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Abstract

The amount of labeled data to train models for001
speech tasks is limited for most languages, how-002
ever, the data scarcity is exacerbated for speech003
translation which requires labeled data cover-004
ing two different languages. To address this005
issue, we study a simple and effective approach006
to build speech translation systems without la-007
beled data by leveraging recent advances in un-008
supervised speech recognition, machine trans-009
lation and speech synthesis, either in a pipeline010
approach, or to generate pseudo-labels for train-011
ing end-to-end speech translation models. Fur-012
thermore, we present an unsupervised domain013
adaptation technique for pre-trained speech014
models which improves the performance of015
downstream unsupervised speech recognition,016
especially for low-resource settings. Experi-017
ments show that unsupervised speech-to-text018
translation outperforms the previous unsuper-019
vised state of the art by 3.2 BLEU on the Libri-020
Trans benchmark, on CoVoST 2, our best sys-021
tems outperform the best supervised end-to-end022
models (without pre-training) from only two023
years ago by an average of 5.0 BLEU over five024
X-En directions. We also report competitive025
results on MuST-C and CVSS benchmarks.026

1 Introduction027

Training supervised speech systems requires large028

amounts of labeled data which is often not avail-029

able for all but a small fraction of the over 7,000030

languages spoken around the world (Lewis et al.,031

2022). Despite much recent effort in creating032

speech translation corpora (Di Gangi et al., 2019a;033

Wang et al., 2021b), only a few dozen language034

directions are covered. The lack of labeled train-035

ing data is even more acute for speech translation036

because it requires aligned labeled data in two lan-037

guages which increases the effort to create such038

datasets. This poses the question of whether speech039

translation systems can be built using less labeled040

data or no labeled data at all.041

Recent work on unsupervised speech recognition 042

has achieved performance that can enable useful 043

systems using no labeled data (Yeh et al., 2019; 044

Liu et al., 2018; Chen et al., 2019; Baevski et al., 045

2021; Liu et al., 2022a), enabled in large part by 046

the advances in self-supervised speech represen- 047

tation learning (Schneider et al., 2019; Baevski 048

et al., 2020). These techniques were also used 049

to build unsupervised text-to-speech systems (Liu 050

et al., 2022b). Similarly, unsupervised text-to-text 051

machine translation has shown great promise for 052

certain language directions (Conneau et al., 2018; 053

Lample et al., 2018; Artetxe et al., 2018). 054

In this paper, we study a method to build end- 055

to-end unsupervised speech-to-text and speech-to- 056

speech translation systems trained on synthetic 057

training data obtained by cascading existing un- 058

supervised techniques: we first transcribe speech 059

utterances in the source language using unsuper- 060

vised speech recognition (Baevski et al., 2021; Liu 061

et al., 2022a), then translate the resulting transcrip- 062

tion using unsupervised machine translation (Lam- 063

ple et al., 2018; Artetxe et al., 2018; Liu et al., 064

2020), and finally synthesize the translation into 065

a target language speech utterance using unsuper- 066

vised speech synthesis (Liu et al., 2022b). We 067

also consider applying the pipeline directly at in- 068

ference time. Our approach benefits from the use 069

of self-supervised speech models (Baevski et al., 070

2020; Liu et al., 2020) and to further improve per- 071

formance, we present a technique to adapt existing 072

self-supervised models to the target domain. 073

2 Background 074

Unsupervised speech recognition. Liu et al. 075

(2018) presents some of the earliest work on un- 076

supervised phoneme recognition and their work 077

applies adversarial training. Wav2vec-U (Baevski 078

et al., 2021) effectively applied self-supervised 079

speech representations, introduced a new evalu- 080

ation metric and compared to state-of-the-art super- 081
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Figure 1: Overview of the proposed approach to unsupervised speech-to-text translation (S2TT) and speech-to-
speech translation (S2ST). We first adapt speech pre-trained model (wav2vec 2.0) for the input language and
domain of interest, and then cascade unsupervised speech recognition (ASR), unsupervised text de-normalization,
unsupervised machine translation (MT) and unsupervised speech synthesis (TTS) models to produce pseudo-labels
for end-to-end S2TT and S2ST model training. Our models rely only on unlabeled speech data and unpaired text
data without the need of any human annotation.

