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Abstract

Ecological Momentary Assessment provides real-time data on suicidal thoughts1

and behaviors, but predicting suicide attempts remains challenging due to their2

rarity and patient heterogeneity. We show that single models fit to all patients3

perform poorly, while individualized models overfit with limited data. To address4

this, we introduce a Latent Similarity Gaussian Process (LSGP) that models pa-5

tient heterogeneity, enabling those with little data to leverage similar patients’6

trends. Preliminary results show improved sensitivity over baselines and offer new7

understanding of patient similarity.8

1 Introduction and Related Work9

Ecological Momentary Assessment (EMA) studies leverage smartphones and wearable sensors to10

capture insights into suicidal thoughts and behaviors (STBs) as they unfold in daily life [1]. In these11

intensive longitudinal studies, patients are surveyed multiple times daily on their suicidal urges, intent,12

and affects. This presents opportunities for machine learning (ML) to forecast imminent suicide risk13

in time for intervention; however, to date, no current approach can do this reliably [2].14

Prior work primarily focuses on forecasting suicidal ideation from EMA data (e.g. [3–6]). While15

forecasting ideation is itself challenging, suicide attempts are even harder to predict due to their low16

base-rate [7]; even in largest datasets (e.g. 600 patients), attempts are rarely captured (e.g. [8]). This17

severely limits the data available for model training and evaluation. To exacerbate this challenge,18

recent work shows that patients’ paths to suicide ideation are heterogeneous, suggesting that, at the19

very least, there are many subtypes of at-risk patients, advocating against the use of single models20

across all patients [9–11], further reducing the number of data points per model.21

In this work, we show that the same patient heterogeneity found in suicidal ideation is found in22

suicidal attempts. We then present a single model to improve forecasts for patients with little data by23

capturing patient heterogeneity. Our contributions are:24

(A) As with suicidal ideation, we show that a single model trained on data to predict suicide25

attempts from all patients performs worse than individualized, per-patient models. Specifically,26

we show that each patient exhibits a different forecasting trend, that, when combined, conflict with27

one another, resulting in poor forecasting performance. This underscores the importance of explicitly28

modeling patient heterogeneity [11, 10]. From these results, we may be tempted to use a different29

model per patient—but per-patient models are prone to severe overfitting for patients with little data.30

(B) We naturally formalize our observations into a single model to capture patient heterogeneity,31

grounded in modeling assumptions supported by our analysis and prior work. Our Latent32

Similarity Gaussian Process (LSGP) posits that patients lie in a latent space in which distance33

corresponds to similarity in forecasting trends. By inferring patients’ locations in this latent space,34
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Figure 1: Left: Idiographic models outperform their counterparts—except for specificity, which
stayed constant, the magnitude of difference in metrics between the idiographic and single models
is always positive. Right: The 30% patients with fewest recorded SREs consistently receive
worse forecasts across nearly all metrics and all models—the magnitude of difference in metrics
computed for all patients vs. for the bottom 30% is always negative, indicating lower performance.

forecasts for patients with little data intelligently draw on trends from similar patients. While inspired35

by prior methods (see Section 3), LSGPs have never been previously applied in this context.36

(C) Our preliminary results show promise in improving forecasts of suicide attempts from37

EMA data for patients with little data, and reveal new avenues for understanding patient38

similarity. Our approach matches baseline performance on most metrics and notably outperforms39

baselines in sensitivity, which is especially critical for suicide prevention. Furthermore, we introduce40

a graph-based visualization of patient similarity within the learned latent space, offering interpretable41

insights into individualized risk profiles and potential shared mechanisms.42

2 The Geometry of Forecasts for At-Risk Patients43

Notation. Let N denote the number of patients in the data. Let xi = [ni ri,1 . . . ri,Dx ]
⊺

44

represent the ith observation in the data, belonging to patient ni at time ti, consisting of their45

responses r1,d ∈ {0, . . . , 10} to 10-point likert-scale EMA questions. Here, we will use questions46

about patients’ affects, suicidal intent/urge and behaviors—for details on the study and data, see47

