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Abstract. In recent years, deep learning—based multi-modal abdominal
organ segmentation has played an increasingly important role in clini-
cal diagnosis and treatment. However, the development across imaging
modalities has been uneven: CT segmentation has achieved remarkable
progress owing to large-scale, high-quality annotated datasets, while MRI
and PET segmentation still suffers from data scarcity due to the lack
of annotations. Achieving efficient cross-modality transfer from CT to
MRI/PET under limited or no annotations remains a key challenge for
advancing intelligent multi-modal abdominal imaging. To address this,
we frame the problem as one of unsupervised cross-modality domain
adaptation and propose a two-stage framework that jointly optimizes
image generation and segmentation prediction. In the first stage, a gen-
erative network and a supervised segmentation network are combined to
produce pseudo-labels for unlabeled MRI and PET scans using labeled
CT samples. In the second stage, a simple yet effective pseudo-label
selection strategy is applied to improve label reliability and model train-
ing. Experiments on Task 3 of the FLARE25 Challenge show that our
method achieves average DSC and NSD scores of 78.66% and 85.42%
on the MRI validation set, and 82.33% and 73.54% on the PET valida-
tion set. The per-case runtime and GPU memory usage are 8.87 s and
5012.87 MB for MRI, and 8.49 s and 4672.31 MB for PET. The pro-
posed method reduces cross-modality domain gaps while significantly
lowering training resource consumption. Our code is available at https:
//github.com/wenzizzz/Flare25Task3.

Keywords: Abdominal organs segmentation - Unsupervised domain adap-
tion - Style translation - Contrastive learning

1 Introduction

Abdominal imaging modalities, including computed tomography (CT), magnetic
resonance imaging (MRI), and positron emission tomography (PET), play a vital
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role in the diagnosis and assessment of abdominal diseases involving organs such
as the liver, kidneys, and spleen [2,5]. Accurate segmentation of these abdominal
organs is essential for improving disease diagnosis, detecting pathological lesions,
and formulating effective treatment plans [23,26].

In the field of abdominal organ image segmentation, CT imaging has demon-
strated remarkable progress, primarily due to its high spatial resolution and the
widespread availability of high-quality manual annotations, which together have
driven the development of efficient segmentation algorithms [20]. By contrast,
MRI provides a diverse range of imaging sequences and contrast mechanisms,
offering clear advantages for soft-tissue disease diagnosis. However, this diversity
also increases annotation difficulty, introduces considerable inter-sequence vari-
ability, and, coupled with suboptimal image quality in certain sequences, poses
significant challenges for automatic segmentation[15]. PET imaging, meanwhile,
offers complementary functional information by capturing tissue metabolism and
activity, which is particularly valuable for tumor detection, staging, and the as-
sessment of inflammatory and metabolic disorders|7,8]. Nevertheless, PET im-
ages generally suffer from low spatial resolution, high noise levels, and substantial
appearance variations caused by differences in scanners, protocols, and acquisi-
tion conditions. These limitations place higher demands on the robustness of
automatic segmentation models. Furthermore, the absence of one-to-one paired
samples across CT, MRI, and PET modalities further aggravates the challenges
of cross-modality abdominal organ segmentation [5,15].

To overcome these challenges, image-to-image translation—-based unsuper-
vised domain adaptation (UDA) methods have been widely adopted. For ex-
ample, CycleGAN [30] , a canonical UDA approach, can preserve voxel-level
structural fidelity under unpaired training via cycle-consistency and identity
constraints, making it well suited to abdominal anatomy. Translating CT vol-
umes into MRI/PET style can effectively narrow the appearance gap, alleviate
annotation scarcity in MRI/PET, and provide a reasonable initialization for
downstream segmentation. However, appearance-level alignment alone is insuf-
ficient: MRI sequences vary substantially in contrast and image quality, while
PET is limited by low spatial resolution, high noise, and heterogeneous uptake,
which can induce boundary instability and biases in scale estimation. Notably,
abdominal organs in 3D medical images tend to occupy relatively consistent
anatomical locations and exhibit characteristic shapes; accordingly, stable inter-
organ geometric relations (e.g., relative orientation, adjacency/separation pat-
terns, expected distances, and volume distributions) constitute strong priors
that can constrain the anatomical plausibility and volumetric reasonableness of
predictions, reduce implausible overlaps or displacements, and thereby enhance
robustness to weak boundaries and noise in cross-modality settings.

