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ABSTRACT

Representation learning has transformed the prediction of structures and func-
tions of genes and proteins by employing sequence, expression, and network data.
Yet, this approach taps into just a fraction of the knowledge accumulated over
more than a century of genetic research. Here, we introduce GeneLLM, an in-
terpretable transformer-based model that integrates textual information through
contrastive learning to refine gene representations. While it has been posited that
such knowledge representation could result in a bias towards well-characterized
genes, GeneLLM surprisingly shows high accuracy across eight gene-related
benchmarks, not only matching but often outperforming task-specific models,
with a 50% increase in accuracy over its closest solubility-specific competitor.
It demonstrates robust zero-shot learning capabilities for unseen gene annota-
tions. The model’s interpretability and our multimodal strategic approach to
mitigating inherent data biases bolster its utility and reliability, particularly in
biomedical applications where interpretability is paramount. Our findings affirm
the complementary nature of unstructured text to structured databases in enhanc-
ing biomedical predictions, while conscientiously addressing interpretability and
bias for AI deployment in healthcare. The code and datasets can be found at
https://www.avisahuai.com/tools on request.

1 INTRODUCTION

Genes encode proteins, that drive biological processes, and are fundamental to the functions of living
organisms (Alberts, 2017). Gene and protein functions help us explain their roles in individual cells
and in human health and disease, yet our understanding of many genes remains incomplete. This is
attributed to their complexity and variability across different cellular, individual, and environmental
contexts (Virolainen et al., 2023). Traditional laboratory-based models, which capture only a very
small subset of these contexts, are insufficient on their own for understanding this complexity. To
complement laboratory approaches, task-specific machine learning models have been developed
to further predict gene attributes (Novakovsky et al., 2023; Piya et al., 2023); however, they are
constrained by the need for large task-specific training datasets, limiting their broader applicability.

Offering a versatile alternative to traditional task-specific models, the advent of foundation mod-
els has introduced a new paradigm in machine learning. These models, once pre-trained on large
unlabeled datasets, can be fine-tuned for a wide array of predictive tasks and often outperform task-
specific models (Bommasani et al., 2021). The advantage of foundation models lies in their ability to
operate with minimal labeled data (few-shot learning) and sometimes with no labeled data (zero-shot
learning) (Zhou et al., 2023).

Large text bodies are utilized by Large Language Models (LLMs) to identify statistical relation-
ships between words, demonstrating their capability to encapsulate comprehensive knowledge in
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unstructured text (Naveed et al., 2023). Many AI models do not incorporate the extensive literature
knowledge that is available and instead use only expression or sequence data to create embeddings
of genes and cells for downstream prediction of structure and gene annotations (Pesaranghader et al.,
2022). Structured information such as Gene Ontology (GO) (Carbon & Mungall, 2018), which cat-
egorizes genes and captures the relationships between them, can be injected into LLM knowledge
derived from unstructured text to enhance the predictive power of a model. Such knowledge in-
jection could be accomplished through methods like contrastive learning (Tian et al., 2019; Zhang
et al., 2022) and Bootstrap Your Own Latent(BYOL) (Grill et al., 2020).

Here, we enable zero-shot learning for gene tasks by introducing an interpretable large language
model to harness the vast unstructured textual data on genes. We first extract a summary of every
gene and input it to an LLM pretrained on a biomedical text corpus, producing initial gene em-
beddings. These embeddings are further refined by incorporating Gene Ontology (GO) information
through contrastive learning, enriching the embeddings with structured biological knowledge. Sub-
sequent sections will detail the relevant literature, our methodology, and the efficacy of our approach
in various predictive tasks, including zero-shot learning and cell- and gene-specific predictions.

2 RELATED WORK

Gene and protein representation learnings have primarily focused on expression, sequence, or net-
work data (Theodoris et al., 2023; Du et al., 2019b; John Jumper & Hassabis, 2021), driving ad-
vancements in gene-gene interaction and 3D structure predictions as well as cell property elucidation
from single-cell RNA-Seq data (de Guia et al., 2020). Despite their efficacy in disease association
and cancer classification, they primarily rely on quantitative data, potentially overlooking the con-
textual information embedded in textual sources. To improve protein representations, ProteinBERT
(Brandes et al., 2022) and OntoProtein (Zhang et al., 2022) demonstrate the potential of integrating
protein sequences with Gene Ontology (GO) using self-supervised and contrastive learning, respec-
tively. Our work extends this multimodal approach by incorporating GO annotations and textual
information.

