
Published as a conference paper at COLM 2024

SELF-GUIDE: Better Task-Specific Instruction Following via
Self-Synthetic Finetuning

Chenyang Zhao1*, Xueying Jia2*,
Vijay Viswanathan2, Graham Neubig2, Tongshuang Wu2

1Department of Computer Science and Technology, Tsinghua University, Beijing, China
2Language Technologies Institute, Carnegie Mellon University, Pittsburgh, PA, USA
zhaochenyang20@gmail.com
{xjia2,vijayv,gneubig,sherryw}@andrew.cmu.edu

Abstract

Large language models (LLMs) hold the promise of solving diverse tasks
when provided with appropriate natural language prompts. However,
prompting often leads models to make predictions with lower accuracy
compared to finetuning a model with ample training data. On the other
hand, while finetuning LLMs on task-specific data generally improves
their performance, abundant annotated datasets are not available for all
tasks. Previous work has explored generating task-specific data from state-
of-the-art LLMs and using this data to finetune smaller models, but this
approach requires access to a language model other than the one being
trained, which introduces cost, scalability challenges, and legal hurdles
associated with continuously relying on more powerful LLMs. In response
to these, we propose SELF-GUIDE, a multi-stage mechanism in which we
synthesize task-specific input-output pairs from the student LLM, then
use these input-output pairs to finetune the student LLM itself. In our
empirical evaluation of the Natural Instructions V2 benchmark, we find that
SELF-GUIDE improves the performance of LLM by a substantial margin.
Specifically, we report an absolute improvement of approximately 15%
for classification tasks and 18% for generation tasks in the benchmark’s
metrics. This sheds light on the promise of self-synthesized data guiding
LLMs towards becoming task-specific experts without any external learning
signals.1

1 Introduction

One of the traits of large language models (LLMs) that has captured the imagination of
model developers is their potential to automate a broad range of highly complex tasks with
relative ease (Brown et al., 2020a). Where previous generations of models required vast
task-specific training sets, LLMs now offer the promise of enabling similar accuracy by
simply writing a prompt and supplying a few examples. However, this may be a false promise.
Prompting typically leads models to make predictions with lower accuracy compared to
finetuning a model with ample training data (Gao et al., 2021; Zhang et al., 2023). Moreover,
LLMs’ performance crucially depends on their ability to follow instructions outlined in the
prompts and even minor alterations to these prompts can result in a notable performance
decline (Sclar et al., 2023a).

On the other hand, in data-abundant tasks, finetuning a pre-trained language model through
supervised finetuning (Ouyang et al., 2022; Wei et al., 2022) and reinforcement learning
from human feedback (Lambert et al., 2022) has proven a successful strategy. However, the
effectiveness of this approach diminishes notably for underrepresented tasks suffering from

*Equal contribution
1All code and data necessary to reproduce experiments are released publicly:

https://github.com/zhaochenyang20/Prompt2Model-Self-Guide

1

https://github.com/zhaochenyang20/Prompt2Model-Self-Guide


Published as a conference paper at COLM 2024

 Instruction: “Given 2 sentences (a premise and hypothesis), classify their relationship.” 
  Examples: 
   - “Premise: The five guests that answered might go. Hypothesis: There are exactly five guests that answered. 
   - “Premise: The four peppers that fell might have gone bad. Hypothesis: There are exactly four apples that fell. 

Input: 
“Premise: The five guests that answered don't die. 
Hypothesis: There are exactly six guests that answered.”

→      Label: Positive”
→      Label: Neutral”

Finetune ModelGenerate Data

Baseline (Prompting)

Ours (Self-Guide)

Label: I'm sorry, but the 
given input does not contain 
a premise and a hypothesis.

Label: Neutral

❌

✅

 Instruction: “Given 2 sentences, classify their relationship.” 
  Examples: 
   - “Premise: The five guests that answered might go. Hypothesis: There are exactly five guests that answered. 
   - “Premise: The four peppers that fell might have gone bad. Hypothesis: There are exactly four apples that fell. 

Input: 
“Premise: The five guests that answered don't die. 
Hypothesis: There are exactly six guests that answered.”

→     Label: Positive”
→     Label: Neutral”

Finetune ModelGenerate Data

Baseline (Prompting)

Ours (Self-Guide)

Label: I'm sorry, but the 
given input does not contain 
a premise and a hypothesis.

Label: Neutral

❌

✅

Figure 1: SELF-GUIDE uses a model’s ability to generate synthetic data as a vehicle to
improve the model’s ability to execute a task as specified by an instruction.

data scarcity (Li et al., 2022), highlighting the critical need for high-quality training data.
To this end, recent studies have explored the potential of utilizing potent “teacher” LLMs
to create task-specific training data, thereby enhancing the performance of comparatively
less advanced “student” LLMs (Khattab et al., 2023; Viswanathan et al., 2023). While this
strategy is effective, its feasibility is hampered by the cost, scalability, and legal hurdles
associated with the continuous reliance on more powerful teacher LLMs. And when there
isn’t a stronger model available to provide learning signals, this approach is fundamentally
infeasible.

In this paper, we instead propose to finetune language models on self-synthesized data
to improve their ability to follow instructions on specific tasks with minimal annotated data.
Concretely, we ask the question: can we enhance a model’s performance for arbitrary tasks
without external training signals, such as labeled data or another teacher model? In our
affirmative answer to this question, we introduce SELF-GUIDE, a novel methodology that
enables LLMs to better execute task-specific instructions without requiring additional data
or training signals. SELF-GUIDE operates in the few-shot setting, where we are given only a
task instruction and up to three examples of task demonstrations. SELF-GUIDE works by
first employing the target model to generate a synthetic dataset for a given task. The model
is then finetuned on this “self-generated” data.

This approach differs from previous methods for bootstrapping a model from its own
outputs. Self-Instruct (Wang et al., 2023) is the most similar work; here, they use a base
LLM (GPT-3) to generate a synthetic instruction-following dataset to finetune the same
LLM. In contrast to their method, which aims to improve general-purpose LLM capabilities,
our method aims to optimize an LLM for a specific task instruction. Methodologically,
Self-Instruct generates a large set of instructions and demonstrations to use for instruction-
finetuning. While Self-Instruct asks an LLM to self-generate synthetic demonstrations for
each synthetic instruction, their method only generates a single demonstration for each
instruction, while our method can effectively self-generate hundreds of examples for a
given instruction. Our methods are complementary. We find that our method can perform
target tasks with significantly greater reliability when applied on top of general-purpose
instruction finetuned models (e.g. the kind of model resulting from Self-Instruct). We
provide more details regarding other related methods in Section 5.