vised systems trained on large amounts of labeled082

data. Wav2vec-U 2.0 (Liu et al., 2022a) simplifies083

audio-side pre-processing and improves accuracy084

through better architecture as well as better train-085

ing objective. Lin et al. (2022) shows that out-of-086

domain speech pre-training or out-of-domain text087

data hurts the training robustness of Wav2vec-U088

models, especially under low-resource settings.089

Unsupervised speech synthesis. Recent work090

has demonstrated unsupervised speech synthesis091

systems to be able to achieve comparable perfor-092

mance to supervised systems (Liu et al., 2022b;093

Ni et al., 2022). The systems are trained on data094

resulting from labeling speech audio data with un-095

supervised speech recognition models and training096

text-to-speech models on the resulting models.097

Unsupervised machine translation. Lample098

et al. (2018) and Artetxe et al. (2018) built the first099

fully unsupervised machine translation (MT) sys-100

tems by exploiting cross-lingual similarity of rep-101

resentations in multilingual sequence-to-sequence102

models, as well as back-translation for further re-103

finements of the initial models. mBART (Liu104

et al., 2020) used a similar model architecture and105

training process to build unsupervised MT mod-106

els, but it utilized a larger-scale multilingual text107

corpus (Conneau et al., 2020) and an updated nois-108

ing strategy for pre-training with denoising autoen-109

coder objective. 110

End-to-end speech translation. End-to-end 111

sequence-to-sequence modeling has witnessed 112

increased applications in speech-to-text transla- 113

tion (Duong et al., 2016; Bérard et al., 2016; Weiss 114

et al., 2017; Bansal et al., 2017; Vila et al., 2018; 115

Di Gangi et al., 2019b; Ren et al., 2020; Li et al., 116

2021) and speech-to-speech translation (Jia et al., 117

2019; Kano et al., 2021; Jia et al., 2022a). Com- 118

pared to cascaded systems, end-to-end speech trans- 119

lation models have simpler pipeline and lower in- 120

ference latency. It is shown that recent end-to-end 121

speech-to-text translation (S2TT) models perform 122

comparably to the cascaded counterparts on the 123

well-established MuST-C benchmark (Bentivogli 124

et al., 2021). Given the scarcity of speech transla- 125

tion corpora, there are recent attempts on building 126

end-to-end S2TT models under low-resource set- 127

tings (Bansal et al., 2018, 2019; Cheng et al., 2021) 128

or unsupervised settings (Chung et al., 2019). 129

3 Methods 130

Figure 1 provides an overview of our proposed ap- 131

proach to unsupervised speech-to-text translation 132

(S2TT) and speech-to-speech translation (S2ST). 133

We leverage a cascade of unsupervised models to 134

produce pseudo-labels for end-to-end S2TT and 135

S2ST model training. To mitigate language and 136
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domain mismatch in speech pre-training (wav2vec137

