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Abstract

Multiplex immunofluorescence (MxIF) is an emerging imaging technique that produces the
high sensitivity and specificity of single-cell mapping. With a tenet of “seeing is believ-
ing”, MxIF enables iterative staining and imaging extensive antibodies, which provides
comprehensive biomarkers to segment and group different cells on a single tissue section.
However, considerable depletion of the scarce tissue is inevitable from extensive rounds of
staining and bleaching (“missing tissue”). Moreover, the immunofluorescence (IF) imaging
can globally fail for particular rounds (“missing stain”). In this work, we focus on the
“missing stain” issue. It would be appealing to develop digital image synthesis approaches
to restore missing stain images without losing more tissue physically. Herein, we aim to
develop image synthesis approaches for eleven MxIF structural molecular markers (i.e.,
epithelial and stromal) on real samples. We propose a novel multi-channel high-resolution
image synthesis approach, called pixN2N-HD, to tackle possible missing stain scenarios via
a high-resolution generative adversarial network (GAN). Our contribution is three-fold: (1)
a single deep network framework is proposed to tackle missing stain in MxIF; (2) the pro-
posed “N-to-N” strategy reduces theoretical four years of computational time to 20 hours
when covering all possible missing stains scenarios, with up to five missing stains (e.g., “(N-
1)-to-1”, “(N-2)-to-2”); and (3) this work is the first comprehensive experimental study of
investigating cross-stain synthesis in MxIF. Our results elucidate a promising direction of
advancing MxIF imaging with deep image synthesis.
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1. Introduction

Inflammatory bowel disease (IBD), such as Crohn’s disease (CD), leads to chronic, relapsing
and remitting bowel inflammation Baumgart and Sandborn (2012), with high prevalence
(3.1 million Americans) Dahlhamer et al. (2016). The ∗ ∗ ∗ ∗ ∗∗ project, with Multi-
plexed Immunofluorescence (MxIF) collected [∗ ∗ ∗ ∗ ∗∗], provides the unique opportunity
of mapping cell number, distribution, and protein expression profiles as a function of the
anatomical location of IBD. MxIF is an emerging imaging technique that stains and scans
extensive numbers of antibodies iteratively, providing comprehensive biomarkers to segment
and group different cells from a single tissue section Lin et al. (2015); Stack et al. (2014).

However, the unprecedented rich information at the cellular level via MxIF is accom-
panied by new challenges for imaging. In this work, we employ a well-established staining
protocol employed for years with static stain-wash cycles to collect the MxIF data [∗∗∗∗∗∗].
One well-known challenge is the considerable depletion of the scarce tissue via extensive
rounds of staining and bleaching (called the “missing tissue” problem). Moreover, the Im-
munofluorescence (IF) imaging can globally fail for particular rounds (called the “missing
stain” problem) (Fig. 1), which is an extreme case of missing tissue (occurs 3% of the chance
as the empirical observation). In this study, we focus on the “missing stain” problem . It
is often impractical to recover the missing pieces of information physically. However, it
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Figure 1: There are two challenges of MxIF imaging staining technique: (1) missing stain and (2) missing
tissue. Briefly, the missing tissue (upper middle panel) is inevitable during iterative staining
and destaining on the same tissue. The missing stain occurs when image quality of a specific
channel (stain) is not acceptable, which is an extreme case of missing tissue (occurs 3% of the
chance as the empirical observation). The right panel shows the ratio of missing tissue across
9 MxIF stained data. In this work, we focus on the missing stain issue and aim to study 11
structural channels (antibody markers) of MxIF to restore missing stain images.

is a remarkable waste if the subjects with missing stains are excluded from the analysis.
Another motivation is to see if there are signal redundancy across the structural stains,
which means if we do need so many rounds of stains.

Such scenarios motivate us to develop digital solutions to recover the missing information
using deep learning, especially with the image synthesis approaches that have been success-
fully deployed in various medical imaging applications. The rationale is that the missing
signals might be reconstructed by complementary anatomical information, provided by all
available signals from the same tissue as shown in Fig. 1.

