
EFFICIENT AND LIGHT-WEIGHT FEDERATED LEARNING
VIA ASYNCHRONOUS DISTRIBUTED DROPOUT

Chen Dun 1 Mirian Hipolito 2 Chris Jermaine 1 Dimitrios Dimitriadis 2 Anastasios Kyrillidis 1

ABSTRACT
Asynchronous learning protocols have regained attention lately, especially in the Federated Learning (FL) setup,
where slower clients can severely impede the learning process. Herein, we propose AsyncDrop, a novel asyn-
chronous FL framework that utilizes dropout regularization to handle device heterogeneity in distributed settings.
Overall, AsyncDrop achieves better performance compared to state of the art asynchronous methodologies,
while resulting in less communication and training time overheads. We implement our approach and compare
it against other asynchronous baselines, both by design and by adapting existing synchronous FL algorithms to
asynchronous scenarios. Empirically, AsyncDrop reduces the communication cost and training time, while
matching or improving the final test accuracy in diverse non-i.i.d. FL scenarios.

1 INTRODUCTION

Background on Federated Learning. Federated Learning
(FL) (McMahan et al., 2017; Li et al., 2018; Karimireddy
et al., 2019) is a distributed learning protocol that has wit-
nessed fast development the past demi-decade. FL deviates
from the traditional distributed learning paradigms and al-
lows the integration of edge devices —such as smartphones
(Stojkovic et al., 2022), drones (Qu et al., 2021), and IoT
devices (Nguyen et al., 2021)— in the learning procedure.

Yet, such real-life, edge devices are extremely heteroge-
neous (Wang et al., 2021): they have drastically different
specifications in terms of compute power, device memory
and achievable communication bandwidths. Directly apply-
ing common synchronized FL algorithms –such as FedAvg
and FedProx (Li et al., 2018; McMahan et al., 2017) that
require full model broadcasting and global synchronization–
results often in a “stragglers” effect (Nguyen et al., 2022;
Huba et al., 2022; Tandon et al., 2017).

The ubiquitous synchronous training. One way to handle
such issues is by utilizing asynchrony instead of synchrony
in the learning process. To explain the main differences, let
us first set up the background. In a synchronous distributed
algorithm, a global model is usually stored at a central server
and is broadcast periodically to all the participating devices.
Then, each device performs local training steps on its own
model copy, before the device sends the updated model to
the central server. Finally, the central server updates the
global model by aggregating the received model copies.
This protocol is followed in most FL algorithms, includ-
ing the well-established FedAvg (McMahan et al., 2017),
FedProx (Li et al., 2018), FedNova (Wang et al., 2020) and

SCAFFOLD (Karimireddy et al., 2019). The main criticism
against synchronous learning could be that it often results
in heavy communication/computation overheads and long
idle/waiting times for workers.

Asynchrony and its challenges. The deployment of a asyn-
chronous learning method is often convoluted. In the past
decade, HogWild! (Niu et al., 2011; Liu et al., 2014) has
emerged as a general asynchronous distributed methodol-
ogy, and has been applied initially in basic ML problems
like sparse linear/logistic regression (Zhuang et al., 2013;
Yun et al., 2013; Hsieh et al., 2015). Ideally, based on spar-
sity arguments, each edge device can independently update
parts of the global model –that overlap only slightly with the
updates of other workers– in a lock-free fashion (Niu et al.,
2011; Liu et al., 2014). This way, faster, more powerful
edge workers do not suffer from idle waiting due to slower
stragglers. Yet, the use of asynchrony has been a topic of
dispute in distributed neural network training (Dean et al.,
2012; Chen et al., 2016).

Resurgence in asynchrony. Recently, asynchronous meth-
ods have regained popularity, mainly due to the interest in
applying asynchronous motions within FL on edge devices.
Yet, traditional off-the-shelf asynchronous algorithms still
have issues, which might be exacerbated in the FL setting.
As slower devices take longer local training time, this might
result in inconsistent update schedules of the global model,
compared to that of faster devices. This might have ramifi-
cations: i) For FL on i.i.d. data, this will cause the gradient
staleness problem and result in convergence rate decrease;
and, ii) on non-i.i.d. data, this will result in a significant
drop in global model final accuracy.

Efficient and Light-Weight Federated Learning via Asynchronous Distributed Dropout

As solutions, novel approaches on asynchronous FL propose
weighted global aggregation techniques that take into con-
sideration the heterogeneity of the devices (Xie et al., 2019;
Chen et al., 2019; Shi et al., 2020); yet, these methods often
place a heavy computation/communication burden, as they
rely on broadcasting full model updates to all the clients
and/or the server. Other works monitor client speed to guide
the training assignments (Li et al., 2021; Chai et al., 2020).
Finally, recent efforts propose semi-asynchronous methods,
where participating devices are selected and buffered in
order to complete a semi-synchronous global update period-
ically (Huba et al., 2022; Wu et al., 2020).

