et al., 2018), GIN (Xu et al., 2019)), trained
individually for each dataset, using their original, dataset-specific input features. Contrary to ALL-IN,

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

which is trained jointly on all datasets, these supervised baselines are thus specialized for each
respective dataset.

When evaluating on the pre-training datasets, it is generally expected that supervised models trained
on each individual dataset would achieve strong, if not optimal, performance, particularly as each
dataset provides sufficient data for dedicated task-specific learning. The goal for ALL-IN here is
therefore to show that its jointly pre-trained shared encoder can support task-specific heads that
remain competitive against individually trained models, indicating its ability to learn general-purpose
representations without substantial performance degradation on each task.

Table 4 summarizes the performance of ALL-IN (with and without propagated covariance operators,
obtained by setting k = 0 in Equation (4), denoted as ALL-IN and ALL-IN (0 props) respectively)
against the specialized version of our model (ALL-IN-SPECIALIZED and ALL-IN-SPECIALIZED
(0 props)), as well as specialized supervised baselines on the pre-training datasets. Our findings
indicate that, while specialized baselines maintain an edge on certain datasets (e.g., CIFAR10 and
MODELNET), ALL-IN is broadly competitive. For instance, on the ZINC regression task, ALL-IN
achieves a MAE of 0.1237, surpassing all listed specialized baselines, including GIN (0.1630).
Similarly, ALL-IN demonstrates higher accuracy on CUNEIFORM (91.17% vs. GIN 79.05%) and
MSRC 21 (98.08% vs. GIN 86.31%). Finally, we highlight the general advantage of the full
ALL-IN (which utilizes propagated operators) over ALL-IN (0 props), and similarly of ALL-IN-
SPECIALIZED over ALL-IN-SPECIALIZED (0 props), suggesting that the richer relational information
from propagated operators contributes to more effective representation learning during this phase.

Overall, these results indicate that a single, pre-trained ALL-IN encoder can maintain strong, often
competitive, performance across a diverse set of source datasets and tasks.

C.3 USING SVM ON THE PRE-TRAINED REPRESENTATIONS

To assess the linear separability and structural quality of the learned graph representations from ALL-
IN, we evaluate downstream graph classification accuracy using support vector machines (SVMs)
with both linear and radial basis function (RBF) kernels (Table 5). This setup allows us to probe how
well the learned representations support simple (linear) versus more expressive (nonlinear) decision
boundaries.

We compare against several non-learnable baselines that do not involve any representation learning:

(a) Input Features (X): Raw input features of each graph, computed by averaging node features.

(b) Propagated Input Features (AX): Features after one round of neighborhood propagation,
capturing local graph structure.

(c) Input Features along with random walk structural encodings (X ⊕ S): Concatenates the
raw features with random walk structural encoding (RWSE) (Dwivedi et al., 2022a), which
encodes graph structure based on transition probabilities of random walks.

These baselines serve as direct input replacements for ALL-IN and are shared across both kernel
settings. They provide a strong reference for understanding the inherent structure in the input space,
independent of any learning or pretraining.

For ALL-IN, we report results both with and without concatenation of the input features to assess the
added value of structural information in the learned embeddings.

Under the RBF kernel, ALL-IN combined with input features achieves the best performance on four
out of six datasets, including PTC, NCI1, NCI109, and ENZYMES, highlighting its ability to
encode discriminative patterns suitable for nonlinear classification. In contrast, performance under
the linear kernel is more mixed, with RWSE showing strong results on datasets like PROTEINS,
indicating some inherent linear separability in the structural baseline. Overall, these results demon-
strate that ALL-IN learns representations that are expressive and transferable across diverse graph
datasets, especially when paired with nonlinear classifiers.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 5: Graph classification accuracy (%) using SVMs with Linear and RBF kernels. Baselines are
shared across both kernels. Results are reported as mean ± standard deviation over 10 runs.

Method MUTAG PTC PROTEINS NCI1 NCI109 ENZYMES
(ACC ↑) (ACC ↑) (ACC ↑) (ACC ↑) (ACC ↑) (ACC ↑)

LINEAR SVM
Input Features 81.87 ± 7.25 60.88 ± 1.83 72.68 ± 0.58 64.59 ± 1.24 63.36 ± 2.22 22.00 ± 4.46
Propagated Input Features 69.64 ±14.21 57.34 ±10.89 59.56 ± 3.94 64.16 ± 1.22 63.26 ± 1.63 14.33 ± 5.01
Input Features + RWSE 80.96 ± 0.89 60.14 ± 1.15 65.74 ± 0.43 64.30 ± 0.16 63.45 ± 0.20 27.00 ± 4.63
ALL-IN 74.47 ± 7.70 53.12 ± 9.09 60.91 ± 4.25 63.26 ± 1.36 63.19 ± 1.89 21.16 ± 6.28
ALL-IN + Input Features 74.47 ± 7.70 52.84 ± 9.03 62.00 ± 4.29 64.45 ± 1.48 63.72 ± 1.67 21.50 ± 5.18

RBF SVM
Input Features 72.73 ±14.29 55.88 ±11.58 71.06 ± 2.93 66.44 ± 1.43 66.80 ± 1.35 33.33 ± 4.77
Propagated Input Features 79.70 ±11.03 54.10 ±10.25 72.05 ± 4.70 55.66 ± 5.80 58.05 ± 5.42 33.16 ± 4.43
Input Features + RWSE 79.21 ±10.99 58.71 ± 8.76 67.21 ± 6.22 70.68 ± 2.60 67.82 ± 2.79 36.66 ± 5.96
ALL-IN 82.98 ± 7.76 59.28 ± 9.13 70.62 ± 4.53 65.88 ± 1.62 65.68 ± 1.90 28.83 ± 5.87
ALL-IN + Input Features 84.06 ± 6.61 59.88 ± 7.72 71.42 ± 4.29 67.54 ± 1.33 67.34 ± 1.51 32.16 ± 6.71