Generative adversarial networks (GANs) have been broadly validated in medical image
synthesis Yu et al. (2020). Prior studies have applied GANs to perform image synthesis
in radiology, across the brain Lee et al. (2019); Dar et al. (2019); Zhou et al. (2020); Yu
et al. (2019); Zeng and Zheng (2019), thorax Jiang et al. (2018, 2019), abdomen Huo et al.
(2018a,b); Yang et al. (2020) and leg Kim et al. (2020). In the past few years, GANs have
been applied to histopathology images. For example, Lahiani et al. refined the CycleGAN
model to reconstruct H&E whole slide imaging and reduce the tiling artifact Lahiani et al.
(2019). Jen et al. utilized patchGAN to convert the routine histochemical stained PAS
to multiplex immunohistochemistry stains Jen et al. (2021). Hou et al. used GAN and
a task-specific CNN for H&E images synthesis and segmentation masks Hou et al. (2017).
Zhang et al. designed a class-conditional neural network to transform two contrast enhanced
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unstained tissue autofluorescence images to statin a label-free tissue sample Zhang et al.
(2020). Bayramoglu et al. integrated cGAN transforming unstained hyperspectral tissue
image to their H&E equivalent Bayramoglu et al. (2017). However, very few, if any, studies
have been performed to deal with MxIF stains (modalities). Moreover, the previous methods
were trained on relevant small patches (from 256×256 to 384×384 pixel tiles), which would
not be ideal for high-resolution pathological images (e.g., 1024×1024).

In this paper, we propose a novel multi-channel high-resolution image synthesis ap-
proach, called pixN2N-HD, to tackle any possible combinations of missing stain scenarios
in MxIF. Our contribution is three-fold:

1. A single deep network is proposed to tackle missing stain synthesis task in MxIF.

2. The proposed “N-to-N” method saves 2,000-fold computational time (from four years
to only 20 hours) compared with training missing stain specific models (e.g., “(N-1)-
to-1”), without sacrificing the performance.

3. To our knowledge, this is the first comprehensive experimental study of tackling the
missing stain challenge in MxIF via deep synthetic learning.

2. Methods

The pix2pix GAN Zhu et al. (2017) is a broadly accepted conditional GAN framework for
pixel-wise image style transfer. In the pix2pix design, the discriminator D is trained to
distinguish a real and fake image synthesized by the generator G. Meanwhile, the generator
G is trained to fool the discriminator. The training is performed by using the following
GAN loss:

LGAN (G,D) = E(x,y)[log D(x, y)] + E(x)(log(1 −D(x,G(x)))) (1)

where x is the input image, y is the real image. To perform image systhesis on larger images
(e.g., >1024×1024 images), a high-resolution version of pix2pix GAN, called pix2pixHD,
was invented with two-levels coarse to fine design Wang et al. (2018). However, there is
still a technical gap to directly apply pix2pix framework to the missing stain task in MxIF.
Briefly, if we directly put all channels as both inputs and outputs, the pix2pix GAN will be
degrade to an AutoEncoder, with limited capability to synthesize missing stain. To enable
effective N-to-N image synthesis, we introduce the “random gate” (RG) strategy to control
the available input and output modalities for the proposed pixN2N-HD GAN. Briefly, 11
input channels and 11 output channels were all used in our network design, where each
channel represented one marker.

2.1 Missing Stain Synthesis (PixN2N-HD)

The random gate is defined as δ, an 11-dimensional 0-1 binary controller to control the data
flow. The overall idea is to formulate available channels (δ ) as inputs, and simulate missing
channels (δ) as outputs. δ(i) represent the ith channel’s gate. When the δ(i) is turned on,
the data in the ith channel will be fed into the generator. Alternatively, if the δ(i) is turned
off, we feed the network with a blank image with all zero values (Fig. 2). Customizing the
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Figure 2: The proposed random gate (RG) strategy in pixN2N-HD is presented. Only 4 markers are shown
for illustration. δ andδ̄ are two inverse gates that controls the data flow in each channel.

“on/off” of δ provides heterogeneous views of the same data input. For the output side,
we reverse the gate δ to δ to only evaluate the performance of pseudo missing channels.
With the random gate, let’s set capital letter M indicate that a set of images are used, and
X = δ(M) corresponds to the x in Eq.(1), and Y = δ̄(M) corresponds to the y in Eq.(1),
then the Eq.(1) is generalized to the following formulas:

LGAN (G,D) = E(X,Y)[log D(X,Y)] + EX(log(1 −D(X, G(X)))) (2)

min
G

max
D1,D2,D3

∑
k=1,2,3

LGAN (G,Dk) (3)

where Dk is a k level multi-scale discriminator Wang et al. (2018). A feature matching
loss (Eq.(4)) is added to stabilize the training of the generator by matching intermediate
feature maps in the different layers of the discriminators from real and synthesized images.