Recent advances in NLP models, such as BERT (Devlin et al., 2019), LLaMA (Touvron et al.,
2023), and GPT (Radford & Narasimhan, 2018), have revolutionized the utilization of unstructured
biomedical texts from repositories like PubMed1 and Europe PMC2. However, the application of
such models for gene and cell-specific predictions remains understudied.

Figure 1: A high overview of
GeneLLM. Contrastive learning
enriches the gene representations
by introducing GO term relation-
ships between genes.

Recent studies have sounded the alarm on the issue of bias am-
plification in AI (Gatzemeier, 2021), particularly in healthcare
where biases in training data, such as knowledge biases, can
result in significant disparities like the under-diagnosis of un-
derserved populations (Seyyed-Kalantari et al., 2021). These
studies call for transparency and interpretability to ensure eq-
uitable healthcare (Vokinger et al., 2021). Our work focuses
on knowledge bias in gene data by a multimodal strategy for
bias mitigation.

3 GENELLM

The GeneLLM framework incorporates a pre-trained LLM
augmented with Gene Ontology (GO) knowledge through con-
trastive learning (CL) (Figure 1). This approach aims to infuse
the language representations of gene summaries with the infor-
mation from the Gene Ontology. Here, we detail the configu-
ration of the pre-trained encoder, followed by a description of
the CL, and finally discuss the methodologies implemented to
interpret the model and the development of cell embeddings.

1https://pubmed.ncbi.nlm.nih.gov/
2https://europepmc.org
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3.1 GENELLM ENCODER FOR INITIAL EMBEDDING

For gene embeddings, we utilize BiomedBERT (Gu et al., 2020), a BERT (Devlin et al., 2019)
based text encoder specifically trained on biomedical text corpora. BiomedBERT has outperformed
general-domain language models in biomedical natural language processing applications. To gen-
erate initial (GeneLLM-Base) embeddings, each gene or GO term text summary is tokenized into a
sequence of N tokens (x1, . . . , xN ), encompassing special tokens [CLS] and [SEP ]. These tokens
are fed into BiomedBERT, which in turn outputs a series of token embeddings (T1, . . . , TN ). We
combine these embeddings to obtain summary-level embedding E. After assessing various pooling
methodologies, mean pooling was selected based on its performance, thereby defining the summary-
level embedding as E = (T1 + T2 + . . .+ TN )/N . The resulting embedding is a 768-dimensional
vector representing the gene/GO summary.

3.2 CONTRASTIVE LEARNING

Contrastive learning (CL) is an approach that aims to learn representations by instructing a model
on which data points are similar or dissimilar. CL is used to draw the representations of semanti-
cally similar genes closer together in the embedding space while pushing apart those of dissimilar
genes. Semantically similar genes are identified as those sharing a Gene Ontology (GO) term. We
investigated two methodologies to inject gene-GO relationships into the GeneLLM embeddings:

The first approach minimizes the distances between gene pairs sharing the same GO terms (ga, gp)
and maximizes the distance between unrelated genes (ga, gn), aiming to minimize the objective
function:

L =

M∑
i=1

[
max

(
0, δ + d(E(i)

ga , E
(i)
gp )− d(E(i)

ga , E
(i)
gn )

)]
(1)

where δ (0 < δ < 1) is the margin that provides a buffer between the distances of positive and
negative pairs, L is the loss computed over a set of M triplets, d(x, y) denotes the distance between
two embeddings, and E

(i)
g represents the i-th gene embedding. This CL method utilized 7.6 million

gene-GO annotations (Carbon & Mungall, 2018). However, it did not explicitly embed the GO
terms, so could not generalized to unseen GO terms.

The second approach involves co-embedding genes and GO terms into a shared embedding space.
In this method, 18,000 GO terms and 15,000 genes were co-embedded to create gene-GO maps.
This CL method utilizes 235,000 confident gene-GO relationships, S (details in the Appendix D).
It aims to bring anchor genes (ga) closer to their corresponding GO terms (tp, the positives) in the
shared embedding space E, while maximizing the distance between ga and unrelated GO terms (tn,
the negatives). The loss function is defined as:

L =
∑

(ga,tp)∈S, (ga,tn )̸∈S

[
max

(
0, δ + d(Ega , Etp)− d(Ega , Etn)

)]
(2)

The margin δ (0 < δ < 1) ensures that the positive pairs are closer to the anchor than the negative
pairs. The second CL approach, by embedding GO terms explicitly, enables the prediction of GO-
gene pairs for unseen GO terms, facilitating zero-shot learning, as discussed in Section 4.

