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(a) Small object motion extraction... (b) ...in diverse, dynamic scenes... (c) ...with emergent 3D point tracking behavior!

Figure 1: EulerFlow is able to capture the motion of small, fast moving objects with few lidar points,
such a bird flying in front of an autonomous vehicle (Figure 1a). EulerFlow’s flexibility allows it
to estimate scene flow for fast-moving table top objects without additional hyperparameter tuning
(Figure 1b). EulerFlow’s ODE estimate exhibits emergent 3D point tracking behavior without explicit
long-horizon supervision (Figure 1c). Note that point clouds are shown in color for visualization
purposes only; RGB is not used during optimization.

ABSTRACT

We reframe scene flow as the task of estimating a continuous space-time ordinary
differential equation (ODE) that describes motion for an entire observation se-
quence, represented with a neural prior. Our method, EulerFlow, optimizes this
neural prior estimate against several multi-observation reconstruction objectives,
enabling high quality scene flow estimation via self-supervision on real-world data.
EulerFlow works out-of-the-box without tuning across multiple domains, including
large-scale autonomous driving scenes and dynamic tabletop settings. Remarkably,
EulerFlow produces high quality flow estimates on small, fast moving objects like
birds and tennis balls, and exhibits emergent 3D point tracking behavior by solving
its estimated ODE over long-time horizons. On the Argoverse 2 2024 Scene Flow
Challenge, EulerFlow outperforms all prior art, surpassing the next-best unsuper-
vised method by more than 2.5×, and even exceeding the next-best supervised
method by over 10%. See eulerflow.github.io for interactive visuals.

1 INTRODUCTION

Scene flow estimation is the task of describing motion with per-point 3D motion vectors between
temporally successive point clouds (Dewan et al., 2016; Liu et al., 2019; Erçelik et al., 2022; Jund
et al., 2021; Zhang et al., 2024b; Vedder et al., 2024; Khatri et al., 2024). Such per-point motion
estimates are critical for autonomy in diverse environments, e.g., maneuvering around open-world
objects like debris (Peri et al., 2022a) or folding deformable cloth (Weng et al., 2022). Importantly,
scene flow estimation requires not only an understanding of object geometry, but also its motion.
However, scene flow methods broadly do not work on smaller objects (Khatri et al., 2024). For
example, in the autonomous vehicles domain, Khatri et al. highlight that even supervised methods
struggle to describe the majority of pedestrian motion, with unsupervised methods failing dramatically.
Scene flow promises to be a powerful primitive for understanding the dynamic world, but such failures
explain why it has limited adoption in downstream applications like tracking (Zhai et al., 2020) or
open-world object extraction (Najibi et al., 2022).

Scene Flow via ODE. In Figure 2, visual assessment of scene flow quality is much easier in an
accumulated global frame; while incomplete due to an implicit time axis, these accumulated flow
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(a) EulerFlow (Two Frame) (b) Fast NSF (Two Frame) (c) Liu et al. (Two Frame) (d) Ground Truth (Two Frame)

(e) EulerFlow (Full Sequence) (f) Fast NSF (Full Sequence) (g) Liu et al. (Full Sequence) (h) Ground Truth (Full Sequence)

Figure 2: We visualize an example of five pedestrians crossing the street in front of a stopped car,
cherrypicked to have unusually high density lidar returns, making it particularly easy to estimate
flow. Figures 2a–2d depict a two-frame flow visualization of EulerFlow and several strong baselines.
Notably, only visualizing flow over two frames makes it difficult to distinguish flow quality. In
contrast, Figures 2e–2h depict flow vectors over the full sequence, making differences in quality
clear; for example, EulerFlow is the only one without artifacts on the stopped car.
vectors allow viewers to imagine how positions in 3D space evolve over many timesteps, and compare
that to predicted flows. This imagination of scene flow as continuous motion over large time intervals
motivates us to model scene flow as an ordinary differential equation (ODE) that describes the scene’s
instantaneous motion across continuous position and time. Scene flow estimation then becomes the
task of estimating this ODE. We can straightfowardly represent this ODE estimate with a neural
prior (Li et al., 2021b) and optimize it against scene flow surrogate objectives, both over single frame
pairs and extended across arbitrary time intervals to produce better quality estimates. We formalize
this in Section 3 and propose the Scene Flow via ODE framework.