Appendix A. Using patient responses to these questions, our task is to predict yi ∈ {0, 1}—whether48

patient ni engaged in any suicide related event (SRE) sometime in the week following ti. We define49

an SRE as either a self-injurious behavior with some (non-zero) intention of dying, or a presentation50

to a hospital with suicidal thoughts to prevent the occurrence of a suicide attempt. Let D = X,Y51

represent the entire training data. Let Dn = Xn, Yn represent patient n’s training data, where52

Xn = {xi|ni = n} and Yn = {yi|ni = n}. Note that every patient has a different amount of data.53

Goal. Given D, our goal is to predict whether, given a new EMA response, x∗n, patient n will engage54

in an SRE sometime in the next week, y∗n.55

Single vs. Idiographic Models. To better understand the geometry of patient classification boundaries,56

we compare models trained on all patient data (y∗n|x∗n,D) with a model consisting of a collection of57

models—one per patient (y∗n|x∗n,Dn). We refer to the former and latter as a single and an idiographic58

model, respectively. If idiographic models consistently outperform the single models, this suggests59

that patients have differing forecasting trends. Even before comparing their performance, we note60

that idiographic models have one major shortcoming: they cannot be used to make predictions for a61

new patient n∗; we address this limitation in our method (Section 3).62

Baselines and Metrics. We compare our method with several baselines, each used both as a single63

and idiographic model: Gaussian Process Classification (GP) with a Laplace Approximation, k-64

Nearest Neighbor Classifier (KNN), Logistic Regression (LR), and Bayesian LR with an empirical65

Bayes type II and variational (EB-LR and VB-LR) approximations. For evaluation, we use: F1-66

Score, Positive Predictive Value (PPV), Area Under the Receiver Operating Characteristic Curve67

(ROC-AUC), Specificity, and Sensitivity.68

Finding: Patients exhibit conflicting classification boundaries. Fig. 1 (left) shows that,69

across all baselines and metrics (except for specificity), using an idiographic model results70

in significantly better performance than the single model. Based on these results, we may71

be tempted to just use separate models; however, as Fig. 1 (right) shows, both single72

and idiographic models make worse forecasts for the patients with fewest recorded SREs.73
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Single model predictions are most influenced74

by patients with more data, generalizing poorly75

to patients with less data; idiographic model76

overfit to patients with little data. We may be77

further tempted to find group patients together78

that share similar trends, but this is challenging79

when data are sparse. The figure on the right80

shows how supplementing the training data of81

patients with few recorded suicide attempts—by82

adding data from others—can improve, worsen,83

or have no effect on their forecasting sensitivity.84

These mixed results highlight the difficulty of creating patient groups by naively matching patients85

with fewer observations with those with more. To address this, we next propose a model that leverages86

the full dataset to capture patient similarity more effectively.87

3 Method88

There are many pathways to suicide; even among mental health disorders, conditions such as major89

depression, generalized anxiety, post-traumatic stress, and borderline personality disorder each90

present distinct mechanisms leading to elevated suicide risk [12, 13]. Moreover, within a single91

diagnosis, each patient’s unique life circumstances—e.g. shaped by social determinants and individual92

differences—further contributes to patient heterogeneity [10]. To capture this probabilistically, we93

must allow each patient to follow an individual forecasting trajectory while enabling those with94

limited data to leverage information from others without imposing a one-size-fits-all solution. We95

address this by embedding patients in a latent space, where proximity reflects similarity in risk96

trajectories; forecasts for patients with little data can thus intelligently borrow strength from their97

nearest neighbors.98

Latent Similarity Gaussian Processes (LSGPs). We naturally arrive at the model,99