3.3 SHAPLEY ANALYSIS

SHAP (SHapley Additive ExPlanations) values quantify the impact of each feature on the differ-
ence between the actual model output and the expected baseline output (Lundberg & Lee, 2017). In
LLMs, input features are often sub-word tokens, which may not be inherently interpretable; how-
ever, SHAP values are additive, meaning the sum of SHAP values for all features in a sample equals
the model’s output. In our analysis, we aggregate the contributions of all tokens within each word
to determine the total SHAP of each word in a text. Contributions are calculated using the SHAP
partition explainer (Lundberg, 2024), which calculates SHAP values for each token, or Owen values
for groups of tokens in cases where text inputs are prohibitively large due to the exponential runtime
of the exhaustive SHAP algorithm (Owen, 1977). Finally, the SHAP value of a word can vary con-
textually and may follow multimodal distributions; thus, we use the 90th percentile of SHAP values
to denote word importance, ensuring importance is calculated in critical instances and resilience
against outliers.
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3.4 CELL EMBEDDINGS

To obtain GeneLLM embeddings of cells, we utilize their gene expression data. GeneLLM cell
embeddings C, representing M cells in D dimensions, are calculated as C = GE, where G is the
gene expression matrix of size M ×N and E is the gene embeddings matrix of size N ×D.

4 RESULTS AND DISCUSSION
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Figure 2: Performance and interpretability GeneLLM on solubility benchmark. (a) Performance of
GeneLLM and baselines in predicting solubility of protein products of genes. (b) Top 7 words with
the highest characteristic SHAP values across all gene summaries shown for two categories. (c) A
t-SNE plot depicting gene clusters, with pathway enrichment analysis labels in bold, complemented
by important SHAP-derived (frequent) terms in brackets. An example of interpretative insight: the
”GPCR ligand binding” clusters are ”insoluble” because they are ”transmembrane”. (d) Cluster
showing predicted solubility of clusters in (c).

Evaluating GeneLLM for Solubility Prediction: Protein function is closely linked to its solubility
in aqueous medium, impacting roles such as transporter, receptor, pharmacological, enzyme activ-
ity(Dyson et al., 2008). Experimentally determining solubility is laborious and expensive, requiring
protein expression and purification followed by solubility tests under different conditions (Wang
& Zou, 2023b). GeneLLM, in predicting protein solubility from gene products, outperformed
baseline methods in Figure 2a and benefited from contrastive learning and fine-tuning. Text-based
approaches outperformed expression-based approaches. GeneLLM significantly eclipsed the
performance of 13 dedicated solubility-task models, with an impressive 50% increase in accuracy
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over its closest competitor. (Table 3) .

Model Dosage
Sensitivity

BivalentVs
Lys4

Methylated

BivalentVs
Non

Methylated

Tf
range

Tf
target type Solubility Subcellular

localization
Conservation

(Pearson Corr.)

Majority Classifier 0.73± — 0.58± — 0.75± — 0.73± — 0.41 ± — 0.52± — 0.39± — — ± —
GPT2 0.74± 0.04 0.86 ± 0.04 0.80± 0.11 0.71± 0.03 0.18± 0.02 0.80± 0.02 0.77± 0.01 0.31± 0.02
Doc2Vec 0.74± 0.04 0.84± 0.06 0.78± 0.05 0.66± 0.07 0.26± 0.01 0.71± 0.03 0.69± 0.02 0.34± 0.01
PMC-LLaMA 0.86± 0.05 0.77± 0.04 0.84 ± 0.07 0.64± 0.08 0.08± 0.01 0.78± 0.03 0.69± 0.01 0.55 ± 0.01
XLNet 0.74± 0.06 0.84± 0.06 0.83± 0.08 0.69± 0.05 0.12± 0.01 0.79± 0.02 0.76± 0.01 0.40± 0.01
Gene2Vec 0.84± 0.04 0.84± 0.06 0.75± 0.06 0.75 ± 0.08 0.21± 0.01 0.56± 0.02 0.54± 0.02 0.50± 0.02
BERT-Base 0.76± 0.09 0.83± 0.06 0.77± 0.10 0.68± 0.04 0.17± 0.01 0.77± 0.02 0.76± 0.01 0.43± 0.01
GeneLLM 0.87 ± 0.06 0.86 ± 0.09 0.82± 0.08 0.74± 0.07 0.49 ± 0.04 0.89 ± 0.01 0.83 ± 0.01 0.53± 0.01

Table 1: Comprehensive evaluation of GeneLLM: analyzing 5-fold Accuracy outcomes for con-
trastive learning-enhanced gene embeddings across a spectrum of gene prediction tasks.