Building on these considerations, we propose a concise and effective pipeline.
First, we employ 3D CycleGAN to perform CT—MRI/PET style transfer un-
der an unpaired setting, thereby reducing the inter-domain gap at the im-
age level. Subsequently, in the segmentation stage, we adopt a 3D U-Net[/]
trained with a hybrid objective function: while the supervised segmentation loss
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(cross-entropy + Dice) ensures voxel-level accuracy, two anatomy-oriented un-
supervised contrastive regularizations are introduced to explicitly encode stable
volumetric and geometric relationships. Specifically, a BYOL-style consistency
constraint|9] is incorporated to enhance the robustness of representations against
view perturbations, and an overlap-aware objective is used to regress regional
similarity /overlap ratios to a reasonable range, thereby transforming anatom-
ical priors on organ volumes and relative positions into optimizable learning
signals. In addition, a variance regularization term [l] is applied to maintain
feature diversity.Given the inherent instability of intensity distributions in MRI
and PET, we further introduce contrast perturbation—based data augmenta-
tion to simulate varying tissue contrast characteristics, improving the model’s
adaptability in cross-modal scenarios. To further enhance segmentation accu-
racy, we adopt and refine an Anatomy-aware module that identifies and re-
moves pseudo-segmentation results inconsistent with anatomical priors, gener-
ating higher-quality pseudo-labels for iterative optimization and progressively
improving segmentation performance under anatomical consistency constraints.
In summary, our main contributions are threefold:

— We propose a geometry-aware unsupervised domain adaptation segmenta-
tion framework for cross-modality abdominal organ segmentation from CT
to MRI and PET.

— We designed a BYOL-style consistency constraint with an overlap-aware ob-
jective, turning anatomical geometric priors into learnable signals to improve
segmentation under weak boundaries and noise.

— Our method achieves strong performance on abdominal multi-organ datasets
in MRI and PET.

2 Method

As shown in Fig. 1, we propose a three-stage framework for abdominal organ
segmentation in MRI and PET. Stage 1 trains an image-to-image generative
model to convert labeled CT scans into pseudo-MRI and pseudo-PET. Stage
2 uses the labeled CT data together with the synthesized pseudo-MRI/PET to
train preliminary modality-specific segmentation models, which are then applied
to real unlabeled MRI and PET scans to generate pseudo-labels. Stage 3 sepa-
rately trains the final MRI and PET segmentation models using the labeled CT
data and the curated pseudo-labels from real MRI/PET.

2.1 Dataset Usage

We used 50 manually annotated CT cases as the labeled training set. In addition,
we incorporated 150 pseudo-labeled CT scans generated by the FLARE22 win-
ning algorithm [13]. Specifically, we first computed the average organ volumes
across the 50 manually annotated CT cases, and subsequently applied volume-
based filtering to select pseudo-labels with reliable organ segmentation. For the
unlabeled data, we exclusively used the Coreset Data.
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Fig. 1. Overview of our proposed abdominal cross-modality segmentation with geo-
metric priors via unsupervised domain adaptation.
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2.2 Preprocessing

Since our approach involves both domain translation and semantic segmentation
models, we adopt both common and modality-specific preprocessing strategies
for these tasks. For both types of models, we first perform initialization steps
including resampling, patient orientation adjustment, and gray-level range nor-
malization. Specifically, for the style translation model (CycleGAN), we further
apply a registration method based on Otsu [24] thresholding to generate masks,
followed by translation alignment to ensure that the anatomical structures in
PET and MRI images are spatially aligned with those in CT images.

— Resampling. to standardize the voxel resolution across different cases, all
medical images (including both images and labels) are resampled to a fixed
resolution of 1.2 x 1.2 x 3 mm? (x, y, z axes). B-spline interpolation is used
for image resampling to preserve the smoothness of intensity information,
while nearest-neighbor interpolation is applied for label resampling to avoid
label mixing.