What is different in this work? As most algorithms stem
from adapting asynchrony in synchronous FL, one still
needs to broadcast the full model to all devices, follow-
ing a data parallel distributed protocol (Farber & Asanovic,
1997; Raina et al., 2009), regardless of device heterogeneity.
This inspire us to ask a key question:

“Can we select submodels out of the global model
and send these instead to each device, taking into
account the device heterogeneity?”

We answer this question affirmatively, by proposing a novel
distributed dropout method for FL. We dub our method
AsyncDrop. Our approach assigns different submodels
to each device1; empirically, such a strategy decreases the
required time to converge to an accuracy level, while pre-
serving favorable final accuracy. Our idea is based on the
ideas of HogWild! (Niu et al., 2011; Liu et al., 2014) –in
terms of sparse submodels– and Independent Subnetwork
Training (IST) (Yuan et al., 2022; Dun et al., 2022; Liao
& Kyrillidis, 2021; Wolfe et al., 2021) –where submodels
are deliberately created for distribution, in order to decrease
both computational and communication requirements.

Overall, the contributions of this work can be summarized
as follows:

• We consider and propose asynchronous distributed
dropout (AsyncDrop) for efficient large-scale FL. Our
focus is on non-trivial, non-convex ML models –as in neu-
ral network training– and our framework provides specific
engineering solutions for these cases in practice.

• We theoretically characterize and support our proposal
with rigorous and non-trivial convergence rate guarantees.
Currently, our theory assumes bounded delays; our fu-
ture goal is to exploit recent developments that drop such
assumptions (Koloskova et al., 2022). Yet, our theory al-
ready considers the harder case of neural network training,
which is often omitted in existing theory results.

• We provide specific implementation instances and share

1We consider both random assignment, as well as structured
assignments, based on the computation power of the devices.

“best practices” for faster distributed FL in practice. As
a side-product, our preliminary results include baseline
asynchronous implementations of many synchronous
methods (such as FedAvg, FedProx, and more), that are
not existent currently, to the best of our knowledge.

2 PROBLEM SETUP AND CHALLENGES

Optimization in neural network training. We consider
FL scenarios over supervised neural network training: i.e.,
we optimize a loss function ℓ(·, ·) over a dataset, such that
the model maps unseen data to their true labels, unless
otherwise stated. For clarity, the loss ℓ(W, ·) encodes both
the loss metric and the neural architecture, with parameters
W. Formally, given a data distribution D and {xi, yi} ∼ D,
where xi is a data sample, and yi is its corresponding label,
classical deep learning aims in finding W⋆ as in:

W⋆ = argmin
W∈H

{
L(W) := 1

n

n∑
i=1

ℓ (W, {xi, yi})

}
,

where H denotes the model hypothesis class that “molds”
the trainable parameters W.

The minimization above can be achieved by using different
approaches, but almost all training is accomplished via a
variation of stochastic gradient descent (SGD) (Robbins
& Monro, 1951). SGD modifies the current guess Wt us-
ing stochastic directions∇ℓit(Wi) := ∇ℓ(Wi, {xit , yit}).
I.e., Wt+1 ←Wt − η∇ℓit(Wt). Here, η > 0 is the learn-
ing rate, and it is a single or a mini-batch of examples.
Most FL algorithms are based on these basic stochastic mo-
tions, like FedAvg (McMahan et al., 2017), FedProx (Li
et al., 2018), FedNova (Wang et al., 2020) and SCAFFOLD
(Karimireddy et al., 2019).

FL formulation. Let S be the total number of clients in
a distributed FL scenario. Each client i has its own local
data Di such that the whole dataset satisfies D = ∪iDi, and
usually Di ∩ Dj = ∅,∀i ̸= j. The goal of FL is to find a
global model W that achieves good accuracy on all data D,
by minimizing the following optimization problem:

W⋆ = argmin
W∈H

{
L(W) := 1

S

S∑
i=1

ℓ (W,Di)

}
,

where ℓ (W,Di) = 1
|Di|

∑
{xj ,yj}∈Di

ℓ (W, {xj , yj}).
Herein, we consider both i.i.d. and non-i.i.d. cases, since
local data distribution Di can be heterogeneous and follow
a non-i.i.d. distribution.

Details of asynchronous training. An abstract description
of how asynchronous FL operates is provided in Algorithm
1. In particular, given a number of server iterations T , each
client i gets the updated global model Wt from the server,
and further locally trains it using Di for a number of local

Efficient and Light-Weight Federated Learning via Asynchronous Distributed Dropout

Algorithm 1 Meta Asynchronous FL
Parameters: T iters, S clients, l local iters., W as current
global model, Wi as local model for i-th client, α ∈
(0, 1), η step size.