Evaluating GeneLLM on Gene Tasks: Baselines: Refer to Appendix B.2. : Our evaluation in-
cludes eight gene-related tasks: Dosage Sensitivity, Chromatin State Predictions, Transcription
Factor (TF) Range Prediction, TF Target Type Identification, Protein Localization, Solubility, and
Gene Conservation (details in Appendix B.1.).Results (Table 1): GeneLLM exhibited superior per-
formance in Dosage Sensitivity, a critical factor for interpreting copy number variants in genetic
diagnostics. GeneLLM also surpassed the baselines in TF Target Type Identification, Protein Lo-
calization, and Solubility. These results suggest that textual data is particularly effective for tasks
necessitating a comprehensive understanding of biological processes and molecular functions (de-
tails in Table 1). However, GeneLLM did not perform as strongly in Chromatin State and TF Range
Predictions, possibly reflecting certain dimensions about gene regulation lacking in text.

(a) GeneLLM-Base (b) GeneLLM-CL
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Figure 3: GeneLLM’s Zero Shot Prediction : (a,b) Impact of Contrastive Learning on Gene-GO
Term Similarity Prediction. This figure presents cosine similarity scores between genes and GO
terms for (a) GeneLLM-Base and (b) GeneLLM-CL models. For each of the four selected GO
terms, the plot compares the scores of genes annotated with the respective GO term to those not
annotated with it (details in Appendix D). Note the scale variation across the models (GeneLLM-
Base similarities narrower). (c) GeneLLM-CL (trained solely on GO-terms) prediction of gene-
KEGG relationships (dots in the scatter plot). The plot compares the median similarity of genes
related to KEGG pathways (y-axis) against genes not related (x-axis). Pathways above the X=Y line
represent a stronger association with related genes, showcasing the model’s predictive accuracy.

SHAP enables interpretability: Our SHAP analysis elucidates the model’s decision-making pro-
cess in solubility classification, where it distinguishes between membrane and soluble classes, en-
coded as 0 and 1. Despite this encoding, the term transmembrane emerges as the most important
word for the membrane class (see Figure 2b). Clustering of GeneLLM’s embeddings identifies key
terms for gene clusters (see Figure 2c). For example, the word DNA-binding indicates solubility in
the HIV Infection cluster; non-membrane nuclear DNA-binding proteins such as TAF1 are active
in nuclei, which are areas affected by HIV (Burley & Roeder, 1996) (Figure 2c,d). Similarly, the
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word ribosomal indicates solubility in the Translation cluster; ribosomes are non-membrane-bound
organelles that play a primary role in translation. Additional examples are provided in the Appendix.

Contrastive learning enables zero-shot predictions: Next, we examined GeneLLM’s ability to
discern relationships between genes and Gene Ontology (GO) terms. By embedding genes and
GO terms in the same space, we observed that without contrastive learning, GeneLLM’s contextual
similarity measures were no better than random (Figure 3a). However, contrastive learning enabled
GeneLLM to capture gene-GO term relationships and generalize to new, unseen GO categories,
demonstrating zero-shot learning (Figure 3b). Furthermore, even without training on KEGG path-
ways, GeneLLM with GO-based contrastive learning accurately identified gene-KEGG pathway
links, further demonstrating its zero-shot learning ability (see Figure 3c). Zero-shot learning failed
for some GO and KEGG terms, likely due to limited knowledge available, as detailed in subsequent
sections.

Evaluating GeneLLM cell embeddings: We assessed GeneLLM’s cell embeddings for their abil-
ity to differentiate cell types in human peripheral blood mononuclear cells (10x Genomics, 2019).
We chose GPT-2 for comparison as it represents the highest-performing baseline in the solubility
task. GeneLLM-CL embeddings outperformed both GeneLLM-Base and GPT-2 (Table 2). For a
comprehensive comparison, refer to Appendix C.

Figure 4: The effect
of summary length on
KEGG pathway predic-
tions.

Less Studied Genes
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Figure 5: Multimodal
fusion mitigate bias:
GeneLLM’s lower accu-
racy for solubility task
of lesser-known genes,
indicating knowledge
bias, improves with
Gene2Vec fusion.

Mitigating bias in gene representation with Multi-Modal Learning:
Human knowledge of genes is biased; some genes are well-studied due
to various associations, while many remain under-researched. Further-
more, gene knowledge is often shaped by genetic research subject to
human biases (Stoeger et al., 2018), and exacerbated by publication
biases. AI models trained on such data risk perpetuating these biases.
Given the challenge of quantifying human biases (Viswanathan et al.,
2017), we focus on the potential bias from limited knowledge. We
demonstrated this bias’s impact on AI through two analyses. Firstly,
we used the summary lengths of KEGG pathways as proxies for their
knowledge levels, assessing our model’s accuracy on well-studied
versus less-studied KEGG pathways. GeneLLM’s contextual similarity,
as determined by zero-shot learning, increased with information avail-
ability (see Figure 4, full figure in Appendix E), indicating prediction
bias.