— Intensity Normalization. To account for differences in intensity distribu-
tions across modalities, we applied modality-specific normalization strategies
before further processing. For CT images, a window-level based linear map-
ping method was used to clip and map pixel values to the range [0,255],
thereby enhancing the density characteristics of target structures. For MRI
images, Z-score normalization (mean = 0, standard deviation = 1) was first
performed to mitigate intensity shifts caused by variations in scanning con-
ditions and equipment, followed by linear scaling to [0, 255] to ensure consis-
tency with other modalities in terms of value range. For PET images, given
that their intensity distribution is influenced by metabolic activity and has
a large dynamic range, we employed a percentile-based adaptive windowing
method, with the lower bound set to the 0.05'" percentile and the upper
bound to the 99.9*" percentile. This linear mapping suppresses extreme high
values and enhances tissue contrast.

— Registration. To ensure more precise spatial correspondence of input re-
gions during cropping for CycleGAN training, we first performed translation-
based registration on the CT data, using the first case in the dataset direc-
tory as the reference. Subsequently, Otsu threshold-based mask registra-
tion was applied to generate body masks for all samples in the CT, MRI,
and PET datasets, and translation-based registration was performed within
the MRI and PET datasets, again using the first case in each directory as
the reference. Finally, to further improve inter-modality alignment, pairwise
translation-based registration was conducted between CT and MRI as well
as between CT and PET, guided by the corresponding body masks.

2.3 Unsupervised Domain Adaptation

To mitigate the domain shift between CT, MRI, and PET scans, we employed a
3D CycleGAN [30] for unsupervised image-to-image translation. The CycleGAN
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framework learns bidirectional mappings between CT and the target modali-
ties (MRI or PET) without requiring paired training data. Given a CT image
zeor and a target modality image yr, where T' € {MRI,PET}, the CycleGAN
introduces two generators, G : CT — T and F : T — CT, together with two dis-
criminators. To preserve anatomical consistency, a cycle-consistency constraint
is enforced:

Leyae = Eaor [IF(G(zer)) — zor1], (1)
Leyere = Eyr [IG(F(yr)) — yrlli]. (2)

This constraint ensures that the translated images retain anatomical structures
while adapting modality-specific appearance. The translated pseudo-MRI and
pseudo-PET images were subsequently used to improve segmentation general-
ization in the target domains.

2.4 Segmentation Network with Contrastive Objectives

After completing cross-modal style transfer to reduce the domain gap between
CT and MRI/PET, we further design a 3D U-Net—based segmentation frame-
work that integrates multi-level supervision and contrastive constraints to en-
hance segmentation performance and anatomical consistency.

Basic Segmentation Network. The backbone network adopts the classical 3D
U-Net [4] architecture, where the encoder is composed of stacked convolutional
and downsampling blocks to progressively extract high-level semantic features.
The decoder symmetrically restores spatial resolution through upsampling and
skip connections, while fusing shallow and deep features to enhance boundary
delineation. In addition, auxiliary classifiers are attached to intermediate decoder
layers to provide deep supervision signals, thereby improving gradient propaga-
tion and training stability. For labeled data, we employ a compound loss function
that combines cross-entropy and Dice loss[14]:

'Csup = ‘CCE + EDice~ (3>

where cross-entropy ensures voxel-wise classification accuracy, and Dice loss di-
rectly optimizes the volumetric overlap, effectively mitigating the problem of
class imbalance.

Contrastive Regularization. Relying solely on supervised signals is insuffi-
cient to cope with the contrast variations across MRI sequences, as well as the
low resolution and high noise levels commonly observed in PET images. To ad-
dress these challenges, we introduce contrastive learning regularization objectives
during training to enhance the discriminative power of feature representations
and enforce anatomical consistency.

First, inspired by BYOL [9], we encourage consistency between different views
of the same volume. Given an augmented view z;; and its original counterpart
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T2, the online network prediction ¢(-) is aligned with the target representa-
tion z(-) generated by the momentum encoder, while the stop-gradient operator
prevents gradient flow through the target branch:

N
Lpyor = % Z lla(z1:) — sg(z(22,)) ||§ ) (4)
i=1

where sg(-) denotes the stop-gradient operation. This constraint improves the
stability of learned representations under random perturbations.

