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Abstract

More recently, there has been a surge of interest in employing machine learning
approaches to expedite the drug discovery process where virtual screening for hit
discovery and ADMET prediction for lead optimization play essential roles. One
of the main obstacles to the wide success of machine learning approaches in these
two tasks is that the number of compounds labeled with activities or ADMET
properties is too small to build an effective predictive model. This paper seeks to
remedy the problem by transferring the knowledge from previous assays, namely
in-vivo experiments, by different laboratories and against various target proteins.
To accommodate these wildly different assays and capture the similarity between
assays, we propose a functional rationalized meta-learning algorithm FRML for
such knowledge transfer. FRML constructs the predictive model with layers of
neural sub-networks or so-called functional regions. Building on this, FRML
shares an initialization for the weights of the predictive model across all assays,
while customizes it to each assay with a region localization network choosing the
pertinent regions. The compositionality of the model improves the capacity of
generalization to various and even out-of-distribution tasks. Empirical results on
both virtual screening and ADMET prediction validate the superiority of FRML
over state-of-the-art baselines powered with interpretability in assay relationship.

1 Introduction

Drug discovery brings new candidate medications to billions of people, helping them live longer,
healthier and more productive lives. One crux step in drug discovery is virtual screening, which
is a fast and cost-effective method that computationally predicts the activity value of a compound
against the target protein of a disease. As shown in Figure[I(a)] the hits screened out of large drug
libraries of compounds by a virtual screening algorithm are further empirically validated against their
in-vivo activities, resulting in leads. After optimizing the ADMET properties (absorption, distribution,
metabolism, excretion and toxicities) of the leads, we obtain the drug candidates.

There have been both traditional machine learning [33]] and deep learning approaches [4] devoted
to virtual screening, while the prediction performance (i.e., the hit rate) is far from satisfactory.
The crucial challenge lies in that the number of training compounds whose activities have been
tested against the target protein of focus is severely limited. Though state-of-the-art deep learning
algorithms typically rely on supervision in the form of thousands to millions of annotated data, it is
highly expensive and almost impossible for in-vivo experiments to collect a sufficient set of drug
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compounds with activity labels. In fact, virtual screening as a computational pre-screening method is
desired precisely because of the prohibitive costs of an in-vivo experiment (i.e., an assay). Fortunately,
previous assays conducted by different laboratories around the world towards a wide variety of
diseases with different biological target proteins together provide a rich repository for learning the
interactions between a protein and a compound. For example, as COVID-19 and SARS share high
amino acid sequence identity, previous assays against SARS 3CLpro and PLpro proteases contribute
a lot to learning a predictive model for COVID-19 [16].

We are highly motivated to transfer the knowl-
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institutions and against various target proteins, ©f activity values for 10 randomly selected assays.
the compounds tested and the distribution of activity values vary a lot from assay to assay. As
evidenced in Figure[I(b)] there exists a large discrepancy between distributions of activity values
for 10 randomly selected assays. The prevalent fine-tuning strategy in transfer learning [21], trains
a single model on previous assays and fine-tunes it to the target assay — it struggles in predicting
accurately for each assay and confuses the most similar assays to the target with the others.
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Gradient-based meta-learning [7]] has been a promising practice, which learns from previous assays an
initialization for a shared predictive model and adapts the model from this initialization to each assay.
while the initialization is learned so that the adapted model of each assay generalizes well on testing
compounds, maintaining a shared initialization is still insufficient to handle wildly varying assays [37]]
and pinpoint the most similar assays. Recent efforts on heterogeneous meta-learning deal with this
issue by modulating the shared initialization to different assays via task embedding [20} [35| [37].
Instead of only differentiating initializations, motivated by compositionality and brain functional
specialization in neuroscience [5}26], we aim to push ahead with distinguishing neural sub-networks,
or so-called functional regions, each of which consists of a disparate set of parameters. This
advancement brings at least the following two benefits. First, the similarity between assays is more
accurately measured in a divide-and-conquer manner — only modulation for the initialization weights
in those overlapping regions between two assays are considered for comparison. Second, the reduced
parameter space prevents the predictive model from overfitting to a limited set of training compounds.

We name the resulting meta-learning algorithm as FRML. The predictive model of the FRML is
dissected into a sequence of hierarchically organized functional regions. Provided with an assay,
the contrastive assay representation network forwards the learned assay embedding to a region
localization network. The region localization network locates the most relevant functional regions
for the assay in a recurrent manner, to be consistent with the hierarchical organization of functional
regions. In the stage of meta-training on previous assays, both the region localization network and the
weights for initializations of all functional regions are jointly learned. When it comes to meta-testing,
FRML quickly adapts to the target assay via easy assembly of the located regions.