Secondly, for solubility prediction, genes with scarce online information
showed worse model performance (Figure 5). This bias was mitigated
by integrating GeneLLM’s knowledge representation with data beyond
text, as shown when GeneLLM embeddings combined with Gene2Vec
embeddings narrowed the performance gap for under-researched genes
(Figure 5). This suggests that representations from other modalities can
complement text-derived information, and demonstrate a strategy to mit-
igate bias.

5 CONCLUSION

We introduced GeneLLM, a model designed to predict gene and cell
characteristics and to understand biological processes. GeneLLM was
benchmarked against a diverse set of eight gene-related tasks, often out-
performing task-specific models, as seen from the performance of foun-
dation models in other domains. The use of contrastive learning has
enhanced the ability of LLMs to predict a wide range of gene- and cell-related tasks and has enabled
zero-shot predictions. By showcasing the interpretability of GeneLLM’s predictions, we underscore
the expanded utility and reliability of AI models, demonstrating that interpretability enhances the
overall value of such technologies in biomedical applications and their potential for clinical adop-
tion. This approach also provides evidence supporting the hypothesis that information contained
in text is complementary to that found in structured databases. Overall, GeneLLM offers a path-
way to enhance biomedical prediction capabilities while mitigating challenges related to AI model
interpretability, and bias.
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A DATASETS COLLECTION

Gene Summaries. The gene summary dataset was curated from two publicly accessible databases.
We constructed a gene summary by concatenating the description of the gene obtained from 3 Wu
et al. (2013), and the gene function obtained from UniProt into one unified summary. We then
preprocess the dataset by removing certain keywords such as PubMed ID, author’s name, isoform
ID, and other identifying content. After preprocessing and removing duplicate summaries, there are
a total of 14,450 remaining gene summaries.

Gene Ontology Data. We further enhance the gene representations by minimizing the distance to
related Gene Ontology (GO) representations. We collected a total of 235,000 gene-to-GO annota-
tions that span 18479 different GO terms. We hide 3000 GO terms and 68,000 annotations for testing
the model performance. The Gene Ontology (GO) annotations were downloaded from AmiGO 2
website 4 Carbon & Mungall (2018). The preprocessing of GO term summaries was carried out in
the same manner as that for gene summaries.

Single cell transcriptome Data. Single-cell transcriptome of Peripheral Blood Mononuclear Cells
(PBMC) was downloaded from 5. A total of 2700 cells with 24447 gene expression level each was
downloaded, and only genes we have summary for were used from the dataset. After preprocessing,
a total of 2,700 cells and 14,450 genes were used for the classification task.

3https://mygene.info
4https://amigo.geneontology.org/amigo/dd_browse
5https://cf.10xgenomics.com/samples/cell/pbmc3k/pbmc3k_filtered_gene_

bc_matrices.tar.gz
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Solubility Data. The solubility annotations dataset was obtained from a publication by Dallago
et al. (2021), it contains 1499 protein sets labelled as either Soluble or Membrane. To obtain gene
annotations, we use protein products where a gene is annotated soluble if one of its protein products
is soluble, otherwise, it is labeled membrane.

KEGG Pathways. Similar to GO terms, we also test the model performance on KEGG pathway
annotation. We obtained 1522 gene-to-KEGG annotations that span 263 KEGG pathways for train-
ing the model. We also held out a small set of 157 gene-to-KEGG relationships that span 30 KEGG
pathways. The KEGG pathway annotations and summaries were collected from6. The preprocessing
of KEGG summaries was performed in the same manner as that for the gene summaries.

B GENE-RELATED TASKS

B.1 TASKS

We evaluate the model performance on a variety of gene-related tasks, either classification or regres-
sion tasks. We now describe each task and the dataset collection sources.

Solubility. Distinguishing between membrane protein and soluble protein is important in Pro-
teomics. Soluble proteins are a part of the cytosol, they can travel across membranes, and serve a
wide range of functions both inside and outside the cells Dyson et al. (2008), while membrane pro-
teins serve structural as well as functional roles in the cell as transporters, receptors, and enzymes.
Over 50% of medications available on the market target membrane proteins, many of which have
significant pharmacological implications Boland et al. (2018). We use GeneLLM to distinguish
these classes for a given gene based on the textual description of its function. We curate soluble
and membrane annotations of genes from previously reported datasets(Wang & Zou, 2023a).