EulerFlow. We instantiate Scene Flow via ODE with standard point cloud distance objectives like
Chamfer Distance to create EulerFlow. Notably, EulerFlow outperforms all prior art, supervised
or unsupervised, on the Argoverse 2 2024 Scene Flow Challenge and Waymo Open Scene Flow
benchmark. It outperforms prior unsupervised methods by a large margin (> 2.5× mean dynamic
error reduction), and is able to capture small, fast moving objects, including those outside of labeled
taxonomies (e.g. the flying bird in Figure 1a). Due to its simplicity, EulerFlow is able to provide high
quality scene flow out-of-the-box on real-world data for other important domains such as dynamic
tabletop settings (Figure 1b) without domain-specific tuning. Finally, we show that simple ODE
solving techniques like Euler integration can be used to extract 3D point tracks (Figure 1c), which
serves as both an exciting emergent behavior as well as a mechanism for visualizing and interpreting
the quality of the continuous ODE estimate.

We present four primary contributions:
• We propose Scene Flow via ODE (SFvODE), a reframing of scene flow estimation as the task of

fitting an ODE over all observations to describe the change of continuous positions over continuous
time, unlocking a new class of surrogate objectives that enable better scene flow estimates.

• We instantiate SFvODE with EulerFlow, a flexible unsupervised scene flow method that achieves
state-of-the-art performance on the Argoverse 2 2024 Scene Flow Challenge, beating all prior
supervised and unsupervised methods.

• We study EulerFlow and show its strong performance is derived from its ability to optimize its
ODE estimate against the full sequence of observations over arbitrary time horizons.

• We show that EulerFlow’s simple, flexible formulation allows it to run unmodified on a variety of
domains, with emergent capabilities like 3D point tracking behavior.

2 BACKGROUND AND RELATED WORK

Evaluation. Dewan et al. formalized scene flow for point clouds as the task of estimating motion
between point cloud Pt at time t and point cloud Pt+1 at t+ 1 by estimating the true flow Ft,t+1,
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i.e. true residual vectors for every point in Pt that describe its movement to its associated position at
t+1. Error is computed by measuring the per-point endpoint distance between estimated and ground
truth vectors. Historically, these errors are reported with a per-point average (Average EPE); however,
as Chodosh et al. show, Average EPE is dominated by background points, preventing meaningful
measurement of non-ego object motion descriptions. Khatri et al. address this shortcoming with
Bucket Normalized EPE, which reports per-class performance normalized by speed, allowing for
direct comparisons across classes with very different average speeds (e.g. pedestrians and cars).
Bucket Normalized EPE is the basis for the Argoverse 2024 Scene Flow Challenge1, where methods
are ranked by the mean error of their motion descriptions (mean Dynamic Normalized EPE).

Input / Output Formulation. Dewan et al.’s choice to formulate scene flow using only two input
frames is arbitrary; it’s the minimal information needed to extract rigid motion, but there are not
real-world problems constrained to only have access to two frames. Indeed, using five or ten frames of
past observations is standard practice in the 3D detection literature (Zhu et al., 2019; Vedder & Eaton,
2022; Peri et al., 2022b; 2023; Nalty et al., 2022), and multi-frame formulations have started to appear
in the scene flow literature: Liu et al. (2024) and Flow4D (Kim et al., 2024) use three (Pt−1, Pt, Pt+1)
and five input frames (Pt−3, . . . , Pt+1) respectively to predict F̂t,t+1. As we discuss in Section 3,
rather than just using more observations to estimate flow for a single frame pair, we formulate scene
flow as a joint estimation problem: given the full observation sequence (P0, . . . , PN ), we estimate
all flows F̂0,1, . . . , F̂N−1,N between all adjacent observations.