We summarize our major contributions as follows. (1) We propose a novel meta-learning algorithm
FRML, which pushes a step forward from differentiating initializations to differentiating neural
sub-networks between tasks; (2) We demonstrate the effectiveness of FRML on not only virtual
screening but also the task of ADMET prediction. (3) FRML respects the key principle of machine
learning models in healthcare — it is interpretable in the relationship between assays.

2 Notations and Problem Definition

In this section, we define some notations and discuss our problem. In drug prediction, we consider
each task 7; as an assay which refers to an in-vivo experiment on a group of compounds, and all tasks



are sampled from the distribution p(7"). Note that we use either task or assay alternatingly in the
remainder of this paper. Assuming that we have NV historical assays {7;}:; as meta-training assays,
we aim to generalize a meta-learner from these meta-training assays and quickly adapt it to unseen
target assays {7;}*, even with limited amount of annotated data. Here, we define the process of
learning well-generalized meta-knowledge from the meta-training assays as the meta-training phase

and the adaption process on the target assays as the meta-testing phase.

Concretely, for each task 7;, a support set of training samples D; = {X7, Y} = {(x°,y°)s,; };L;l

and a query set of testing samples Df = {X?, Y7} = {(x%,y%)i,; };il are sampled from 7;, where
n; and n represent the number of support and query samples, respectively. Denote that the feature
space is X’ and the label space is ), a predictive model (a.k.a., base learner) f : x — y is defined to
map a sample x € X to its predicted value y € ). For each task 7;, the base learner f is updated
from the initialization 6, by minimizing the expected empirical loss £ on Dj, i.e., ming L(6; D;),
resulting in the optimal parameters ;. Specifically, the loss function £ is defined as mean square error
(.., X(xyyeps 1fo(x)—¥l[3) or cross-entropy loss (i.e., — 3 y)eps logp(y[x, fo)) for regression
and classification problems, respectively. In the meta-training phase, the query sets {D?}Y, of
all meta-training assays are used to optimize the initialization of the base learner, so that the final
initialization 65 is well-generalized. 6; can be further adapted to each meta-testing task 7; via the
corresponding support set D;. Formally, we define our problem as,

¥ = argmaxp(Y{[X1. D3 foy). .
t

The well-generalized model initial weights 65 encrypt the comprehensive knowledge learned from
meta-training assays. We will detail how to learn 65 in Section[3]

3 Methodology

In this section, we introduce the proposed framework FRML whose overview is illustrated in Figure[2]
The goal of FRML is to improve the generalization ability for a wide range of and even out-of-
distribution target assays with limited training samples via discriminating functional regions between
assays. To achieve this goal, we dissect the base learner into a sequence of functional regions. Given
a new assay, we propose a region localization network taking the learned assay representation as input
to locate and assemble the most relevant functional regions. Subsequently, FRML can be quickly
adapted to the novel assay on the assembled functional region set. In the following subsections, we
will first discuss the predictive models for virtual screening and ADMET classification as the base
learner and our meta-learning pipeline. Then we elaborate the details of three key components (i.e.,
assay representation learning, localization strategy, and region localization network).
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Figure 2: Overview of the proposed FRML. In each assay 7;, the recurrent region localization
network, guided by its learned representation t;, locates the most relevant functional regions (darker
blocks) and assembles them (trace: input— 605, — 62, — 055 — 631) in the dissected base learner fj.

3.1 Predictive Models for Drug Discovery and Gradient-based Meta-Learning

We build predictive models for virtual screening and ADMET prediction, both of which are crucial
for drug discovery. The input to the predictive models is a drug compound represented by 1024
dimensional Morgan fingerprints 28], i.e., x € R'%2*, For virtual screening, the output is the activity
value of the compound against the target protein in this assay, i.e., y € R, while the output for



ADMET prediction could be a discrete category or a real value. In our empirical study, we only
consider those ADMET prediction tasks of classification, i.e., y € C, where C denotes the set
of property categories. Building on these, we construct a neural network consisting of two fully
connected layers as the predictive model, which also serves as the base learner f. We denote the
weights for the base learner f to be 6.