Chromatin State Prediction. In epigenetic studies, Chromatin states are identified by modifica-
tion of histones and methylations, which not only provide a basis for genes to be segmented into
biologically meaningful units but also help determine their role in regulating gene expression. Biva-
lent Chromatin states, a hallmark of Embryonic Stem Cells (ESCs), are characterized by the pres-
ence of both repressive histone methylation-H3K27me3, the larger region, and activating histone
methylation-H3K4me3, the smaller region. This Bivalent Chromatin structure marks developmen-
tal genes and maintains their promoters in a poised state, ready for activation during differentiation
processes (Bernstein et al., 2006). We finetuned GeneLLM to classify between bivalent genes and
genes that had either unmethylated promoters or were solely marked by H3K4me3, as reported by
Theodoris et al. (2023). For our work, we utilize knowledge representations from the gene sum-
maries instead of single-cell transcriptomic data. We used 184 selected annotations available in the
datasets for the bivalent and H3K4me3 classification task and 147 selected annotations available
in the labeled datasets for the bivalent and unmethylated classification task from Theodoris
et al. (2023) to finetune GeneLLM.

Dosage Sensitivity. Specific genes are said to be dosage sensitive when the variations in gene
dosage (copy number variations) can cause phenotypic changes. For this task, we evaluate our model
on a curated dataset of two annotations, namely dosage-sensitive and dosage-insensitive genes, from
previously reported studies (Theodoris et al., 2023; Lek et al., 2016; Shihab et al., 2017; Ni et al.,
2019).

Subcellular Localization. Understanding protein subcellular locations is essential for understand-
ing its function and physiochemical properties. Computational methods are required in protein anal-
ysis research because traditional protein subcellular localization methods are laborious and time-
consuming (Liao et al., 2021). Also, it can help identify possible targets for therapy and understand
illnesses associated with abnormal subcellular localization (Thumuluri et al., 2022). We fine-tuned
GeneLLM to distinguish between the subcellular localization of each gene. We utilize a set of
gene annotations that spans the following 3 annotations: Cytoplasm, Cell membrane, and
Nucleus, from the UniProt database, as described in Almagro Armenteros et al. (2017).

6https://www.genome.jp/kegg/pathway.html
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Conservation. The PhastCon score is a measure derived from the PHAST (Phylogenetic Analy-
sis with Space/Time models) package. It quantifies the evolutionary conservation of genomic se-
quences, offering insights into the functional significance and evolutionary pressures shaping these
regions. Predicting PhastCon scores is essential for identifying functionally important genomic ele-
ments, such as coding sequences and regulatory regions, which are critical in evolutionary biology,
functional genomics, and disease studies (Ramani et al., 2019). GeneLLM performance to predict
Gene Conservation is measured by predicting the PhastonCon score with the help of knowledge
representations of gene summaries obtained from GeneLLM as input. The Spearman and Pearson
correlation coefficients are used to evaluate this regression task.

Transcription Factors (TFs) Range. TFs are the proteins that bind to certain sequences of DNA
and control the transcription of genetic information from DNA to messenger RNA (Wang et al.,
2015), with their influence ranging from short-range effects on nearby genes to long-range effects
influencing distant genes. The dataset spans two different annotations, namely short-range and
long-range genes, from Theodoris et al. (2023).

Transcription Factors (TFs) Target Type. We also study two specific transcription factors,
GATA4 and TBX5 since they have crucial roles including heart development and function
(Theodoris et al., 2023). We utilize annotations of genes that identify whether a gene is di-
rectly/indirectly regulated by one or both of these transcription factors. More specifically, we col-
lect dataset annotations that span the following 5 labels: gata4_indirect, gata4_direct,
tbx5_indirect, tbx5_direct, and combo_targets, from Theodoris et al. (2023).

B.2 BASELINES

We conduct a comprehensive evaluation of our model against different baseline models. The base-
lines cover a wide selection of representation learning methods that are either trained on gene co-
expression transcriptome, or text data. Below is a description of the proposed baselines:

• Majority Classifier: The most frequent class in the dataset is predicted for all genes. This
classifier is chosen to show the distribution of the dataset and the hardness of the problem
at hand.

• scGPT (Cui et al., 2023): is a transformer-based language model equipped with multi-head
attention mechanisms, designed for gene and cell embedding tasks. This single-cell foun-
dation model is pre-trained on 33 million normal human cells. We utilize the embedding
from their largest pre-trained model (i.e. whole-human scGPT) to get the gene embeddings.

• Gene2Vec (Du et al., 2019a): we utilize the Gene2Vec embeddings that are trained on a
wide range of gene co-expression datasets, thus absorbing rich and nuanced gene interac-
tions and functions.