Feedforward Methods. Feedforward networks are a popular class of scene flow methods due to their
fast inference speed (Liu et al., 2019; Behl et al., 2019; Tishchenko et al., 2020; Kittenplon et al.,
2021; Wu et al., 2020; Puy et al., 2020; Li et al., 2021a; Jund et al., 2021; Gu et al., 2019; Battrawy
et al., 2022; Wang et al., 2022b; Kim et al., 2024; Zhang et al., 2024a). While they are often trained
with supervised labels, recent work has developed distillation pipelines that leverage unsupervised
pseudolabelers (Vedder et al., 2024; Zhang et al., 2024b; Lin & Caesar, 2024).

Neural Scene Flow Prior. Li et al. (2021b) propose Neural Scene Flow Prior (NSFP), a widely
adopted unsupervised scene flow approach. NSFP uses the inductive bias of the smooth, restricted
learnable function class of two ReLU MLP coordinate networks (8 hidden layers of 128 neurons); θ
to estimate forward flow and θ′ to estimate backwards flow, minimizing

TruncatedChamfer(Pt + θ (Pt) , Pt+1) +
∥∥Pt + θ (Pt) + θ′ (Pt + θ (Pt))− Pt

∥∥
2

, (1)

where TruncatedChamfer is defined as the standard L2 Chamfer distance, but with per-point distances
above 2 meters set to zero in order to reduce the influence of outliers. NSFP is optimized for at most
1000 steps with early stopping.

Motion Beyond Two Frames. Wang et al. (2022a) tackles the adjacent problem of estimating 3D
point trajectories over 25 frames with Neural Trajectory Prior (NTP) by jointly optimizing three
separate ReLU MLP neural priors: 1) a sinusoidal embedded, time conditioned, 25 frame trajectory
basis estimator (embed(t) 7→ 256×25×3 tensor, where 256 is the dimension of the trajectory basis),
2) a coordinate network bottleneck encoder, and 3) a bottleneck decoder to estimate a per-point linear
combination over the learned trajectories. Trajectories are optimized for both a one-frame lookahead
L2 Chamfer loss and a cyclic consistency loss over the entire velocity space trajectory.

Deformation in Reconstruction. Nerfies (Park et al., 2021) and DynamicFusion (Newcombe et al.,
2015) estimate a deformation field to warp a canonical frame to explain the observed frame. While
capable of describing small motions, these methods require a canonical frame that contains all of
the relevant geometry to deform; however, in large, highly dynamic scenes like autonomous driving,
there is often no frame that contains all moving objects. By comparison, Scene Flow via ODE does
not assume the existence of a canonical frame, instead only describing how the scene changes.

3 SCENE FLOW VIA ODE

Prior art consumes multiple frames (Pt−N , . . . , Pt+1) as input, but these methods are ultimately only
tasked with estimating flow vectors between Pt and Pt+1. We instead pose the problem of estimating

1https://www.argoverse.org/sceneflow
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Figure 3: Overview of our Scene Flow via ODE framework, which estimates an ODE across the
entire observation sequence by optimizing against multi-frame objectives. This ODE estimate is
represented with a neural prior (Li et al., 2021b), providing a flexible, general representation for
describing position-time motion.

a time-conditioned flow field that describes motion for all adjacent point clouds Pt, Pt+1 in the entire
sequence (P0, . . . , PN ). To do this, rather than describing scene flow as positional change over a
fixed interval (Ft,t+1 are residual vectors over the interval t to t + 1) as we did in Section 2, we
can instead express these changes as a differential equation that describes positional change over
continuous time.