With the base learner f, we introduce gradient-based meta-learning as the backbone meta-learning
framework, which regards the initialization 6, for the base learner as the transferable knowledge.
Apparently, it enjoys the advantage of being independent of problem types. Specifically, here we
illustrate the gradient-based meta-learning by using model-agnostic meta-learning (MAML) [6] as an
example. In the meta-training phase, MAML obtains the assay-specific model for each assay 7; by
updating the parameters 6 via the support set D; in a few gradient steps starting from 6o, i.e.,

91' = 90 - OéVgﬁ(@; Df) (2)

Here « denotes the learning rate for assay adaptation. Though only one gradient step is presented as
exemplary in Eqn. (), it is easy to extend to several gradient steps. The crux is to evaluate the adapted
assay-specific model 6; on the query set D{ and leverage the result as a feedback to meta-update the
initializations 0, as, )

0o + 00 — f+ > L(0;D), A3)

Tiep(T)

where f is the learning rate for meta-updating. As a result of the meta-training phase, we get the
well-generalized initialization g for the base learner. In the meta-testing phase, the specific model 6,
for each target assay 7; with the support set D; is achieved by a few gradient steps starting from the
learned initialization 6§, i.e., 6; = 05 — aVoL(05; D7). Finally, the performance is evaluated on the
query set Df of the target assay 7;. Without loss of generality, we again take MAML as the backbone
meta-learning framework of FRML and detail each component in the following.

3.2 Contrastive Assay Representation Learning

Learning the representation of assay 7; is a prerequisite to determining the functional regions that are
specific to the assay. Following previous works [35}137]], we represent the assay with a representation

vector t; € R by aggregating all training samples of the support set Di={(x*, y*)J }ﬁl, where an
aggregator AGG is involved. The aggregator consists of a mapping function denoted as MF (e.g.,
recurrent network, convolutional network) that first encodes each individual sample into a dense
representation vector, and a sample-level mean pooling layer to summarize all samples to generate
the assay representation t;. Note that the pooling guarantees the assay representation to be invariant

of the permutation of samples. Formally, we define the aggregation process as,

_ o L5 Nyl
ti = AGG(D}) = o ; MF(F(x]) &y7), @)
where F(-) is an embedding function that transforms the input features into a low-dimensional vector.
Both the embedded input features and the label are concatenated by the operator &. We will provide
more details on the definitions of F(-) and MF(-) later in Section 4]

The loss function to train the parameters F(-) and MF(-) could be Eqn. (3) only. Unfortunately, it is far
from enough to learn a robust assay representation: first, the gradients back-propagated through the
base learner and the region localization network tend to be too small for training to work effectively;
second, the assay representation and the region localization are interleaving, so that the objective in
Eqn. (3) takes them as a whole regardless of the accuracy for each of them. To overcome this limitation,
we are motivated to impose another loss function on the assay representation network directly. The
key intuition is that each set of samples in an assay provides a partial view of the assay, and the assay
representation is expected to be consistent across views. This motivates the constrastive objective
— different views of the same assay have similar task representations, while the representations of
views from different assays should be different. Specifically, we create different views of assay 7; by
randomly splitting D; into n. sets of size n; /n.. By defining ¢, := ((v — 1)n] /ne, - -+ ,un /n.), we
obtain n. subsets of equal size, i.e., D] = U¢; 0. We can now formulate the contrastive learning
objective as follows:

& exp (®(AGG(05"), AGG(O5")))
La=3)_ > [10g SN, exp (®(AGG(05"), AGG(OE*)))

i=1 1<u<v<n,

; (&)



where @ is a similarity measure function. In our experiments, we adopt the dot product, i.e.,
®(a,b) = aTb. This contrastive loss function pushes the representations of different assays apart and
meantime stabilizes the assay representation.

3.3 Localization Strategy

The assays are measured by different experimenters on different equipment, so that they are expected
to have widely distributed assay representations. Given an assay with its representation, in this
section, the localization strategy sets out to locate and assemble the functional regions that are
specific to this assay. Before detailing the localization strategy, we first dissect the initialization 6,
of the base learner into K functional regions. These functional regions are dissected in a layer-wise
manner to maintain the hierarchical structure of the neural network. For each layer I, we denote
its corresponding functional regions as 6y = {6}, }ﬁfll:o, where M' represents the total number of
functional regions in the [-th layer and 3", M' = K.