C.4 ADDITIONAL RESULTS ON TRANSFERABILITY TO UNSEEN DATASETS

In Table 6, we present comparison with more baselines on our graph classification datasets MUTAG
and PROTEINS. We describe below the changes we make to the following baselines to make them
applicable to this setting:

• GLEM-LM (Chen et al., 2024b): This is a method that only supports tasks on text-attributed
graphs. Since the TU Datasets (Morris et al., 2020) do not have node text attributes, we
describe the input node features and pass them to ChatGPT.

• GCOPE (Zhao et al., 2024a): This method introduces one virtual node for each node
classification dataset, connecting it to all the nodes within the dataset. To perform graph
classification, we introduce one virtual node for each graph classification dataset and connect
it to all the nodes in all the graphs within the dataset.

• ANYGRAPH (Xia and Huang, 2024): This method performs node classification by adding
one node per class and connecting each training node to its corresponding class node.
Classification of unlabeled nodes is performed by computing the dot product between the
node’s embedding and each class node embedding to rank the classes. To extend this
paradigm to graph classification, we introduce a virtual node that connects to all nodes in
the graph and add one class node per category. For classifying new graphs, we compute the
dot product between the virtual node embedding and each class node embedding to rank the
classes.

We leave out the following methods and provide justification below:

• GRAPHTEXT (Zhao et al., 2023): While the authors mention that GRAPHTEXT is applicable
for graph classification, they do not provide a way to construct a graph syntax tree for an
entire graph, which can be ambiguous as it could involve introducing a virtual node or
averaging results from syntax trees of multiple nodes.

• GRAPHANY (Zhao et al., 2024b): This method is explicitly only designed for node classifi-
cation on arbitrary graphs, as it relies on an analytical solution that is not directly applicable
to graph-level tasks.

The results in Table 6 further substantiate ALL-IN’s strong performance. These findings reinforce the
observations made in the main paper (Table 3): ALL-IN, with its frozen pre-trained encoder and a
retrained head, effectively generalizes to new graph classification datasets with novel input features,
surpassing a wide variety of adapted baselines.

C.5 THE IMPORTANCE OF SPES AND RANDOM PROJECTIONS IN EQUATION (5)

In this section, we conduct an ablation study to investigate the importance of SPEs and random
projections within ALL-IN. We compare our ALL-IN with several additional models having the same
backbone, loss, and training datasets, namely:

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 6: Performance on unseen graph-classification datasets with new input features. ALL-IN
demonstrates strong transferability, underscoring its versatility and ability to handle different fea-
ture spaces. † indicates these methods were modified to work on these datasets, as explained in
Appendix C.4

Dataset MUTAG PROTEINS
(ACC ↑) (ACC ↑)

SUPERVISED BASELINES
MLP 67.20 ± 1.00 59.20 ± 1.00
GIN (Xu et al., 2019) 89.40 ± 5.60 76.20 ± 2.80

LLM-AUGMENTED GNNS
OFA (Liu et al., 2024) 61.04 ± 4.71 61.40 ± 2.99
GLEM-LM† (Chen et al., 2024b) 72.97 ± 0.00 43.22 ±12.01

LLM-BASED
RWNN-DEBERTA (Kim et al., 2024) 58.22 ± 0.24 67.85 ± 0.53

GNN-BASED
GCOPE† (Zhao et al., 2024a) 81.87 ± 7.26 71.84 ± 3.48
ANYGRAPH† (Xia and Huang, 2024) 75.61 ± 6.94 72.23 ± 4.63
MDGPT (Yu et al., 2024) 57.36 ±14.26 54.35 ±10.26
GPPT (Sun et al., 2022) 60.40 ±15.43 60.92 ±12.47
ALL-IN-ONE (Sun et al., 2023) 79.87 ± 5.34 66.49 ± 6.26
GPROMPT (Gong et al., 2024) 73.60 ± 4.76 59.17 ±11.26
GPF (Fang et al., 2023) 68.40 ± 5.09 63.91 ± 3.26
GPF-PLUS (Fang et al., 2023) 65.20 ± 6.94 62.92 ± 2.78
ULTRA(3G) (Galkin et al., 2024) 63.33 ± 0.00 58.09 ± 0.00
SCORE (Wang and Luo, 2024) 85.33 ± 2.11 68.54 ± 1.47

ALL-IN (0 props) 92.50 ± 6.60 76.72 ± 3.19
ALL-IN 92.90 ± 6.34 78.20 ± 3.81

Table 7: The impact of SPEs and random projections in Equation (5). ALL-IN with SPEs performs
best, while using only SPEs leads to a significant drop in performance, highlighting the importance
of random feature projections, which cannot be compensated by using SVD.