In our empirical evaluation of SELF-GUIDE using on multiple tasks from Super-
NaturalInstructions V2 (Wang et al., 2022), applying SELF-GUIDE to an already instruction-
tuned model (Vicuna-1.5-7B, (Zheng et al., 2023)) yields an absolute performance improve-
ment of 17.9 points of ROUGE-L for open-ended generation tasks and 14.5 points of accuracy
on classification tasks, compared against the baseline of prompting the same model with
the same prompt.

2



Published as a conference paper at COLM 2024

Figure 2: At the heart of SELF-GUIDE lies an efficient and effective multi-stage generation
mechanism, where the LM generates input-output pairs step by step. After the generation
and filtering, the self-generated data are further used to finetune the LM itself. This figure
describes the process for the generation tasks.

Figure 3: This figure describes the process for the classification tasks; we use a slightly
modified procedure for self-generating data for classification tasks. Put simply, we first
generate pseudo-labels, then generate corresponding diverse inputs, and finally generate
true labels. Regarding the Input-Output Pairs Filter, a set of labels will be provided to filter
out labels. Further details will be described in Section 2.1.

2 SELF-GUIDE

In the following section, we outline the proposed SELF-GUIDE framework (illustrated in
Figure 2 and Figure 3). As input, SELF-GUIDE takes an instruction (e.g. “Write a topic word
from a given fact.”), and a few example inputs and outputs (e.g. “pesticides cause pollution”
as input fact, “pollution harms” as output topic word). Our method proceeds in multiple
stages, where each stage performs procedures to improve quality, either through rule-based
filters on data quality, or hyperparameter search. Below, we describe the key design points.

3



Published as a conference paper at COLM 2024

2.1 Data Generation

Input Generation The input generation process starts by extracting inputs from provided
example pairs and combining them with the instruction to populate a prompt template.
The constructed prompts are then forwarded to the LLM to obtain model-generated inputs.
After each round of prompting, the newly generated inputs are added to an input repository.
A subset of inputs is randomly sampled from this repository and merged with inputs from
the initial examples to formulate a new prompt, aiming to incrementally expand the set of
LLM-generated inputs. We only go through one round of input generation and subsequently,
in the quality refinement stage, rule-based filters are applied to remove low-quality inputs.
Detailed descriptions of this quality refinement process are provided in Section 2.2.

The prompt templates employed vary based on the task type-generation or classification.
For generation tasks, a simple prompt template instructs the model to generate a new input
following the provided examples. In contrast, in classification tasks, the model is directed to
generate an input corresponding to a randomly chosen label from the available set, allowing
for a more balanced label distribution in the generated examples. Further details on the
prompt templates are provided in Appendix A.1.1.

Output Generation The output generation employs conventional in-context learning
techniques (Min et al., 2022a; Brown et al., 2020b). It provides the model with instructions
and original examples, allowing it to annotate every single input that was generated earlier
in the input generation stage. After obtaining all annotated outputs for the previously
generated inputs, another round of rule-based filtering takes place to select the final synthetic
dataset, the details of which are described in Section 2.2. The comprehensive prompt
templates used for output generation are provided in Appendix A.1.2.

2.2 Quality Optimization: Temperature and Rule-based Filters

The quality of generated data is essential for the success of the downstream training. Our
approach takes a two-fold strategy of adjusting generation parameters to improve quality
and filtering out low quality samples.

Temperature: Intuitively, adjusting the temperature is a common strategy to balance di-
versity and quality. Our framework also leverages this approach, using a relatively higher
temperature during input generation to encourage diversity, and a lower temperature in
other stages to promote quality. However, solely relying on temperature adjustment is
insufficient to achieve the desired balance. SELF-GUIDE further employs two rounds of
rule-based data filtering, one after the inputs are generated, and the other after the outputs
are annotated. For clarity, we describe these two rounds together.

Noise Filter: We manually curate a list of noise terms, such as common salutations, greetings,
and noise characters (e.g., \ \ in the generated contents). If any noise term from this curated
list appears in either the input or the output of a generated example, we discard the entire
example. This filtering step ensures that the generated examples remain concise, focused,
and free from irrelevant content or artifact patterns.

Length Filter: While the lengths of demonstrative examples may exhibit bias, we assume
these examples already possess decent representativeness for a specific task in terms of
length distribution. Based on this assumption, we further assume that the lengths of demon-
strative examples follow a normal distribution for a specific task, and since most data points
of a normal distribution fall within two standard deviations from the mean, we stipulate
that the lengths of generated examples’ inputs and outputs should also approximate a nor-
mal distribution with mean µ and variance σ2 calculated from the demonstrative examples.
Specifically, the lengths are required to be within the range (µ− 2σ, µ+ 2σ). Other attributes
like semantic similarity of generated examples are computationally expensive and lack clear,
intuitive definitions. Hence, we opt for the efficient and tractable length attribute under this
normality assumption.

4



Published as a conference paper at COLM 2024

Task ID Task Description Prompting
(Baseline)

Few-Shot
Finetuning

SELF-GUIDE
(Ours) ∆

Classification Tasks

task1516 NLI (IMPPRES) 17.6 32.2 35.2 17.6
task1529 NLI (SciTail) 8.5 48.9 54.5 46.0
task1612 Sentiment Class. (SICK) 51.3 33.3 33.3 -18.0
task1615 NLI (SICK) 0.5 33.3 33.1 32.6
task284 Sentiment Class. (IMDB) 90.0 71.9 82.2 -7.8
task329 Coreferent Class. 29.1 45.4 44.7 15.6
task346 Word POS Class. 35.1 49.9 50.7 15.6
Avg Metric: Exact Match 33.2 45.0 47.7 14.5

Generation Tasks

task1345 Question Paraphrasing 40.7 36.0 50.5 9.8
task281 Find Common Entity 46.8 40.7 49.3 2.5
task1562 Question Paraphrasing 29.5 48.6 59.3 29.8
task1622 Fluency Correction 49.2 86.2 78.5 29.3
Avg Metric: ROUGE-L 41.6 52.9 59.4 17.9

Table 1: For each task category (classification and generation), we randomly split the tasks
into two halves, one half to tune the parameters for the “One Parameter Fits All” strategy,
and the other half to test SELF-GUIDE’s performance using this tuned set of parameters. We
use the same decoding parameters and prompt template to evaluate the performance of the
base model and the Self-Guided expert model on the held-out tasks. ∆ is the performance
difference between SELF-GUIDE and the Prompting baseline.