Second, we introduce a variance regularization loss [1] to prevent feature
collapse [3,29] and preserve diversity across embedding dimensions:

D
£Va7‘ - % Z max (07 0 Ud(z))? (5>
d=1

where 04(z) denotes the standard deviation of the d-th feature dimension within
the batch, and -y is a predefined threshold. This constraint enforces a lower bound
on the variance of feature distributions, thereby avoiding degenerate representa-
tions that lack discriminative power.
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Fig. 2. Illustration of the two contrastive losses. Given an input image, random crops q,
q', and k are sampled. The pair (g, q’) is used for the BYOL-style consistency constraint,
while the similarity between (g, k) is modulated by organ overlap for the overlap-aware
contrast.

Finally, we propose the overlap consistency loss, as illustrated in Fig. 2.
Specifically, we leverage the true overlap ratio between randomly cropped regions
in voxel space as a supervisory signal, requiring that the similarity between their
embeddings z, and zj reflects the corresponding geometric overlap:
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£Overlap = ﬁ Z (Sim(zq,ia Zkﬂ') - Oi)2~ (6>
ieM
where sim(-) denotes the similarity between embedding vectors, and o; € [0, 1]
represents the ground-truth overlap ratio of the region pair.

Through this design, we explicitly incorporate anatomical spatial priors into
the contrastive learning framework, enabling the model to encode both organ
volume distribution and relative positional relationships in the representation
space, thereby enhancing the anatomical consistency of segmentation results.

Finally, we combine the supervised segmentation loss with the three con-
trastive regularization terms to obtain the overall training objective:

['total = Esup + /\1['BYOL + )\QEVGT + AZ’)‘COverlu,pa (7)

where A1, A2, A3 are weighting hyperparameters.

With this formulation, the model not only guarantees voxel-level segmenta-
tion accuracy but also explicitly encodes anatomical constraints in the repre-
sentation space, achieving more stable and discriminative features under weak
boundaries and cross-modal variations.

2.5 Pseudo-Label Filtering and Iterative Training

We adopt and refine an anatomy-aware pseudo-label filtering strategy [10] that
combines morphological repair and geometric priors to enhance the reliability of
pseudo-segmentations and progressively enforce anatomical consistency during
iterative training. Specifically, 3D morphological closing and connected compo-
nent analysis are applied to retain the main structures of parenchymal organs
(e.g., liver and spleen), while tailored repair settings are used for the inferior
vena cava and kidneys. Volumetric and positional constraints (e.g., liver at least
2 x 10° voxels; spleen and kidneys at least 1.2 x 10* voxels; kidneys maintaining
plausible relative positions) are further imposed to discard implausible predic-
tions. This lightweight mechanism of “morphological repair + geometric filtering”
improves the quality of pseudo-labels and the anatomical plausibility of final seg-
mentations without relying on registration or additional unlabeled data.

Inference Optimization. Similar to nnU-Net [14], we adopt sliding window
prediction during inference. To improve efficiency and reduce computational
overhead, predictions are performed in half precision with a window size of
(224,160, 48), and mirroring is applied only along axes (0,2). With an initial
stride of 0.5, if the total number of steps exceeds 20, the stride is adjusted to
(1,1,0.5) to shorten prediction time.

In addition, to further accelerate inference and suppress irrelevant back-
ground, we first generate a coarse body mask using Otsu thresholding and crop
the region of interest (ROI) accordingly. After segmentation, the cropped pre-
diction is restored to the original image size.
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2.6 Post-processing.

We first performed connected component analysis on the raw segmentation out-
puts. For the liver, only the largest connected component was retained and used
as an anatomical reference to constrain the plausible spatial range of surround-
ing organs. Predictions of the stomach, gallbladder, pancreas, and adrenal glands
outside this liver-centric range were removed. For the aorta and both kidneys,
only the largest connected component was preserved. In addition, anatomical
priors based on the relative positions of the liver and kidneys were employed
to eliminate implausible predictions, such as duodenum and pancreas regions
located above the liver and spleen regions below the kidneys. For organs that
may contain cavities or fragmentation, such as the spleen and stomach, a binary
closing operation was applied before selecting the largest connected component
to ensure spatial continuity.