2.0), we finetune wav2vec 2.0 models using un-138

labeled in-domain speech data, and then use the139

adapted models to build downstream speech recog-140

nition models.141

3.1 Unsupervised Cascaded Pseudo-Labeling142

We cascade unsupervised speech recognition143

(ASR), unsupervised text de-normalization (TDN)144

and unsupervised machine translation (MT) mod-145

els to produce pseudo-labels for S2TT. For S2ST,146

we additionally apply unsupervised speech synthe-147

sis (TTS) models to MT model outputs to obtain148

synthesized target speech.149

Unsupervised ASR. We adopt wav2vec-U150

2.0 (Liu et al., 2022a), which learns a mapping151

from self-supervised speech representations to152

phonemes via adversarial training and decodes153

phonemes into words via a weighted finite state154

transducer (Mohri, 1997). To improve adversar-155

ial training stability and suppress overfitting in the156

low-resource settings, we add Gaussian noise to157

the frozen input features X158

X ′ = X +N (0, σ2)159

as well as R-Drop regularization (Wu et al., 2021)160

to the logit outputs of the generator161

Lrdp =
1

2
DKL(G1(X

′) || G2(X
′))162

+
1

2
DKL(G2(X

′) || G1(X
′))163

where G1 and G2 are two generator instances with164

different dropout masks, and DKL is the Kullback-165

Leibler (KL) divergence. We add weighted αLrdp166

to the wav2vec-U 2.0 objective function, where α167

is a hyper-parameter. After adversarial learning,168

we follow Baevski et al. (2021) to perform self-169

training with a Hidden Markov Model (HMM),170

and fine-tune the adapted wav2vec 2.0 model again171

with the CTC objective on the HMM labels. We172

denote the final ASR model as “w2vu2-CTC”.173

Unsupervised MT. We adopt mBART (Liu174

et al., 2020), which has a Transformer architec-175

ture (Vaswani et al., 2017) with model parame-176

ters shared across all training languages. It first177

obtains initial cross-lingual alignments for all lan-178

guages via a denoising autoencoder objective (Vin-179

cent et al., 2010), and then refines the alignments180

for one specific language pair via bidirectional on-181

line back-translation on that pair of languages. We182

denote this model as “mBART-OBT”.183

Unsupervised TDN. ASR models decode nor- 184

malized spoken-form texts, which have no case or 185

punctuation (except hyphen and apostrophe). MT 186

models, however, encode unnormalized written- 187

form texts that have case and punctuation. This dis- 188

crepancy leads to quality degradation when we cas- 189

cade the two models directly for pseudo-labeling. 190

To mitigate the mismatch, we de-normalize ASR 191

model outputs into their unnormalized written form 192

before feeding them into MT models. The text de- 193

normalizer is a mBART model pre-trained with de- 194

noising autoencoder objective and fine-tuned with 195

paired data of raw text (output) and its normalized 196

version (input). 197

Unsupervised TTS. We follow Liu et al. (2022b)
to produce phoneme labels for unlabeled speech
data with wav2vec-U 2.0, and then train an au-
toregressive Transformer TTS model (Li et al.,
2019) on the pseudo-labeled data. For wav2vec-U
2.0, we perform HMM-based self-training and fine-
tune pre-trained wav2vec 2.0 model with HMM
phoneme labels. To alleviate under-generation and
over-generation issues in autoregressive models,
we add R-Drop style consistency loss

Lc = ||PEOS
1 (X)− PEOS

2 (X)||1

to the objective function (weighted by a hyperpa- 198

rameter α) for better end-of-sentence (EOS) predic- 199

tions, where PEOS
1 and PEOS

2 are two EOS predic- 200

tions on the same input X with different dropout 201

masks. 202

3.2 Unsupervised Adaptation of wav2vec 2.0 203

Pre-trained Models 204

Next, we present a method to improve perfor- 205

mance when the domain of the data used for 206

self-supervised pre-training differs from the down- 207

stream task domain which is often the case for low- 208

resource languages. Specifically, we adapt out-of- 209

domain or out-of-language wav2vec 2.0 models to 210

the domain and language of interest by fine-tuning 211

the entire wav2vec 2.0 models on discrete labels 212

obtained from unlabeled in-domain data using the 213

CTC objective (Graves et al., 2006). 214

To obtain discrete labels, we first collect all the 215

wav2vec 2.0 speech representations for the train- 216

ing data, and perform k-means clustering to iden- 217

tify K clusters. Then for each utterance, we la- 218

bel each of its T speech representation frames xt 219

by the corresponding cluster ids yt ∈ {1, ...,K}, 220

where t ∈ {1, ..., T}. Finally, we merge identical 221
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consecutive yt to obtain the final labels y′t′ , where222