2.3 Quality Optimization: Parameter Tuning

We want SELF-GUIDE to generate training data matching to the desired distribution specified
by an instruction and examples. This requires optimizing various hyper-parameters on
labeled data points, including the initial number of generated inputs, the temperature for
input generation, the temperature for output generation, finetuning parameters like training
epochs, and so on. To achieve this, we tune the parameters on a set of existing tasks and
their corresponding instructions, and then evaluate the model on a held-out dataset. We
do so by searching parameters that maximize worst task performance, in order to identify
parameters that are likely to be “good enough” for a broad set of tasks (Michel et al., 2021):

max
θ

min
t∈tasks

(performance(θ, t)− ICL(t)) (1)

In Section 3 below, we demonstrate that our default set of parameters generally performs
well with an absolute improvement of approximately 15% for classification tasks and 18%
for generation tasks in the benchmark’s metrics.

3 Experimental Setup

3.1 Datasets

To evaluate the effectiveness of SELF-GUIDE, we selected 14 classification tasks and 8
generation tasks from the Super-NaturalInstructions V2 benchmark. We randomly chose
half of these tasks (7 classification and 4 generation) for hyper-parameter search, and the
remaining half for evaluation (referred to as held-out tasks). Table 1 lists the held-out tasks.
To find the optimal set of parameters as described in Section 2.3, we performed a random
search over the temperature for input generation and output generation, as well as the
number of generated inputs before filtering.

3.2 Base Model

We selected Vicuna-7b-1.5 (Zheng et al., 2023; Wan et al., 2024; Fan & Tao, 2024) as the
foundational model for input generation, output generation, and fine-tuning for two primary

5



Published as a conference paper at COLM 2024

reasons: Firstly, having undergone fine-tuning on an extensive and diverse corpus of
user conversations from ShareGPT, this model demonstrates robust cross-task instruction-
following capabilities. However, despite its extensive training, its performance is not
deemed satisfactory, as evidenced by its relatively low ranking of 73rd on the LMSYS
Chatbot Arena Leaderboard (Chiang et al., 2024), prompting us to investigate opportunities
for improvement.

We employ the same evaluation metrics as in the Super-NaturalInstructions V2 benchmark,
namely Exact Match for classification tasks and ROUGE-L for generation tasks. Exact Match
measures the exact string match between the predicted and ground truth labels, while
ROUGE-L computes the longest common subsequence between the generated and reference
texts. For a fair comparison, we use identical settings for our base model and Self-Guided
model, including model size, batch size, decoding strategy (greedy search), and prompt
template in Appendix A.1.2. During inference, we leverage the efficient VLLM framework
proposed by Kwon et al. (2023). For supervised finetuning with teacher forcing, we employ
the Hugging Face TRL library (von Werra et al., 2020) due to its flexibility and ease of use
for transformer-based language models.

3.3 Baselines

SELF-GUIDE provides a method for executing tasks specified by prompts (which contain
instructions and a small number of demonstration examples). We compare SELF-GUIDE
against other methods for instruction following and in-context learning:

1. Few-Shot ICL (Prompting): As our primary baseline, we compare against directly prompt-
ing the LM. This directly relies on the inherent instruction-following abilities of the
model.

2. Self-ICL: We build on Self-ICL (Chen et al., 2023), which uses self-generated examples to
improve zero-shot instruction following. We adopt Self-ICL to our few-shot setting by
self-generating as many examples as can fit in the context window. We list this number
of examples as k in Table 2.

3. Few-Shot Finetuning: We consider directly finetuning on the few demonstrations in each
prompt. Prior work (Liu et al., 2022) shows this can be very effective.

We use the same base model (Vicuna-7b-1.5) as described in 3.2 for every baseline mentioned
above.

4 Results and Analysis

Our main experiment results are shown in Table 1. Specifically, we report an absolute im-
provement of 14.5% for classification tasks and 17.9% for generation tasks in the benchmark’s
metrics. SELF-GUIDE demonstrates its effectiveness in guiding LLMs toward task-specific
expertise, even in extremely data-limited situations. This highlights the potential of self-
synthesized data in adapting LLMs for specialized tasks from a more scalable perspective.

To further analyze the reasons behind the improvement brought about by SELF-GUIDE, we
conducted several analysis experiments to examine certain properties of SELF-GUIDE.

4.1 Comparing self-synthesized examples with gold few-shot examples

In Table 1, we see that SELF-GUIDE improves Vicuna-7b-1.5’s ability to complete most tasks.
Given that the SELF-GUIDE algorithm, in essence, involves finetuning on self-synthesized
data, how much of this performance boost can be attributed to the synthetic data or to the
learning algorithm?

To test this, we compare two ways of incorporating synthetic data into an LM: finetuning
and in-context learning. For finetuning, we compare SELF-GUIDE with few-shot finetuning
on three gold demonstrations. For in-context learning, we compare adding self-synthesized
data into demonstration examples, i.e. Self-ICL, with in-context learning using only the
three gold demonstrations.

6



Published as a conference paper at COLM 2024

Task ID 3-Shot
Finetuning SELF-GUIDE

3-Shot
ICL

Self-ICL
(with k syn. ex.)

Finetuning
(on k syn. ex.) k

Classification Tasks
task1516 32.2 35.2 17.6 4.5 33.2 60
task1529 48.9 54.5 8.5 0.2 50.0 52
task1612 33.3 33.3 51.3 34.1 33.3 39
task1615 33.3 33.1 0.5 0.0 33.3 3
task284 71.9 82.2 90.0 10.0 50.0 22
task329 45.4 44.7 29.1 35.2 44.4 3
task346 49.9 50.7 35.1 22.4 49.9 30
Avg 45.0 47.7 33.2 15.2 42.0 30

Generation Tasks
task1345 36.0 50.5 40.7 48.8 50.4 7
task281 40.7 49.3 46.8 36.8 51.5 28
task1562 48.6 59.3 29.5 44.1 57.3 30
task1622 86.2 78.5 49.2 50.9 78.4 42
Avg 52.9 59.4 41.6 45.2 59.4 27

Table 2: We compare in-context learning and finetuning on their ability to learn either
from 3 manually written demonstrations or from a varying number of synthetically gen-
erated demonstrations. We find finetuning is better at leveraging synthetic data than
in-context learning. When comparing Self-Guide with 3-Shot Finetuning, finetuning on
self-synthesized data yields better performance than finetuning on gold-standard few-shot
examples.