Method ZINC MOLESOL MOLHIV MOLTOX21 MNIST CIFAR10 MODELNET CUNEIFORM MSRC 21
(MAE ↓) (RMSE ↓) (ROC-AUC ↑) (ROC-AUC ↑) (ACC ↑) (ACC ↑) (ACC ↑) (ACC ↑) (ACC ↑)

ALL-IN (SVD) 0.1445 1.43 71.82 65.55 92.97 37.12 36.51 87.28 95.84
SPEs-only 0.1396 1.45 71.95 64.10 91.01 35.22 30.65 85.89 95.13
ALL-IN (SVD + SPEs) 0.1318 1.41 72.06 66.13 93.40 37.74 36.95 88.56 96.91
ALL-IN (no SPEs) 0.1251 1.31 74.02 67.62 94.88 39.45 38.72 90.61 97.93
ALL-IN 0.1237 1.29 74.49 68.20 95.22 40.08 39.37 91.17 98.08

• ALL-IN (SVD), where we replace Equation (5) with H(0) = SVD(X(0)), thus removing
both random projections and SPEs, and replacing them with SVD of the input features;

• SPEs-only variant, where we replace Equation (5) with H(0) = S, while keeping the same
covariance operator set and head, therefore removing R(0) only from Equation (5), but still
using R(0) to define the covariance operators.

• ALL-IN (SVD + SPEs), where we replace Equation (5) with H(0) = SVD(X(0))⊕S, thus
removing random projections and replacing them with SVD of the input features (while
keeping SPEs);

• ALL-IN (no SPEs), where we replace Equation (5) with H(0) = R(0), thus removing SPEs;

The results in Table 7 support our claim: the full ALL-IN with SPEs performs best, but only slightly
better than the version without SPEs. In contrast, using only SPEs leads to a significant drop in
performance, highlighting the importance of random feature projections, which provides improved
performance also when compared with SVD.

C.6 THE IMPORTANCE OF RANDOM PROJECTIONS

In this section, we demonstrate the impact of random projections by comparing ALL-IN with the
baseline obtained by removing random projections from Equation (5) (thus, setting H(0) = S) and
from Equation (2), thus replacing NodeCov(XC) with NodeCov(X).

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 8: The impact of using random projections within ALL-IN, obtained by comparing ALL-IN to
its counterpart that has no random projections in either Equation (5) or Equation (2).

Method ZINC MOLESOL MOLHIV MOLTOX21 MNIST CIFAR10 MODELNET CUNEIFORM MSRC 21
(MAE ↓) (RMSE ↓) (ROC-AUC ↑) (ROC-AUC ↑) (ACC ↑) (ACC ↑) (ACC ↑) (ACC ↑) (ACC ↑)

ALL-IN (no random) 0.1475 1.51 71.40 62.85 91.10 35.42 33.91 85.47 95.02
ALL-IN 0.1237 1.29 74.49 68.20 95.22 40.08 39.37 91.17 98.08

Table 9: The impact of the operators in the operator set (Equation (4)). Results improve when
considering covariance operators compared to graph (adjacency) only, highlighting their importance
in ALL-IN.

Method ZINC MOLESOL MOLHIV MOLTOX21 MNIST CIFAR10 MODELNET CUNEIFORM MSRC 21
(MAE ↓) (RMSE ↓) (ROC-AUC ↑) (ROC-AUC ↑) (ACC ↑) (ACC ↑) (ACC ↑) (ACC ↑) (ACC ↑)

Identity Only 0.1535 1.65 67.10 60.33 86.22 29.34 25.15 81.49 91.78
Adjacency Only 0.1378 1.46 71.75 65.17 92.78 35.22 31.40 87.25 95.10
Covariance Only 0.1282 1.34 73.80 67.93 94.30 38.50 36.85 89.44 97.13
ALL-IN 0.1237 1.29 74.49 68.20 95.22 40.08 39.37 91.17 98.08

The results in Table 8 suggest that random projection is critical to bridge input feature spaces. This
aligns with our results in Theorem 4.3, which demonstrates the theoretical benefit of using random
projections in the covariance operators.

C.7 ABLATION STUDY ON THE OPERATOR SET

In this section, we perform an ablation study isolating the contribution of different operators in ALL-
IN. Table 9 reports the performance of ALL-IN (which uses the operators defined in Equation (4))
and compares it with Identity Only, obtained by setting O = {I} in Equation (4), Adjacency Only,
obtained by setting O = {A} in Equation (4), and Covariance Only, obtained by setting O = {K(0)}
in Equation (4).

Covariance operators enable the neural network to learn shared characteristics in input feature spaces
and graph structures, as results improve when considering covariance operators compared to graph
(adjacency) only operators.

C.8 THE ROLE OF THE FEATURE DIMENSIONALITY h

We next evaluate the performance of ALL-IN when varying the hidden dimension h. Results are
reported in Table 10.

Across datasets, performance improves from very small h and then plateaus at 256, and gains
beyond that are marginal. This trend aligns with Proposition 4.6: as h grows, the stochastic operator
concentrates around its expectation. In practice, a moderate h achieves near-saturated accuracy with
a better compute/memory trade-off than a very large h. Therefore, model performance stabilizes at
moderate h and larger h primarily improves stability, matching the proposition’s claim.

C.9 ADDITIONAL DATASETS

We further evaluate ALL-IN on the larger node-level dataset ogbn-arxiv (Hu et al., 2020a) (169,343
nodes, 1,166,243 edges), on heterophilic benchmarks Actor, Chameleon, Squirrel using the splits
in Pei et al. (2020), and on the AmzRating, Minesweep, Tolokers datasets (Platonov et al., 2023).
All results, which are reported in Tables 11 to 13, respectively, show that ALL-IN offers consistently
better performance. We also investigate the behavior of our covariance operators on heterophilous
graphs. Intuitively, the node-covariance matrix computed from the projected input features captures
feature similarity across all node pairs, not just along edges. For heterophilous graphs, the base
covariance operator K(0) can therefore highlight similarities between non-adjacent nodes in the
original input graph or dissimilarities between adjacent nodes, which can help GNNs with heterophily.
In addition, the propagated operators K(p) for p > 0 further help in this setting, because their
availability to the GNN allows it to view and mix information from multiple neighborhoods, in line

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 10: Performance of ALL-IN with varying hidden dimension h.