3 Experiments

3.1 Dataset and evaluation measures

The training dataset is curated from more than 30 medical centers under the

license permission, including TCIA [5], LiTS [2], MSD [25], KiTS [11,12], au-
toPET [8,7], AMOS [?], LLD-MMRI [17], TotalSegmentator [26], and AbdomenCT-
1K [23], and past FLARE Challenges [20,21,22]. The training set includes 2050

CT scans, 4817 MRI scans and 1000 PET scans. The core set includes 100 MRI
and 100 PET scans sampled from the original training set. The validation set
includes 160 MRI scans and 50 PET scans. The organ annotation process used
ITK-SNAP [28], nnU-Net [14], MedSAM [18], and Slicer Plugins [6,19].

The evaluation metrics encompass two accuracy measures—Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD)—alongside two efficiency
measures—running time and area under the GPU memory-time curve. These
metrics collectively contribute to the ranking computation. Furthermore, the
running time and GPU memory consumption are considered within tolerances
of 15 seconds and 4 GB, respectively.

3.2 Implementation details

Environment settings The development environments and requirements are
presented in Table 1.

Training protocols To address the domain discrepancy between CT and MRI/PET
data, our method is designed in two stages:

i) Style transfer stage. We adopt a 3D CycleGAN network to translate CT
images into MRI and PET styles. During this stage, the batch size is set to 1,
with randomly sampled inputs, and each sample is cropped into a volume of size
[160, 160, 48]. The optimizer is Adam [16], with hyperparameters 8; = 0.5 and
B2 = 0.999. The detailed configuration of CycleGAN is provided in Table 2.
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Table 1. Development environments and requirements.

System Ubuntu 20.04.6 LTS

CPU Intel(R) Core™ 19-10980XE CPU @ 3.00GHz x 36
RAM 8x32GB; 2400MT/s

GPU (number and type) 1 NVIDIA GeForce RTX 4090 24G

CUDA version 11.8

Programming language Python 3.9.0
Deep learning framework torch 2.2.0, torchvision 0.17.0
Code https://github.com/wenzizzz/Flare25Task3

ii) Segmentation training stage. For all segmentation models, we keep the
training configurations consistent. The batch size is set to 2, and each sample is
randomly cropped into two sub-volumes of size [224, 160, 48|, which are simulta-
neously used for supervised learning and contrastive learning. The optimizer is
stochastic gradient descent (SGD) with momentum, where the momentum is set
to 0.99 and the weight decay is 3 x 107°. The detailed configuration of the MRI
and PET segmentation models is given in Table 3 and Table 4, respectively.

Table 2. Training protocols for 3D CycleGAN.

Network initialization Normal Initialization

Batch size 1

Patch size 160x160x48

Total epochs 400

Optimizer Adam (with default 81 = 0.5, 52 = 0.999)
Initial learning rate (Ir) 1

Lr decay schedule 1- max(0, epoch + 2 - 200 )/201
Training time 80 hours

Loss function Cycle-consistency loss + GAN loss
Number of model parameters 41.22M°

Number of flops 59.32G”

COz2eq 1 Kg®

4 Results and discussion

4.1 Quantitative results on validation set

Table 5 presents the quantitative results on the public validation set for MRI.
Our method achieved an average DSC of 78.66% and an average NSD of 85.42%
on the FLARE 2025 MRI public validation dataset.
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Table 3. Training protocols for the MRI segmentation model.

Network initialization “He” Initialization
Batch size 2

Patch size 80x192x160

Total iterations 150000

Optimizer SGD with nesterov momentum (p = 0.99)
Initial learning rate (Ir) 0.01

Lr decay schedule halved by 200 epochs
Training time 21.87 hours

Number of model parameters 33.89M°

Number of flops 693.53G"

CO2eq 3.06 Kg®

Table 4. Training protocols for the PET segmentation model.

Network initialization “He” Initialization
Batch size 2

Patch size 80x192x160

Total iterations 150000

Optimizer SGD with nesterov momentum (u = 0.99)
Initial learning rate (Ir) 0.01

Lr decay schedule halved by 200 epochs
Training time 16.55 hours

Number of model parameters 33.89M”

Number of flops 693.53G ™"

CO2eq 2.32 Kg'!

Table 5. Quantitative evaluation results of MRI scans.

