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ABSTRACT

Real-world out-of-distribution (OOD) data exhibit broad, continually evolving
distributions, rendering reliance solely on in-distribution (ID) data insufficient for
robust detection. Consequently, methods leveraging auxiliary Outlier Exposure
(OE) data have emerged, substantially enhancing generalization by jointly fine-
tuning models on ID and large-scale OE data. However, many existing approaches
primarily enforce orthogonality between ID and OE features while pushing OE
predictions toward near-uniform, low-confidence scores, thus overlooking the
controllability of representation geometry. We propose Vast Predefined Classifiers
(VPC), which constructs a pre-specified Orthogonal Equiangular Feature Space
(OEFS) to explicitly separate ID and OOD representations while capturing the
rich variability of OOD features. We employ evidential priors to align ID features
with their class-specific Equiangular Basic Vectors (EBVs), thereby preserving ID
performance. In parallel, a new VEBV loss encourages OE features to explore
the subspace spanned by Vast EBVs (VEBVs), enabling a rich characterization
of diverse OOD patterns. This dual optimization, coupled with the prescribed
geometric representation space, promotes optimal orthogonality between ID and
OOD representations. Furthermore, we introduce the VPC Score, a discriminative
metric based on the L2 activation intensity of features over the predefined classifiers.
Extensive experiments across diverse OOD settings and training paradigms on
benchmarks including CIFAR-10/100 and the ImageNet-1k, demonstrate strong
and robust performance, validating VPC’s effectiveness.

1 INTRODUCTION

In open-world scenarios, deep neural networks (DNNs) must not only accurately recognize in-
distribution (ID) samples encountered during training, but also robustly distinguish and detect unseen
out-of-distribution (OOD) data (Hendrycks & Gimpel, 2016; Liu et al., 2020; 2021). Because real-
world OOD data are often diverse and continuously evolving (Ye et al., 2025), relying solely on ID
data during training is no longer sufficient to achieve desirable robustness. A recent and effective
strategy is therefore to leverage large-scale auxiliary outlier-exposure (OE) data and fine-tune the
model jointly on ID and OE samples, which markedly improves generalization to OOD (Hendrycks
et al., 2018; Ming et al., 2022a; Wang et al., 2024a; Chen et al., 2021; Wang et al., 2023; Du et al.,
2022; Bai et al., 2023; Katz-Samuels et al., 2022).

However, typical outlier-exposure (OE)-based pipelines either encourage the model to produce
uniform, low-confidence predictions on OE data (Hendrycks et al., 2018), or regularize post-hoc
scores such as maximum softmax probability (MSP) and energy values(Hendrycks & Gimpel,
2016; Liu et al., 2020). Beyond logit-based, gradient or neighborhood-based detectors provide
complementary signals (Huang et al., 2021; Sun et al., 2022), but these methods fail to explicitly
construct a controllable representation geometry during training (Hendrycks & Gimpel, 2016; Liu
et al., 2020; Liang et al., 2017; Sun et al., 2021; Wang et al., 2022a; Djurisic et al., 2022). This
leads to two issues: (i) unstable and incomplete separation between in-distribution (ID) features and
OE features, which may bias predictions toward ID classes at test time (Wu et al., 2024); and (ii)
limited representational capacity for the rich and evolving spectrum of OOD patterns, a problem that
becomes more prominent especially when the semantic space scales up (Huang & Li, 2021).
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Figure 1: Overview of the Proposed VPC OOD Detector. During joint ID/OE fine-tuning or one-stage
training, the normalized feature space is aligned to an Orthogonal Equiangular Feature Space (OEFS)
with predefined EBVs/VEBVs; LENC aligns ID to EBVs, LVEBV attracts OOD into the VEBV
subspace, LOC enforces separation, and OODness is scored by the L2-based VPC Score, defined as
the absolute difference between the L2 activation magnitudes of the two subspaces.