A zn ∼ p(z) = N (0, IDz
), B x̂i|xi, Z = [ri,1 . . . ri,Dx

zni,1 . . . zni,Dz ]
⊺
,

C F |X̂; θ ∼ N (0,Kθ(X̂, X̂)), D yi|fi ∼ Bernoulli(sigmoid(fi)),

where x̂i represents the concatenation of the inputs xi with the latent variable zni
corresponding to100

patient ni, X̂ is a matrix consisting of all xi’s as rows, Kθ(·, ·) is the kernel matrix computed on rows101

of its arguments with hyperparameters θ, F is a concatenation of all function values fi corresponding102

to each xi, and IDz
is an identity matrix of width Dz .103

Related Models. Our model bears similarity to several existing models, including (i) GP with Latent104

Covariate [14] or Covariate GP Latent Variable Models [15], but adapted to have multiple observations105

per latent variable, (ii) a Multi-Group GPs [16], but in which the “group” is both continuous and106

latent, or (iii) a Meta-Learning GPs [17], but without the control signal.107

Sparse Variational LSGPs. Analytical inference is impossible due to the non-Gaussianity of the108

likelihood and the large number of observations (14763 from N = 77 patients), so we apply the109

sparse variational formulation of GPs [18] to our model, replacing C above with:110

C.1 U ;W, θ ∼ N (0,Kθ(W,W )),

C.2 F |U,X,Z;W, θ ∼ N (Ψ · U,Kθ(X̂, X̂)−Ψ ·Kθ(X̂,W )⊺),

where Ψ = Kθ(X̂,W ) ·Kθ(W,W )−1. In this formulation, W ∈ RM×(Dx+Dz) is a matrix of M111

inducing point locations used to “summarize” the training data, enabling more efficient inference.112

Stochastic Variational Inference (SVI). We learn W, θ by minimizing the divergence between an113

approximate and true posterior [18]:114

W ∗, θ∗, ϕ∗ = argminW,θ,ϕDKL [q(F,U, Z;W, θ, ϕ)||p(F,U, Z|U,X,Z, Y ;W, θ)] , (1)

using the variational family, q(F,U, Z;W, θ, ϕ) = p(F |U,X,Z;W, θ) · q(U ;ϕ) ·
∏N

n=1 q(zn;ϕ),115

where ϕ are the parameters of full-covariance Gaussian q(U ;ϕ) = N (µϕ,Σϕ) and mean-field116
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Table 1: Comparison of Methods on Test Metrics. We report sensitivity by stratifying patients into
bottom, middle, and top thirds based on SRE count.

Sensitivity
ROC-AUC PPV Specificity Bottom 33% Middle 33% Top 33%

Si
ng

le
RBF-GP 0.74 ± 0.00 0.66 ± 0.04 0.98 ± 0.00 0.01 ± 0.02 0.36 ± 0.01 0.21 ± 0.01
KNN 0.70 ± 0.01 0.61 ± 0.03 0.97 ± 0.00 0.03 ± 0.04 0.34 ± 0.01 0.28 ± 0.03
LR 0.68 ± 0.01 0.60 ± 0.06 0.99 ± 0.00 0.02 ± 0.01 0.14 ± 0.01 0.07 ± 0.00
VB-LR 0.68 ± 0.01 0.60 ± 0.03 0.99 ± 0.00 0.01 ± 0.01 0.13 ± 0.01 0.07 ± 0.01
EB-LR 0.68 ± 0.01 0.61 ± 0.03 0.99 ± 0.00 0.01 ± 0.01 0.13 ± 0.01 0.07 ± 0.01

Id
io

gr
ap

hi
c RBF-GP 0.84 ± 0.00 0.73 ± 0.01 0.97 ± 0.00 0.10 ± 0.03 0.53 ± 0.02 0.48 ± 0.02

KNN 0.77 ± 0.01 0.72 ± 0.02 0.97 ± 0.00 0.09 ± 0.03 0.42 ± 0.02 0.39 ± 0.04
LR 0.85 ± 0.01 0.73 ± 0.01 0.97 ± 0.00 0.09 ± 0.01 0.55 ± 0.02 0.47 ± 0.03
VB-LR 0.87 ± 0.00 0.73 ± 0.01 0.96 ± 0.00 0.12 ± 0.03 0.57 ± 0.02 0.53 ± 0.02
EB-LR 0.84 ± 0.01 0.71 ± 0.02 0.96 ± 0.00 0.27 ± 0.05 0.58 ± 0.02 0.54 ± 0.03