Method ZINC MOLESOL MOLHIV MOLTOX21 MNIST CIFAR10 MODELNET CUNEIFORM MSRC 21
(MAE ↓) (RMSE ↓) (ROC-AUC ↑) (ROC-AUC ↑) (ACC ↑) (ACC ↑) (ACC ↑) (ACC ↑) (ACC ↑)

ALL-IN (h = 64) 0.1316 1.43 72.20 65.75 92.14 36.15 34.26 87.89 96.12
ALL-IN (h = 128) 0.1264 1.34 73.46 67.91 94.41 38.92 37.88 90.21 97.56
ALL-IN (h = 256) 0.1239 1.30 74.38 68.14 95.03 39.85 39.19 91.05 98.01
ALL-IN (h = 512) 0.1237 1.29 74.49 68.20 95.22 40.08 39.37 91.17 98.08
ALL-IN (h = 1024) 0.1236 1.28 74.58 68.18 95.24 40.11 39.40 91.22 98.10

Table 11: Performance on the ogbn-arxiv (Hu et al., 2020a).

Method ogbn-arxiv (↑)

NON-PARAMETRIC BASELINES
LABEL PROPAGATION (Zhu and Ghahramani, 2002) 61.04

SUPERVISED BASELINES
GCN (Kipf and Welling, 2017) 71.74
GAT (Veličković et al., 2018) 71.95
GraphGPS (Rampášek et al., 2022) 70.97

LLM-AUGMENTED GNNS
OFA (Liu et al., 2024) 73.22

LLM-BASED
GraphText (Zhao et al., 2023) 49.47

GNN-BASED
AnyGraph (Xia and Huang, 2024) 62.33
GraphAny (Zhao et al., 2024b) 58.38

ALL-IN 75.27

with understandings from literature on heterophily in graphs (Zhu et al., 2020; Chien et al., 2021).
Motivated by this discussion, we conduct an ablation study where we vary the number of propagation
orders k ∈ {0, 1, 2} used in the covariance operators and evaluate downstream performance on Actor,
Chameleon, and Squirrel. As reported in Table 14, adding propagated operators consistently improves
performance.

C.10 FIXED RANDOM PROJECTIONS

In the main experiments, the projection matrix C is sampled at each forward pass, which yields the
distributional invariance guarantees in Section 4. To isolate the empirical effect of this stochasticity,
we consider a variant where C is sampled once and kept fixed for all subsequent training and
inference steps denoted ALL-IN (Fixed C). We keep all other settings, including the backbone and
training budget, identical. Table 15 reports performance on the pre-training source datasets, and
Table 16 reports transfer results on representative downstream tasks. Across all pre-training datasets
in Table 15, fixing C leads to a consistent but moderate degradation compared to the stochastic
variant. A similar pattern holds on the downstream tasks in Table 16, where ALL-IN (Fixed C)
underperforms the stochastic version on both node and graph classification. These results empirically
support the beneficial role of stochastic projections in our framework, while showing that the model
remains competitive also when the projection matrix is fixed.

C.11 EDGE FEATURES ABLATION

For datasets with edge features such as ZINC, we follow the strategy described in Section 3, where
edge features are first randomly projected, then aggregated to nodes, and used to construct additional
node-covariance operators that are added to the operator set. Concretely, the aggregated edge features
are converted into an n× n edge covariance operator Kedge, whose entries compare the aggregated
edge-feature environments of all node pairs, and, the backbone GNN uses the projected edge features.
To quantify the empirical contribution of this design, we perform an ablation on ZINC that compares:
(i) a standard GIN without edge features, (ii) GINE (GIN with edge features), (iii) ALL-IN with
edge features removed (ALL-IN (no edge features)), and (iv) the full ALL-IN using the edge-derived
covariance operator as described above. Results are reported in Table 17. From Table 17, we
observe that including the edge-based covariance operator yields substantially better performance

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 12: Performance on heterophilic datasets, using the splits in Pei et al. (2020).

Method Actor Chameleon Squirrel
(ACC ↑) (ACC ↑) (ACC ↑)

NON-PARAMETRIC BASELINES
LABEL PROPAGATION (Zhu and Ghahramani, 2002) 18.83 ± 0.00 40.89 ± 0.00 33.42 ± 0.00

SUPERVISED BASELINES
GCN (Kipf and Welling, 2017) 28.55 ± 0.68 64.69 ± 2.21 47.07 ± 0.71

GNN-BASED
GraphAny (Zhao et al., 2024b) 28.60 ± 0.21 62.59 ± 0.86 49.70 ± 0.95
ULTRA (Galkin et al., 2024) 22.61 ± 0.00 N/A N/A
SCORE (Wang and Luo, 2024) 23.26 ± 0.56 N/A N/A

ALL-IN 29.47 ± 0.38 67.40 ± 1.29 49.98 ± 0.73

Table 13: Performance on the AmzRating, Minesweep, Tolokers datasets (Platonov et al., 2023).

Method AmzRatings Minesweeper Tolokers
(ACC ↑) (ACC ↑) (ACC ↑)

GCN (Kipf and Welling, 2017) 47.35 ± 0.26 81.12 ± 0.37 79.93 ± 0.10
GraphAny (Zhao et al., 2024b) 42.84 ± 0.04 80.46 ± 0.15 78.24 ± 0.03
ALL-IN 49.02 ± 0.11 82.93 ± 0.26 81.43 ± 0.07

than omitting edge features entirely, and that ALL-IN with edge features not only recovers but
surpasses the behavior of an edge-aware GNN such as GINE. In contrast, removing edge features
in ALL-IN leads to performance closer to a standard GIN, consistent with observations from the
supervised GNN literature. This ablation indicates that the aggregation scheme in Section 3 retains
and effectively utilizes edge information.