Eulerian View Lagrangian View

A0B0C0

At Bt Ct

Figure 4: Comparison of Eulerian and Lagrangian descriptions of 2D flow. An Eulerian view
characterizes a flow field via instantaneous velocities at many different points, while a Lagrangian
view characterizes a flow field via trajectories of many different particles across time. Both approaches
are valid ways of describing an underlying flow field, and with sufficient characterization one view
can be readily converted to another, but the Lagrangian view relies on a definition of the definition of
consistent canonical frame.

Formally, given a scene, let L(x0, y0, z0, t) be the Lagrangian view of the scene’s true flow field, i.e.
a continuous function that, given a canonical particle (x0, y0, z0) in a canonical frame 0, describes
its (x, y, z) position at frame t. As we discuss in Section 2, this Lagrangian view is common in
the the deformable reconstruction literature, and the requirement for a canonical frame means such
approaches struggle to describe scenes where there is no frame that contains all moving objects.

To break this canonical frame dependence, we choose to take an Eulerian view of motion, i.e.
F (x, y, z, t) = (∂Lx

∂t ,
∂Ly

∂t , ∂Lz

∂t ) , which describes the velocity at position (x, y, z) at time t. As we
show in our derivation in Appendix C.1, this formulation does not require an external canonical frame
to estimate a point’s trajectory from t to t′; instead, we can simply set the initial conditions of the
ODE at t to xt, yt, zt and utilize an off-the-shelf ODE solver (e.g. Euler integration) to extract flow
from t to t′, expressed as E(xt, yt, zt, t, t

′).

We do not know the true flow field F when estimating scene flow; however, we can represent F
with a neural prior θ (F ≈ θ), and optimize θ against surrogate objectives. This framing, which
we formalize into the Scene Flow via ODE framework (SFvODE; Figure 3), allows θ to benefit
from constructive interference between objectives, as well as enables us to formulate objectives over
arbitrarily long time horizons, unlocking high quality estimates.

4 EULERFLOW

Scene Flow via ODE proposes a framework where the neural prior θ represents an estimate of the
Eulerian flow field F (i.e. F ≈ θ); however, it does not prescribe the optimization objectives for θ.

4
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Thus, we instantiate Scene Flow via ODE with EulerFlow, a point cloud only scene flow method2

with reconstruction and cyclic consistency objectives across the entire sequence of observations.

As we show in Equation 17 (Appendix C.4), we can use θ’s Eulerian flow field estimate to extract an
estimated point trajectory from xt, yt, zt at t to some future location at time t′ via Euler integration
over θ without requiring a canonical frame definition, i.e. Eθ(xt, yt, zt, t, t

′). By extracting point
trajectories for every point p in Pt using Eθ, we can not only construct a two-frame scene flow
estimate of Ft,t+1, but also estimate flow to arbitrary future or prior timesteps (e.g. Ft,t+2 or Ft,t−1).
This allows us to optimize over multi-frame reconstruction objectives: we can now pose reconstruction
surrogate objectives between any two point clouds in our observation sequence, not just adjacent
point clouds Pt and Pt+1. Similarly, we can straightforwardly pose cyclic consistency objectives by
composing Ft,t+1 and Ft+1,t. Formally, for Pt’s Ft,t+k (for any k ∈ Z), we define

Eulerθ (Pt, k) = Pt + Ft,t+k = ∀p ∈ Pt : Eθ(px, py, pz, t, t+ k) , (2)

enabling us to pose θ’s optimization objective ∀Pt ∈ (P0, . . . , PN ) across the window of size W

argmin
θ

∑ ∀k ∈ {−W, . . . ,W} \ {0} : TruncatedChamfer(Eulerθ (Pt, k) , Pt+k)
α ∥Eulerθ (Eulerθ (Pt, 1) ,−1)− Pt∥2

(3)

In practice, we set W to 3 and α to 0.01. We provide additional implementation details in Appendix C.
In order to optimize θ, our estimate of the Eulerian flow field F , we perform Euler integration to
extract point cloud flow estimates as part of reconstruction losses. Notably, EulerFlow only requires
a single optimization loop over a single neural prior θ compared to NSFP’s two priors θ and θ′. Our
neural prior θ is a straightforward extension to NSFP’s coordinate network prior. Like with NSFP,
TruncatedChamfer is defined as the standard L2 Chamfer distance with per-point distances below 2
meters. As we show in Section 5, EulerFlow’s simple ODE estimation formulation across multiple
observations produces high quality flow, and solving this ODE over arbitrary time spans unlocks
emergent point tracking behavior.