Target Validation Testing
DSC(%) NSD(%) |DSC(%) NSD (%)

Liver 96.51 + 1.35 97.46 + 2.38

Right kidney 93.60 + 4.62 93.62 + 7.13

Spleen 93.90 £ 11.76 96.07 &+ 11.79

Pancreas 81.46 £+ 10.00 92.92 + 8.97

Aorta 88.33 + 8.59 91.88 + 10.31

Inferior vena cava |75.63 + 16.58 77.39 + 17.83
Right adrenal gland|55.07 &= 15.54 71.52 + 19.26
Left adrenal gland |65.80 = 20.34 80.88 £ 23.20

Gallbladder 77.32 £ 26.34 76.28 £+ 27.69
Esophagus 59.45 + 18.23 73.39 + 24.00
Stomach 79.25 + 18.56 80.88 4+ 20.00
Duodenum 61.99 + 16.28 82.98 + 18.05
Left kidney 94.25 + 2.82 95.17 £ 3.74

Average 78.66 + 13.86 85.42 + 8.99
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Table 6. Quantitative evaluation results of PET scans.

Target Validation Testing
DSC(%) NSD(%) |DSC(%) NSD(%)

Liver 88.32 + 10.13 80.32 £ 13.88

Right kidney| 80.38 £+ 8.02 71.31 &+ 12.50

Spleen 82.40 £ 13.29 71.80 + 16.16

Left kidney |78.21 + 16.94 70.72 £ 17.96

Average 82.33 £ 3.76 73.54 £ 3.93

Table 7. Ablation Study On The Public Validation.

Baseline D | Model Training Data Using Using MRI PET
Src(real) Tgt(fake) Tgt(real)|Pseudo Label|Contrastive Loss| DSC(%)|DSC(%)
baseline 1 v 63.07 9.68
baseline 2 v v 74.57 | 69.13
baseline 3 v v v v 77.17 | 81.16
ours v v v v v 78.66 | 82.33

Table 6 summarizes the results on the PET public validation set, where our
method achieved an average DSC of 82.33% and an average NSD of 73.54%.

To substantiate the rationale of our module design, we conducted a stepwise
ablation study on the public validation set (as shown in Table 7). First, train-
ing a segmentation model using only labeled CT data (Baseline 1) yields a
Dice Similarity Coefficient (DSC) of 63.07% on MRI and 9.68% on PET, un-
derscoring the difficulty of cross-modal segmentation. We then incorporated the
generated fake MR and fake PET datasets via CT—MRI/PET style transfer to
form Baseline 2, which increases the DSC to 74.57% on MRI and 69.13% on
PET, demonstrating that appearance-level alignment effectively enhances cross-
domain adaptation. Next, by adding real MR with iteratively refined pseudo-
labels obtained through anatomy-aware filtering, we developed Baseline 3,
further improving the DSC to 77.17% on MRI and 81.16% on PET, indi-
cating that our strategy for pseudo-label generation, screening, and refinement
improves label quality and, in turn, model performance. Finally, augmenting the
above setting with a BYOL-style consistency constraint and an overlap-aware
objective to establish a contrastive regularization, our full method (“Ours”) at-
tains a DSC of 78.66% on MRI and 82.33% on PET. These results show that
anatomy-oriented contrastive regularization strengthens representational stabil-
ity and boundary delineation, yielding consistent gains under weak boundaries
and noisy conditions.

4.2 Qualitative results on validation set

We visualize the segmentation results of the validation set. According to the orga-
nizer’s requirements, we present better examples in rows 1-2 and worse examples
in rows 3—4. Representative samples in rows 1-2 of Figure 3 (f) demonstrate the
effectiveness of our method in capturing organ details. Benefiting from success-
ful style transfer, pseudo-label generation, and contrastive learning strategies,
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our method produces segmentation results that are closest to the ground truth
compared with other baselines.For the poorly segmented cases in row 3, we con-
sider the main reason to be the large variations across MRI sequences, which
lead to suboptimal segmentation in certain sequences. Meanwhile, the case in
row 4 is mainly affected by the low clarity and high noise of the PET image,
which impacted the segmentation performance. Additionally, within each row,
the segmentation results improve progressively from left to right. For example,
in the second row, the model initially fails to segment; as pseudo-PET data,
pseudo-labels, and the contrastive strategy are introduced, the segmentations
in columns (d), (e) and (f) improve step by step, eventually capturing all or-
gans. These visualizations indicate that our baseline can incrementally enhance
segmentation performance, and that both the model and the adopted strategies
make substantial contributions to this improvement.