In Table 2, we see that using generated training data with finetuning improves over 3-shot
finetuning on average for both classification and generation tasks (comparing the “SELF-
GUIDE” and “3-Shot Finetuning” columns). On the other hand, comparing the “3-Shot
ICL” and “Self-ICL” columns, we see that using generated training data with in-context
learning helps only for generation tasks; for classification tasks, this strategy often leads to
deteriorated performance. In Self-ICL for classification tasks, the prompted model tends
to generate new input-output demonstrations rather than respond to the final input to
be completed, leading to a significant performance decrease. We hypothesize that the
model fails to segment the instruction from the demonstration examples, thereby failing to
systematically classify the provided inputs according to the task definition.

4.2 Finetuning outperforms in-context learning on synthetic data

How much is the learning algorithm — finetuning versus in-context learning — responsible
for the effectiveness of SELF-GUIDE? To test this, we compare in-context learning on as
many self-synthesized examples as can fit in the context window of an LM (“Self-ICL”)
with finetuning on the same set of self-synthesized examples. We find in Table 2, compared
to in-context learning, finetuning on the same generated examples achieves substantially
better performance, with an average improvement of around 20 absolute percentage points
across almost all tasks. Interestingly, finetuning on just a few self-synthesized examples
(e.g. 7) can yield considerable performance gains, which highlights the data efficiency of
SELF-GUIDE.

4.3 SELF-GUIDE aligns LMs with the correct label distribution in many cases

To demonstrate the high quality of data generated by SELF-GUIDE from a quantitative
perspective, we analyze the distance between the output distributions of the models before
and after SELF-GUIDE and the ground truth distribution for classification tasks.

Specifically, we compute the output distributions of the base model and the Self-Guided
expert model on the same task. Considering that the outputs may contain irrelevant
greetings or cases where the model directly refuses to answer, we collectively treat outputs
without labels as irrelevant content and calculate the distribution across all labels and

7



Published as a conference paper at COLM 2024

irrelevant content. After obtaining the output distribution, we calculate the L1 distance
between this distribution and the ground truth distribution.

Task ID Accuracy L1 distance Irrelevant Ratio
Baseline SELF-GUIDE Baseline SELF-GUIDE Baseline SELF-GUIDE

task1516 0.18 0.35 1.31 0.81 0.65 0.00
task1529 0.09 0.55 1.79 0.23 0.90 0.00
task1612 0.51 0.33 0.67 1.33 0.00 0.00
task1615 0.01 0.33 1.97 1.33 0.98 0.00
task284 0.90 0.82 0.14 0.33 0.07 0.00
task329 0.29 0.45 0.85 1.09 0.25 0.00
task346 0.35 0.51 0.97 0.16 0.28 0.00

Avg 0.33 0.48 1.10 0.75 0.45 0.00

Table 3: The L1 distance from the ground truth distribution, with lower values indicating
better alignment. Notably, the Irrelevant Ratio column indicates the proportion of outputs
deemed irrelevant, with the SELF-GUIDE model effectively reducing this ratio to 0 across all
tasks.

From the results in Table 3, on average, the SELF-GUIDE model demonstrates a significantly
lower average L1 distance compared to the baseline model while reducing the proportion
of irrelevant content to 0. This indicates that the SELF-GUIDE model not only enhances
the consistency of outputs with the true distribution but also effectively reduces irrelevant
information in generated content, thereby enhancing the overall performance of the model.

4.4 SELF-GUIDE learns a non-trivial input-output mapping via self-synthesis

In this experiment, we investigate whether the improved performance of the LM under the
SELF-GUIDE framework stems from merely learning trivial patterns like output formatting
and label structuring, or also from gaining a better understanding of the task. We consider
two scenarios: Rand-Baseline, where we randomize the labels in the demonstrative examples
following Min et al. (2022b), and Rand-SELF-GUIDE, where we randomize the labels of the
self-generated examples in the SELF-GUIDE approach. Specifically, for the Rand-Baseline,
each original label in the demonstrative examples is replaced with a random label. For
Rand-SELF-GUIDE, we randomize all the labels of the generated examples in SELF-GUIDE,
finetune the base model on this randomized data, and evaluate it using the same prompt as
in our main experiments.

From our results in Table 4, Rand-SELF-GUIDE outperforms the baseline suggesting that
even with randomized labels, the self-generated examples provide valuable signals to
the model. Additionally, the high ratio of irrelevant content produced by the baseline
model, as detailed in Table 3, contrasts sharply with the SELF-GUIDE approach, which
eliminates irrelevant outputs entirely, ensuring all outputs align with the expected label
space. This demonstrates that self-generated examples can introduce basic patterns like
output formatting and label structuring to language models. However, SELF-GUIDE’s
improvement gain over Rand-SELF-GUIDE further demonstrates that beyond learning
superficial patterns, better supervisory signals during the SELF-GUIDE process enable the
model to develop a deeper comprehension of the task itself. Finally, Rand-Baseline’s worse
performance compared to the baseline confirms that merely observing well-formatted
outputs is insufficient - the model crucially requires proper supervision from high-quality
demonstrations to truly grasp the task essence. Collectively, these contrasts reveal that the
SELF-GUIDE method allows the model to simultaneously acquire shallow output patterns
while leveraging the self-generated examples to model the task distribution, leading to a
comprehensive boost in its capabilities on specific tasks.

8



Published as a conference paper at COLM 2024

Task ID Rand-Baseline Baseline Rand-SELF-GUIDE SELF-GUIDE

task1516 18.7 17.6 33.2 35.2
task1529 9.5 8.5 49.9 54.5
task1612 40.6 51.3 33.3 33.3
task1615 6.5 0.5 33.3 33.1
task284 69.9 90.0 50.0 82.2
task329 30.4 29.1 44.5 44.7
task346 36.4 35.1 50.0 50.7

Avg 30.3 33.2 42.0 47.7

Table 4: Comparison of task performance on classification tasks between the SELF-GUIDE,
the baseline model, Rand-SELF-GUIDE (where labels of self-generated examples are ran-
domized in SELF-GUIDE), and Rand-Baseline (where labels of demonstrative examples are
randomized). The best performance on each task is highlighted in bold.