5 EXPERIMENTS

In order to validate EulerFlow’s construction and better understand the impact of its design choices,
we perform extensive experiments on the Argoverse 2 (Wilson et al., 2021) and Waymo Open (Sun
et al., 2020) autonomous vehicle datasets. We compare against open source implementations of
FastNSF (Li et al., 2023), Liu et al., NSFP (Li et al., 2021b), FastFlow3D (Jund et al., 2021), and
variants of ZeroFlow (Vedder et al., 2024) provided by the ZeroFlow model zoo3, a third-party
implementation of NTP (Wang et al., 2022a) from Vidanapathirana et al., and Argoverse 2 2024
Scene Flow Challenge leaderboard submission results from the authors of Flow4D (Kim et al.,
2024), TrackFlow (Khatri et al., 2024), DeFlow++/DeFlow (Zhang et al., 2024a), ICP Flow (Lin
& Caesar, 2024), and SeFlow (Zhang et al., 2024b). As discussed in Khatri et al. and used in
the Argoverse 2 2024 Scene Flow Challenge, methods are ranked by their speed normalized mean
Dynamic Normalized EPE.

Implementation Details. To showcase the flexibility of EulerFlow without hyperparameter tuning,
for all quantitative experiments we run with a neural prior of depth 8 (NSFP’s default depth), except
for our submission to the Argoverse 2 2024 Scene Flow Challenge (Section 5.1) where, based on
our depth ablation study on the val split (Section 5.2.3), we set the depth of the neural prior to 18.
As discussed in NTP’s original paper (Wang et al., 2022a) and confirmed by our experiments, NTP
struggles to converge beyond 25 frames, so we only compare against it in a 20 frame settings. As is
typical in the scene flow literature (Chodosh et al., 2023), we perform ego compensation and ground
point removal on both Argoverse 2 and Waymo Open using the dataset provided map and ego pose.

2Visualizations shown in color for better viewing. EulerFlow can also use monocular depth estimates
(Appendix A.2)

3https://github.com/kylevedder/SceneFlowZoo, from Vedder et al. (2024).
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5.1 HOW DOES EULERFLOW COMPARE TO PRIOR ART ON REAL DATA?

EulerFlow achieves state-of-the-art performance on the Argoverse 2 2024 Scene Flow Challenge
leaderboard. Despite being unsupervised, EulerFlow surpasses all prior art, supervised or un-
supervised, including Flow4D (Kim et al., 2024)4 and ICP Flow (Lin & Caesar, 2024)5. Notably,
EulerFlow achieves < 2.5× lower error mean Dynamic EPE than ICP Flow and beats Flow4D by
over 10%.

0.0 0.1 0.2 0.3 0.4 0.5 0.6

mean Dynamic Normalized EPE

ZeroFlow 1x

FastFlow3D

ZeroFlow 3x

ZeroFlow 5x

ZeroFlow XL 3x

ZeroFlow XL 5x

NSFP

Liu et al. 2024

FastNSF

DeFlow

SeFlow

ICP Flow

DeFlow++

TrackFlow

Flow4D
EulerFlow (Ours)