t′ ∈ {1, ..., T ′} and T ′ ≤ T .223

After unsupervised fine-tuning with discrete la-224

bels, we discard the output projection layer used for225

the CTC objective, and use the resulting wav2vec226

2.0 trunk instead of the original wav2vec 2.0 model227

in the downstream tasks. The adapted models are228

used to extract speech representations for wav2vec-229

U 2.0 models, as well as pre-train encoders of the230

CTC models in wav2vec-U self-training.231

3.3 End-to-end Model Training with232

Pseudo-labels233

After obtaining pseudo-labels from the cascade of234

unsupervised models, we train end-to-end S2TT235

and S2TT models with supervised objectives on236

these pseudo-labels. For end-to-end S2TT, we237

adopt the model architecture in Li et al. (2021),238

which we denote as “w2v2-mBART”. We pre-239

train its encoder by the unsupervised ASR model,240

w2vu2-CTC, and pre-train its decoder by the unsu-241

pervised MT model, mBART-OBT. For end-to-end242

S2ST, we adopt a variant of Translatotron 2 (Jia243

et al., 2022a), Spec-T2, which adds an additional244

encoder in between Translatotron 2’s two decoders,245

and replace Translatotron 2’s second decoder by246

an autoregressive Transformer decoder (Li et al.,247

2019). Similar to w2v2-mBART, we pre-train Spec-248

T2’s first encoder and first decoder by w2vu2-CTC249

and mBART-OBT, respectively.250

4 Experimental Setup251

We evaluate our translation models on 5 directions252

into English (Fr-En, Es-En, Ru-En, Et-En and Lv-253

En) and 3 directions out of English (En-Es, En-Ru254

and En-Fr). The 5 non-English languages are from255

4 different Indo-European language family sub-256

groups: Romance (Fr and Es), Slavic (Ru), Uralic257

(Et) and Baltic (Lv). For the X-En directions, we258

evaluate S2TT models on CoVoST 2 (Wang et al.,259

2021b) and evaluate S2ST models on CVSS-C (Jia260

et al., 2022b), which adds synthetic target speech261

to CoVoST 2 with a single canonical speaker voice.262

For the En-X directions, we only evaluate S2TT263

models. We use MuST-C (Di Gangi et al., 2019a)264

for En-Es and En-Ru, as well as Libri-Trans (Ko-265

cabiyikoglu et al., 2018) for En-Fr. For Libri-Trans,266

we follow Chung et al. (2019) to combine valida-267

tion set and test set for evaluation.268

Speech pre-training. We use robust wav2vec269

2.0 (Hsu et al., 2021) for English speech, which270

is trained on datasets from multiple domains. For 271

non-English speech, we adapt open-source Vox- 272

Populi1 (Wang et al., 2021a) models by CTC fine- 273

tuning with 1024 discrete labels (Fr, Es and Ru) or 274

128 discrete labels (Et and Lv). We use monolin- 275

gual VoxPopuli models for Fr and Es, and multi- 276

lingual models of similar languages for Ru, Et and 277

Lv (Slavic, Uralic and Baltic languages, respec- 278

tively). We extract speech representations from the 279

15-th layer of the original wav2vec 2.0 models for 280

computing discrete labels. 281

Speech recognition. For wav2vec-U 2.0 models, 282

we extract speech representations from the 19-th 283

(15-th) layer of the adapted (original) wav2vec 2.0 284

models. We increase the dropout on the batch nor- 285

malized input features to 0.2. We set σ = 0.1 for 286

input Gaussian noise and α = 1.0 for R-Drop reg- 287

ularization. For wav2vec-U 2.0 loss weights, we 288

set η = 3 and choose λ, γ and δ from 1.0 / 1.5, 1.5 289

/ 2.5 and 0.3 / 0.5, respectively. For text data, we 290

use open web crawled corpus, CC-100 (Conneau 291

et al., 2020), which is created with little curation 292

and has large language coverage. For supervised 293

baselines, we fine-tune adapted wav2vec 2.0 mod- 294

els with CTC objective on labeled data, which we 295

denote as “w2v2-CTC”. 296

Machine translation. We use CC-100 (Conneau 297

et al., 2020) to train bilingual mBART large mod- 298

els for each language pair. For bidirectional online 299

back-translation, we use the same CC100 data and 300

follow Liu et al. (2020) to apply 99% vocabulary 301

masking for the first 500 updates. For supervised 302

baselines, we fine-tune mBART models with la- 303

beled data, which we denote as “mBART-FT”. 304

Speech synthesis. We train Transformer models 305

(with Lc weight α = 1.0) on CVSS-C target speech 306

from the It-En direction to avoid content over- 307

laps with the selected 5 directions. For grapheme- 308

to-phoneme conversion, we employ g2pE (Park, 309

2019) for English texts and Phonemizer (Bernard, 310

2015) with espeak-ng2 backend for texts in other 311

languages. We resample audios to 22,050Hz and 312

extract log-Mel spectrogram with FFT size 1024, 313

window length 1024 and hop length 256. 314

End-to-end speech translation. For bilingual 315

S2TT, we pre-train its encoder/decoder with 316

w2vu2-CTC/mBART-OBT for unsupervised mod- 317

1https://github.com/facebookresearch/voxpopuli
2https://github.com/espeak-ng/espeak-ng
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Fr-En Es-En Ru-En Et-En Lv-En Avg.Duration (hrs) 264 113 16 3 2

Bilingual setup
Supervised learning + pre-training
End-to-end (w2v2-mBART) 35.7 36.2 39.4 5.7 13.5 26.1

Supervised learning
End-to-end (S2T Transformer; Wang et al. 2020) 26.3 23.0 14.8 0.1 2.5 13.3

Unsupervised learning
Cascaded (ASR→TDN→MT) 24.4 23.4 27.8 8.5 7.6 18.3
End-to-end (w2v2-mBART) 24.2 24.0 25.6 3.9 2.8 16.1

Multilingual setup
Supervised learning + pre-training
End-to-end (w2v2-mBART), 21 langs.→En (Babu et al., 2021) 32.9 34.1 26.4 3.5 6.0 20.6

Supervised learning
End-to-end (S2T Transformer), 21 langs.→En (Wang et al., 2020) 26.9 26.3 9.6 0.4 0.6 12.8

Unsupervised learning
End-to-end (w2v2-mBART), {Fr,Es,Ru,Et,Lv} → En 24.3 24.0 22.8 3.1 1.0 15.0

Table 1: Bilingual and multilingual X-En speech-to-text translation results: test BLEU on CoVoST 2. Et-En
and Lv-En are low-resource with only 3h and 2h of training data, respectively. End-to-end modeling on these two
directions suffers from overfitting.