4.5 Noise filter is crucial for classification tasks, while length filter is crucial for generation
task

Ablation studies results below in Table 5 found that removing the ablation filter decreases
classification accuracy by 4.1% while removing the length filter decreases generation accu-
racy by 3.7%. We think that the ablation filter is crucial for classification tasks as it removes
outputs with superfluous content, retaining only the labels. For generation tasks, the length
filter enhances performance by excluding lengthy or too short responses, improving the
ROUGE-L score. These studies demonstrate the effectiveness of our rule-based filters.

Task w/o both w/o ablation w/o length w/ both

Generation 55.3 59.6 55.7 59.4
Classification 44.4 43.6 47.7 47.7

Table 5: Comparison of task performance using different filters. The best performance on
each kind of task is highlighted in bold.

In conclusion, we identify several key factors contributing to the efficacy of SELF-GUIDE.
Initially, expanding and augmenting the training dataset with self-generated synthetic data
derived from few-shot examples proves to be highly effective compared with manually
collecting data. Second, SELF-GUIDE is aligned with the findings of prior research (Liu et al.,
2022), which posits that finetuning surpasses in-context learning in terms of effectiveness.
Third, our analysis reveals that finetuning synthesized data enhances the consistency of
outputs with the true distribution and effectively reduces irrelevant information in generated
content. Fourth, SELF-GUIDE enables LLM to develop a deeper comprehension of the task
itself while learning superficial patterns. Last, filters are recommended both for the raw
model and SELF-GUIDE, and the ablation filter is crucial for classification tasks, while length
filter is crucial for generation tasks.

5 Related Work

Recent studies have demonstrated the efficient execution of language-based instructions
by LLMs through fine-tuning instruction-based datasets. These datasets comprise pairs of
language instruction commands and expected outcomes annotated by humans (Weller et al.,
2020; Mishra et al., 2022). (Honovich et al., 2022) indicate that despite the noise present in
LLM-generated datasets, they can still serve as effective training resources for instruction
fine-tuning, implying that the parametric knowledge in pretrained LLMs contains, with
potentially some transformation necessary, an inherent understanding of instructions. We
extend this hypothesis, proposing that LLMs inherently possess the ability to understand
arbitrary instructions and that this ability can be exploited to self-generate training data.

9



Published as a conference paper at COLM 2024

Manually crafted datasets have played a pivotal role in supervising and augmenting various
NLP task systems (Rozière et al., 2023; Yuan et al., 2023). However, traditional manual
annotation processes are often time-consuming, labor-intensive, costly, and non-scalable.
Additionally, the possibility of human errors and the lack of domain expertise among
annotators in complex tasks cannot be overlooked (Braylan & Lease, 2021; Kang et al., 2023).
Recent works have tried to alleviate the human labor associated with training data collection
by utilizing the power of stronger models as data generators (Patel et al., 2024; Wang et al.,
2024; Song et al., 2024). These methods can be broadly categorized based on their reliance
on seed data, the need for human curation, and stronger teacher LLMs. Viswanathan et al.
(2023); Ge et al. (2024) combine retrieval methods and distillation to directly gather training
data from external sources without seed data. Zhou et al. (2023) introduced LIMA, which
generates possible responses using LLMs given existing instructions, and then curates
them with human annotators. Li et al. (2023) automated the generation of instructions
through back-translation on large external corpora, eliminating the need for seed data (Self-
Alignment). However, these methods still require more powerful models or seed datasets to
cultivate high-quality examples. Our work investigates the self-generation abilities of LLMs
as a means of reducing the need for external resources compared to previous efforts.

Self-Instruct (Wang et al., 2023), which was mentioned in section 1, is the most relevant work
to ours. They also use synthetic data self-generation; in their case, they focus on enabling
data-efficient general-purpose instruction finetuning. Our proposed method explores the
complementary question of how to use self-generation to make an instruction-finetuned
model even better at executing the instructions specified for a given task.

6 Conclusion

In this paper, we propose SELF-GUIDE, an algorithm for large language models to follow
task-specific instructions by internally producing synthetic training data and finetuning
on this data. The improvement underscores the potential of our approach in enhancing
LLMs’ task-specific expertise, particularly in data-limited scenarios, and open avenues for
exploring advanced techniques in autonomous model adaptation and continuous learning.
We hope that our work can chart a path for future research in autonomous self-alignment
and improvement mechanisms in AI systems, aligning them more closely with human
intentions.

7 Limitations and Ethical Considerations

The primary limitation of our work is that we focus all of our experiments and models
on English NLP tasks. Language technologies already promote systematic inequalities
between languages and communities (Blasi et al., 2021; Zhao & Zhang, 2024; Zhao et al.,
2024); SELF-GUIDE brings the possibility of exacerbating these inequalities. On the other
hand, SELF-GUIDE also offers the tempting potential of improving LMs’ ability to execute
instructions specified in non-English languages to empower trustworthy non-English LLM-
based Agents (Chen et al., 2024; Sun et al., 2024; Huang et al., 2023). We consider this to be
an essential direction for future work, and we are actively pursuing this.

Another limitation of our work is that we’ve only shown that SELF-GUIDE works at im-
proving a 7B-parameter model (Vicuna-7b-1.5). We believe that our approach could be
used to improve the ability of arbitrarily large LMs (He et al., 2023; Hu et al., 2024) to
follow task-specific instructions. However, due to budgetary restrictions, we were unable to
experiment with larger models; we leave this as an important avenue for future work.

In terms of ethical considerations, SELF-GUIDE’ potential to improve instruction following
on specific tasks raises the risk of making it easier for people to specialize LLMs for malicious
purposes. The open-sourcing of our code could amplify this risk. As Widder et al. (2022)
points out (with the case study of deepfakes), open-source software can simultaneously
increase the prevalence of harms while providing the community with the understanding
and experience to manage these harms. Given SELF-GUIDE’ potential for positive use, we
believe that this algorithm and code are still worthy of releasing to the public.

10



Published as a conference paper at COLM 2024

8 Acknowledgments

This work was supported by the computing resources provided by the Microsoft Accelerate
Foundation Models Research Program and the Tencent AI Lab Rhino-Bird Gift Fund. The
authors would like to thank the reviewers for their valuable feedback. Additionally, we
extend our gratitude to Professor Pengfei Liu at Shanghai Jiaotong University for his
assistance with this work.