• Doc2Vec (Le & Mikolov, 2014) is a text-based embedding model that utilizes fixed-length
feature representation to generate embeddings for variable-length text such as sentences,
paragraphs, and documents. We get the embeddings by passing the gene summaries where
we use an embedding size of 50, the maximum distance between the current and predicted
word within a sentence of 2, all words with a total frequency of 1, and 40 training epochs.

• XLNet (Yang et al., 2020) is an autoregressive pretraining transformer-based model. We
use the 12-layer xlnet-base-cased and CLS pooling to get the gene embeddings.

• PMC-LLaMA (Wu et al., 2023) is a LLaMA-based (Touvron et al., 2023) foundation lan-
guage model that is pre-trained on the biomedical text and calibrated for medical domain
applications. We get the embeddings from PMC-LLaMA by using Prompt-based last to-
ken pooling where we use the following prompt ”This sentence: {text} means in one
word:[CLS]” and utilize the contextualized embedding of the last token which would be
the CLS token that is added by the tokenizer after the colon (Jiang et al., 2023).

• GPT-2 (Radford et al., 2019) is another open-source foundation language model that is
trained on large text data and calibrated for downstream applications. We get the gene
embeddings from the encoder of GPT2 by performing CLS pooling on the gene summaries.
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The proposed baselines generate summary embeddings that are not task-specific, we therefore tailor
our analysis to downstream tasks by augmenting a Linear/Logistic Regression (LR) on top of the
embeddings.

Table 2: 5 fold CV Model performance metrics with accuracy and standard deviation on Cell type
classification.

Model GeneLLM-CL GeneLLM-Base GPT-2

SGDClassifier 0.85 ± 0.02 0.82 ± 0.02 0.79 ± 0.03
PassiveAggressive 0.84 ± 0.01 0.83 ± 0.02 0.79 ± 0.03
Perceptron 0.83 ± 0.01 0.83 ± 0.04 0.76 ± 0.04
LGBM 0.82 ± 0.02 0.81 ± 0.01 0.79 ± 0.02
XGB 0.81 ± 0.02 0.81 ± 0.01 0.79 ± 0.02
ExtraTrees 0.77 ± 0.01 0.72 ± 0.02 0.72 ± 0.02
RandomForest 0.77 ± 0.01 0.74 ± 0.01 0.73 ± 0.02
Bagging 0.73 ± 0.02 0.71 ± 0.02 0.69 ± 0.03
KNeighbors 0.73 ± 0.01 0.70 ± 0.01 0.69 ± 0.01
DecisionTree 0.63 ± 0.03 0.59 ± 0.04 0.57 ± 0.04
NearestCentroid 0.63 ± 0.02 0.51 ± 0.01 0.43 ± 0.02
GaussianNB 0.62 ± 0.01 0.48 ± 0.03 0.42 ± 0.04
BernoulliNB 0.57 ± 0.02 0.41 ± 0.03 0.35 ± 0.02
ExtraTree 0.54 ± 0.03 0.51 ± 0.02 0.48 ± 0.03
AdaBoost 0.43 ± 0.07 0.41 ± 0.04 0.39 ± 0.01

(a) GeneLLM-Base

(b) GeneLLM-CL

Figure 6: Discovering novel gene-to-GO term relationships by employing contrastive learning. Be
aware that the scales of the two figures are not the same. GeneLLM-Base restricts the similarities
within a narrower range, making the results less comparable, whereas GeneLLM-CL spreads the
gene similarities throughout the entire y-axis, enhancing the distinction between GO terms and
genes.
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C CELL-TYPE CLASSIFICATION VIA CELL EMBEDDINGS

Table 2 presents a comprehensive comparison between the two calibrated cell embeddings generated
by GeneLLM and those generated by GPT-2. GeneLLM-CL outperforms both baselines across the
classifiers mentioned in the table. In this detailed analysis, GeneLLM-CL demonstrates superior
performance in cell-type predictions by utilizing contrastive learning.

D ZERO-SHOT LEARNING

To enable zero-shot ability, we encapsulate gene embeddings by co-embedding GO-gene relation-
ships. In our initial analysis, we utilize 457,000 relationships, however, after removing entries that
involve missing values, the total number of relationships is reduced to 392,000. We further consider
relevant relationships that strictly include the genes in our datasets which resulted in a final count of
235,000 significant relationships. Figure 6 illustrates the expanded list of GO terms and their related
genes (blue) and non-related genes (green). The list spans the GO terms that strictly have more than
500 related genes. The relationship between GO terms and related genes is better emphasized when
the contrastive learning objective is applied. The model also shows inconsistent prediction capacity
for some GO terms (e.g. GO:0000981 and GO:0006811 versus GO0005829). We hypothesize that
this is related to the length of summaries since these GO terms have smaller summaries compared
to the overall distribution.