C.12 PRE-TRAINING WITH CITATION NETWORKS

In the main experiments, citation networks are excluded from the pre-training corpus to act as out-of-
distribution targets with very high-dimensional, sparse features and large graph sizes. We now show
that ALL-IN can also benefit from citation networks during pre-training, and consider an extended
setting where Cora and CiteSeer are added to the pre-training mix. We keep the architecture and
training budget fixed, and compare (i) the original pre-training corpus (no citation networks) and (ii)
the extended corpus (original + Cora + CiteSeer). Table 18 reports pre-training performance on all
source datasets, including Cora and CiteSeer for the extended setting. The results show that adding
citation networks leaves performance on the original pre-training corpus stable, further indicating the
ability of ALL-IN in learning from multiple sources acting as an input feature space bridge. Table 19
reports downstream performance on ogbn-arxiv, MUTAG, and PROTEINS for both pre-training
regimes, indicating that including citation networks in pre-training maintains or improves downstream
performance.

C.13 TRANSFER TO ADDITIONAL DOMAINS

To further evaluate the generality of ALL-IN beyond citation and bioinformatics datasets, we consider
two downstream tasks from distinct domains: (i) 3D shape segmentation on ShapeNet, and (ii) social-
network classification on IMDB-BINARY (IMDB-B). For ShapeNet, we use knn graphs over point
clouds as is standard with this dataset (Wang et al., 2019) and report mean Intersection-over-Union
(mIoU); for IMDB-B, we report classification accuracy. In both cases, we use the same ALL-IN
encoder as in the main experiments and compare with two GNN baselines (GIN and GPS). As shown
in Table 20, ALL-IN consistently outperforms the GIN and GPS baselines on both ShapeNet and
IMDB-B. This indicates that the input-space bridge from ALL-IN yields representations that are
beneficial also in 3D shape graphs and social networks, further highlighting its effectiveness.

C.14 DOWNSTREAM REGRESSION TRANSFER

Our pre-training stage for ALL-IN uses a supervised multi-task objective over several graph-level
datasets, including both graph classification and graph regression. This design choice reflects our

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 14: Effect of the number of propagation orders k on heterophilous benchmarks.

Number of propagation orders k Actor Chameleon Squirrel
(ACC ↑) (ACC ↑) (ACC ↑)

0 28.62 ± 0.45 65.12 ± 1.44 47.89 ± 0.80
1 29.00 ± 0.42 66.37 ± 1.35 49.14 ± 0.76
2 29.47 ± 0.38 67.40 ± 1.29 49.98 ± 0.73

Table 15: Effect of fixing the projection matrix C during pre-training.

Method ZINC MOLESOL MOLHIV MOLTOX21 MNIST CIFAR10 MODELNET CUNEIFORM MSRC21
(MAE ↓) (RMSE ↓) (ROC-AUC ↑) (ROC-AUC ↑) (ACC ↑) (ACC ↑) (ACC ↑) (ACC ↑) (ACC ↑)

ALL-IN (Fixed C) 0.1369 1.38 74.12 66.72 93.97 39.84 39.02 90.11 96.27
ALL-IN (stochastic C) 0.1237 1.29 74.49 68.20 95.22 40.08 39.37 91.17 98.08

goal of learning a single encoder that learns across diverse graph modalities and objectives. The
motivation for including regression tasks such as ZINC in the pre-training mix is inspired by the
broader multi-task and foundation-model literature: training a shared encoder on a diverse collection
of tasks and objectives is widely used to encourage more general-purpose representations (Zhang and
Yang, 2021; Raffel et al., 2020). To directly demonstrate regression-style transfer, we additionally
evaluate ALL-IN on a held-out graph-level regression benchmark not used during pre-training,
PEPTIDES-STRUCT from LRGB (Dwivedi et al., 2022b). We compare GNN baselines (GINE and
a GPS) with ALL-IN. As shown in Table 21, ALL-IN achieves the lowest mean absolute error on
PEPTIDES-STRUCT, demonstrating the effectiveness of ALL-IN also in a regression downstream task.

C.15 SUPERVISED VS. UNSUPERVISED PRE-TRAINING OF ALL-IN

Our main experiments adopt a supervised multi-task pre-training objective for ALL-IN, combining
graph-level classification (e.g., OGBG-MOLHIV, MODELNET) and regression tasks (e.g., ZINC).
This design leverages the availability of labels on diverse source datasets to learn input-space agnostic
representations that are directly aligned with downstream prediction objectives. Prior work on graph
representation learning has shown that, when labels are available, supervised pre-training can yield
stronger and more task-discriminative representations than purely self-supervised approaches (Hu
et al., 2020b), and similar observations hold in large-scale vision studies (He et al., 2022).

To provide an empirical comparison between supervised and unsupervised pre-training on top of
our input-space bridge, we construct an unsupervised variant in which we replace all supervised
losses on the pre-training datasets with a masked-feature reconstruction objective of masked graph
autoencoders (Hou et al., 2022). Concretely, as in Hou et al. (2022) we randomly mask node features
and train ALL-IN to reconstruct the original feature values from the node embeddings. The encoder
architecture and training budget are kept identical to the supervised setting. Then, we benchmark the
downstream performance on Cora and MUTAG. As shown in Table 22, both pre-training approaches
achieve similar downstream performance, where the supervised variant slightly outperforms the
unsupervised. This is consistent with prior observations that supervised objectives can provide
particularly strong graph representations when labels are available, and it supports our choice to adopt
supervised multi-task pre-training for ALL-IN in the setting considered in this work.