References
Damián E. Blasi, Antonios Anastasopoulos, and Graham Neubig. Systematic inequalities in

language technology performance across the worlds languages. ArXiv, abs/2110.0673 3,
2021. URL https://api.semanticscholar.org/CorpusID:238744120.

Alexander Braylan and Matthew Lease. Aggregating complex annotations via merging and
matching. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery &
Data Mining, KDD ’21, pp. 8694, New York, NY, USA, 2021. Association for Computing
Machinery. ISBN 9781450383325. doi: 10.1145/3447548.3467411. URL https://doi.org/
10.1145/3447548.3467411.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam
McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are
few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin
(eds.), Advances in Neural Information Processing Systems, volume 33, pp. 1877–1901. Curran
Associates, Inc., 2020a. URL https://proceedings.neurips.cc/paper_files/paper/
2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are
few-shot learners, 2020b.

Wei-Lin Chen, Cheng-Kuang Wu, Yun-Nung Chen, and Hsin-Hsi Chen. Self-ICL: Zero-
shot in-context learning with self-generated demonstrations. In Houda Bouamor, Juan
Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in
Natural Language Processing, pp. 15651–15662, Singapore, December 2023. Association
for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.968. URL https:
//aclanthology.org/2023.emnlp-main.968.

Weize Chen, Ziming You, Ran Li, Yitong Guan, Chen Qian, Chenyang Zhao, Cheng Yang,
Ruobing Xie, Zhiyuan Liu, and Maosong Sun. Internet of agents: Weaving a web of
heterogeneous agents for collaborative intelligence. arXiv preprint arXiv:2407.07061, 2024.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle
Li, Dacheng Li, Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E. Gonzalez, and Ion
Stoica. Chatbot arena: An open platform for evaluating llms by human preference, 2024.

Xiaojing Fan and Chunliang Tao. Towards resilient and efficient llms: A comparative study
of efficiency, performance, and adversarial robustness, 2024. URL https://arxiv.org/
abs/2408.04585.

Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better
few-shot learners. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.),
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the

11

https://api.semanticscholar.org/CorpusID:238744120
https://doi.org/10.1145/3447548.3467411
https://doi.org/10.1145/3447548.3467411
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://aclanthology.org/2023.emnlp-main.968
https://aclanthology.org/2023.emnlp-main.968
https://arxiv.org/abs/2408.04585
https://arxiv.org/abs/2408.04585


Published as a conference paper at COLM 2024

11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pp. 3816–3830, Online, August 2021. Association for Computational Linguistics. doi:
10.18653/v1/2021.acl-long.295. URL https://aclanthology.org/2021.acl-long.295.

Jiaxin Ge, Xueying Jia, Vijay Viswanathan, Hongyin Luo, and Graham Neubig. Training
task experts through retrieval based distillation. arXiv preprint arXiv:2407.05463, 2024.

Nan He, Hanyu Lai, Chenyang Zhao, Zirui Cheng, Junting Pan, Ruoyu Qin, Ruofan Lu,
Rui Lu, Yunchen Zhang, Gangming Zhao, et al. Teacherlm: Teaching to fish rather than
giving the fish, language modeling likewise. arXiv preprint arXiv:2310.19019, 2023.

Or Honovich, Thomas Scialom, Omer Levy, and Timo Schick. Unnatural instructions:
Tuning language models with (almost) no human labor, 2022.

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei
Fang, Yuxiang Huang, Weilin Zhao, et al. Minicpm: Unveiling the potential of small
language models with scalable training strategies. arXiv preprint arXiv:2404.06395, 2024.

Yue Huang, Qihui Zhang, Lichao Sun, et al. Trustgpt: A benchmark for trustworthy and
responsible large language models. arXiv preprint arXiv:2306.11507, 2023.

Mintong Kang, Bowen Li, Zengle Zhu, Yongyi Lu, Elliot K. Fishman, Alan Yuille, and
Zongwei Zhou. Label-assemble: Leveraging multiple datasets with partial labels. In
2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI), pp. 1–5, 2023. doi:
10.1109/ISBI53787.2023.10230766.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri
Vardhamanan, Saiful Haq, Ashutosh Sharma, Thomas T. Joshi, Hanna Moazam, Heather
Miller, Matei Zaharia, and Christopher Potts. Dspy: Compiling declarative language
model calls into self-improving pipelines, 2023.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu,
Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large
language model serving with pagedattention. In Proceedings of the ACM SIGOPS 29th
Symposium on Operating Systems Principles, 2023.

Nathan Lambert, Louis Castricato, Leandro von Werra, and Alex Havrilla. Illustrat-
ing reinforcement learning from human feedback (rlhf). Hugging Face Blog, 2022.
https://huggingface.co/blog/rlhf.

Tianyi Li, Sabine Weber, Mohammad Javad Hosseini, Liane Guillou, and Mark Steedman.
Cross-lingual inference with a chinese entailment graph, 2022.

Xian Li, Ping Yu, Chunting Zhou, Timo Schick, Luke Zettlemoyer, Omer Levy, Jason Weston,
and Mike Lewis. Self-alignment with instruction backtranslation, 2023.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal,
and Colin Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than
in-context learning. ArXiv, abs/2205.05638, 2022. URL https://api.semanticscholar.
org/CorpusID:248693283.

Paul Michel, Sebastian Ruder, and Dani Yogatama. Balancing average and worst-case
accuracy in multitask learning. ArXiv, abs/2110.05838, 2021. URL https://api.
semanticscholar.org/CorpusID:238634327.

Sewon Min, Mike Lewis, Luke Zettlemoyer, and Hannaneh Hajishirzi. Metaicl: Learning to
learn in context, 2022a.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi,
and Luke Zettlemoyer. Rethinking the role of demonstrations: What makes in-context
learning work? ArXiv, abs/2202.12837, 2022b. URL https://api.semanticscholar.
org/CorpusID:247155069.

12

https://aclanthology.org/2021.acl-long.295
https://api.semanticscholar.org/CorpusID:248693283
https://api.semanticscholar.org/CorpusID:248693283
https://api.semanticscholar.org/CorpusID:238634327
https://api.semanticscholar.org/CorpusID:238634327
https://api.semanticscholar.org/CorpusID:247155069
https://api.semanticscholar.org/CorpusID:247155069


Published as a conference paper at COLM 2024

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. Cross-task
generalization via natural language crowdsourcing instructions, 2022.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob
Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul
Christiano, Jan Leike, and Ryan Lowe. Training language models to follow instructions
with human feedback, 2022.