SV-LSGP 0.82 ± 0.01 0.57 ± 0.03 0.91 ± 0.01 0.29 ± 0.07 0.62 ± 0.03 0.57 ± 0.03

Gaussians q(zn;ϕ). This is equivalent to maximizing the evidence lower bound (ELBO) [19]:117

L =
∑
i

Eq(fi|X;W,θ) [log p(yi|fi)]−DKL[q(U ;ϕ)||p(U ;W, θ)]−
N∑

n=1

DKL[q(zn;ϕ)||p(z)] (2)

wherein the expectation is approximated via Monte Carlo by sampling q(fi|X;W, θ) =118

Eq(U ;ϕ) [p(fi|U,X,Z;W, θ)] ·
∏N

n=1 q(zn;ϕ), where the expectation is computed analytically [20]:119

N (ψi · µϕ,diag(ψi · (Σϕ −Kθ(W,W )) · ψ⊺
i )), with ψi = Kθ(x̂

⊺
i ,W ) ·Kθ(W,W )−1. Since the120

first term of L can be estimated via mini-matching [20–22], performance is only dominated by121

O(M3) per gradient step.122

Visualizing Latent Similarity. We can visualize the similarity between patients123

even in high dimensional latent spaces using a graph, provided that the ker-124

nel over x̂ can be decomposed into a product of kernels applied to x and z.125

Figure 2: Graph of Pa-
tient Similarity. Nodes:
adult adolescent , and
top 33% middle 33%

bottom 33% . Edges
are black if connecting
nodes of different colors;
thickness indicates mag-
nitude of covariance.

We compute the covariance matrix between patients (not observations) by126

applying the latent-space kernel to the variational means. We then treat127

this covariance as a graph adjacency matrix, in which in which every node128

is a patient and edge widths are proportional to the covariance between the129

patients. To reduce visual clutter, we prune edges with covariance below130

a chosen threshold. This can help us identify clusters of patients who131

borrow strength from one another and to explore how these patterns align132

with social determinants of health and other relevant factors to deepen133

our understanding of patient similarity.134

4 Experiments, Results, and Future Work135

Preliminary results show that our method is not far from the best136

baselines on most metrics, outperforming all on sensitivity, which is137

crucial for suicide prevention. We compare our method with baselines138

in our ability to better forecast SREs one week in advance (details in139

Appendix B). Table 1 shows that, only having naively experimented140

with a single kernel, our method already matches the better performing141

methods on most metrics, obtaining worse PPV but better sensitivity. We142

anticipate that a future investigation into the inductive biases of different143

kernels will allow our method to outperform all baselines, since the LSGP144

generalizes the GP and LR methods.145

Insights from Patient Similarity Graphs. We visualize the similarity of146

patients in Fig. 2. In the top, colors represent stratification of patients into147

bottom, middle, and top thirds based on SRE count. The figure shows148

that forecasts for patients with fewest SREs draw on each other and on149

patients with the most SREs (black edges connect teal and magenta). In150

the bottom of Fig. 2, color represents adult vs. adolescent, showing that,151

while we expect the trend for adults to differ from those of adolescents,152

the story may be more complicated. In future work, we hope to explore153

patient similarity based on other factors, such as social determinants of health.154
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Participants were excluded if they did not own an iOS/Android smartphone, they presented any factor242

that impaired their ability to provide informed consent/assent, an inability to speak or write English243

fluently, a gross cognitive impairment due to florid psychosis, intellectual disability, dementia, acute244

intoxication, or extremely agitated or violent behavior.245

Consent, Compensation, and IRB. After agreeing to participate, individuals signed consent/assent246

forms, answered an initial questionnaire, and installed the LifeData application on their mobile247

devices, which prompted them with brief self-report questionnaires. Participants received $10 for248

completing the initial questionnaire and earned $1 for each EMA survey they submitted. The study249

was approved by our institutions’ IRB.250

Surveys. Smartphone surveys assessed participants’ current experience of suicidal thinking—urge,251

intent, and ability to resist suicidal urges—as well as 17 affective states—negative, hopeless, trapped,252

isolated, burdensome, angry, self-hate, agitated, worried, numb, fatigued, humiliated, desire to escape,253

desire to avoid, energetic, and positive—on a 0-10 likert scale. These surveys were sent to participants254