To overcome these limitations, we propose Vast Predefined Classifiers (VPC) , a framework that
explicitly represents OOD variability by allocating a large set of predefined optimal classifiers distinct
from ID classifiers. Our design is inspired by the phenomenon of Neural Collapse (NC)(Papyan et al.,
2020), where the class means of features and classifiers approach a Simplex Equiangular Tight Frame
(ETF) (Han et al., 2021), as well as by the equiangular basis vectors (EBVs) based feature alignment
optimization to induce this phenomenon (Shen et al., 2025; Markou et al., 2024). The central intuition
is that, to preserve the ID decision structure while accommodating the diversity of real OOD under
joint ID/OE fine-tuning, the representation space must embed a controllable geometric prior with
scalable capacity. Naive uniformization of OE outputs may fail to ensure stable separability and lacks
sufficient and directional coverage for complex OOD modes (Yang et al., 2025; Tang et al., 2025).

To this end, we anchor OOD discrimination on a predefined, extensible collection of EBVs as class
prototypes and define an Orthogonal Equiangular Feature Space (OEFS) on a high-dimensional unit
hypersphere. In OEFS, EBVs enforce within-class collapse for ID, while abundant VEBVs realize a
broad, readily activatable OOD subspace. An evidential prior guided alignment mechanism stabilizes
ID features toward EBVs, and an OOD-oriented subspace attraction together with orthogonality-based
isolation encourages activation within the VEBV subspace while maintaining geometric separation
from the ID subspace. This induces an interpretable pattern: ID activates EBVs, whereas OOD
activates VEBVs. Building on this, the VPC Score computes the L2 activation over the predefined
classifier space as a class-agnostic OOD measure, decoupled from any particular ID classifier head.

Our contributions are summarized as follows:

• We propose Vast Predefined Classifiers (VPC) framework: using an Orthogonal Equiangular
Feature Space (OEFS) to structurally decouple ID and OOD representations, and introducing
a controllable, expandable geometric subspace for OOD without sacrificing ID performance.

• We propose an evidential prior guided Neural Collapse (ENC) loss that stabilizes ID rep-
resentations, and an OOD-oriented VEBV subspace attraction loss with an orthogonality
constraint regularization loss to maintain consistent ID–OOD separation.

• We introduce the VPC Score as a class-agnostic metric, achieving robust discrimination
across diverse OOD modes and outperforming MSP/uncertainty scores.

• We obtain consistent performance gains on representative OOD detection settings, validating
the synergistic benefits of geometric priors and evidential modeling.

2 RELATED WORK

Auxiliary OE Data based OOD Detection. With partial OOD data, Outlier Exposure (OE) im-
proves detection by co-training on ID and external samples. Classic OE (Hendrycks et al., 2018)
drives OOD outputs toward uniformity; follow-ups either design loss/energy/contrastive objec-
tives (Liu et al., 2020; Bai et al., 2023) or mine/synthesize harder outliers to sharpen the bound-
ary (Ming et al., 2022a; Chen et al., 2021; Wang et al., 2024a; 2023; Zheng et al., 2023). A paral-
lel line of research focuses on post-hoc models to further enhance separability, such as meth-
ods based on feature processing (Sun et al., 2021; Liang et al., 2017; Wang et al., 2022a;b), activa-
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tion shaping (Djurisic et al., 2022), density estimation (Peng et al., 2024), or energy-based scor-
ing (Zhang et al., 2022). However, most OE methods emphasize output-level uniformization and
provide little control over the geometry of representations. Our VPC remedies this by imposing a
geometric prior and allocating OOD features to a predefined, expandable subspace, trained jointly
with OE.

Evidential Deep Learning. Evidential deep learning (EDL) characterizes classification uncertainty
via a Dirichlet evidence formulation (Sensoy et al., 2018), drawing on Dempster Shafer theory
and subjective logic (Sentz & Ferson, 2002; Jøsang, 2016). It has seen broad adoption in open-set
recognition, continual learning, and detection (Gao et al., 2024; Bao et al., 2021; Wang et al., 2024b;
Yu et al., 2024; Aguilar et al., 2023), and has been generalized to regression for modeling both
aleatoric and epistemic uncertainty (Amini et al., 2020). Departing from the common view of EDL
as an output-layer calibration tool, we embed evidential prior into feature–prototype alignment:
controlling the rate of evidence generation to ensure stable convergence of ID features to EBVs while
mitigating overbias caused by optimization interference from OE samples and hard outliers. Coupled
with our geometric constraints, VEBV subspace attraction and orthogonal separation from the ID
subspace, evidential prior driven alignment produces a consistent train–test discrimination behavior.