∞
W← randomly initialized global model.
//On each client i asynchronously:
for t = 0, . . . , T − 1 do
Wi,t ←W
//Train Wi for l iters. via SGD

for j = 1, . . . , l do
Wi,t ←Wi,t − η ∂L

Wi,t

end for
//Write local to global model

W← (1− α) ·W + α ·Wi,t

end for

iterations l. Asynchronous FL assumes each client has
different computation power and communication bandwidth;
this can be abstracted by different wall-clock times required
to finish a number of local training iterations. Thus, when
client i has completed its round, the updated model is shared
with the server to be aggregated, before the next round of
communication and computation starts for client i. This is
different from classical synchronous FL, where the global
model is updated only when all participating clients finish
(or time-out) certain local training iterations.

3 RELATED WORK

Challenges. Asynchronous steps often lead to inconsistent
update schedules of the global model and are characterized
by gradient staleness and drifting.

Figure 1. Potential issues in asynchronous FL.

Consider the toy setting in Figure 1. The two clients (Clients
A and B) have a significantly different update schedule on
the global model: Here, Client A has higher computational
power or communication bandwidth –compared to client B–
potentially leading to model drifting, lack of fair training and
more severe gradient staleness. On top, consider these two

clients having different local (non-i.i.d.) data distributions.

Related Work. The issue of model drifting due to data
“non-iidness” is a central piece in FL research. Algorithms,
such as FedProx (Li et al., 2018), utilize regularization to
constrain local parameters “drifting" away.

The gradient staleness problem has been widely studied in
asynchronous FL (Xie et al., 2019; Chen et al., 2019; Shi
et al., 2020; Li et al., 2021; Chai et al., 2020). In these
approaches, the weight of each local client update is pro-
portional to the “capabilities” of the client. This should
decrease the negative impact from stale gradients by slower
clients. Semi-asynchronous methods have been proposed
(Huba et al., 2022; Wu et al., 2020); yet, they require fast
clients to wait until all other clients’ updates are completed,
in order to receive the updated model for the next round.

Finally, numerous quantization (Alistarh et al., 2017; Yu
et al., 2019) and sparsification (Aji & Heafield, 2017; Jiang
& Agrawal, 2018) techniques have been proposed for reduc-
ing computation and communication costs in FL.

4 ASYNCH. DISTRIBUTED DROPOUT

(Distributed) Dropout. Dropout (Wan et al., 2013; Srivas-
tava et al., 2014; Gal & Ghahramani, 2016; Courbariaux
et al., 2015) is a widely-accepted regularization technique.
The procedure of Dropout is as follows: per training round,
a random mask over the parameters is generated; this mask
is used to nullify part of the neurons in the neural network
for this particular iteration. Variants of dropout include the
drop-connect (Wan et al., 2013), multisample dropout (In-
oue, 2019), Gaussian dropout (Wang & Manning, 2013),
and the variational dropout (Kingma et al., 2015).

The idea of dropout has also been used in efficient dis-
tributed and/or FL scenarios. (Horvath et al., 2021a) in-
troduces FjORD and the Ordered Dropout, a synchronous
distributed dropout technique that leads to ordered, nested
representation of knowledge in models, and enables the
extraction of lower footprint submodels without the need
of retraining. Such submodels are more suitable in client
heterogeneity, as they adapt submodel’s width to the client’s
capabilities. See also Nested Dropout (Rippel et al., 2014)
and HeteroFL (Diao et al., 2020).

Our proposal and main hypothesis. We focus on the
asynchronous version of distributed dropout. In Appendix,
we study theoretically whether asynchrony provably works
in non-trivial non-convex scenarios –as in training neural
networks– with random masks that generate submodels for
each worker. The algorithm is described in Algorithm 2,
dubbed as AsyncDrop, and is based on recent distributed
protocols (Yuan et al., 2022; Dun et al., 2022; Liao & Kyril-
lidis, 2021; Wolfe et al., 2021); key features are highlighted

Efficient and Light-Weight Federated Learning via Asynchronous Distributed Dropout

Figure 2. Schematic representation of AsyncDropout. a) This is a simple representation of a CNN model. Our algorithm applies for
arbitrary depth of CNNs (ResNets) as well as other architectures (MLPs, LSTMs, etc); here we restrict to a shallow CNN for illustration
purposes. b) Per request, random sub-sampled CNN models are created that result into different subnetworks. c) These submodels are
distributed to devices with different computational capabilities (here GPU, CPU, or a smartphone). d) Without loss of generality, we
assume that all devices train locally the submodel for l iterations. e) However, each device finishes local training in different timestamps
(shown as different colored arrows: red: slow speed; orange: moderate speed; blue: fast speed). f) Yet, the global model is asynchronously
updated and new submodels are created without global synchronization. g) The above procedure is repeated till convergence.

Algorithm 2 Asynchronous dropout (AsyncDrop)
Parameters: T iters, S clients, l local iters., W as current
global model, Wi as local model for i-th client, α ∈
(0, 1), η step size.