Case #amos_7264(slice #19)

Case #amos_0522(slice #37)

Case #fdg_1f2a4f4280(slice #37)

(a) Image (b) Ground Truth ~ (c) Baseline 1 (d) Baseline 2 (e) Baseline 3 (f) ours

Fig. 3. Examples of segmentation results: the first and second rows present cases with
satisfactory performance, whereas the third and fourth rows depict cases with unsat-
isfactory performance. Red arrows highlight the regions with segmentation errors.

4.3 Segmentation efficiency results on validation set

In the inference phase on the public validation set, we report efficiency and re-
source consumption separately for MRI and PET: for MRI, the average per-case
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runtime is 8.87 s, the average/peak GPU memory usage is 5012.87/5022.18
MB, and the area under the GPU memory—time curve (Total GPU) is 44608.14
MB; for PET, the average per-case runtime is 8.49 s, the average/peak GPU
memory usage is 4672.31/4686.37 MB, and Total GPU is 39688.21 MB. Ta-
ble 6 summarizes representative cases, and all reported runtimes include Docker
initialization overhead.

Table 8. Quantitative evaluation of segmentation efficiency in terms of the running
time and GPU memory consumption. Total GPU denotes the area under the GPU
Memory—Time curve. Evaluation GPU platform: NVIDIA GeForce RTX 4090 (24G).

Case ID Image Size  Running Time (s) Max GPU (MB) Total GPU (MB)
amos_ 0540 (192, 192, 100) 13.38 5091 51473
amos_ 7324 (256, 256, 80) 13.29 5011 49888
amos_ 0507 (320, 290, 72) 13.06 4676 44944
amos_ 7236 (400, 400, 115) 16.32 5027 62767
amos_ 7799 (432, 432, 40) 16.24 5019 64441
amos_ 0557 (512, 152, 512) 19.58 5171 76759
amos_ 0546 (576, 468, 72) 15.48 5086 60707
amos_ 8082 (1024, 1024, 82) 25.25 4921 92110

fdg 605369e88d (400, 400, 92) 4.97 2493 9994

fdg d951eeb735 (400, 400, 58) 5.02 2485 10086
psma

_af293f5b5149087a (200, 200, 121) 4.97 2489 10038

4.4 Results on final testing set

This is a placeholder. We will send you the testing results during MICCAI 2025.

4.5 Limitation and future work

Although our model has achieved satisfactory segmentation performance in the
early stage, there remain several limitations and avenues for improvement, as
outlined below:

Sequence misalignment and domain bias in style transfer. This study is
primarily developed on the core set. Although MRI covers multiple sequences,
there is no one-to-one correspondence across them. We feed all sequences uni-
formly into CycleGAN to perform CT—MRI/PET style transfer without ex-
plicitly modeling sequence-specific differences, which leads to unstable transfer
quality for sequences with markedly different contrast and noise characteristics,
thereby limiting the upper bound of downstream segmentation performance.
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Underutilization of CT pseudo-labels. Beyond manual annotations and a
small subset of samples with more complete body coverage, a substantial number
of high-quality CT pseudo-labels were not incorporated into training, leaving
cross-modal supervisory signals underexploited.

Single-modality /single-case limitations in contrastive design. The cur-
rent contrastive regularization constructs positive and negative pairs within a
single image and modality. Given that all data depict abdominal anatomy, cross-
case and cross-modality anatomical priors have not been explicitly leveraged,
which may constrain representation discriminability and transferability.

5 Conclusion

We propose a geometry-aware, three-stage unsupervised domain adaptation (UDA)
segmentation framework for cross-modality abdominal organ segmentation from
CT to MRI and PET. First, an unpaired 3D CycleGAN reduces the appearance
gap. Next, a 3D U-Net is trained with a hybrid objective that combines super-
vised cross-entropy (CE) and Dice losses with a BYOL-style consistency term,
an overlap-aware constraint, and variance regularization. Finally, an anatomy-
aware filtering module, coupled with iterative training, refines pseudo-labels and
further improves model performance. We validate the method on the large-scale
annotated dataset of the MICCAI FLARE 2025 challenge, achieving strong re-
sults on abdominal multi-organ segmentation.
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