Neural Collapse. Neural Collapse (NC) captures late-stage geometry within-class collapse, simplex
ETF means, and classifier means alignment(Papyan et al., 2020; Han et al., 2021) which has been
exploited in incremental/continual, few-shot, and large-scale settings(Yang et al., 2023; Seo et al.,
2024; Shen et al., 2025), but is sensitive to imbalance and drift (Markou et al., 2024; Yan et al.,
2024; Fang et al., 2021). For OOD, NC inspired two main approaches: one leverages the emergent
phenomenon, such as in PFS (Wu et al., 2024), by applying constraints to the learned ID classi-
fier weights. The second approach leverages the ideal geometry as prototypes (Shen et al., 2025)
. Recently, Zou et al. (2025) utilized EBVs as a foundational framework for OOD detection and
corrected the angular misalignment between EBV prototypes and data distributions. Furthermore,
this framework relates to Prototype Learning (PL), but with critical differences: most PL methods
(Peng et al., 2025; Lu et al., 2024) rely on dynamic prototypes that are learned and updated, with
OOD detection dependent on these dynamic ID representations. LPO (Zhou et al., 2021) introduces
learnable OOD prototypes via manifold mixup. However, the limited diversity of internally syn-
thesized features risks prototype collapse due to insufficient semantic separation from ID classes.
While Bojanowski & Joulin (2017) and Saadabadi et al. (2024) also exploit fixed target structures for
unsupervised learning or dynamic assignment, Our VPC method adopts a fixed prototype strategy: we
predefine prototypes based on the ideal NC geometry and keep them fixed. This avoids the instability
of dynamic prototypes while providing a more active geometric constraint than Wu et al. (2024).
Crucially, we expand the ID-presetted EBVs into our OEFS to simultaneously represent both ID and
OOD, yielding interpretable separation and a straightforward L2 activation-strength scoring rule.

3 METHOD

3.1 PRELIMINARY

Formalizing the OOD Detection Paradigm. Out-of-distribution (OOD) detection constitutes a
fundamental challenge in deploying reliable deep learning systems, particularly in safety-critical
domains where models must recognize and reject inputs beyond their operational design envelope
(Hendrycks & Gimpel, 2016; Liu et al., 2020). Consider a classification task with C classes over input
space X and a corresponding ID label space Y = {1, . . . , C}. The in-distribution (ID) data (x, y) is
drawn from a joint distribution Din(X ,Y). Out-of-distribution (OOD) data xood is drawn from a
marginal distribution Dout(X ), which originates from a different generative process Dout(X ,Yout).
The core assumption of OOD detection is that the OOD label space Yout is disjoint from the ID label
space, i.e., Y ∩ Yout = ∅. The objective is to design a decision function Gλ : X 7→ {ID,OOD}
based on a scoring function S:

Gλ(x) =

{
ID if S(x, f) ≥ λ

OOD if S(x, f) < λ

where λ is calibrated on ID data to achieve a target true positive rate. In practice, S can be instantiated
by MSP (Hendrycks & Gimpel, 2016), energy (Liu et al., 2020), Mahalanobis distance (Lee et al.,
2018), or k-NN distances (Sun et al., 2022).
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Revisiting the Outlier Exposure Paradigm. Recent advances demonstrate that exposing mod-
els to auxiliary OOD data during training significantly enhances OOD detection robustness
(Hendrycks et al., 2018; Liu et al., 2020; Wang et al., 2024a). Let Daux

out denote an auxiliary OOD
dataset satisfying supp(Daux

out ) ∩ supp(Din) = ∅ and supp(Daux
out ) ̸= supp(Dout). The seminal Out-

lier Exposure (OE) framework (Hendrycks et al., 2018) regularizes the feature space by minimizing
the KL divergence between OOD predictions and a uniform distribution:

LOE(x) = − 1

C

C∑
j=1

log fj(x) = H(f(x),uC), (1)

where H denotes cross-entropy, fj(x) is the j-th element of the model output, and UC is the uniform
distribution over C classes. The composite optimization objective becomes:

min
f

E(x,y)∼Din
LCE(x, y)︸ ︷︷ ︸

ID classification

+λEx∼Daux
out

LOE(x)︸ ︷︷ ︸
OOD regularization

(2)

This formulation establishes the foundational paradigm for OE-based OOD-aware training (Ndiour
et al., 2020; Du et al., 2022; Wu et al., 2023). However, this paradigm suffers from fundamental
limitations. First, it forces a capacity-limited ID classifier (designed for K classes) into a conflicting-
objective dilemma: it must simultaneously perform fine-grained ID discrimination while rejecting
massive, diverse OOD data via uniform, low-confidence predictions.

More critically, the persistent OOD regularization severely impedes the alignment of ID features.
While ID features should ideally converge to a Neural Collapse (NC) state for maximal separability,
the OE objective interferes with this convergence by forcing the classifier to also manage OOD inputs.
The resulting feature space is thus a compromise, sacrificing the compactness and stability of ID
representations. This analysis reveals a critical need for a solution beyond mere output regularization
that can structurally decouple ID and OOD representations. This would protect the ID feature
geometry’s convergence while providing a dedicated OOD space. Overcoming this limitation is the
primary motivation for our VPC framework.

3.2 ORTHOGONAL EQUIANGULAR FEATURE SPACE

The core intuition of VPC is to explicitly engineer the feature space geometry, creating a structural
separation between ID and OOD representations. We move beyond OOD detection paradigms that
rely solely on ID class weights/classifiers. Instead, we propose the Orthogonal Equiangular Feature
Space (OEFS), a pre-specified representation space that is conceptually partitioned a prior.

This space is mathematically constructed from a single set of K + V total prototype vectors, W =
{wi}K+V

i=1 , generated on the unit hypersphere. To ensure maximal and uniform separation between
all prototypes, these vectors are structured as a simplex Equiangular Tight Frame (ETF) (Papyan
et al., 2020; Yang et al., 2023; Markou et al., 2024; Shen et al., 2025). This construction provides the
geometric foundation for the OEFS and is defined by the relation:

w⊤
k1
wk2

=
K + V

K + V − 1
δk1,k2

− 1

K + V − 1
, ∀ k1, k2 ∈ {1, . . . ,K+V }, (3)

where δk1,k2
= 1 if k1 = k2 and 0 otherwise. This guarantees all vectors share the same ℓ2 norm and

any two distinct vectors have an inner product of −1/(K+V − 1).

The key to our method is the functional partitioning of this unified set of prototypes. The first
K vectors are designated as Equiangular Basic Vectors (EBVs); they form the ID subspace and
serve as the stable, fixed prototypes for the K in-distribution classes. The remaining V vectors are
designated as Vast EBVs (VEBVs), establishing a dedicated OOD subspace. Crucially, this subspace
is geometrically orthogonal to the ID boundaries to ensure non-interference with ID tasks, while
simultaneously offering a vast array of distinct geometric anchors to resolve the fine-grained semantic
variations inherent in OOD data.

Building on this preset geometry, we adopt a dual feature-alignment strategy (Sec. 3.3, 3.4) to induce
distinct activation patterns on EBVs and VEBVs for ID and OOD samples, respectively. This drives
ID features toward Neural Collapse geometry while granting OOD features sufficient directional
resolution to differentiate complex patterns; theoretical discussion of Neural Collapse is provided in
the appendix A.1. This geometric separation is measured by our VPC Score 3.5, a discriminative
metric designed to quantify the activation of a feature within these distinct subspaces.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.3 EVIDENTIAL PRIOR GUIDED FEATURE ALIGNMENT

In guiding ID features toward the target subspace, a central challenge is that OE features with rich
variability can interfere with the model at any time and destabilize the representation space. To
counter this, we propose an Evidential Neural Collapse framework that reformulates feature alignment
as a geometry-driven evidence accumulation process.