∞
W← randomly initialized global model.
//On each client i asynchronously:
for t = 0, . . . , T − 1 do

Generate mask Mi,t

Wi,t ←Wt ⊙ Mi,t

//Train Wi,t for l iters. via SGD

for j = 1, . . . , l do
Wi,t ←Wi,t − η ∂L

Wi,t

end for
//Write local to global model

Wt+1 ←Wt ⊙ (Mi,t)
c

+((1− α) ·Wt + α ·Wi,t) ⊙ Mi,t

end for

in teal-colored text. The main difference from Algorithm 1
is that Algorithm 2 splits the model vertically per iteration,
where each submodel contains all layers of the neural net-
work, but only with a (non-overlapping) subset of neurons
being active in each layer. Multiple local SGD steps can
be performed without the need for the workers to commu-
nicate. See also Figure 2 for a schematic representation of
asynchronous distributed dropout for training a CNN.

5 EXPERIMENTS
Setup. We generate simulated FL scenarios with 104
clients/devices of diverse computation and communication
capabilities. We implement clients as independent processes,
each distributed on different GPUs with access to the same
RAM space. We follow HogWild!’s distributed model (Niu
et al., 2011): i) we use a shared-memory system to store
the global model; ii) each simulated client can update/read
the global model in a fully lock free mode; and iii) each
client transfers the local model to the assigned GPU for
local training. We activate 8 clients at any given moment.

We use 25% dropout rate in (Hetero) AsyncDrop for
CNN and MLP, while we use 12.5% for LSTM. Even for
such low dropout rates, the gains in training are obvious and
significant, as we show in the experiments. In the appendix,
we provide ablation studies on how the dropout rate affects
the performance of AsyncDrop-family of algorithms. We
simulate the communication and computation savings by
inserting shorter time delay, based on which we estimate the
training time and communication cost.

Simulation of heterogeneous computations. We abstract
heterogeneous computation and communication capabilities
by “forcing” different delays after each training iteration.
The delay time is inverse proportional to the intended ca-
pacity. In our experiments, we simulated 8 levels of com-
putation and communication capabilities, that are evenly
distributed between the slowest client and fastest clients.

Efficient and Light-Weight Federated Learning via Asynchronous Distributed Dropout

Figure 3. ResNet-based model. Left: CIFAR100 non-i.i.d.; Middle: CIFAR10, non-i.i.d.; Right: FMNIST, non-i.i.d.

The difference between the slowest and the fastest clients
is selected to be ∼ 5×. We make sure that, at any given
moment, clients with diverse capacity are active. Finally, all
clients with similar computation power shall have similarly
biased local data distribution.2

Problem cases. We experiment on diverse neural network
architectures and diverse types of learning tasks, includ-
ing ResNets on Computer Vision datasets (CIFAR10, CI-
FAR100, FMNIST), MLPs on FMNIST dataset, and LSTMs
on sentimental analysis (IMDB).

Baseline methods. For comparison, the baselines we con-
sider are: i) the asynchronous FedAvg is the direct adap-
tation of FedAvg with asynchronous motions; ii) the asyn-
chronous FedAvg with weighted aggregation represents
the general approach of assigning devices different “im-
portance”, based on their capabilities (Xie et al., 2019; Chen
et al., 2019; Shi et al., 2020); iii) the asynchronous FjORD
is our asynchronous adaptation of (Horvath et al., 2021b);
iv) the asynchronous FedProx adds an independent proxi-
mal loss to the local training loss of each device, in order
to control gradient staleness and overfiting (Li et al., 2018);
and v) FedBuff is a semi-asynchronous method which uses
buffers for stale updates in a synchronized global scheme
(Nguyen et al., 2022).

For all baselines and (Hetero) AsyncDrop on CIFAR10,
CIFAR100, FMNIST, we set the local iterations at l = 50
while for IMDB, l = 40. For FedBuff, we set the buffer size
to 4, which is half of the activated clients. We perform 3
trials with different random seeds. We report the maximum
test accuracy, as well as the estimated time and commu-
nication cost to reach a certain target accuracy: we select
the second lowest test accuracy among all baselines as the
target accuracy (third column in result tables).

CNN-based results. We test (Hetero) AsyncDrop on
ResNet34 and using CIFAR10, CIFAR100 and FMNIST

2This setting is to avoid the fastest clients with similar compu-
tation power cover all the data, which will reduce the problem into
a trivial synchronous federated learning problem.

datasets. For the CIFAR10 and CIFAR100 datasets, we train
for 320 epochs, while for the FMNIST dataset, we train for
160 epochs. We stop the execution when the fastest client
finishes all its epochs. As shown in Table ??, Hetero
AsyncDrop shows non-trivial improvements in final ac-
curacy, training time and communication cost, simultane-
ously. Hetero AsyncDrop shows lower accuracy com-
pared with FedBuff in the CIFAR100 case; yet, it achieves
up to 85% reduction in training time, due to the fact that
FedBuff will require faster workers to wait until the buffer is
filled to update the global model (this also justifies the up to
∼ 42.22% reduction in total communication cost). Finally,
we observe that (Hetero) AsyncDrop shows quite stable
performance; in red color we indicate the variability of re-
sults over trials. The similar training time of some baselines
to reach target accuracy is caused by epoch-wise testing,
using same epoch-wise learning rate schedule and similar
convergence rate as shown in Figure 3.