C.16 EFFECT OF THE NUMBER OF PROPAGATION ORDERS

ALL-IN constructs node-covariance operators not only on the original projected features, but also
on features that have been propagated through the graph up to k times, as discussed in Section 3.
Intuitively, increasing the number of propagation orders k allows the covariance operators to incorpo-
rate multi-hop information coupled with the input features, at the cost of additional computations
and operators. In the main experiments we set k = 0, 2 as a default choice. Here, we provide an
extended ablation over k ∈ {0, 1, 2, 3, 4} In this study we vary the number of propagation orders k,
while keeping all other hyperparameters and training settings unchanged. The case k = 0 uses only
the input features node-covariance operators, whereas larger k progressively add operators built from
1-hop, 2-hop, and higher-order propagated features. Table 23 reports the pre-training performance of
ALL-IN across all source datasets for different values of k. As can be seen, moving from k = 0 to

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 16: Effect of fixing the projection matrix C on downstream transfer performance.

Method CORA CITESEER MUTAG PROTEINS
(ACC ↑) (ACC ↑) (ACC ↑) (ACC ↑)

ALL-IN (Fixed C) 81.93 ± 0.85 68.43 ± 0.92 91.26 ± 5.59 75.86 ± 4.05
ALL-IN (stochastic C) 82.13 ± 0.97 69.12 ± 0.89 92.90 ± 6.34 78.20 ± 3.81

Table 17: Effect of using edge features and edge-based covariance operators on ZINC (MAE ↓).

Method ZINC
(MAE ↓)

GIN 0.3870
GINE (GIN with edge features) 0.1630
ALL-IN (no edge features) 0.2583
ALL-IN (with edge features) 0.1195

small positive values of k yields consistent improvements, confirming the benefit of incorporating
multi-hop feature information into the covariance operators. Performance largely saturates around
2-3 hops. Thus, we choose to work with k = 2 in the main experiments as a good balance between
accuracy and efficiency.

C.17 ASYMPTOTIC COMPUTATIONAL COMPLEXITY

For a graph with n nodes and m edges, with node feature matrix X ∈ Rn×d, projecting features using
a random linear transformation takes O(ndh) time and O(nh) memory, where h is the projection
dimension. Computing {R(p)}kp=1 takes O(k(m+n)) time, as this is equivalent to k message-passing
layers propagating R(0). The centering operation takes O(knh) time. Notably, when explicitly
constructing the node-covariance operators K(p) = 1

hR
(p)
c (R

(p)
c )⊤ ∈ Rn×n, the computational

complexity is O(kn2h) and memory complexity is O(kn2) (as p = 1, · · · , k), resulting in quadratic
complexity with respect to the number of nodes. This explicit construction may be necessary in
certain scenarios such as subgraph GNNs where the full pairwise similarity matrix is required as the
graph structure itself (Bevilacqua et al., 2025). However, for standard message passing operations
in most MPNNs (Kipf and Welling, 2017; Xu et al., 2019; Rampášek et al., 2022), we can avoid
explicitly constructing the covariance matrix. Because message passing can be written as a left-hand
multiplication by a propagation matrix (our covariance operator K), and by substituting the definition
K = RR⊤, we can compute R(R⊤H(ℓ−1)) instead of (RR⊤)H(ℓ−1). This way, at no point do
we need to hold the full covariance matrix in memory. This approach has computational complexity
O(k(mh+ nhh(ℓ−1))) and memory complexity O(n(h+ h(ℓ−1))) for the entire layer computation,
where h(ℓ−1) is the feature dimension of H(ℓ−1), avoiding the O(n2) memory bottleneck while
producing mathematically identical results. Therefore, the computational complexity of ALL-IN
assuming the covariance matrix does not to be stored, which is the case in our experiments, is
O(k(mh+ nhh(ℓ−1))) time and O(n(h+ h(ℓ−1))) space.

D DATASET INFORMATION

In this section, we describe the datasets used in our experiments. We categorize them based on their
use in pretraining and task transferability.

D.1 PRE-TRAINING SOURCE DATASETS (A1)

For pretraining ALL-IN, we use 10 diverse datasets covering molecular graphs, drugs, computer
vision, and 3D shapes. The statistics for each dataset are summarized in Table 24. The detailed
information is as follows:

• ZINC (Dwivedi et al., 2023) is a molecular property prediction dataset where the task is
regressing the constrained solubility values of molecules. We report mean absolute error
(MAE) as the evaluation metric.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Table 18: ALL-IN pre-training performance on different pre-training corpus, with and without citation
networks.

Pre-training corpus ZINC MOLESOL MOLHIV MOLTOX21 MNIST CIFAR10 MODELNET CUNEIFORM MSRC21 CORA CITESEER
(MAE ↓) (RMSE ↓) (ROC-AUC ↑) (ROC-AUC ↑) (ACC ↑) (ACC ↑) (ACC ↑) (ACC ↑) (ACC ↑) (ACC ↑) (ACC ↑)

Original 0.1237 1.29 74.49 68.20 95.22 40.08 39.37 91.17 98.08 – –
Original + Cora + CiteSeer 0.1253 1.30 74.52 67.99 95.18 40.12 39.21 91.08 98.23 82.89 69.33

Table 19: Downstream performance of ALL-IN with and without citation-network in pre-training
corpus.