En-Es En-Ru En-Fr
Duration (hrs) 504 489 100

Supervised learning + pre-training
End-to-end (w2v2-mBART) 32.4 20.0 23.1

Supervised learning
End-to-end (S2T Transformer) 27.2† 15.3† 11.4

Unsupervised learning
Chung et al. (2019)‡ N/A N/A 12.2
Cascaded (ASR→TDN→MT) 22.0 10.0 15.4
End-to-end (w2v2-mBART) 23.8 9.8 15.3

Table 2: Bilingual En-X speech-to-text translation re-
sults: test BLEU on MuST-C (En-Es and En-Ru) and
Libri-Trans (En-Fr). Our best system outperforms pre-
vious state of the art (Chung et al., 2019) on Libri-Trans
by 3.7 BLEU. † Wang et al. (2020). ‡ We report the
Slibri-Tlibri + LMwiki + DAEwiki configuration with the
best result selected supervisedly out of 10 runs.

els, or with w2v2-CTC/mBART-FT for supervised318

models that leverage pre-training. To alleviate over-319

fitting in low-resource settings (Ru-En, Et-En and320

Lv-En), we duplicate training examples and equip321

them with 2 different pseudo-labels from mBART-322

OBT beam search decoding. For multilingual S2TT323

and S2ST, we pre-train speech encoder with XLS-R324

0.3B (Babu et al., 2021), and pre-train text decoder325

with mBART-OBT from the En-Fr direction.326

Checkpoint selection and averaging. For unsu-327

pervised ASR, we adopt the unsupervised metric328

in Baevski et al. (2021) and average the best 2329

checkpoints in the same run. For unsupervised330

MT and unsupervised TTS, we average the last 5331

checkpoints. For end-to-end S2TT/S2ST, we sort 332

checkpoints by losses on the pseudo-labeled vali- 333

dation set and average the best 5 checkpoints. 334

Automatic evaluation of speech outputs. Fol- 335

lowing a common practice, we first transcribe En- 336

glish speech outputs from the TTS or S2ST model 337

with an open-source English ASR model3, and then 338

calculate WER or BLEU on the ASR transcription 339

for automatic evaluation scores. 340

5 Results 341

5.1 X-En Speech-to-Text Translation 342

For X-En S2TT, we consider models trained for a 343

single language direction (bilingual) and models 344

covering multiple directions (multilingual). Results 345

are reported on five translation directions into En- 346

glish of the CoVoST 2 benchmark and we focus on 347

end-to-end systems but we also consider a cascade 348

of unsupervised models. Supervised models are 349

purely trained on labeled data without pre-training, 350

while as supervised models with pre-training use 351

wav2vec and mBART models, unsupervised mod- 352

els also use pre-trained models but no labeled data. 353

Table 1 shows that unsupervised end-to-end mod- 354

els outperform the supervised baselines by 5.0 355

BLEU on average over the five translation direc- 356

tions of the bilingual setup. The supervised models 357

represent the best supervised end-to-end models 358

from two years ago. These improvements are due 359

3https://github.com/facebookresearch/fairseq/tree/main/
examples/wav2vec (“Wav2Vec 2.0 Large (LV-60) + Self Train-
ing”)
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Fr-En Es-En Ru-En Et-En Lv-En Avg.Source duration (hrs) 264 113 16 3 2

Supervised learning + pre-training
End-to-end (Spec-T2), {Fr,Es,Ru,Et,Lv} → En 31.8 32.3 32.9 5.2 7.5 21.9

Supervised learning
End-to-end (Spec-T2), {Fr,Es,Ru,Et,Lv} → En 27.4 27.7 25.4 4.1 2.5 17.4

Unsupervised learning
Cascaded (ASR→TDN→MT→TTS), bilingual 21.6 21.2 25.3 7.2 7.7 16.6
End-to-end (Spec-T2), {Fr,Es,Ru,Et,Lv} → En 21.2 20.1 19.9 3.2 2.8 13.4

Table 3: Multilingual X-En speech-to-speech translation results: test BLEU on CVSS-C. Our multilingual model
is trained on a subset of 5 directions out of the 21 available directions. Appendix A.1 presents a comparison of our
supervised model to Jia et al. (2022b) in the 21-direction setting, which performs roughly similarly.

wav2vec 2.0 Domain Hours Multi- Seen Fine- Fr Es Ru Et Lv
features lingual lang. tuning 264h 113h 16h 3h 2h

VoxPopuli out 21K- ∗ ∗ none 26.7 21.4 > 60 > 60 > 60
(Wang et al., 2021a) 89K unsup. 21.4 18.3 25.6 22.4 27.8