Following the hierarchical representation in neural networks, we locate and assemble these functional
regions in a hierarchical manner — each functional region at layer [ + 1 receives signals from the
functional regions at layer . For each assay T;, denoting the representation of functional region m' in
layer [ as h{"l, we define the representation of functional region m'*! in layer [ + 1 to be:
1+1 I+1 Ml 1 I+1 1 A/Il l I+1
W' =" () T ), Y pt T =1, (©)
ml=1 ml=1

where f mitt (-) represents the mapping function for functional region m'*". p;”l—””’“ defined as
the probability of functional region m' being assembled to m!*! is crucial; a value of pg"l*m’“ =1
suggests that functional region m' should be included for assay 7;. Obviously, the probability

p{”lﬁmul varies from assay to assay, so that we model it as a function of the representation t;, i.e.,
l +1
pi" 7™ =RG(t:), (7
where RG(-) represents the region localization network we detail in the next subsection.

3.4 Region Localization Network

An ideal region localization network is expected to satisfy two criteria, including high representational
capacity and consistency with the hierarchical structure behind functional regions. To meet the
criteria, we propose a recurrent region localization network, where a recurrent neural network (GRU
as exemplary) is used. The input to the recurrent neural network at step [ + 1 is the combination of
assay representation t; and the assembly probabilistic set p! of layer I, where p! = {pr*' =™ |m!~! €
[1, M'='],m' € [1, M']}. Consequently, the hidden representation at step I + 1 is,

B! = GRU(t: @ pi; i) W, + by, @®)
where W; € R¥MM™ gnd b, e R™M'M™ are learnable parameters and #! =
Tl e (1, MY, mt e [1, MY} e RY>M'M™ The hidden representations at step
I + 1, in return, determine the assembly probability at layer [ + 1. Note that the assembly probability
is expected to be as close to the bounds of its range (0, 1) as possible, so that only the most pertinent
functional regions are located. To this end, we apply the Gumbel-softmax estimator [10}[18] which
models the categorical distribution to ¥;, i.e.,

{,le—>m
2

pmlﬂml‘*'l N exp((&ml_)m“rl + q;nl_)mHl)/T) (&)
' ML exp((Fs' o gt omtthy )
where 7 is the temperature and qi”l_”"l“ is sampled from the Gumbel distribution, i.e., qi”l_”"l“ ~

Gumbel(0, 1).

Combining the meta-learning loss in Eqn. (3) and the contrastive loss in Eqn. (3)), we arrive at the
overall objective function of FRML defined as:
Hgnﬁau = Hgn Z L + /\£Cl7 (10)
Tiep(T)
where the hyperparameter A balances between two losses and © represents all learnable parameters.
For better understanding of our framework, we show the meta-training process in Algorithm[T]and
the meta-testing process in Appendix A.



Algorithm 1 Meta-training Process of FRML

Require: {M*, ..., M"}: # of functional regions of each layer; o, §: learning rates; A, \o: item
factors in loss
1: Randomly initialize ©
2: while not done do
3:  Sample a batch of assays from p(7)

4:  for all 7; do

5 Sample D;, D from 7T;

6: Get assay representation t; in Eqn. (@) and the reconstruction loss £; via Eqn. ()

7 Use Eqn. (8) to compute {F;,...,#"}

8 Calculate {p;,...,pr} by Eqn. (9) and get the assembled trace across functional regions

9: Use gradient descent to update parameters based on the learned trace: 6; =0y —aVoL(0; D;)
10:  end for

11: Update © <~ © — Ve X7 c i1y £(05Df) + AL (D)
12: end while

4 Experiments

In this section, we empirically evaluate the effectiveness of FRML on two diverse drug discovery
tasks: drug activity prediction and ADMET property prediction. We consider comparison of the
proposed FRML with three categories of baselines. The first category simply using base learner
without assay adaptation, including FC-Individual and FC-All. The second category is knowledge
transfer with assay adaptation: Fine-tuning, MAML [6l], ANIL [24]], ANIL++ [3]. In the second
category of methods, we also compared FRML with Prototypical Network (ProtoNet) [31] and
Matching Network (MatchingNet) [34]] for classification tasks, i.e., ADMET property prediction.
The last category is heterogeneous meta-learning methods, including MMAML [35]], HSML [37],
ARML [38]. Detailed descriptions of all baselines are provided in Appendix B and the detailed
hyperparameters for both applications are listed in Appendix D.