LFM (G,Dk) = E(X,Y)

T∑
i=1

1

Ni

[∥∥∥D(i)
k (X,Y) −D

(i)
k (X, G(X))

∥∥∥] (4)

where D
(i)
k is the ith layer of Dk, Ni is the number of elements in each layer and T denotes

the total number of layers. Then the final objective function is

min
G

max
D1,D2,D3

∑
k=1,2,3

LGAN (G,Dk) + λLFM (G,Dk) (5)
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where λ controls the weight of GAN loss and feature matching loss.

3. Data and Experimental Setting

3.0.1 Datasets.

Nine sample biopsies have been collected from 3 CD patients and 2 healthy controls. Our
dataset includes 1 active disease and 3 non-disease biopsies from the ascending colon area,
and 5 non-disease biopsies from terminal ileums. The electronic informed consent was
obtained from all participants. The protocol was also approved by the Institutional Review
Board. The MxIF markers were stained in the following order - DAPI(first round), Muc2,
Collagen, β catenin, pEGFR, HLA A, PanCK, Na-KATPase, Vimentin, SMA, and γActin.
Note that the functional markers were not evaluated in this study since the patterns of the
functional markers were more disease dependent. The standard DAPI based registration
and auto florescence correction were applied to build pixel to pixel relationship from different
markers McKinley et al. (2017). To ensure effective learning, we computed the tissue masks
that covered the tissue pixels which contained all markers across all staining rounds. The
MxIF data is scanned with 20X magnification, and as a result, the pixels of 9 samples masks
were 52,090,325 ± 21,243,895 (mean ± stdev). We applied the masks to each images and
preprocessed with group-wise linear normalization.

3.0.2 Environmental Setting and implementation detail.

We randomly chose 4 samples for training, and 5 samples for testing. For the training data,
we first split each image into 1024×1024 patches without re-sampling, and then concate-
nated the same positions markers’ patches together as one data input. During datasets
preparation, if any channel contains patch with less than 5% non-zero intensity pixels, we
removed the whole patch in the training datasets. Finally, we randomly split 80 percent of
the datasets for training (in total 180 patches) and the remaining 20 percent for validation
to select the best model epoch. All models were trained by 200 epochs and saved every
10 epochs. The structure similarity index measure (SSIM) was selected to evaluate the
synthesis performance. When testing N-to-N and M-to-(N-M) type of models, we synthe-
sized each marker using the validation set and found the epoch with the best average SSIM
performance. The SSIM was computed on concatenated patches that have tissues refer-
enced by tissue masks. All experiment models were trained on NVIDIA Titan Xp 12GB
graphical card and implemented in PyTorch (https://github.com/NVIDIA/pix2pixHD).
The coarse G was trained on 512×512 tile sets with batchSize = 4. The fine G was trained
on 1024×1024 tile sets with batchSize = 1. We chose MSE loss for the GAN loss. In
general, each generator’s input/output channels only take/generate a specific marker. The
input/output channels in our work are set in a sequence of the staining order. Each in-
put/output channel should only take/generate a specific marker. For the random gate
setup, as Fig. 2 illustrated, if a marker is randomly chosen as missing in one iteration (gate
closed), then the marker’s corresponding input channel will be fed with a blank patch, and
the corresponding output channel will generate the synthesized marker image. In contrast,
if a marker is available (gate open), the marker’s relevant output channel output will be
wiped blank. Then the loss calculation in the discriminator only considers the synthesized
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output of missing stain(s). The other parameters were set by default as described by Wang
et al. (2018).

4. Results

Missing stain (missing one stain). The goal of this experiment is to proof of the concept
of the random gate strategy. Fig. 3 presents synthesis results that only one biomarker (stain
channel) is missed. All permutations of leave one out synthesis (11 independent “10-to-1”
models) and the proposed pixN2N-HD model were evaluated. We evaluated three types of
models (1) (N-1)-to-1 synthesis with pix2pixHD to synthesize each marker (stain channel)
from all remaining markers, containing 11 independent 10-to-1 models for each missing stain
scenario, each model has 10 input channels with 1 output channel; (2) (N-1)-to-1 synthesis
with random gate (10-to-1-RG) model was evaluated to repeat the above experiments,
again, there are in total of 11 separate models, 10 input channels with 1 output channel,
and we random close up to 9 gates on input channels part; and (3) our proposed N-to-
N synthesis pixN2N-HD model (a single “11-to-11” model) was evaluated using a single
model with 11 input channels and 11 output channels, and we random close up to 10 gates
on input channels side. The overall SSIM results (from high to low) of stain-types are
in the following order: SMA, Collagen, Na-KATPase, Muc2, pEGFR, Vimentin, HLA A,
PanCK, γActin, β catenin, DAPI. The Wilcoxon signed-rank test showed that there were
no significant differences (p<0.05) across any pairs of methods across all markers. The
results demonstrated that the single model trained by pixN2N-HD achieved comparable
performance relative to the task specific models. This study also showed that the random
gate did not harm the performance in (N-1)-to-1 setting.

