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Abstract

Ecological Momentary Assessment provides real-time data on suicidal thoughts
and behaviors, but predicting suicide attempts remains challenging due to their
rarity and patient heterogeneity. We show that single models fit to all patients
perform poorly, while individualized models overfit with limited data. To address
this, we introduce a Latent Similarity Gaussian Process (LSGP) that models pa-
tient heterogeneity, enabling those with little data to leverage similar patients’
trends. Preliminary results show improved sensitivity over baselines and offer new
understanding of patient similarity.

1 Introduction and Related Work

Ecological Momentary Assessment (EMA) studies leverage smartphones and wearable sensors to
capture insights into suicidal thoughts and behaviors (STBs) as they unfold in daily life [[1]. In these
intensive longitudinal studies, patients are surveyed multiple times daily on their suicidal urges, intent,
and affects. This presents opportunities for machine learning (ML) to forecast imminent suicide risk
in time for intervention; however, to date, no current approach can do this reliably [2].

Prior work primarily focuses on forecasting suicidal ideation from EMA data (e.g. [3H6]). While
forecasting ideation is itself challenging, suicide attempts are even harder to predict due to their low
base-rate [7]; even in largest datasets (e.g. 600 patients), attempts are rarely captured (e.g. [8]). This
severely limits the data available for model training and evaluation. To exacerbate this challenge,
recent work shows that patients’ paths to suicide ideation are heterogeneous, suggesting that, at the
very least, there are many subtypes of at-risk patients, advocating against the use of single models
across all patients [9H11], further reducing the number of data points per model.

In this work, we show that the same patient heterogeneity found in suicidal ideation is found in
suicidal attempts. We then present a single model to improve forecasts for patients with little data by
capturing patient heterogeneity. Our contributions are:

(A) As with suicidal ideation, we show that a single model trained on data to predict suicide
attempts from all patients performs worse than individualized, per-patient models. Specifically,
we show that each patient exhibits a different forecasting trend, that, when combined, conflict with
one another, resulting in poor forecasting performance. This underscores the importance of explicitly
modeling patient heterogeneity [11,[10]. From these results, we may be tempted to use a different
model per patient—but per-patient models are prone to severe overfitting for patients with little data.

(B) We naturally formalize our observations into a single model to capture patient heterogeneity,
grounded in modeling assumptions supported by our analysis and prior work. Our Latent
Similarity Gaussian Process (LSGP) posits that patients lie in a latent space in which distance
corresponds to similarity in forecasting trends. By inferring patients’ locations in this latent space,
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Figure 1: Left: Idiographic models outperform their counterparts—except for specificity, which
stayed constant, the magnitude of difference in metrics between the idiographic and single models
is always positive. Right: The 30% patients with fewest recorded SREs consistently receive
worse forecasts across nearly all metrics and all models—the magnitude of difference in metrics
computed for all patients vs. for the bottom 30% is always negative, indicating lower performance.

forecasts for patients with little data intelligently draw on trends from similar patients. While inspired
by prior methods (see Section [3), LSGPs have never been previously applied in this context.

(C) Our preliminary results show promise in improving forecasts of suicide attempts from
EMA data for patients with little data, and reveal new avenues for understanding patient
similarity. Our approach matches baseline performance on most metrics and notably outperforms
baselines in sensitivity, which is especially critical for suicide prevention. Furthermore, we introduce
a graph-based visualization of patient similarity within the learned latent space, offering interpretable
insights into individualized risk profiles and potential shared mechanisms.

2 The Geometry of Forecasts for At-Risk Patients

Notation. Let N denote the number of patients in the data. Let x; = [n; 731 ... 7y Dm]T
represent the ith observation in the data, belonging to patient n; at time ¢;, consisting of their
responses 71 4 € {0,. .., 10} to 10-point likert-scale EMA questions. Here, we will use questions
about patients’ affects, suicidal intent/urge and behaviors—for details on the study and data, see
Appendix @ Using patient responses to these questions, our task is to predict y; € {0, 1}—whether
patient n; engaged in any suicide related event (SRE) sometime in the week following ¢;. We define
an SRE as either a self-injurious behavior with some (non-zero) intention of dying, or a presentation
to a hospital with suicidal thoughts to prevent the occurrence of a suicide attempt. Let D = X,V
represent the entire training data. Let D,, = X,,,Y,, represent patient n’s training data, where
X, = {x;|n; = n} and Y, = {y;|n; = n}. Note that every patient has a different amount of data.

Goal. Given D, our goal is to predict whether, given a new EMA response, x};,, patient n will engage
in an SRE sometime in the next week, y..