Pre-training corpus OGBN-ARXIV MUTAG PROTEINS
(ACC ↑) (ACC ↑) (ACC ↑)

Original (no citation networks) 75.27 92.90 ± 6.34 78.20 ± 3.81
Original + Cora + CiteSeer 75.61 92.68 ± 6.07 78.24 ± 3.77

• MOLHIV, MOLESOL, MOLTOX21 (Hu et al., 2020a) is a collection of molecular graphs
from the OGB benchmark covering drug discovery and toxicity prediction tasks. Depending
on the dataset, we perform binary classification (MOLHIV), regression (MOLESOL), or multi-
label classification (MOLTOX21). Performance is measured using ROC-AUC or RMSE, as
appropriate.

• MNIST, CIFAR10 (Dwivedi et al., 2023) are computer vision datasets converted into graph-
structured superpixels. Each image is modeled as a fixed-structure graph, with 1-dimensional
input features and a 10-way classification objective.

• MODELNET (Wu et al., 2015) is a 3D object classification benchmark where shapes are
represented as fixed-size point cloud graphs. We use the 10-class subset.

• CUNEIFORM Morris et al. (2020) is a graph-based OCR dataset derived from ancient script
symbols, consisting of 62-node graphs with 150 edges on average and a 30-class prediction
target.

• MSRC-21 Morris et al. (2020) is an image segmentation dataset where region adjacency
graphs are constructed from visual scenes. Each graph has approximately 212 nodes and
336 edges, with 4-dimensional node features and 21 semantic class labels.

D.2 TRANSFERABILITY TO UNSEEN DATASETS AND INPUT FEATURES (A2)

To evaluate the transferability of ALL-IN to unseen input features, we choose the following datasets
summarized in Table 25 and explained below:

• CORA, CITESEER, PUBMED Yang et al. (2016): In these datasets, nodes represent aca-
demic papers and edges denote citation links. Each node is assigned a class label corre-
sponding to a subject area. The task is to predict the category of a paper based on its content
features and citation graph. Models are evaluated under transductive learning settings using
fixed splits Yang et al. (2016).

• MUTAG Morris et al. (2020): A binary classification dataset of small molecule graphs.
Nodes represent atoms with categorical features, and graphs are labeled based on mutagenic
effect on a bacterium.

• PROTEINS Morris et al. (2020): A dataset of protein structures modeled as graphs where
nodes represent secondary structure elements and edges reflect neighborhood in the amino
acid sequence. Each graph is labeled as enzyme or non-enzyme.

E IMPLEMENTATION DETAILS

We implement ALL-IN using PyTorch (Paszke et al., 2019) (BSD-3 Clause license) and PyTorch
Geometric (Fey and Lenssen, 2019) (MIT license). For experiment tracking and hyperparameter
logging, we utilize the Weights and Biases framework (Biewald, 2020). Experiments were conducted
with NVIDIA RTX A6000, RTX 4090, and NVIDIA A100 GPUs.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 20: Transfer to 3D shapes (ShapeNet) and social networks (IMDB-B) with ALL-IN. Higher is
better for both mIoU and accuracy.

Method ShapeNet IMDB-B
(MIOU ↑) (ACC ↑)

GIN 83.6 ± 0.4 75.1 ± 5.1
GraphGPS 84.9 ± 0.2 76.3 ± 5.4
ALL-IN 85.4 ± 0.3 77.2 ± 5.0

Table 21: Downstream regression transfer on PEPTIDES-STRUCT (MAE ↓).

Method PEPTIDES-STRUCT
(MAE ↓)

GINE 0.3547 ± 0.0045
GPS 0.2500 ± 0.0005
ALL-IN 0.2449 ± 0.0012

For all experiments, we use the GPS framework (Rampášek et al., 2022) with the GIN message
passing layer (Xu et al., 2019) for {GNNLayer(ℓ,A)(·,A)}Lℓ=0, and we use standard message passing
layer for other operators.

E.1 PRE-TRAINING ON DIFFERENT SOURCE DATASETS (Q1)

To evaluate large-scale transfer, we pretrain ALL-IN on a diverse set of 10 graph datasets spanning
multiple domains, as described in Appendix D. Each training epoch cycles through all datasets once,
optimizing dataset-specific objectives. We train for 500 epochs and checkpoint every 25 epochs.
Hyperparameters are detailed in Table 26. To accelerate training, (1) we use DataParallel to
support multi-GPU runs, (2) cache the random projection matrix C and refresh every 100 steps,
(3) sample 10,000 graphs randomly at each epoch for MNIST and CIFAR10, and (4) sample 128 nodes
with 6-nearest neighbors as edges for MODELNET in each graph.

E.2 EVALUATION ON UNSEEN DATASETS AND INPUT SPACES (Q2)

To evaluate the transferability of ALL-IN to unseen datasets with novel input features, we freeze the
pretrained encoder and evaluate its representations by training lightweight classifiers on new target
datasets. These datasets span both node-level and graph-level classification tasks, with input feature
spaces and labels disjoint from those used during pretraining.

For each target dataset, we instantiate a prediction head using one of the following: (1) a multi-layer
perceptron (MLP) for both node and graph classification tasks; (2) a 2-layer GCN Kipf and Welling
(2017) applied to node classification benchmarks (CORA, CITESEER, PUBMED); and (3) a 2-layer
GIN Xu et al. (2019) for graph classification benchmarks (MUTAG, PROTEINS). All prediction
heads are trained with frozen ALL-IN features as input. No gradients are backpropagated into the
encoder during this stage.