MLP-based and LSTM-based results. We adapt the
(Hetero) AsyncDrop to the MLP model by applying
the hidden neuron Dropout, which is similar to channel
dropout in CNNs (160 epochs). For the LSTM and the
IMDB sentimental analysis dataset (80 epochs), we cre-
ate non-i.i.d. datasets based on different label distribution
in each local training set. As shown in Table 1 in the Ap-
pendix, Hetero AsyncDrop achieves better performance
overall over the MLP model, in terms of accuracy, training
time and communication cost. As shown in Table 2 in the
Appendix, for the LSTM model, Hetero AsyncDrop
shows comparable accuracy with respect to other baselines,
while achieving reduction in training time and communica-
tion cost in most cases. Our conjecture for the lower gain
compared with other architectures is that LSTM-based (or
even RNN-based) architectures might be difficult to our
proposed dropout score mechanism, as the update of each
network parameter is the average of several virtual parame-
ters in the unrolled network.

*Equal contribution 1Department of Computer Science Rice
University 2Microsoft Research Lab. AUTHORERR: Missing
\mlsyscorrespondingauthor.

Efficient and Light-Weight Federated Learning via Asynchronous Distributed Dropout

REFERENCES

Aji, A. F. and Heafield, K. Sparse communication for dis-
tributed gradient descent. In Proceedings of the 2017
Conference on Empirical Methods in Natural Language
Processing, pp. 440–445, 2017. [Cited on page 3.]

Alistarh, D., Grubic, D., Li, J., Tomioka, R., and Vojnovic,
M. QSGD: Communication-efficient SGD via gradient
quantization and encoding. Advances in Neural Informa-
tion Processing Systems, 30, 2017. [Cited on page 3.]

Chai, Z., Chen, Y., Zhao, L., Cheng, Y., and Rangwala,
H. Fedat: A communication-efficient federated learn-
ing method with asynchronous tiers under non-iid data.
ArXivorg, 2020. [Cited on pages 2 and 3.]

Chen, J., Pan, X., Monga, R., Bengio, S., and Jozefowicz, R.
Revisiting distributed synchronous sgd. arXiv preprint
arXiv:1604.00981, 2016. [Cited on page 1.]

Chen, Y., Sun, X., and Jin, Y. Communication-efficient fed-
erated deep learning with layerwise asynchronous model
update and temporally weighted aggregation. IEEE trans-
actions on neural networks and learning systems, 31(10):
4229–4238, 2019. [Cited on pages 2, 3, and 5.]

Courbariaux, M., Bengio, Y., and David, J.-P. Binarycon-
nect: Training deep neural networks with binary weights
during propagations. Advances in neural information
processing systems, 28, 2015. [Cited on page 3.]

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M.,
Mao, M., Ranzato, M., Senior, A., Tucker, P., Yang, K.,
et al. Large scale distributed deep networks. Advances in
neural information processing systems, 25, 2012. [Cited on

page 1.]

Diao, E., Ding, J., and Tarokh, V. HeteroFL: Computa-
tion and communication efficient federated learning for
heterogeneous clients. arXiv preprint arXiv:2010.01264,
2020. [Cited on page 3.]

Du, S., Lee, J., Li, H., Wang, L., and Zhai, X. Gradient
descent finds global minima of deep neural networks. In
International conference on machine learning, pp. 1675–
1685. PMLR, 2019. [Cited on page 9.]

Dun, C., Wolfe, C. R., Jermaine, C. M., and Kyrillidis, A.
ResIST: Layer-wise decomposition of ResNets for dis-
tributed training. In Uncertainty in Artificial Intelligence,
pp. 610–620. PMLR, 2022. [Cited on pages 2 and 3.]

Proceedings of the 6 th MLSys Conference Workshop on Resource-
Constrained Learning in Wireless Networks, Miami, FL, USA,
2023. Copyright 2023 by the author(s).

Farber, P. and Asanovic, K. Parallel neural network train-
ing on multi-spert. In Proceedings of 3rd International
Conference on Algorithms and Architectures for Parallel
Processing, pp. 659–666, 1997. doi: 10.1109/ICAPP.
1997.651531. [Cited on page 2.]

Gal, Y. and Ghahramani, Z. Dropout as a Bayesian approx-
imation: Representing model uncertainty in deep learn-
ing. In international conference on machine learning, pp.
1050–1059. PMLR, 2016. [Cited on page 3.]

Horvath, S., Laskaridis, S., Almeida, M., Leontiadis, I.,
Venieris, S., and Lane, N. FjORD: Fair and accurate fed-
erated learning under heterogeneous targets with ordered
dropout. Advances in Neural Information Processing
Systems, 34:12876–12889, 2021a. [Cited on page 3.]