4.1 Drug Activity Prediction
4.1.1 Dataset Description

For drug activity prediction, we use the dose-response activity assays from ChEMBL[1]], where 4,276
assays are selected in this problem. Here, we randomly sample 100 assays as the meta-testing set, 76
assays as the meta-validation set, and the rest of assays for meta-training. The random splitting is
repeated four times to construct four assay groups, named Assay Group L, II, III, IV, respectively. A
few support and query drug compounds are available for each assay. In terms of the features for each
drug compound, we use 1,024-dimensional Moragn fingerprint implemented in RDKit [12]]. For each
assay T;, we calculated the coefficient of determination (R?) between the predicted value Y? and
the ground truth value Y¢. The median and mean R? values of all meta-testing assays are reported.
We adopt another widely used metric for evaluating whether a virtual screening model is usable in
practice, i.e., the number of assays with R? > 0.3. More detailed information and data statistics are
summarized in Appendix C.1.

4.1.2 Overall Performance

The performance of FRML and the baselines are reported in Table[I] In this experiment, FRML
incorporates ANIL and ANIL++, while all other heterogeneous meta-learning algorithms (e.g.,
MMAML) incorporate ANIL. Note that ANIL++ is modified from ANIL to improve stability. From
the results in Table[I] we obtain the key observations: (1) The performance of FC-Individual is
inferior to that of other methods, indicates that involving the data from source assays benefits the
performance; (2) Gradient-based meta-learning methods (MAML, ANIL, ANIL++, heterogeneous
methods, and FRML) achieve significantly better performance than Fine-tuning, corrugating our
motivation that Fine-tuning may confuse the most similar assays to the target with the others; (3) In
most cases, heterogeneous methods (MMAML-ANIL, HSML-ANIL, ARML-ANIL, FRML-ANIL)
achieve better performance than homogeneous meta-learning models, showing the effectiveness of
integrating assay-specific knowledge transfer; (4) Our proposed FRML-ANIL++ achieves the best per-



Table 1: Performance of drug activity prediction (Measured by mean R?, median R? and #R? > 0.3).

Model Assay Group I Assay Group II Assay Group III Assay Group IV
Mean Med. R?>0.3|Mean Med. R?>0.3|Mean Med. R? >0.3| Mean Med. R? >0.3

FC-Individual 0.141 0.064 16 0.114 0.060 10 0.112 0.046 10 0.118 0.047 10
FC-All 0.228 0.131 30 0.187 0.103 23 0.199 0.103 28 0.252  0.160 35
Fine-tuning 0.251 0.166 37 0.197 0.124 24 0.219 0.121 31 0.266 0.194 37
MAML 0.291 0.182 38 0.232 0.158 29 0.265 0.191 36 0.302 0.256 46
ANIL 0.299 0.184 41 0.226 0.143 30 0.268 0.199 37 0.304 0.282 48
ANIL++ 0.367 0.299 50 0.315 0.252 43 0.335 0.289 48 0.362 0.324 51
MMAML-ANIL 0.292 0.205 42 0.231 0.154 31 0.276 0.187 37 0.308 0.260 46
HSML-ANIL 0.295 0.192 41 0.234 0.145 34 0.277 0.196 35 0.306 0.254 47
ARML-ANIL 0.299 0.204 43 0.233 0.159 32 0.270 0.191 39 0.311 0.267 46
FRML-ANIL (ours) 0.310 0.226 44 0.237 0.162 35 0.285 0.207 40 0.322 0.287 49
FRML-ANIL++ (ours) | 0.375 0.328 52 0.327 0.311 51 0.345 0.315 51 0.372 0.349 56

Table 2: Ablation study on drug activity prediction.

Model Assay Group I Assay Group II Assay Group III Assay Group IV
Mean Med. R?>0.3|Mean Med. R?>0.3| Mean Med. R?>0.3|Mean Med. R*>03
ANIL++ 0.367 0.299 50 |0.315 0.252 43 |0.335 0.289 48 [0.362 0.324 51
Ablation I (w/o cl) 0.371 0.315 51 |0.318 0.263 45 [0.338 0.305 49 |0.368 0.338 54
Ablation III (w/o localization) | 0.369 0.301 50 | 0.317 0.263 47 |0.336 0.291 49 |0.368 0.329 53
Ablation II (RNN -> FC) 0.372 0.303 52 |0.326 0.299 50 |0.341 0.306 50 |0.367 0.333 53
FRML-ANIL++ (ours) |[0.375 0.328 52 [0.327 0.311 51 |0.345 0.315 51 |0.372 0.349 56

formance in all four assay groups. This possibly results from that differentiating neural sub-networks
reduces the parameter space, which improves the generalization capability and further benefits the
performance. Besides, integrating FRML with ANIL also achieves consistent improvements, showing
its compatibility with different backbone meta-learning models.