Single vs. Idiographic Models. To better understand the geometry of patient classification boundaries,
we compare models trained on a/l patient data (y; |z}, D) with a model consisting of a collection of
models—one per patient (y: |z}, D,,). We refer to the former and latter as a single and an idiographic
model, respectively. If idiographic models consistently outperform the single models, this suggests
that patients have differing forecasting trends. Even before comparing their performance, we note
that idiographic models have one major shortcoming: they cannot be used to make predictions for a
new patient n*; we address this limitation in our method (Section .

Baselines and Metrics. We compare our method with several baselines, each used both as a single
and idiographic model: Gaussian Process Classification (GP) with a Laplace Approximation, k-
Nearest Neighbor Classifier (KNN), Logistic Regression (LR), and Bayesian LR with an empirical
Bayes type II and variational (EB-LR and VB-LR) approximations. For evaluation, we use: F1-
Score, Positive Predictive Value (PPV), Area Under the Receiver Operating Characteristic Curve
(ROC-AUQ), Specificity, and Sensitivity.

Finding: Patients exhibit conflicting classification boundaries. Fig. |I| (left) shows that,
across all baselines and metrics (except for specificity), using an idiographic model results
in significantly better performance than the single model. Based on these results, we may
be tempted to just use separate models; however, as Fig. [T] (right) shows, both single
and idiographic models make worse forecasts for the patients with fewest recorded SREs.

2



74
75
76
77
78
79
80
81
82
83
84
85
86
87

88

89
90
91
92
93
94
95
96
97
98

99

100
101
102
103

104
105
106
107

108
109
110

111
112

113
114

115
116

Single model predictions are most influenced
by patients with more data, generalizing poorly
to patients with less data; idiographic model
overfit to patients with little data. We may be
further tempted to find group patients together
that share similar trends, but this is challenging
when data are sparse. The figure on the right
shows how supplementing the training data of
patients with few recorded suicide attempts—by
adding data from others—can improve, worsen, W L
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These mixed results highlight the difficulty of creating patient groups by naively matching patients
with fewer observations with those with more. To address this, we next propose a model that leverages
the full dataset to capture patient similarity more effectively.
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3 Method

There are many pathways to suicide; even among mental health disorders, conditions such as major
depression, generalized anxiety, post-traumatic stress, and borderline personality disorder each
present distinct mechanisms leading to elevated suicide risk [12} [13]. Moreover, within a single
diagnosis, each patient’s unique life circumstances—e.g. shaped by social determinants and individual
differences—further contributes to patient heterogeneity [10]. To capture this probabilistically, we
must allow each patient to follow an individual forecasting trajectory while enabling those with
limited data to leverage information from others without imposing a one-size-fits-all solution. We
address this by embedding patients in a latent space, where proximity reflects similarity in risk
trajectories; forecasts for patients with little data can thus intelligently borrow strength from their
nearest neighbors.

Latent Similarity Gaussian Processes (LSGPs). We naturally arrive at the model,

@Zn Np(Z) :N(O,]IDZ), .’)AL'Z‘.’E“ZZ [7‘,‘71 Ti,Dy “n;1 .- Zm,Dz]Ta
@ FIX;0 ~ N(0,Ko(X, X)), @ yilfi ~ Bernoulli(sigmoid(f;)),

where &; represents the concatenation of the inputs x; with the latent variable z,,, corresponding to

patient n;, X is a matrix consisting of all z;’s as rows, Ky(+, -) is the kernel matrix computed on rows
of its arguments with hyperparameters 6, F' is a concatenation of all function values f; corresponding
to each x;, and [ p_ is an identity matrix of width D,.

Related Models. Our model bears similarity to several existing models, including (i) GP with Latent
Covariate [14] or Covariate GP Latent Variable Models [13]], but adapted to have multiple observations
per latent variable, (ii) a Multi-Group GPs [[16], but in which the “group” is both continuous and
latent, or (iii) a Meta-Learning GPs [17]], but without the control signal.

Sparse Variational LSGPs. Analytical inference is impossible due to the non-Gaussianity of the
likelihood and the large number of observations (14763 from N = 77 patients), so we apply the
sparse variational formulation of GPs [[18] to our model, replacing (C) above with:

U; W, 0 ~ N (0, Ko (W, W)),

FIU.X, Z;W.0 ~ N(¥ - U, Kg(X, X) = U - Ko(X,W)T),
where U = Ko(X, W) - Ko(W,W)~!. In this formulation, W € RM*(P=+D=) is a matrix of M
inducing point locations used to “summarize” the training data, enabling more efficient inference.

Stochastic Variational Inference (SVI). We learn W, 6 by minimizing the divergence between an
approximate and true posterior [18]:

W*70*7¢* = argminWﬁ,(z)DKL [Q(Fv U)Zv VVagv(vb)Hp(Fa U72|U7 Xa Z,Ya VV,G)} ) (1)

using the variational family, q(F,U, Z; W, 0,¢) = p(F|U, X, Z; W,0) - q(U; ¢) - Hﬁle q(zn; @),
where ¢ are the parameters of full-covariance Gaussian ¢(U; ) = N (ue,X,) and mean-field
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Table 1: Comparison of Methods on Test Metrics. We report sensitivity by stratifying patients into
bottom, middle, and top thirds based on SRE count.