Unlike standard evidential deep learning (Sensoy et al., 2018; Jøsang, 2016; Sentz & Ferson, 2002)
where evidence stems from learnable logits g(x | θ), we instantiate a geometry-driven evidence
metric derived directly from the cosine proximity between features and the predefined EBVs. This
couples the accumulation of evidence with the rigor of geometric alignment:

ei,j = exp
(

gj(x
id
i ; θ)︸ ︷︷ ︸

Learnable
Classifier Logits

)
Predefined VPC
========⇒ e∗i,j = exp

(
m̂id⊤

i ŵebv
j /τ︸ ︷︷ ︸

Geometric
Alignment Logits

)
. (4)

Here, the evidence magnitude e∗i,j reflects the angular alignment intensity of the normalized feature
m̂id

i towards the j-th prototype ŵebv
j , scaled by a temperature τ .

Crucially, we fuse this geometric evidence with a uniform prior to form the Dirichlet parameters
α∗
i,j = e∗i,j + 1. This unit prior acts as an angular regulator: it injects a uniform geometric buffer

that prevents the model from collapsing onto specific directions too abruptly due to optimization
interference from OE samples. By maximizing the following ENC likelihood, we achieve a calibrated
convergence where evidence growth is strictly governed by reliable geometric support:

LENC(x
id
i ) =

K∑
j=1

yi,j
(
logS∗

i − logα∗
i,j

)
, (5)

where S∗
i =

∑K
k=1 α

∗
i,k is the total evidential strength and yi,j is the one-hot label. This objective

effectively mitigates over-confidence and ensures stable ID-EBVs alignment, which we further
theoretically justify via optimality and stability analyses in Appendix A.2.1 A.2.2.

3.4 DUAL-SUBSPACE FEATURE ATTRACTION AND ORTHOGONALITY CONSTRAINTS

To fully exploit the benefits of abundant auxiliary OE samples for OOD detection, we move beyond
the traditional OE loss that only enforces uniformization over ID classifier weights, and establish a
dual mechanism of subspace attraction and orthogonality constraints. On the one hand, OE features
are guided to enter the VEBV subspace so as to enrich OOD representations; on the other hand,
they are enforced to be orthogonal to ID EBVs to preserve ID classification performance. For
the subspace-attraction objective, we design the VEBV loss by quantifying the Euclidean distance
between the normalized OE feature m̂oe

i and the subspace spanned by the VEBVs:

LVEBV(x
oe
i ) = −

√√√√ V∑
j=1

(
m̂oe⊤

i ŵvebv
j

)2
, (6)

where ŵvebv
j denotes the j-th VEBV in OEFS. The summand is the squared cosine similarity between

the normalized OE feature and each VEBV; the square root (an ℓ2 norm) measures the activation
strength within the VEBV subspace. Minimizing the negative of this norm maximizes the activation
of outlier features in the VEBV subspace, forcing them to distribute activation over multiple VEBVs
rather than collapsing onto a single direction, thereby capturing the diversity of OOD modes.

In addition, we introduce an orthogonality constraint (OC) loss to strictly regulate OE feature
alignment within the ID subspace. Formally, it minimizes the KL divergence between the predicted
distribution over ID EBVs and a uniform distribution:

LOC(x
oe
i ) = − 1

K

K∑
j=1

log(poe→ebv
j ). (7)

Here, poe→ebv
j is computed by applying Softmax to the scaled cosine similarities sj = (m̂oe⊤

i ŵebv
j )/τ .

By virtue of the Simplex ETF structure, this uniformity objective effectively translates into a geometric
orthogonality constraint (proof provided in Appendix A.3). This ensures that OE features reside in the
null space of ID prototypes, safeguarding ID convergence and creating rigorous decision boundary.
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3.5 DISCRIMINATIVE SCORING VIA ACTIVATION INTENSITY

The geometric partitioning induced by the OEFS enables a principled and discriminative scoring
function. This function quantifies the distinct activation patterns of ID and OOD features across the
predefined classifier subspaces. We define two metrics based on the L2 norm of a feature’s projection
onto the ID and OOD subspaces, respectively:

ℓebv
2 (xi) =

∥∥∥[m̂i
⊤ŵebv

1 , . . . , m̂i
⊤ŵebv

K

]∥∥∥
2
,

ℓvebv
2 (xi) =

∥∥∥[m̂i
⊤ŵvebv

1 , . . . , m̂i
⊤ŵvebv

V

]∥∥∥
2
.