4.1.3 Ablation Study

To further show the effectiveness of the proposed modules in FRML, we conduct comprehensive
ablation studies by comparing FRML with three ablation models described as follows. First, we
consider an ablation model (Ablation I (w/o cl)) with the contrastive loss removed. Second, we design
Ablation II (w/o localization) to show that the improvements of FRML is caused by knowledge
localization rather than increasing the capacity of baseline. Third, we change the recurrent structure
to a plain localization network and propose Ablation III (RNN->FC), where fully connected layers
with softmax are utilized to learn the assembly probability set {p;},...,pr}.

We evaluate the ablation models on all four assay groups and report the performance in Table[2] Note
that FRML is also included in comparison. From the results in the table, we have the following three
findings: (1) removing the contrastive loss hurts the performance, which indicates the effectiveness of
the contrastive loss in learning well-differentiated assay representations; (2) the superiority of FRML
over abalation II demonstrates that the improvements stem from efficient knowledge structuring
rather than larger model capacity; (3) compared to the plain localization network, the performance
gain of recurrent region localization network demonstrates its superiority by predicting the assembly
probability in a hierarchical way.

4.1.4 Analysis

0.40

0.40{ —e— Group| —e— Group Ill
Effect of the Number of Functional Re- 0.38 Growpll === Grow V| 5
0.36

gions. We analyze the effect of the number
of functional regions and illustrate the results

Mean R?

0.34 k/y/“‘_—’
0.25

in Figure[3(a)] In this figure, we observe that 032 020 = e

(1) if the number of functional regions is too R R R B 005 02 050 075
11 (e g 1) lt may be insufﬁCIent to Cap Num. of Functional Regions Ratio of Sampled Support Set

small (e.g. 1), -

ture the structures across assays. (2) when we @ (b)

continually increase the number of functional ~Figure 3: (a): Num. of functional regions w.r.t. the
regions, the results keep stable or even slightly mean RR* on Assay Group I, II, IIL, IV. (b): Perfor-
decrease, which are consistent with our find- mance w.r.t. support set ratio on Assay Group L.



ings that the gains of FRML arise out of the effective knowledge structuring instead of the increase of
the model capacity.

Besides, we also conduct an experiment using a dif- Table 3: Performance of FRML with differ-
ferent number of functional regions in each layer. ent knowledge blocks in each layer on drug
Here, we use two functional blocks in layer one and activity prediction. (2, 4) represents that we
four functional blocks in layer two. The results are re- use 2 blocks in layer 1 and 4 blocks in layer 2.
ported in Table[3] We observe that the performance is G-I represents group I. Mean R? is reported.
slightly worse than the strategy of using three layers
for each layer. One potential reason is that the Mor- #ofBlocks | G-I G-Il GII G-IV
gan fingerprint features have covered enough low- (2,4 0369 0324 0344 0367
level features, and it might be more useful to add

more functional blocks iI;g the first layer. 33 ‘ 0.375 0327 0345 0372

Effect of the Ratio of the Support set. In order to

show the superiority of FRML under different ratios of the support set, we analyze the performance
w.r.t. the support set ratio and show the results in Figure[3(b)] When we down-sample the support
set to contain 5%, 25%, and 50% of all compounds in an assay, FRML consistently achieves better
performance than the most competitive baseline ANIL++. This marks the capability of FRML in
handling the data scarcity problem in healthcare.

Analysis of Localization Strategy. We further analyze the localization strategy, where the assembled
traces of six randomly selected meta-testing assays from Group II are illustrated in Figure [d{(a)-(f) and
their corresponding biological properties are reported in the right table of Figure 4| Here, we observe
that the six assays are mainly located in three different traces. Besides, assays 1640791, 701282,
1639959, 302952 activate the same trace 1—21. The trace groups are consistent with their biological
properties reported in the table. First, assays 1640791 and 701282 are both cell-based functional
assays targeting GPCRs by evaluating the antagonistic activity of compounds to their downstream
cAMP pathway. 1639959 and 302952 are both cell-based functional assay of membrane transporters.
All four assays are targeting membrane proteins (receptors or transporters). Thus, they share the first
layer but select different traces in the second layer. Second, different from the above four assays,
assays 147797 and 1520 choose a completely different path since they are single protein assays that
directly evaluate the effect of compounds to their protein targets. The consistency of localization
results and biological properties further verify the effectiveness of FRML for distinguishing different
domains via localization strategy.
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Figure 4: Left Figure (a)-(f) show the located traces from six meta-testing assays of Group II, where
their corresponding biological information are reported in the right table. Darker blocks and blue
links represent located functional regions and assembled links, respectively.