XLS-R in+out 436K ✓ ✓
none 26.1 21.9 32.8 > 60 > 60

(Babu et al., 2021) unsup. 23.4 19.0 28.3 26.4 > 60

Robust wav2vec 2.0 out 63K none > 60 29.3 > 60 > 60 > 60
(Hsu et al., 2021) unsup. 31.5 22.7 35.2 35.1 > 60

Table 4: Different wav2vec 2.0 features for non-English unsupervised ASR (wav2vec-U 2.0) training: validation
PER on CoVoST 2 with Viterbi decoding. All models use the wav2vec 2.0 large configuration. We unsupervisedly
finetune wav2vec 2.0 models to the language and domain of interest. “∗”: Monolingual models for Fr and Es;
multilingual models of similar languages for Ru, Et and Lv (trained on the Slavic, Uralic and Baltic languages in
VoxPopuli, respectively).

to advances in unsupervised modeling as well as360

self-supervised pre-training. The supervised mod-361

els with pre-training perform generally far above362

the unsupervised models and shows that there is po-363

tential to improve unsupervised speech translation364

in the future.365

The cascaded unsupervised setup performs better366

than the end-to-end approach for directions with367

little synthetic training data such as Ru-En, Et-En368

and Lv-En. This is because end-to-end models369

are trained on datasets comprising as little as two370

hours of synthetic speech translation data on which371

they overfit. Cascaded unsupervised models do not372

suffer under this issue because they exploit more373

text for unsupervised machine translation (Table 7).374

Supervised learning with pre-training for the375

bilingual setup performs better than the multilin-376

gual setup because only a single translation direc-377

tion needs to be modeled and because the mBART378

model was pre-trained on 50 languages while as379

only a single language is being used in the X-En380

setup.381

5.2 En-X Speech-to-Text Translation 382

For bilingual En-X S2TT, we compare our unsuper- 383

vised models to the previous state of the art (Chung 384

et al., 2019) on Libri-Trans (En-Fr) and we also 385

evaluate them on the MuST-C benchmark for En- 386

Es and En-Ru directions. Table 2 shows the test 387

BLEU of our models and the baselines on both 388

benchmarks. On Libri-Trans, our best system out- 389

performs the previous state of the art, an alignment- 390

based cascaded system, by 3.2 BLEU (Chung et al., 391

2019). On MuST-C, our models also achieve 392

competitive results in this high-resource setting of 393

around 500 hours of training data, with 3.4 BLEU 394

and 5.5 BLEU behind the supervised baselines on 395

En-Es and En-Ru, respectively. 396

5.3 X-En Speech-to-Speech Translation 397

To train a multilingual X-En speech-to-speech 398

translation model, we combine pseudo-labeled 399

bilingual data for multiple translation directions 400

and use the Spec-T2 architecture, a variant of Trans- 401

latotron 2. We build supervised Spec-T2 base- 402

lines with and without pre-training and evaluate 403

on the CVSS-C benchmark. Table 3 shows that 404
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Fr Es Ru Et Lv En Avg.Duration (hrs) 264 113 16 3 2 504

Supervised learning + pre-training
w2v2-CTC 15.7 7.0 7.1 11.1 5.9 6.3 8.9

Supervised learning
Transformer† 18.3 16.0 31.4 65.7 51.8 12.1 32.6

Unsupervised learning
w2vu2-CTC 23.2 10.3 15.7 17.6 14.8 12.7 15.7

Table 5: Speech recognition results: test WER on CoV-
oST 2 and MuST-C (En-Es). Semi-supervised and un-
supervised models are decoded with 4-gram language
model. † Wang et al. (2020).

CVSS Libri-Trans MuST-C
JS Divergence 0.207 0.376 0.369

Supervised learning
Transformer 12.8 15.0 16.8

Unsupervised learning
Transformer 15.2 17.1 20.1

Table 6: Speech synthesis results: validation WER for
re-synthesis on CVSS-C, Libri-Trans and MuST-C. To
quantify training-inference time domain similarity, we
follow Lin et al. (2022) to compute Jensen–Shannon
divergence (“JSD”) on 4-gram phoneme distributions.
Low JSD suggests high similarity.