(8)

Here, ℓebv
2 (xi) and ℓvebv

2 (xi) measure the activation intensity of a feature m̂i within the ID (EBV) and
OOD (VEBV) subspaces, respectively.

Following optimization with our proposed losses, ID features align with their EBVs, yielding high
ℓebv
2 and negligible ℓvebv

2 activations. OOD features are conversely guided into the VEBV subspace,
producing the opposite pattern. This resulting dichotomy motivates the VPC Score:

SVPC(xi) = −α · ℓebv
2 (xi) + β · ℓvebv

2 (xi), (9)

Consequently, the VPC score serves as a continuous measure of OOD likelihood, allowing for the
separation of ID and OOD samples via a simple threshold.

In contrast to methods that rely on the statistical properties of logits implicitly learned, the VPC Score
is derived directly from the prior geometric structure of the feature space. By measuring the relative
activation intensity across orthogonal subspaces, it provides a robust and interpretable measure of
distributional shift, grounded in the model’s explicit geometric constraints.

4 EXPERIMENTS

In this section, we first evaluate our method on the large-scale ImageNet-1k benchmark and the
widely-used CIFAR-10/100 benchmarks (Krizhevsky et al., 2009) to assess its performance (Sec. 4.1).
We then examine a variety of model architectures to further verify its effectiveness (Secs. 4.2, 4.3, and
4.4). Additional ablation studies are reported in Sec. 4.5. More theoretical analysis, results appear in
appendix A B. We begin by detailing the experimental setup.

OOD Datasets. For CIFAR benchmarks, we use 300K auxiliary samples from 80 Million Tiny Images
(Torralba et al., 2008) and evaluate on five standard test datasets with disjoint categories: SVHN
(Netzer et al., 2011), LSUN (Yu et al., 2015), iSUN (Xu et al., 2015), Texture (Cimpoi et al., 2014),
and Places365 (Zhou et al., 2017). For ImageNet, we utilize the ImageNet-21k-p validation subset as
auxiliary data and test on four widely-recognized datasets: iNaturalist (Van Horn et al., 2018), SUN
(Xiao et al., 2010), Places (Zhou et al., 2017), and Textures (Cimpoi et al., 2014).

Pre-training Setups. We employ Wide ResNet-40-2, ResNet-18, and DenseNet-121 (Zagoruyko
& Komodakis, 2016; He et al., 2016; Huang et al., 2017) as backbones for the CIFAR benchmarks,
training for 200 epochs with a batch size of 128, initial learning rate 0.1, momentum 0.9, weight decay
0.0005, and a cosine learning-rate schedule. For the ImageNet-1k benchmark, in the comparative
experimental methods, we use standard pre-trained ResNet-50 (He et al., 2016) and ViT-B-16 models
as backbones. In the VPC experiments, we follow the standard practice for EBV-based training
(Shen et al., 2025). Unlike the conventional cross-entropy + learnable classifier head, our method
directly maximizes the similarity between features and predefined classifiers. Accordingly, we remove
the final classification layer and add an extra projection layer to match the dimensional requirements
of OEFS; see the Appendix A.4 B.3 for details.

Two-stage Training Setting. Fine-tuning setup. For the CIFAR-10 and CIFAR-100 benchmarks, we
initialize the network with the best-performing checkpoint from the pretraining stage and fine-tune
for 50 epochs with auxiliary OE data (Hendrycks et al., 2018) (ID batch size 128; OOD batch size
256; initial learning rate 0.07; momentum 0.9; weight decay 0.0005; cosine annealing schedule). For
the ImageNet benchmark, we use pre-trained models from Pytorch and pre-trained models following
the (Shen et al., 2025) training setup as the initial networks, respectively, and then fine-tune for 5
epochs with ID/OOD batch size 64, initial learning rate 1e-4, momentum 0.9, weight decay 0.0005,
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Table 1: Results on ImageNet-1k benchmark with auxiliary OOD data. The best result is in bold.