4.2 ADMET Property Prediction
4.2.1 Dataset Description & Evaluation Metric

Besides the drug activity prediction, we further evaluate FRML on ADMET property prediction. The
AMDET Prediction problem is constructed by combining 4 benchmark datasets from the Molecu-
leNet [36] with biophysiology and physiology targets. The 4 datasets are MUV [29]], SIDER [[11]],
Tox21 and ToxCast [27]. Each property prediction is a binary classification task. All the properties
from MUYV, SIDER, Tox21, and 22 properties form ToxCast are involved in the experiment, resulting
in 68 tasks. We randomly sample 42 tasks for meta-training and use the remaining 26 tasks for
meta-testing. Considering the data balance, for each tasks, we randomly sample only partial instances
from the majority category to match the size of minority data, together with all the minority data, to



Table 4: Performance of ADEMT property prediction (averaged accuracy with 95% confidence
interval are reported).

Model

SIDER

Tox21

MUV

ToxCast

FC-Individual
FC-All

52.12 £ 0.81%
67.13 £ 0.89%

51.25 £ 0.37%
68.63 £ 0.84%

52.91 £ 0.67%
55.04 + 1.06%

62.75 + 1.27%
70.82+ 1.61%

Fine-tuning
MAML
ProtoNet
MatchingNet
ANIL
ANIL++

67.60 £ 0.89%
67.69 £ 0.81%
68.03 £ 1.16%
66.69 £+ 1.04%
67.92 £ 0.89%
68.04 £+ 0.86%

68.84 + 0.84%
69.12 £+ 0.84%
69.29 + 1.30%
68.72 + 1.04%
69.81 £ 0.85%
68.94 + 0.92%

55.41 + 1.05%
56.66 + 1.09%
55.19 £ 1.18%
55.15 + 1.07%
55.13 + 1.22%
56.95 £ 1.13%

71.04 + 1.59%
72.53 + 1.64%
72.10 £ 1.52%
71.39 + 1.33%
72.09 + 1.78%
72.66 £ 1.67%

MMAML-ANIL
HSML-ANIL
ARML-ANIL

68.57 £ 0.82%
69.15 + 0.87%
68.94 £+ 0.84%

69.86 £+ 0.90%
69.98 + 0.88%
70.07 £ 0.91%

58.06 £ 1.21%
57.94 +£1.18%
58.99 + 1.16%

72.10 £+ 1.55%
71.73 £ 1.46%
72.08 + 1.56%

69.89 + 0.87%

70.85 £ 0.85%

59.94 £+ 1.00%

73.56 £ 1.58%

FRML-ANIL (ours)
FRML-ANIL++ (ours)

70.01 +£ 0.86% |71.07 £ 0.91% | 60.66 + 1.09% | 74.02 £ 1.57%

form the task dataset. In this experiment, following the conventional few-shot learning protocol [[7],
we apply 2-way classification with 5-shot support samples for each task. The details of the dataset
descriptions are available in Appendix C.2. As for the model performance, it is measured by averaged
classification accuracy.

4.2.2 Results

We report the performance of FRML and the baselines in Tabled] Similar findings to that of drug
activity prediction experiments are observed. Therefore, we again confirm the effectiveness and
importance of integrating task-specific knowledge transfer in the proposed FRML. A specific finding
is that: all heterogeneous meta-learning models and FRML obtain higher gain of performance on
MUYV than on the three datasets. In particular, FRML achieves significant performance improvement
on MUYV dataset. This may be caused by the category difference of MUV from the other three
datasets which we will detail in the next subsection. Besides, we conduct similar ablation studies to
those for drug activity prediction and report the results in Table[5} Similar results are observed, again
demostrating the effectiveness of FRML in differentiating different properties.

Table 5: Ablation study of ADEMT property prediction (averaged accuracy with 95% confidence
interval are reported).