0.5941

0.5323

0.5057

0.4846

0.4421

0.4389

0.4219

0.4134

0.3826

0.3706

0.3470

0.3309

0.2769

0.2689

0.1453

0.1304

Figure 5: Mean Dynamic Normalized EPE of EulerFlow compared to prior art on the Argoverse 2
2024 Scene Flow Challenge test set. EulerFlow is state-of-the-art, beating all supervised (shown in
black) and unsupervised (shown in white) methods. Lower is better.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

mean Dynamic Normalized EPE

FastFlow3D

ZeroFlow 1x

NSFP

FastNSF

EulerFlow (Ours)

0.7570

0.7386

0.5725

0.4288

0.2187

Figure 6: Mean Dynamic Normalized EPE of EulerFlow compared to prior art on the Waymo Open
validation set. EulerFlow is state-of-the-art, beating all supervised (shown in black) and unsupervised
(shown in white) methods. Lower is better.

EulerFlow’s dominant performance also holds on Waymo Open (Sun et al., 2020); we compare
against several popular methods (Figure 6), and EulerFlow again out-performs the baselines by a
wide margin, more than halving the error over the next best method.

5.2 WHAT CONTRIBUTES TO EULERFLOW’S STATE-OF-THE-ART PERFORMANCE?

We find that EulerFlow’s lower mean Dynamic EPE can be attributed to better performance on
smaller objects. On Argoverse 2, compared to Flow4D, EulerFlow’s improves on WHEELED VRU
(Figure 7d), a small, rare, fast moving class. Compared to ICP Flow, EulerFlow’s improves on
all classes (at least halving the error on every class!), with the largest improvements coming from
the smaller and harder to detect objects PEDESTRAIN and WHEELED VRU (Figures 7c–7d). On
Waymo Open, the same story holds; the most dramatic performance improvements come from the
small object classes of CYCLIST and PEDESTRIAN (Figure 8).

These results are consistent with our qualitative visualizations. Figure 13 shows EulerFlow is able to
cleanly extract the motion of a bird flying past the ego vehicle. Euler integration using EulerFlow’s
ODE, starting at the bird’s takeoff position and ending when it loses lidar returns, produces emergent
3D point tracking behavior on the bird through its trajectory (Figure 9), further demonstrating the
quality of EulerFlow’s model of the scene’s motion.

4Flow4D is the winner of the 2024 Argoverse 2 Scene Flow Challenge supervised track.
5ICP Flow is the winner of the 2024 Argoverse 2 Scene Flow Challenge unsupervised track.
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(b) OTHER VEHICLES
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Figure 7: Per class Dynamic Normalized EPE of EulerFlow compared to prior art on the Argoverse 2
2024 Scene Flow Challenge test set. Supervised methods shown in black, unsupervised methods
shown in white. Methods are ordered left to right by increasing mean Dynamic Normalized EPE.
Lower is better.
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Figure 8: Per class Dynamic Normalized EPE of EulerFlow compared to prior art on the Waymo
Open validation set. Supervised methods shown in black, unsupervised methods shown in white.
Methods are ordered left to right by increasing mean Dynamic Normalized EPE. Lower is better.

5.2.1 HOW DOES OBSERVATION SEQUENCE LENGTH IMPACT EULERFLOW?

As we discuss in Section 3, EulerFlow benefits from constructive interference from ODE estimation
over many observations. Does this sufficiently explain EulerFlow’s performance? Figure 10 shows
the performance of EulerFlow at length 5, 20, 50, and full sequence (roughly 160 frames) compared

(a) Bird trajectory via Euler integration from takeoff (b) Bird being tracked

Figure 9: EulerFlow is able to track the bird over 20 frames by performing Euler integration starting
from takeoff until it loses all point cloud lidar returns.
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0.0 0.1 0.2 0.3 0.4

mean Dynamic Normalized EPE

NSFP (Len 2)

EulerFlow Len 5

NTP (Len 20)

EulerFlow Len 20

EulerFlow Len 50

EulerFlow Full

0.4600

0.4089

0.2805

0.2103

0.1948

0.1588

Figure 10: Mean Dynamic Normalized EPE of EulerFlow for various sequence lengths on the
Argoverse 2 val split, compared against representative baselines. These results demonstrate that Eu-
lerFlow improves with sequence length; however, at a sequence length of 20, our method significantly
outperforms NTP, suggesting that EulerFlow’s performance cannot solely be attributed to longer
sequence modeling.

to NSFP and NTP at length 20. EulerFlow sees clear continual improvements as the number of frames
increases without signs of saturation. However, sequence length alone does not explain EulerFlow’s
performance; even at the same sequence length of 20, EulerFlow demonstrates significantly better
performance than NTP.