For the sensitivity test, we trained six pixN2N-HD at the same time with different
random gate selection (from random close 1 gate, random close up to 2 gates, up to 3
gates, up to 4 gates, up to 5 gates to no limitation). The average SSIM performance is
0.816 and different model’s performance variance is within 2%. And we did not observe
significant completion time difference (20 hours), which is similar to train one pix2pixHD
model using one NVIDIA Titan Xp 12GB graphic card. Given 11 markers with 2046 possible
combinations, training a single pixN2N-HD can potential conserve 2,000-fold computation
time (4 years) than state of art (all possible pix2pixHD baseline models) using existing
hardware circumstances.

Missing stain (missing multiple stains). This experiment aims to validate the scal-
ability of our proposed method to cover different missing stains scenarios. Fig. 4 shows more
challenging settings in which more than one stain is missed. We compared the performance
between task specific models and a single N-to-N model. Briefly, we directly applied the
trained pixN2N-HD model (from missing one stain) to synthesize 2 to 5 missing stains.
Meanwhile, we train four more separate pix2pixHD models as baselines to cover the same
missing stain settings (9-to-2, 8-to-3, 7-to-4 and 6-to-5). The result from Fig. 4 indicates
that the random gate did not harm the performance in M-to-(N-M) setting.
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Figure 3: The left panel shows the qualitative synthesis results of having one missing stain channel. The
presented patch region of interest is randomly selected with 1024*1024 resolution. The right
panel shows the quantitative results with SSIM. Wilcoxon signed-rank test shows the perfor-
mance across difference methods is not significant.

Figure 4: Quantitative results for the missing multiple stains of two models: five M-to-(N-M) use cases
between pix2pixHD and pixN2N-HD. The Wilcoxon signed rank test is calculated for each
marker’s M-to-(N-M) cases without finding significant difference
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5. Discussion and Conclusion

In this work, we develop a single holistic “N-to-N” conditional GAN to synthesize the
missing stain of MxIF imaging. The PixN2N-HD framework with random gate is proposed
to enable a single model for all possible missing stain scenarios. The performance of the
“N-to-N” model is comparable to the standard “(N-1)-to-1” models (via Pixe2Pix-HD),
while requiring 2,000-fold less computational time (from 4 years to 20 hours on one 12 GB
GPU) for covering possible permutations of 11 structural stains.

During the MxIF data staining phase, which and what types of markers are failed is
unpredictable. Regarding clinical utility, specifically, limited size of tissue samples, such
as endoscopic biopsies, and the degradation of the tissues caused by repeated cutting of
sections is an impetus for MXIF. Our proposed method has the potential to be generalized
and applicable to any other staining protocols (i.e., using different combinations of markers).
Moreover, because of the limited sample size, synthetic data generation is a crucial adjunct
strategy to complement staining optimization.

The primary purpose of adding the random gate is to refine the model training strategy
so that the single N-to-N pix2pixHD model can meet different missing stain scenarios on
each training iteration. The data patch size we used is 1024x1024, which is larger than the
other histopathology image synthesis studies, as shown in the literature review. There are
in total 2,725 patches for training/validation/testing, and we claim that it is sufficient for
the training/testing a framework. Our next step is to investigate the batch effect across the
MxIF staining multiple batches. For the experiment results, we state that comparing differ-
ent the SSIM results of different markers is not sufficient. For instance, if a marker contains
less tissue with more background (i.e., SMA, Muc2), it might yield higher SSIM, but it does
not necessarily mean it is easier to reconstruct than other markers with lower SSIM. So the
the fair evaluation should be to compare different methods on each markers individually.
Furthermore, the current results cannot demonstrate which stains are redundant.

The most critical future step is to evaluate the performance of real and synthesized im-
ages for downstream tasks (e.g., cell segmentation), since that would provide a subjective
evaluation of the proposed method compared with SSIM. The next technical step would be
to integrate training missing stain and missing tissue synthesis to single multi-task model.
Another future direction is to evaluate the performance of the PixN2N-HD against func-
tional markers in MxIF. For instance, we might apply the technique to generate complete
membrane masks to assess if it results in more precise segmentation of clumped cells and
ultimately creating full cell maps of IBD.
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