Horvath, S., Laskaridis, S., Almeida, M., Leontiadis, I., Ve-
nieris, S. I., and Lane, N. D. Fjord: Fair and accurate
federated learning under heterogeneous targets with or-
dered dropout, 2021b. URL https://arxiv.org/
abs/2102.13451. [Cited on page 5.]

Hsieh, C.-J., Yu, H.-F., and Dhillon, I. PaSSCODE: Parallel
asynchronous stochastic dual co-ordinate descent. In
International Conference on Machine Learning, pp. 2370–
2379. PMLR, 2015. [Cited on page 1.]

Huba, D., Nguyen, J., Malik, K., Zhu, R., Rabbat, M.,
Yousefpour, A., Wu, C.-J., Zhan, H., Ustinov, P., Srinivas,
H., et al. Papaya: Practical, private, and scalable federated
learning. Proceedings of Machine Learning and Systems,
4:814–832, 2022. [Cited on pages 1, 2, and 3.]

Inoue, H. Multi-sample dropout for accelerated training and
better generalization. arXiv preprint arXiv:1905.09788,
2019. [Cited on page 3.]

Jiang, P. and Agrawal, G. A linear speedup analysis of
distributed deep learning with sparse and quantized com-
munication. Advances in Neural Information Processing
Systems, 31, 2018. [Cited on page 3.]

Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S. J., Stich,
S. U., and Suresh, A. T. SCAFFOLD: Stochastic con-
trolled averaging for federated learning, 2019. URL
https://arxiv.org/abs/1910.06378. [Cited on

pages 1 and 2.]

Kingma, D. P., Salimans, T., and Welling, M. Variational
dropout and the local reparameterization trick. Advances
in neural information processing systems, 28, 2015. [Cited

on page 3.]

Koloskova, A., Stich, S. U., and Jaggi, M. Sharper conver-
gence guarantees for asynchronous SGD for distributed
and federated learning. arXiv preprint arXiv:2206.08307,
2022. [Cited on page 2.]

https://arxiv.org/abs/2102.13451
https://arxiv.org/abs/2102.13451
https://arxiv.org/abs/1910.06378

Efficient and Light-Weight Federated Learning via Asynchronous Distributed Dropout

Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A.,
and Smith, V. Federated optimization in heterogeneous
networks, 2018. URL https://arxiv.org/abs/
1812.06127. [Cited on pages 1, 2, 3, and 5.]

Li, X., Qu, Z., Tang, B., and Lu, Z. Stragglers are not disas-
ter: A hybrid federated learning algorithm with delayed
gradients. arXiv preprint arXiv:2102.06329, 2021. [Cited

on pages 2 and 3.]

Liao, F. and Kyrillidis, A. On the convergence of shallow
neural network training with randomly masked neurons.
arXiv preprint arXiv:2112.02668, 2021. [Cited on pages 2 and 3.]

Liu, J., Wright, S., Ré, C., Bittorf, V., and Sridhar, S. An
asynchronous parallel stochastic coordinate descent algo-
rithm. In International Conference on Machine Learning,
pp. 469–477. PMLR, 2014. [Cited on pages 1 and 2.]

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017. [Cited

on pages 1 and 2.]

Nguyen, D. C., Ding, M., Pathirana, P. N., Seneviratne, A.,
Li, J., and Poor, H. V. Federated learning for internet of
things: A comprehensive survey. IEEE Communications
Surveys & Tutorials, 23(3):1622–1658, 2021. [Cited on page 1.]

Nguyen, J., Malik, K., Zhan, H., Yousefpour, A., Rabbat,
M., Malek, M., and Huba, D. Federated learning with
buffered asynchronous aggregation. In International Con-
ference on Artificial Intelligence and Statistics, pp. 3581–
3607. PMLR, 2022. [Cited on pages 1 and 5.]

Niu, F., Recht, B., Re, C., and Wright, S. J. Hogwild!:
A lock-free approach to parallelizing stochastic gradi-
ent descent, 2011. URL https://arxiv.org/abs/
1106.5730. [Cited on pages 1, 2, and 4.]

Qu, Y., Dai, H., Zhuang, Y., Chen, J., Dong, C., Wu, F.,
and Guo, S. Decentralized federated learning for UAV
networks: Architecture, challenges, and opportunities.
IEEE Network, 35(6):156–162, 2021. [Cited on page 1.]

Raina, R., Madhavan, A., and Ng, A. Large-scale deep un-
supervised learning using graphics processors. In ICML,
pp. 873–880. ACM, 2009. [Cited on page 2.]

Rippel, O., Gelbart, M., and Adams, R. Learning ordered
representations with nested dropout. In International Con-
ference on Machine Learning, pp. 1746–1754. PMLR,
2014. [Cited on page 3.]

Robbins, H. and Monro, S. A stochastic approximation
method. The annals of mathematical statistics, pp. 400–
407, 1951. [Cited on page 2.]