5.2.2 HOW DO MULTI-FRAME OPTIMIZATION OBJECTIVES IMPACT EULERFLOW?

0.0 0.1 0.2 0.3 0.4

mean Dynamic Normalized EPE

NSFP (Len 2)

NTP (Len 20)

EulerFlow No k> 1

EulerFlow No Cycle

EulerFlow Full

0.4600

0.2805

0.2609

0.1878

0.1588

Figure 11: Mean Dynamic Normalized EPE of EulerFlow for various losses on the Argoverse 2
val split, compared against representative baselines. These results demonstrate that EulerFlow’s
multi-observation optimization objectives significantly improve overall performance.

Equation 3 outlines two major components of EulerFlow’s loss: multi-frame Euler integration for
Chamfer Distance reconstruction, and cycle consistency. Figure 11 compares EulerFlow without
more than one integration step (No k > 1) and without cycle consistency rollouts (No Cycle) to better
understand the impact of these components. Ablating multi-step Euler integrated rollouts results in
significant degredation, as they are a strong forcing function to have consistent, smooth flow volumes;
indeed, despite consuming the entire sequence, EulerFlow (No k > 1) is only slightly better than
NTP with a sequence length of 20. These results highlight the power of multi-step rollouts and their
potential as a objective for other test-time optimization methods and feedforward methods.

5.2.3 HOW DOES THE CAPACITY OF THE NEURAL PRIOR IMPACT EULERFLOW?

Li et al. ablate the capacity of NSFP’s neural prior to characterize underfitting and overfitting to
optimization objective noise, ultimately selecting a depth of 8. EulerFlow’s neural prior is structured
similarly; however, NSFP is fitting a single snapshot in time, while EulerFlow is fitting an entire
ODE over significant time intervals. Intuitively, one would expect that full sequence modeling would
benefit from greater network capacity.

To evaluate this, we perform a sweep of EulerFlow’s network depth on the Argoverse 2 validation
split (Figure 12). While EulerFlow with NSFP’s default of depth 8 performs well on our Argoverse
2 evaluations (0.1% worse than the supervised state-of-the-art Flow4D), we see that performance
improves as the neural prior’s depth increases until depth 18 (indicating underfitting), where we start
to see degradation (indicating overfitting to noise). Based on these results our Argoverse 2 2024
Scene Flow Challenge leaderboard submission uses a depth 18 neural prior (Figure 5).
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Figure 12: Mean Dynamic Normalized EPE of EulerFlow on the Argoverse 2 val split for different
neural prior capacities. Shallow networks underfit the ODE, while deeper networks overfit to noise in
the optimization objectives.

(a) EulerFlow (Ours) (b) Fast NSF (c) ZeroFlow 5x

(d) Liu et al. (e) NSFP (f) Ground Truth

Figure 13: Visualization of EulerFlow compared to prior art for the same scene as Figure 1a and
Figure 9a. EulerFlow is able to extract the bird’s trajectory; however, all other methods except Liu
et al. fail to recognize this motion, and Liu et al.’s flow is marred by severe scene artifacts. The bird is
outside the labeled object taxonomy, and so its motion is unlabeled in the ground truth (Figure 13f).