the best unsupervised system is on average only405

0.8 BLEU below the supervised baseline. We be-406

lieve that the unsupervised approach is less effec-407

tive for speech-to-speech translation compared to408

speech-to-translation because of the increased error409

accumulation in the synthetic data creation process410

due to the addition of the unsupervised speech syn-411

thesis component to which we input unsupervised412

translation output which in turn is based on unsu-413

pervised speech recognition transcriptions. Sim-414

ilarly to speech-to-text translation, the cascaded415

unsupervised model performs better than the end416

to end approach and this is most prominent for417

low-resource directions.418

5.4 Speech Pre-training419

We evaluate the effectiveness of the unsupervised420

adaptation technique of wav2vec 2.0 models (§3.1)421

on the five non-English languages, which have less422

training data than English. We train wav2vec-U423

2.0 models on CoVoST 2 with features extracted424

from three different wav2vec 2.0 models and their425

adapted versions: 1) Out-of-domain models, “Vox-426

Populi” (Wang et al., 2021a), that are trained with427

data in the same language (for Fr and Es) or similar428

languages (for Ru, Et and Lv) from the same lan- 429

guage family subgroup; 2) a massively multilingual 430

model for 128 languages, “XLS-R” (Babu et al., 431

2021), whose training data contains CoVoST 2; 3) 432

a multi-domain English model, “robust wav2vec 433

2.0” (Hsu et al., 2021), where the target languages 434

are unseen. We report validation PER on Viterbi 435

predictions in Table 4. Speech pre-training on mis- 436

matched domains or languages (“VoxPopuli” and 437

“robust wav2vec 2.0”) leads to training convergence 438

failure on three low-resource languages (Ru, Et and 439

Lv). The two languages with the least amount of 440

data, Et and Lv, even fail with in-domain multilin- 441

gual pre-training. Unsupervised adaptation signif- 442

icantly improves training convergence and model 443

performance for all the 3 scenarios of speech pre- 444

training. In an example worst case scenario, Et-En 445

wav2vec-U 2.0 model is successfully trained with 446

only 3 hours of Et speech data and features from an 447

adapted out-of-language out-of-domain wav2vec 448

2.0 model (“robust wav2vec 2.0”). 449

5.5 Speech Recognition 450

Next, we evaluate the performance of unsupervised 451

speech recognition in our setting. We decode our 452

pre-trained supervised baselines (“w2v2-CTC”) 453

and unsupervised models (“w2vu2-CTC”) with 4- 454

gram language model. They are compared with pre- 455

vious un-pre-trained supervised baselines (Wang 456

et al., 2020) on CoVoST 2 and MuST-C (for En), 457

whose results (test WER) can be found in Table 5. 458

We see that our unsupervised end-to-end models 459

outperform un-pre-trained supervised baselines on 460

all six languages with an average 16.9 WER reduc- 461

tion over the supervised one. Unsupervised ASR 462

works best for languages with little labeled data 463

due to the use of pre-trained features and advances 464

in unsupervised algorithms. 465

5.6 Speech Synthesis 466

In our unsupervised setting, the target speech data 467

does not share the same domain as the source one. 468

This realistic setting leads to training-inference 469

time domain mismatch on TTS models. We eval- 470

uate the effects of this mismatch by a re-synthesis 471

task on 3 different datasets: CVSS-C (from It-En), 472

Libri-Trans and MuST-C. We synthesize speech 473

using validation texts and report WER on the ASR 474

transcription of the synthesized speech. To quan- 475

tize domain similarity, we follow Lin et al. (2022) 476

to compute Jensen–Shannon divergence (“JSD”) on 477

4-gram phoneme distributions, where low JSD sug- 478
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Fr-En Es-En Ru-En Et-En Lv-En En-Es En-Ru En-Fr
Avg.2.1B En text, non-En text 428M 379M 849M 46M 68M 379M 849M 428M

Bitext 207K 79K 12K 1.8K 2.3K 259K 259K 47K

Supervised learning + pre-training
mBART-FT 46.7 46.0 48.4 23.3 29.6 38.7 23.1 21.5 34.6

Supervised learning
Transformer 37.9† 36.3† 19.8† 0.3† 0.2† 33.8 15.8 17.9 20.3

Unsupervised learning
mBART-OBT 40.1 43.8 48.6 19.0 25.0 38.5 22.2 22.1 32.4

Table 7: Machine translation results: test BLEU on CoVoST 2 (X-En), MuST-C (En-Es and En-Ru) and Libri-Trans
(En-Fr). We finetune mBART model with bitext data for supervised learning and with unpaired pre-training data for
unsupervised learning. † Wang et al. (2020).

Fr-En Es-En Ru-En Et-En Lv-En En-Es En-Ru En-Fr Avg.