Sensitivity
ROC-AUC PPV Specificity Bottom 33% Middle 33% Top 33%

RBF-GP 0.74 + 0.00 0.66 + 0.04 0.98 + 0.00 0.01 £ 0.02 0.36 4+ 0.01 0.21 +£0.01

o KNN 0.70 4+ 0.01 0.61 4+ 0.03 0.97 + 0.00 0.03 £ 0.04 0.34 £ 0.01 0.28 + 0.03
%" LR 0.68 + 0.01 0.60 + 0.06 0.99 £ 0.00 0.02 £+ 0.01 0.14 4+ 0.01 0.07 4+ 0.00
2 VB-LR 0.68 + 0.01 0.60 + 0.03 0.99 £ 0.00 0.01 £ 0.01 0.13 £ 0.01 0.07 4+ 0.01
EB-LR 0.68 + 0.01 0.61 + 0.03 0.99 £ 0.00 0.01 £+ 0.01 0.13 £ 0.01 0.07 4+ 0.01

© RBF-GP 0.84 + 0.00 0.73 £+ 0.01 0.97 + 0.00 0.10 £+ 0.03 0.53 4 0.02 0.48 + 0.02
= KNN 0.77 £ 0.01 0.72 + 0.02 0.97 4+ 0.00 0.09 £ 0.03 0.42 £+ 0.02 0.39 + 0.04
E) LR 0.85 + 0.01 0.73 £+ 0.01 0.97 + 0.00 0.09 £+ 0.01 0.55 + 0.02 0.47 £+ 0.03
._g VB-LR 0.87 + 0.00 0.73 £+ 0.01 0.96 4+ 0.00 0.12 £ 0.03 0.57 £ 0.02 0.53 + 0.02
= EB-LR 0.84 + 0.01 0.71 4+ 0.02 0.96 + 0.00 0.27 £ 0.05 0.58 + 0.02 0.54 + 0.03
| SV-LSGP || 0.82+£0.01 | 0.57+0.03 | 0.91+0.01 | 0.29+0.07 0.62+0.03 0.57+0.03

Gaussians ¢(z,; ¢). This is equivalent to maximizing the evidence lower bound (ELBO) [19]:

N
L= By xwo logpyil £:)] — DxLlg(U; ¢)l[p(Us W,0)] = > Dxwla(zn; 8)lp(2)]  (2)
i n=1

wherein the expectation is approximated via Monte Carlo by sampling q(f;|X;W,0) =
Eqw;e) p(filU, X, Z; W, 0)] - Hf:’zl q(zn; ¢), where the expectation is computed analytically [20]:
N (5 - o, diag (s - (g — Kog(W, W) - T)), with o; = Ko(2], W) - Ko(W, W)~ L. Since the
first term of £ can be estimated via mini-matching [20422], performance is only dominated by
O(M?3) per gradient step.

Visualizing Latent Similarity. We can visualize the similarity between patients
even in high dimensional latent spaces using a graph, provided that the Kker-
nel over & can be decomposed into a product of kernels applied to x and =z.
We compute the covariance matrix between patients (not observations) by
applying the latent-space kernel to the variational means. We then treat
this covariance as a graph adjacency matrix, in which in which every node
is a patient and edge widths are proportional to the covariance between the
patients. To reduce visual clutter, we prune edges with covariance below
a chosen threshold. This can help us identify clusters of patients who
borrow strength from one another and to explore how these patterns align
with social determinants of health and other relevant factors to deepen
our understanding of patient similarity.

4 Experiments, Results, and Future Work

Preliminary results show that our method is not far from the best
baselines on most metrics, outperforming all on sensitivity, which is
crucial for suicide prevention. We compare our method with baselines
in our ability to better forecast SREs one week in advance (details in
Appendix [B)). Table [T] shows that, only having naively experimented
with a single kernel, our method already matches the better performing
methods on most metrics, obtaining worse PPV but better sensitivity. We
anticipate that a future investigation into the inductive biases of different . . )
kernels will allow our method to outperform all baselines, since the LSGP Elgftrgi%ﬁig:?&hﬁg dI:;,

generalizes the GP and LR methods. , and
Insights from Patient Similarity Graphs. We visualize the similarity of

patients in Fig. 2] In the top, colors represent stratification of patients into

bottom, middle, and top thirds based on SRE count. The figure shows - Edges
that forecasts for patients with fewest SREs draw on each other and on are if connecting
patients with the most SREs (black edges connect teal and magenta). In nodes of different colors;
the bottom of Fig. 2] color represents adult vs. adolescent, showing that, thickness indicates mag-
while we expect the trend for adults to differ from those of adolescents, nitude of covariance.