6-times per day for three months, with the first and last sent at fixed times decided in collaboration255

with each participant, and the remaining surveys sent at randomized times, at least two hours apart,256

and between the first and last surveys. In addition to these surveys, participants could always opt to257
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fill in additional surveys, for example, to report a suicide attempt, non-suicidal self-injury, or another258

event they deemed important. They study was monitored by a risk-monitoring team in real-time to259

intervene when participants indicate high suicidal intent (details available upon request).260

Recording Suicide-Related Events (SREs). An SRE was recorded in the data if it was reported261

by the patient in the survey, if it was reported by the risk-monitoring team, or if it was reported262

in the patient’s electronic health record (consensus coded by two trained BA-level reviewers with263

supervision by a doctoral-level clinician with expertise in assessing/treating STBs).264

Data Inclusion in Analysis. We kept all SREs for which there was at least one EMA survey in the265

week prior. We kept data from all patients that had at least 3 SREs and 3 non-SREs to ensure we can266

include one of each in the train/validation/test split (see Appendix B). Due to the low base-rate of267

SREs, this left us with N = 77 patients who contributed a total of 14763 complete EMA surveys.268

B Experimental Setup269

Data Splits. We divided the data into 50%, 25%, and 25% sized-sets for training, validation, and270

test, respectively. We ensured that there was at least one SRE and one non-SRE in each set. As such,271

we assume that for our method to be used in practice, patients must have at least one recorded SRE in272

their data. We created these cuts of the data 5 times, conducting all experiments on each cut of the273

data, and reporting the mean ± standard deviation of all metrics.274

Random Restarts. For each of cut of the data, we ran each method 5 times, each with a random275

seed. We selected the best performing random restart on the validation ROC-AUC.276

Hyperparameter Selection. We performed grid search over the following parameters, selecting277

them based on ROC-AUC on the validation set:278

• KNN: Neighbors k ∈ {1, 2}, which performed best in our preliminary experiments,279

and distance ∈ {Minkowski, Manhattan}. We used the default parameters from280

scikit-learn [23] for the remaining parameters.281

• LR: Default parameters from scikit-learn [23] but with a maximum of 5000 iterations282

until convergence.283

• VB-LR: We trained for a maximum of 5000 iterations until convergence, with the rate and284

scale α, β on the Gamma prior on precision of the coefficients both ∈ {1.0, 2.0}, and with285

the remaining parameters set to the defaults from Shaumyan [24].286

• EB-LR: We trained for a maximum of 5000 iterations, with the initial precision of prior287

distribution α ∈ {3.0, 2.0, 1.0, 1e−3, 1e−6, 1e−9, 1e−12}, and with the remaining param-288

eters set to the defaults from Shaumyan [24].289

• GP: We used the default GP hyperparameters from scikit-learn [23], which uses an au-290

tomatic relevance determination (ARD) kernel. We additionally set max_iter_predict =291

5000, as well as n_restarts_optimizer = 1, which selects across two kernel hyperpa-292

rameter initializations—default and random.293

• SV-LSGP: We use M = 2000 inducing points, Dz = 3, mini-batch size B = 256, and a294

kernel that factorizes as Kθ(X̂, X̂
′) = Kx

θ (X,X
′) ·Kz

θ (Z,Z
′), with Kx

θ as a linear kernel295

and Kz
θ as an arccos kernel. We fit the model with 60000 gradient steps and a learning rate296

of 0.001.297

Software. We implemented the SV-LSGP in NumPyro [25] and Jax [26].298
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