BLEU on raw text
ASR→TDN→MT 24.4 23.4 27.8 8.5 7.6 22.0 10.0 15.4 17.4
Remove TDN 17.2 18.3 20.7 5.7 7.8 17.2 8.9 10.4 13.3

BLEU on normalized text (case and punctuation removed)
ASR→TDN→MT 25.0 23.9 28.7 7.9 9.5 23.7 9.4 15.5 18.0
Remove TDN 23.1 24.1 26.9 7.2 9.4 23.1 9.4 15.1 17.3

Table 8: Effectiveness of text de-normalization in the unsupervised pipeline evaluated in terms of speech-to-text
translation on CoVoST 2 (X-En), MuST-C (En-Es and En-Ru) and Libri-Trans (En-Fr). We report test BLEU on
either raw text or normalized text. TDN not only recovers case and punctuation, but also leads to better translation
of content.

gests high similarity. Table 6 shows the results. We479

see that both supervised and unsupervised models480

have higher WER on less similar domains (Libri-481

Trans and MuST-C).482

5.7 Machine Translation483

We evaluate our unsupervised models (“mBART-484

OBT”) on the CoVoST 2, MuST-C and Libri-485

Trans benchmarks with test BLEU. For compar-486

ison, we also build supervised Transformer base-487

lines (“Transformer”) and supervised mBART base-488

lines (“mBART-FT”). Results are shown in Table 7.489

We observe that our unsupervised models outper-490

form supervised baselines by 12.1 BLEU on aver-491

age over the eight considered translation directions.492

They are behind supervised baselines by only 2.2493

BLEU on average. In contrast to supervised base-494

lines that leverage in-domain paired data, the unsu-495

pervised models use unpaired CC100 data which496

is web data.497

5.8 Text De-normalization498

We verify the effectiveness of text de-normalization499

(TDN) by ablating it in the unsupervised cascaded500

pipeline. In Table 8, we show test BLEU calcu-501

lated on either raw text (BLEUraw) or normalized502

text (BLEUnorm) for the ablation. We see that 503

TDN improves BLEUraw greatly by 4.1 on aver- 504

age over all the directions. From the improvements 505

on BLEUnorm, we conclude that TDN not only re- 506

covers case and punctuation, but also improves 507

translation of the content. 508

6 Conclusion 509

In this paper, we present a simple and effective ap- 510

proach to unsupervised speech-to-text translation 511

(S2TT) and speech-to-speech translation (S2ST). 512

Our S2TT systems outperform the previous state of 513

the art on Libri-Trans by 3.2 BLEU as well as the 514

best supervised end-to-end models (without pre- 515

training) on CoVoST 2 from only two years ago 516

by an average of 5.0 BLEU over five translation 517

directions into English. Our S2TT and S2ST sys- 518

tems also perform competitively on the MuST-C 519

and CVSS-C benchmarks. 520
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A Appendix774

A.1 Comparison of our CVSS-C supervised775

baseline to previous work776

X-En direction Fr Es Ru Et Lv Avg.

Evaluated by a proprietary ASR
Jia et al. (2022b) 32.4 33.4 23.2 3.2 2.8 19.0

Evaluated by an open-source ASR
Ours 33.8 34.6 29.4 3.1 3.2 20.8

Table 9: Multilingual supervised baselines on CVSS-C
for translating 21 languages into English. We report test
BLEU on ASR transcription of the translated speech.

For evaluation of CVSS-C models, we use an777

open-source English ASR model4 to transcribe778

translated speech for BLEU calculation. The pre-779

vious work (Jia et al., 2022b), however, used tran-780

scription from a proprietary ASR model which we781

do not have access to. As a result, BLEU num-782

bers reported for our model and the previous work783

are not directly comparable, but the small differ-784

ence suggests that the two models perform roughly785

similarly.786

A.2 Data Overview for Supervised Learning787

and Unsupervised Learning788

Fr-En Es-En Ru-En Et-En Lv-En

Supervised learning
Src. paired speech 264 113 16 3 2
Src. paired text 207K 79K 12K 1.8K 2.3K
Tgt. paired speech 174 70 13 3 1
Tgt. paired text 207K 79K 12K 1.8K 2.3K
Unsupervised learning
Src. speech 23K 21K 89K 43K 28K
Src. text 428M 379M 849M 46M 68M
Tgt. speech 29 29 29 29 29
Tgt. text 2.1B 2.1B 2.1B 2.1B 2.1B

En-Es En-Ru En-Fr

Supervised learning
Src. paired speech 504 489 100
Src. paired text 259K 259K 47K
Tgt. paired text 259K 259K 47K
Unsupervised learning
Src. speech 63K 63K 63K
Src. text 2.1B 2.1B 2.1B
Tgt. text 379M 849M 428M

Table 10: Overview of the speech data (hours) and text
data (sentences) used in supervised learning and unsu-
pervised learning.

4https://github.com/facebookresearch/fairseq/tree/main/
examples/wav2vec (“Wav2Vec 2.0 Large (LV-60) + Self Train-
ing”)

Table 10 provides an overview for the speech 789

and text data used in supervised learning and unsu- 790

pervised learning. 791
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