the story may be more complicated. In future work, we hope to explore

patient similarity based on other factors, such as social determinants of health.
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A Overview of the EMA Data

Participants. A total of 638 participants presenting with suicidal thoughts and/or recent suicidal
behavior were recruited from two hospitals in the Boston area—318 adults (ages 18+) from a
psychiatric emergency service, and 320 adolescents (ages 12-19) from a psychiatric inpatient unit.
Participants were excluded if they did not own an i0S/Android smartphone, they presented any factor
that impaired their ability to provide informed consent/assent, an inability to speak or write English
fluently, a gross cognitive impairment due to florid psychosis, intellectual disability, dementia, acute
intoxication, or extremely agitated or violent behavior.

Consent, Compensation, and IRB. After agreeing to participate, individuals signed consent/assent
forms, answered an initial questionnaire, and installed the LifeData application on their mobile
devices, which prompted them with brief self-report questionnaires. Participants received $10 for
completing the initial questionnaire and earned $1 for each EMA survey they submitted. The study
was approved by our institutions’ IRB.

Surveys. Smartphone surveys assessed participants’ current experience of suicidal thinking—urge,
intent, and ability to resist suicidal urges—as well as 17 affective states—negative, hopeless, trapped,
isolated, burdensome, angry, self-hate, agitated, worried, numb, fatigued, humiliated, desire to escape,
desire to avoid, energetic, and positive—on a 0-10 likert scale. These surveys were sent to participants
6-times per day for three months, with the first and last sent at fixed times decided in collaboration
with each participant, and the remaining surveys sent at randomized times, at least two hours apart,
and between the first and last surveys. In addition to these surveys, participants could always opt to
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fill in additional surveys, for example, to report a suicide attempt, non-suicidal self-injury, or another
event they deemed important. They study was monitored by a risk-monitoring team in real-time to
intervene when participants indicate high suicidal intent (details available upon request).

Recording Suicide-Related Events (SREs). An SRE was recorded in the data if it was reported
by the patient in the survey, if it was reported by the risk-monitoring team, or if it was reported
in the patient’s electronic health record (consensus coded by two trained BA-level reviewers with
supervision by a doctoral-level clinician with expertise in assessing/treating STBs).

Data Inclusion in Analysis. We kept all SREs for which there was at least one EMA survey in the
week prior. We kept data from all patients that had at least 3 SREs and 3 non-SREs to ensure we can
include one of each in the train/validation/test split (see Appendix [B]). Due to the low base-rate of
SREs, this left us with N = 77 patients who contributed a total of 14763 complete EMA surveys.

B Experimental Setup

Data Splits. We divided the data into 50%, 25%, and 25% sized-sets for training, validation, and
test, respectively. We ensured that there was at least one SRE and one non-SRE in each set. As such,
we assume that for our method to be used in practice, patients must have at least one recorded SRE in
their data. We created these cuts of the data 5 times, conducting all experiments on each cut of the
data, and reporting the mean + standard deviation of all metrics.

Random Restarts. For each of cut of the data, we ran each method 5 times, each with a random
seed. We selected the best performing random restart on the validation ROC-AUC.

Hyperparameter Selection. We performed grid search over the following parameters, selecting
them based on ROC-AUC on the validation set:

* KNN: Neighbors k& € {1,2}, which performed best in our preliminary experiments,
and distance € {Minkowski, Manhattan}. We used the default parameters from
scikit-learn [23] for the remaining parameters.

* LR: Default parameters from scikit-learn [23] but with a maximum of 5000 iterations
until convergence.

* VB-LR: We trained for a maximum of 5000 iterations until convergence, with the rate and
scale «, 8 on the Gamma prior on precision of the coefficients both € {1.0, 2.0}, and with
the remaining parameters set to the defaults from Shaumyan [24]].

* EB-LR: We trained for a maximum of 5000 iterations, with the initial precision of prior
distribution @ € {3.0,2.0,1.0, 1e—3, 1e—6, 1le—9, le—12}, and with the remaining param-
eters set to the defaults from Shaumyan [24].

* GP: We used the default GP hyperparameters from scikit-learn [23], which uses an au-
tomatic relevance determination (ARD) kernel. We additionally set max_iter_predict =
5000, as well as n_restarts_optimizer = 1, which selects across two kernel hyperpa-
rameter initializations—default and random.

¢ SV-LSGP: We use M = 2000 inducing points, D, = 3, mini-batch size B = 256, and a
kernel that factorizes as Ko(X, X') = Kj(X,X'") - K§(Z,Z"), with K7 as a linear kernel
and K as an arccos kernel. We fit the model with 60000 gradient steps and a learning rate
of 0.001.

Software. We implemented the SV-LSGP in NumPyro [25]] and Jax [26].
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