Figure 7: Performance of zero-shot learning on KEGG pathways reveals the significance of available
knowledge on performance. This detailed study showcases how variations in informational input
affect learning outcomes without direct training on KEGG pathways.

E BIAS MITIGATION VIA MULTIMODAL FUSION

Figure 7 presents the full KEGG pathway predictions from GeneLLM-CL. The figure illustrates
the relevance scores of our model on different summary lengths of the KEGG pathways. The aver-
age similarity for each KEGG pathway and relevant genes (Dr) and non-relevant genes (Dnr) are
calculated using cosine similarity. We then calculate a relevance score for a KEGG pathway as the
difference between Dr and Dnr (i.e. Dr−Dnr). We train the model with different summary lengths
of 10 and 100 words per KEGG summary. The figure shows that when the amount of available in-
formation increases, the model performance is increased. The model can significantly diminish the
level of bias in its predictions by learning from longer text summaries thus leading to more reliable
outcomes.

F SOLUBILITY CLUSTERING AND PREDICTION

Solubility Prediction Apart from the baseline comparison for predicting solubility in Section 4,
We compare the finetuned GeneLLM-CL against solubility-specific models. Table 3 illustrates
our model performance compared to the solubility models mentioned in Wang & Zou (2023b).
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Table 3: A comprehensive evaluation of gene products solubility of Methods from DeepSoluE
(Wang & Zou, 2023b)

Model F1 Score Accuracy
RPSP 0.392 0.498
ccSOL omics 0.537 0.508
SKADE 0.168 0.492
SOLpro 0.468 0.52
Protein-Sol 0.585 0.516
DeepSol 0.239 0.529
rWH 0.485 0.54
ESPRESSO 0.583 0.538
CamSol 0.487 0.541
SWI 0.638 0.559
PROSO II 0.491 0.58
SoluProt 0.593 0.585
DeepSoluE 0.600 0.5952
GeneLLM-CL 0.81 0.81
GeneLLM-CL + Finetuned 0.89 0.887

GeneLLM-CL significantly outperformed the proposed baselines on the same set of annotations but
features extracted from text summaries and GO term relationships, showcasing the effectiveness of
contrastive learning in forecasting gene solubility.

Clustering Analysis. Clustering and enrichment analysis of gene embeddings from GeneLLM
fine-tuned from solubility produced interpretable results. Gene clustering is based on embedding
done using the shared nearest neighbor algorithm. Pathway enrichments were done on each cluster
and labeled as the most enriched pathway. The cluster labeled as ”Cell-Cell communication” ”Neu-
ronal System” and ”GPCR ligand binding” along with other genes related to membrane function
were predicted by the model as membranes, as shown in Figure 2c. This is even though the model
was trained on a limited dataset and was not directly exposed to these annotations (membrane vs
soluble) during training, instead they were encoded as 0’s and 1’s. For example, a majority of the
genes in the Neuronal System are involved in signal transduction. These genes encode a variety of
proteins such as neurotransmitter receptors, ion channels, signaling enzymes, and other molecules
involved in signal transmission and processing in the nervous system, which are majorly membrane
protein functions (Hudspeth et al., 2013).

Interpretability. Our model interpretability analysis, utilizing SHAP, unveiled significant terms
associated with each cluster, as illustrated in Figure 2c. Through SHAP analysis, we were able to
directly link various terms to the function of each cluster in the membrane and soluble genes clus-
ters. For instance, the term 7Transmembrane is one of the most important words within the GPCR
Ligand Binding cluster, underscoring the characteristic feature of GPCRs traversing the membrane
seven times, a structural hallmark facilitating their critical signaling roles (Yang et al., 2021). The
importance of the word Sodiumdependent aligns with the known dependency of the neuronal system
on sodium ions (Na+) for critical functions such as action potential propagation and neurotransmitter
regulation, and their role in the cell membrane (Bagheri et al., 2021). Similarly, transporters was
identified as one of the most important words in (TCA) cycle & respiratory electron transport clus-
ter, this reflects the vital role of these membrane proteins in facilitating the biochemical pathways
essential for the TCA cycle and electron transport chain activities (Caino & Altieri, 2016). The word
DNAbinding in the context of HIV Infection relates to non-membrane proteins with DNA-binding
properties such as TAF1 that function within the nucleus where HIV is active (Burley & Roeder,
1996).
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