Ajay Patel, Colin Raffel, and Chris Callison-Burch. Datadreamer: A tool for synthetic
data generation and reproducible llm workflows. ArXiv, abs/2402.10379, 2024. URL
https://api.semanticscholar.org/CorpusID:267740697.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, I. Evtimov, Joanna Bitton,
Manish P Bhatt, Cristian Cantón Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre
D’efossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,
Thomas Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for
code. ArXiv, abs/2308.12950, 2023. URL https://api.semanticscholar.org/CorpusID:
261100919.

Melanie Sclar, Yejin Choi, Yulia Tsvetkov, and Alane Suhr. Quantifying language models’
sensitivity to spurious features in prompt design or: How i learned to start worrying about
prompt formatting. ArXiv, abs/2310.11324, 2023a. URL https://api.semanticscholar.
org/CorpusID:264172710.

Melanie Sclar, Yejin Choi, Yulia Tsvetkov, and Alane Suhr. Quantifying language models’
sensitivity to spurious features in prompt design or: How i learned to start worrying
about prompt formatting, 2023b.

Zezheng Song, Jiaxin Yuan, and Haizhao Yang. Fmint: Bridging human designed and data
pretrained models for differential equation foundation model, 2024.

Lichao Sun, Yue Huang, Haoran Wang, Siyuan Wu, Qihui Zhang, Chujie Gao, Yixin Huang,
Wenhan Lyu, Yixuan Zhang, Xiner Li, et al. Trustllm: Trustworthiness in large language
models. arXiv preprint arXiv:2401.05561, 2024.

Vijay Viswanathan, Chenyang Zhao, Amanda Bertsch, Tongshuang Wu, and Graham Neu-
big. Prompt2model: Generating deployable models from natural language instructions.
arXiv preprint arXiv:2308.12261, 2023.

Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush,
Nathan Lambert, and Shengyi Huang. Trl: Transformer reinforcement learning. https:
//github.com/huggingface/trl, 2020.

Zhongwei Wan, Xin Wang, Che Liu, Samiul Alam, Yu Zheng, Jiachen Liu, Zhongnan Qu,
Shen Yan, Yi Zhu, Quanlu Zhang, Mosharaf Chowdhury, and Mi Zhang. Efficient large
language models: A survey, 2024.

Yining Wang, Jinman Zhao, and Yuri Lawryshyn. Gpt-signal: Generative ai for semi-
automated feature engineering in the alpha research process. In Proceedings of the Joint
Workshop of the 8th Financial Technology and Natural Language Processing, and the 1st Workshop
on Agent AI for Scenario Planning @ IJCAI 2024, 2024.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza
Mirzaei, Anjana Arunkumar, Arjun Ashok, Arut Selvan Dhanasekaran, Atharva Naik,
David Stap, Eshaan Pathak, Giannis Karamanolakis, Haizhi Gary Lai, Ishan Purohit, Is-
hani Mondal, Jacob Anderson, Kirby Kuznia, Krima Doshi, Maitreya Patel, Kuntal Kumar
Pal, Mehrad Moradshahi, Mihir Parmar, Mirali Purohit, Neeraj Varshney, Phani Rohitha
Kaza, Pulkit Verma, Ravsehaj Singh Puri, Rushang Karia, Shailaja Keyur Sampat, Sa-
van Doshi, Siddhartha Mishra, Sujan Reddy, Sumanta Patro, Tanay Dixit, Xudong Shen,
Chitta Baral, Yejin Choi, Noah A. Smith, Hannaneh Hajishirzi, and Daniel Khashabi.
Super-naturalinstructions: Generalization via declarative instructions on 1600+ nlp tasks,
2022.

13

https://api.semanticscholar.org/CorpusID:267740697
https://api.semanticscholar.org/CorpusID:261100919
https://api.semanticscholar.org/CorpusID:261100919
https://api.semanticscholar.org/CorpusID:264172710
https://api.semanticscholar.org/CorpusID:264172710
https://github.com/huggingface/trl
https://github.com/huggingface/trl


Published as a conference paper at COLM 2024

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi,
and Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated
instructions, 2023.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan
Du, Andrew M. Dai, and Quoc V. Le. Finetuned language models are zero-shot learners,
2022. URL https://arxiv.org/abs/2109.01652.

Orion Weller, Nicholas Lourie, Matt Gardner, and Matthew E. Peters. Learning from task
descriptions, 2020.

David Gray Widder, Dawn Nafus, Laura A. Dabbish, and James D. Herbsleb. Limits
and possibilities for ethical ai in open source: A study of deepfakes. Proceedings of the
2022 ACM Conference on Fairness, Accountability, and Transparency, 2022. URL https:
//api.semanticscholar.org/CorpusID:249425495.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Keming Lu, Chuanqi Tan,
Chang Zhou, and Jingren Zhou. Scaling relationship on learning mathematical reasoning
with large language models, 2023.

Zihan Zhang, Meng Fang, Ling Chen, Mohammad-Reza Namazi-Rad, and Jun Wang. How
do large language models capture the ever-changing world knowledge? a review of
recent advances. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of
the 2023 Conference on Empirical Methods in Natural Language Processing, pp. 8289–8311,
Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/
2023.emnlp-main.516. URL https://aclanthology.org/2023.emnlp-main.516.

Jinman Zhao and Xueyan Zhang. Exploring the limitations of large language models in
compositional relation reasoning. arXiv preprint arXiv:2403.02615, 2024.

Jinman Zhao, Yitian Ding, Chen Jia, Yining Wang, and Zifan Qian. Gender bias in large
language models across multiple languages. arXiv preprint arXiv:2403.00277, 2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao
Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez,
and Ion Stoica. Judging llm-as-a-judge with mt-bench and chatbot arena, 2023.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia
Efrat, Ping Yu, Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis, Luke Zettlemoyer, and
Omer Levy. Lima: Less is more for alignment, 2023.

14

https://arxiv.org/abs/2109.01652
https://api.semanticscholar.org/CorpusID:249425495
https://api.semanticscholar.org/CorpusID:249425495
https://aclanthology.org/2023.emnlp-main.516


Published as a conference paper at COLM 2024

A Appendix

A.1 Prompt Template

A.1.1 Input Generation Prompt Template

INPUT_GENERATOR_PROMPT_FOR_GENERATION = """
As an InputGenerator , your task is to generate
a new [input] based on the [instruction] and
some example [input ].