Shi, G., Li, L., Wang, J., Chen, W., Ye, K., and Xu, C.
Hysync: Hybrid federated learning with effective syn-
chronization. In 2020 IEEE 22nd International Confer-
ence on High Performance Computing and Communica-
tions; IEEE 18th International Conference on Smart City;
IEEE 6th International Conference on Data Science and
Systems (HPCC/SmartCity/DSS), pp. 628–633, 2020. doi:
10.1109/HPCC-SmartCity-DSS50907.2020.00080. [Cited

on pages 2, 3, and 5.]

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Dropout: a simple way to prevent
neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014. [Cited on page 3.]

Stojkovic, B., Woodbridge, J., Fang, Z., Cai, J., Petrov, A.,
Iyer, S., Huang, D., Yau, P., Kumar, A. S., Jawa, H.,
et al. Applied federated learning: Architectural design
for robust and efficient learning in privacy aware settings.
arXiv preprint arXiv:2206.00807, 2022. [Cited on page 1.]

Tandon, R., Lei, Q., Dimakis, A. G., and Karampatziakis, N.
Gradient coding: Avoiding stragglers in distributed learn-
ing. In International Conference on Machine Learning,
pp. 3368–3376. PMLR, 2017. [Cited on page 1.]

Wan, L., Zeiler, M., Zhang, S., Le Cun, Y., and Fergus, R.
Regularization of neural networks using dropconnect. In
International conference on machine learning, pp. 1058–
1066. PMLR, 2013. [Cited on page 3.]

Wang, J., Liu, Q., Liang, H., Joshi, G., and Poor, H. V. Tack-
ling the objective inconsistency problem in heterogeneous
federated optimization. Advances in neural information
processing systems, 33:7611–7623, 2020. [Cited on pages 1

and 2.]

Wang, J., Charles, Z., Xu, Z., Joshi, G., McMahan, H. B.,
Al-Shedivat, M., Andrew, G., Avestimehr, S., Daly, K.,
Data, D., et al. A field guide to federated optimization.
arXiv preprint arXiv:2107.06917, 2021. [Cited on page 1.]

Wang, S. and Manning, C. Fast dropout training. In inter-
national conference on machine learning, pp. 118–126.
PMLR, 2013. [Cited on page 3.]

Wolfe, C. R., Yang, J., Chowdhury, A., Dun, C., Bayer, A.,
Segarra, S., and Kyrillidis, A. GIST: Distributed train-
ing for large-scale graph convolutional networks. arXiv
preprint arXiv:2102.10424, 2021. [Cited on pages 2 and 3.]

Wu, W., He, L., Lin, W., Mao, R., Maple, C., and Jarvis,
S. Safa: A semi-asynchronous protocol for fast feder-
ated learning with low overhead. IEEE Transactions on
Computers, 70(5):655–668, 2020. [Cited on pages 2 and 3.]

Xie, C., Koyejo, S., and Gupta, I. Asynchronous fed-
erated optimization, 2019. URL https://arxiv.
org/abs/1903.03934. [Cited on pages 2, 3, and 5.]

https://arxiv.org/abs/1812.06127
https://arxiv.org/abs/1812.06127
https://arxiv.org/abs/1106.5730
https://arxiv.org/abs/1106.5730
https://arxiv.org/abs/1903.03934
https://arxiv.org/abs/1903.03934

Efficient and Light-Weight Federated Learning via Asynchronous Distributed Dropout

Yu, Y., Wu, J., and Huang, L. Double quantization for
communication-efficient distributed optimization. Ad-
vances in Neural Information Processing Systems, 32,
2019. [Cited on page 3.]

Yuan, B., Wolfe, C. R., Dun, C., Tang, Y., Kyrillidis, A., and
Jermaine, C. Distributed learning of fully connected neu-
ral networks using independent subnet training. Proceed-
ings of the VLDB Endowment, 15(8):1581–1590, 2022.
[Cited on pages 2 and 3.]

Yun, H., Yu, H.-F., Hsieh, C.-J., Vishwanathan, S., and
Dhillon, I. Nomad: Non-locking, stochastic multi-
machine algorithm for asynchronous and decentralized
matrix completion. arXiv preprint arXiv:1312.0193,
2013. [Cited on page 1.]

Zhuang, Y., Chin, W.-S., Juan, Y.-C., and Lin, C.-J. A fast
parallel SGD for matrix factorization in shared memory
systems. In Proceedings of the 7th ACM conference on
Recommender systems, pp. 249–256, 2013. [Cited on page 1.]

Efficient and Light-Weight Federated Learning via Asynchronous Distributed Dropout

Theoretical Results. We are interested in understanding
whether such a combination of asynchronous computing
and dropout techniques lead to convergence and favorable
results: given the variance introduced by both asynchronous
updates and training of submodels, it is not obvious whether
–and under which conditions– such a protocol would work.