Model | SIDER |  Tox2l \ MUV | ToxCast
ANIL++ 68.04 £ 0.86% | 68.94 +0.92% | 56.95 + 1.13% | 72.66 + 1.67%
Ablation I (w/o cl) 68.79 + 0.84% | 69.65 + 0.86% | 58.70 + 1.18% | 72.86 + 1.68%

Ablation II (w/o localization) | 68.30 £ 0.83%

69.42 £ 0.92%
70.08 £ 0.87%

57.33 £ 1.04%
59.54 £+ 1.00%

72.70 £ 1.55%
73.41 + 1.68%

Ablation ITT (RNN->FC) 69.15 4 0.80%
FRML-ANIL++ (ours) | 70.01+0.86% | 71.07 £ 0.91% | 60.66 = 1.09% | 74.02 = 1.57%

4.2.3 Analysis of Localization Strategy . . = .
31 32 31 32 31 32 31 32
In this part, we analyze the localization strat- — — ~

21 22 21 22 21 22 21 22

egy for ADMET prediction. In Figure[5] we ~ ~ _ ~
show the assembled traces of four meta-testing t t : :
tasks sampled from different sub-datasets. (a):SIDER  (b): Tox21  (c): MUV (d): ToxCast

Figure 5: (a)-(d) show the assembled traces (blue
links) among located regions (darker blocks) from
four meta-testing tasks sampled from SIDER, Tox21,
MUY, ToxCast, respectively.

In these figures, tasks from different sub-
domains are located in different trace groups
(i.e., the three datasets SIDER, Tox21, Tox-
cast select 1 +21—32—4 while MUYV selects



1—22—31—4, respectively). Compared to SIDER, Tox21, Toxcast, we notice that MUV selects a
different trace, which matches the natural difference between MUV and the other three datasets. The
category of the MUV dataset is a biophysics while that of the other three are physiology. Besides,
MUV is designed for validation of virtual screening techniques, while the other three are designed
for measuring different targets.

5 Related Work

The goal for meta-learning is to learn a set of meta-knowledge that facilitates the learning process of
new tasks. There are two mainstream categories of meta-learning approaches. The first category of
algorithms, called gradient-based meta-learning algorithms, regards the meta-knowledge as initial-
izations for the base learner [[7H9, 13} 114} 19, 25/130]]. As for the second category, i.e., metric-based
meta-learning algorithms, the aim is to learn a transferable metric space for the meta-learner as well
as a lazy learner [[15 131} 132,134} 139]]. However, metric-based algorithms only handle classification
problems. In light of this, we consider gradient-based algorithms which are flexible and general
enough to be independent of problem types. The majority of gradient-based meta-learning algorithms
focus on maintaining a shared set of meta-knowledge (i.e., the initializations for the weights) learned
from meta-training tasks. To enhance the ability of generalization to more complicated heterogeneous
tasks (e.g., tasks sampled from various distributions), recent studies customize the shared model
weight initializations to different tasks modulating the globally-shared weight initializations to be
task-specific [20, 135} 137, 38]]. However, our proposed FRML goes further than customization of
weight initializations — it also differentiates neural sub-networks and enhances the generalization
capability for significantly different tasks.

Up to now, only a few studies have explored the application of meta-learning to address the problem
of limited labeled data in healthcare. The two representative metric-based meta-learning algorithms,
i.e., MatchingNet [34] and ProtoNet [31]], have been used for protein binding prediction [2] and
dematological disease diagnosis [22]]. As we mentioned above, metric-based meta-learning algorithms
do not work for the regression of activity values we focus on in this work. On the other hand, Zhang
et al. [40], Qiu et al. [23], and Luo et al. [17] applied the widely used model agnostic meta-learning
(MAML) algorithm [7]] to the problems of clinical risk prediction, genomic survival analysis, and
protein binding, respectively. Yet, the proposed FRML accommodates a wide range of assays
effectively by tailoring sub-networks for each assay.

6 Conclusion

In this paper, we aim to tackle the challenge of data insufficiency in drug discovery by transferring the
knowledge from historical assays. Specifically, we propose a novel meta-learning framework, FRML,
to effectively learn the transferable knowledge and meantime adapt to various assays. FRML dissects
the base learner into hierarchically organized functional regions. The representation of a target assay
is forwarded to the recurrent region localization network to locate and assemble the assay-specific
functional regions. The experiments on virtual screening and ADMET prediction demonstrate the
effectiveness of FRML, and the analyses onThe the localization strategy further verify its sound
interpretability in capturing the similarity between assays.

The limitation of this work is that we have not investigated the robustness of the proposed FRML. If
the proposed framework is easy to be attacked, it may cause negative social impacts. For example, if
the framework suggests misleading results, it will delay even harm drug discovery progress. We will
investigate the problem in the future.
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