For MLPs, we use a single hidden layer of size 128 with ReLU activation, followed by a softmax
or sigmoid output layer, depending on whether the task is single-label or multi-label. We train
all classifiers using the Adam optimizer with a learning rate of 0.001 and early stopping based
on validation loss. Node classification models are trained on the standard 20/30/50 splits Yang
et al. (2016) and evaluated using accuracy. For graph classification, we perform 10-fold stratified
cross-validation and report the mean and standard deviation of classification accuracy.

All transfer experiments are implemented in PyTorch and PyTorch Geometric. Environment and
optimization settings match those described in Appendix E.1.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Table 22: Comparison of supervised vs. unsupervised pre-training of ALL-IN.

Pre-training approach Cora MUTAG
(ACC ↑) (ACC ↑)

ALL-IN (unsupervised) 82.05 ± 0.89 91.96 ± 6.24
ALL-IN (supervised) 82.13 ± 0.97 92.90 ± 6.31

Table 23: Effect of the number of propagations k on pre-training performance.

k ZINC MOLESOL MOLHIV MOLTOX21 MNIST CIFAR10 MODELNET CUNEIFORM MSRC21
(MAE ↓) (RMSE ↓) (ROC-AUC ↑) (ROC-AUC ↑) (ACC ↑) (ACC ↑) (ACC ↑) (ACC ↑) (ACC ↑)

0 0.1557 1.28 72.74 68.19 94.57 40.11 37.11 89.88 97.51
1 0.1415 1.29 73.60 68.30 94.95 40.20 38.20 90.40 97.85
2 0.1237 1.29 74.49 68.20 95.22 40.08 39.37 91.17 98.08
3 0.1232 1.30 74.70 68.25 95.30 40.25 39.45 91.25 98.12
4 0.1239 1.30 74.65 68.22 95.28 40.18 39.30 91.10 98.05

Table 24: Statistics of pre-training datasets used in ALL-IN. The datasets span molecules, drugs,
computer vision-derived graphs and 3D shape point clouds. Our pretraining corpus contains up to
200,558 graphs.

Dataset # Nodes # Edges # Features # Classes Domain / Category

ZINC 23.2 (avg) 24.9 (avg) 28 - Molecular Graph Regression
OGBG-MOLESOL 13.3 (avg) 13.6 (avg) 9 - Solubility Prediction
OGBG-MOLHIV 25.5 (avg) 27.5 (avg) 9 2 Drug Discovery
OGBG-MOLTOX21 18.6 (avg) 19.4 (avg) 9 12 (multi-label) Toxicology
MNIST (SUPERPIXELS) 75 142 1 10 Vision (Digits)
CIFAR10 (SUPERPIXELS) 85 170 1 10 Vision (Objects)
MODELNET 100 (fixed) 150 (fixed) 3 40 3D Shape Classification
CUNEIFORM 62 (avg) 150 (avg) 1 30 Archaeology / OCR
MSRC 21 212 (avg) 336 (avg) 4 21 Image Segmentation

Table 25: Statistics of finetuning datasets used in our experiments. For node classification datasets
(citation networks), we report the total number of nodes and edges. For graph classification datasets
(bioinformatics), we report the number of graphs and average graph sizes.

Dataset # Graphs / Nodes # Edges # Features # Classes Domain / Task

CORA 2,708 nodes 5,429 1,433 7 Citation Network / Node Classification
CITESEER 3,327 nodes 4,732 3,703 6 Citation Network / Node Classification
PUBMED 19,717 nodes 44,338 500 3 Citation Network / Node Classification
MUTAG 188 graphs 17.9 (avg) 7 2 Bioinformatics / Graph Classification
PROTEINS 1,113 graphs 39.1 (avg) 3 2 Bioinformatics / Graph Classification

Table 26: Hyperparameter Configuration for Pretraining Stage.

Category Hyperparameter (Value)

Architecture

Activation Function ReLU
Attention Type in GPS PerformerAttention
GPS Heads 4
Channels h(ℓ) 256
Random Projection Dim h 512
Backbone GNNLayer gps_gine
Number of Layers L 6
Input PE Dim hs 20
Use Random Projections True
# Node-Covariance Operators k 0, 2

Training Setup

Pretraining Epochs 500
Batch Size 64
Dropout 0.0
Learning Rate 0.0001
Weight Decay 0.0
Normalization Type batchnorm

32


	Introduction
	Related Work
	Method
	Theoretical Insights
	Invariance to Feature Space Transformations
	Training Objective Upper Bound
	Conditions for Transferability and Operator Consistency

	Experiments
	Performance on Pre-training Source Datasets (A1)
	Transferability to Unseen Datasets and Input Features (A2)

	Conclusion
	Additional Related Work
	Additional Theoretical Considerations and Proofs
	Additional Results
	Categorization and Description of Baselines
	Comparison to Methods Trained on each Individual Dataset
	Using SVM on the Pre-trained Representations
	Additional results on transferability to unseen datasets
	The Importance of SPEs and Random Projections in eq:h0
	The importance of Random Projections
	Ablation Study on the Operator Set
	The role of the feature dimensionality h
	Additional Datasets
	blueFixed Random Projections
	blueEdge features ablation
	Pre-training with citation networks
	Transfer to additional domains
	Downstream regression transfer
	Supervised vs. unsupervised pre-training of All-In
	Effect of the number of propagation orders
	Asymptotic Computational Complexity

	Dataset Information
	Pre-training Source Datasets (A1)
	Transferability to Unseen Datasets and Input Features (A2)

	Implementation Details
	Pre-training on Different Source Datasets (Q1)
	Evaluation on Unseen Datasets and Input Spaces (Q2)