For ease of presentation and clarity of results, we analyse
a one-hidden-layer CNN, and show convergence with ran-
dom filter dropout. Consider a training dataset (X,y) =

{(xi, yi)}ni=1, where each xi ∈ Rd̂×p is an image and yi
being its label. Here, d̂ is the number of input channels and
p the number of pixels. Let q denote the size of the filter,
and let m be the number of filters in the first layer. Based
on previous work (Du et al., 2019), we let ϕ̂(·) denote the
patching operator with ϕ̂(x) ∈ Rqd̂×p. Consider the first
layer weight W ∈ Rm×qd̂, and second layer (aggregation)
weight a ∈ Rm×p. We assume that only the first layer
weights W is trainable. The CNN trained on the means
squared error has the form:

f(x,W) =
〈
a, σ

(
Wϕ̂ (x)

)
, ;
〉
,L (W) = ∥f(X,W)− y∥22 ,

where f(x, ·) denotes the output of the one-layer CNN for
input x, and L(·) is the loss function. We use the ℓ2-norm
loss for simplicity. We make the following assumption on
the training data and the CNN weight initialization.

Assumption .1 (Training Data) Assume that for all i ∈ [n],
we have ∥xi∥F = q−

1
2 and |yi| ≤ C for some constant C.

Moreover, for all i, i′ ∈ [n] we have xi ̸= xi′ .

Note that this can be satisfied by normalizing the data. For

simplicity of the analysis, let d := qd̂.

Assumption .2 (Initialization) w0,i ∼ N
(
0, κ2I

)
and

ai,i′ ∼
{
± 1

p
√
m

}
for i ∈ [m] and i′ ∈ [p].

In an asynchronous scenario, the neural network weight
is updated with stale gradients due to the asynchronous
updates, where δt is the delay at training step t. We assume
δt is bounded by a constant E. Then, a simple version of
gradient descent under these assumptions looks like:

Wt = Wt − η∇WL (Wt−δt) , δt ≤ E,

where Wt−δt indicates that the gradient is evaluated on a
earlier version of the model parameters. Given the above,
we provide the following guarantees:

Theorem .1 Let f(·, ·) be a one-hidden-layer CNN with the
second layer weight fixed. Let ut abstractly represent the
output of the model after t iterations, over the random selec-
tion of the masks. Let E denotes the maximum gradient de-
lay/staleness. Let ξ denote the dropout rate (ξ = 1 dictates
that all neurons are selected), and denote θ = 1− (1− ξ)S

the probability that a neuron is active in at least one sub-
network. Assume the number of hidden neurons satisfies
m = Ω

(
max{n

4K2

λ4
0δ

2 max{n, d}, n
λ0
}
)

and the step size

satisfies η = O
(
λ0

n2

)
. Let κ be a proper initialization scal-

ing factor, and it is considered constant. We use λ0 to denote
the smallest eigenvalue of the Neural Tangent Kernel matrix.
Let Assumptions 1 and 2 be satisfied. Then, the following
convergence rate guarantee is proved to be satisfied:

EMt

[
∥ut+1 − y∥22

]
≤

(
1− θηλ0

4

)t

∥u0 − y∥22

+O

(
θηλ3

0ξ
2κ2E2

n2
+

ξ2(1− ξ)2θηn3κ2d

mλ0
+

η2θ2nκ2λ0ξ
4E2

m4
+

ξ2(1− ξ)2θ2η2n2κ2d

m3λ0

+
ξ2(1− ξ)2θ2η2κ2λ0E

2

m3
+

ξ2(1− ξ)2θ2η2n2κ2d

m2λ0
+

nκ2
(
θ − ξ2

)
S

)

Remark #1. This theorem states that the sum of the
expected weight differences in the t-th iteration (i.e.,
EMt

[∥ut+1 − y∥22]) converges linearly to zero, as dictated

by the red term –
(
1− θηλ0

4

)t

∥u0 − y∥22– up to an error
neighborhood, denoted with the Big-Oh notation term on
the right hand side of the expression. Focusing on the latter,
there are two types of additive errors: i) the orange-colored
terms origin from the dropout analysis: the term 1 − ξ
is often called as “dropout rate” (when ξ = 0, no neu-

rons are selected and the loss hardly decreases, while when
ξ = 1, all neurons are selected, and the orange-colored
terms disappear). ii) the violet-colored terms origin from
the asynchronous analysis: when E = 0 (i.e., we boil down
to synchronous computations), these terms also disappear).

Remark #2. Beyond the above extreme cases, we observe
that the error region terms can be controlled by algorithmic
and model-design choices: e.g., when the size of the dataset
n increases, the first term θηλ3

0ξ
2κ2E2

n2 can be controlled; for

Efficient and Light-Weight Federated Learning via Asynchronous Distributed Dropout

sufficiently wide neural network, the terms with m in the
denominator can be made arbitrarily small; finally, notice
that increasing the number of subnetworks S will drive the
last term in the bound zero.