5.3 BEYOND AUTONOMOUS VEHICLES

Due to a dearth of real-world, labeled scene flow data, prior scene flow work on real data overwhelm-
ingly evaluates on autonomous vehicle datasets (Dewan et al., 2016; Li et al., 2021b; Jund et al.,
2021; Li et al., 2023; Chodosh et al., 2023; Liu et al., 2024; Vedder et al., 2024; Khatri et al., 2024);
consequently, motion understanding in other important domains like tabletop manipulation has been
neglected. To showcase EulerFlow’s out-of-the-box flexibility and generalizability, we visualize Eu-
lerFlow on several dynamic tabletop scenes we collected using the ORBBEC Astra, a low cost depth
camera commonly used in robotics (Figure 14). For viewing ease, we paint our point clouds with
color; however, RGB information is not provided to EulerFlow during optimization. While EulerFlow
only reasons about point clouds, it can leverage video mono depth estimates to describe RGB-only
scene flow (Appendix A.2). Interactive visuals are available at eulerflow.github.io.

6 CONCLUSION

By reframing scene flow as fitting an ODE over positions for a full sequence of observations, we are
able to construct EulerFlow, a simple unsupervised scene flow method that achieves state-of-the-art
performance on the Argoverse 2 2024 Scene Flow Challenge and Waymo Scene Flow benchmark,
where it beats all prior art, supervised or unsupervised. EulerFlow is able to describe motion on small,
fast moving, out of distribution objects unable to be captured by prior art, suggesting that it makes
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Figure 14: Visualizations of EulerFlow’s emergent 3D point tracking behavior that demonstrate the
quality of its ODE estimate. Row 1 depicts tracking a tomato placed in the sink by a human hand;
note the point does not move despite the hand grasping the tomato. Row 2 depicts tracking of painters
tape rolling off a table; EulerFlow is able to estimate its trajectory even after it disappears out of
frame. Row 3 depicts tracking of the motion of a jack commonly used in tabletop manipulation
experiments (Venkatesh et al., 2023). Row 4 depicts tracking of a tennis ball taped to a flexible rod.
All tracks are produced by Euler integration through the estimated ODE from the initial conditions
shown in the left column. Note that point clouds are shown in color for visualization purposes only.

good on the promises of scene flow as a powerful primitive for understanding the dynamic world. It
also exhibits other emergent capabilities, like basic 3D point tracking behavior.

We believe that this ODE formulation has implications for scene flow at large, including beyond test-
time optimization methods; the power of multi-step Euler integration may translate to feedforward
network training. Future work should explore feedforward models that perform autoregressive
rollouts or directly learn to estimate multiple steps into the future.

6.1 LIMITATIONS AND FUTURE WORK

EulerFlow’s strong performance opens the book on an exciting new line of work; however, we feel
that it’s important to be candid about EulerFlow’s current limitations in order to make future progress.
EulerFlow is point cloud only. Point cloud sparsity bottlenecks performance; for instance, in Figure 9
and Figure 13 we were only able to track the bird for 20 frames because we lost lidar observations
of the bird, while it remained visible in the car’s RGB cameras. Future works should explore
multi-modal fusion for better long-term motion descriptions.
EulerFlow is expensive to optimize. With our implementation, optimizing EulerFlow for a single
Argoverse 2 sequence takes 24 hours on one NVIDIA V100 16GB GPU, putting it on par with the
original NeRF paper’s computation expense (Mildenhall et al., 2021). However, like with NeRF, we
believe algorithmic, optimization, and engineering improvements can significantly reduce runtime.
EulerFlow does not understand ray casting geometry. During ego-motion, a static foreground
occluding object casts a moving shadow on the background; this causes Chamfer Distance to estimate
this as a leading edge of moving structure, encouraging false motion artifacts (Li et al., 2021b). This
can be addressed with optimization losses that model point clouds as originating from a time of flight
sensor with limited visibility, as has been successfully demonstrated in the reconstruction (Chodosh
et al., 2024) and forecasting literature (Khurana et al., 2023; Agro et al., 2024), rather than an
unstructured set of points to be associated via local point distance.
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