Try your best to ensure that the new [input]
you generate is distinct from the provided
[input] while maintaining a diverse , detailed ,
precise , comprehensive , and high -quality response.

Avoid generating a new [input] that is the
same as the provided [input ].

[instruction]

{instruction}

Here are some high -quality [input] for the
[instruction ]. These [input] can provide
you with very strict format requirements.
You should pay extreme attention to them !!!

Some high -quality [input ]:

{high_quality_input_string}

These are some additional [input]. Their
formats and contents may not be accurate.
However , you may also refer to the content
of them.

Some low -quality [input ]:

{low_quality_input_string}

After seeing example inputs , generate a new
[input]. Before generating the new [input],
ensure that you strictly adhere to the rules
of the new [instruction] and follow the
format of high -quality [input ].

Prioritize the new [instruction] guidelines
to maintain consistency and quality.

Think twice before generating a new [input].
Only response the new [input] without any
other information.

[input]=
"""

INPUT_GENERATOR_PROMPT_FOR_CLASSIFICATION = """
As an InputGenerator , your task is to generate
a new [input] based on the [instruction] and
some example [input ].

Try your best to ensure that the new [input]
you generate is distinct from the provided

15



Published as a conference paper at COLM 2024

[input] while maintaining a diverse , detailed ,
precise , comprehensive , and high -quality response.

Avoid generating a new [input] that is the
same as the provided [input ].

[instruction]

{instruction}

Here are some high -quality [input] for the
[instruction ]. These [input] can provide
you with very strict format requirements.
You should pay extreme attention to them !!!

Some high -quality [input ]:

{high_quality_input_string}

These are some additional [input]. Their
formats and contents may not be accurate.
However , you may also refer to the content of them.

Some low -quality [input ]:

{low_quality_input_string}

After seeing example inputs , generate
a new [input] for which the expected
[output] is {conditional_label}. Before
generating the new [input], ensure that
you strictly adhere to the rules of the
new [instruction] and follow the format
of high -quality [input ].

Prioritize the new [instruction] guidelines
to maintain consistency and quality.

Think twice before generating a new [input].
Only response the new [input] without any
other information. Note that the expected
[output] for the new [input] should be
{conditional_label}.

[input]=
"""

A.1.2 Output Generation Prompt Template

OUTPUT_ANNOTATION_PROMPT_TEMPLATE = """
A chat between a curious user and an
artificial intelligence assistant.
The assistant gives concise answers
to the user’s questions.
USER: The artificial intelligence
assistant only needs to
help annotate label.
The task is: {instruction}
ASSISTANT: Okay.
USER : [input] =
{input_1}
ASSISTANT : {output_1}
USER : [input] =
{input_2}

16



Published as a conference paper at COLM 2024

ASSISTANT : {output_2}
USER : [input] =
{input_3}
ASSISTANT : {output_3}
USER: [input] =
{new_input}
ASSISTANT:
"""

A.2 Prompt Sensitivity Experiment

LLMs have been shown to be highly sensitive to prompt formats and minimal changes
such as punctuation (Sclar et al., 2023b). This sensitivity can lead to drastic fluctuations in
model performance, affecting its stability and reliability in real-world applications. Here, we
introduce minimal prompt modifications. Although these modifications seem trivial from a
human perspective, we will show that they greatly impact the base model’s performance.
However, Self-Guided final models prove robust, consistently outperforming the base model
across various conditions. Specifically, we use the output generation prompt template (see
Appendix A.1.2) to finetune the base model but make minimal disturbances to the few-shot
examples of the prompt template when evaluating. Note that in the original format, there is
an ”=\n” following ”USER : [input]”. We change this conjunction between ”USER : [input]”
and the example input to ”:”, ”\n\n”, and evaluate the performance of the base model
and the SELF-GUIDE expert model under this condition. Detailed results are shown in
Table 6. We find that such simple changes, which may be overlooked by humans, can lead
to catastrophic performance decreases in the raw model. On the other hand, SELF-GUIDE’s
performance exhibits remarkable stability and excellence.

Raw Model SELF-GUIDE Expert Model

Category Task ID =\n : \n\n diff =\n : \n\n diff

Classif.

task190 27.0 21.1 19.8 7.2 66.7 66.7 66.7 0.0
task1529 8.5 11.0 29.5 21.0 61.6 54.9 53.1 8.5
task1612 51.3 50.9 48.8 2.5 42.6 42.4 42.8 0.4
task329 29.1 28.7 27.6 1.5 46.3 45.6 45.9 0.7

Avg 29.0 27.9 31.4 8.1 54.3 52.4 52.1 2.4

Generat.

task281 46.8 43.4 32.4 14.4 52.3 46.9 47.3 5.4
task1195 49.9 44.1 57.3 13.2 83.7 85.4 85.5 1.8
task1345 40.7 36.0 44.0 8.0 53.0 53.1 52.8 0.3
task1562 29.5 29.2 33.0 3.8 62.6 62.7 62.9 0.3

Avg 41.7 38.2 41.7 9.9 62.9 62.0 62.1 2.0

Table 6: Sensitivity of models to prompt conjunctions on classification and generation
tasks. We made minimal disturbances to the few-shot example section of the original
prompt template, changing the conjunction between ”USER: [input]” and the example input
from ”=\n” to ”:” and ”\n\n”, and evaluated the performance of the raw language model
(Raw Model) and the expert model generated by SELF-GUIDE (Expert Model) under these
conditions. The table presents the average scores and differences for the two models across
different task categories.

17


	Introduction
	Self-Guide
	Data Generation
	Quality Optimization: Temperature and Rule-based Filters
	Quality Optimization: Parameter Tuning

	Experimental Setup
	Datasets
	Base Model
	Baselines

	Results and Analysis
	Comparing self-synthesized examples with gold few-shot examples
	Finetuning outperforms in-context learning on synthetic data
	Self-Guide aligns LMs with the correct label distribution in many cases
	Self-Guide learns a non-trivial input-output mapping via self-synthesis
	Noise filter is crucial for classification tasks, while length filter is crucial for generation task

	Related Work
	Conclusion
	Limitations and Ethical Considerations
	Acknowledgments
	Appendix
	Prompt Template
	Input Generation Prompt Template
	Output Generation Prompt Template

	Prompt Sensitivity Experiment