Model Method
Far-OOD Datasets Near-OOD Datasets

ID Acc↑iNaturalist Textures SUN Places Average
FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

ResNet50

OEHendrycks et al. (2018) 48.60 88.72 58.85 82.60 61.75 82.90 70.70 80.55 59.98 83.69 76.00
Energy-OELiu et al. (2020) 49.40 88.40 59.60 82.25 62.40 82.70 71.30 80.25 60.68 83.40 75.75
DALWang et al. (2024a) 48.00 89.05 58.00 82.95 61.30 83.15 67.82 80.75 58.78 83.98 75.90
PFSWu et al. (2024) 46.40 89.20 56.50 83.10 61.00 83.25 67.50 80.95 57.85 84.13 76.02
Ours: VPC 43.50 91.20 56.00 83.00 60.20 83.10 66.30 81.50 56.50 84.70 76.11

ViT-B-16

OEHendrycks et al. (2018) 42.15 90.38 52.45 85.85 65.80 82.20 70.35 80.85 57.69 84.82 80.02
Energy-OELiu et al. (2020) 42.75 90.05 53.15 85.50 66.25 81.95 70.95 80.50 58.28 84.50 79.85
DALWang et al. (2024a) 40.65 90.86 51.15 86.10 65.07 82.30 70.25 80.90 56.78 85.04 80.09
PFSWu et al. (2024) 40.85 90.80 51.30 86.05 65.35 82.25 70.20 80.95 56.93 85.01 80.13
Ours: VPC 40.00 91.10 51.30 86.00 65.20 82.30 68.30 81.40 56.20 85.20 80.32

Table 2: Results on CIFAR-10 and CIFAR-100 with WideResNet-40-2. The best result is in bold.

Method
Far-OOD Datasets

SVHN LSUN iSUN Textures Places365 Average
FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

CIFAR-10
With vanilla training

MSPHendrycks & Gimpel (2016) 44.22 93.61 27.56 96.12 69.62 85.29 60.02 88.53 65.68 86.25 53.42 89.96
EnergyLiu et al. (2020) 31.81 94.65 4.60 98.96 50.06 89.75 49.68 90.09 42.28 90.82 35.69 92.85
MahaLee et al. (2018) 42.67 90.71 18.96 96.46 28.86 93.76 26.22 92.81 86.78 69.14 40.70 88.58
KNNSun et al. (2022) 44.76 92.55 27.38 95.34 43.84 91.24 37.64 92.82 49.23 87.89 40.57 91.97

With contrastive learning
CSITack et al. (2020) 17.37 97.69 6.75 98.46 12.58 97.95 25.65 94.70 40.00 92.05 20.47 96.17
CIDERMing et al. (2022b) 6.76 98.44 7.45 98.76 26.03 95.93 22.85 95.75 43.70 91.94 21.36 96.16
KNN+Sun et al. (2022) 3.28 99.33 2.24 98.90 17.85 97.65 10.87 97.92 30.63 94.98 12.97 97.32

With auxiliary OOD data
OEHendrycks et al. (2018) 1.95 99.23 0.80 99.67 1.95 99.36 3.70 99.23 8.80 97.76 3.44 99.05
Energy-OELiu et al. (2020) 1.90 99.32 0.95 98.99 3.35 98.72 4.00 98.85 8.55 97.42 3.75 98.66
DALWang et al. (2024a) 1.40 99.36 0.95 99.53 1.35 99.02 3.50 98.99 8.65 97.39 3.17 98.84
PFSWu et al. (2024) 1.10 98.74 0.35 99.61 1.35 99.20 2.85 98.58 7.75 97.17 2.68 98.66
Ours: VPC 0.85 99.62 0.45 99.50 1.10 99.50 2.25 99.38 6.70 97.91 2.27 99.18

CIFAR-100
With vanilla training

MSPHendrycks & Gimpel (2016) 74.79 79.64 54.72 86.46 93.85 56.92 88.76 68.48 83.24 71.95 79.07 72.69
EnergyLiu et al. (2020) 70.18 87.15 17.15 97.05 91.37 65.50 84.77 76.72 78.91 75.77 62.75 80.44
MahaLee et al. (2018) 77.73 78.01 98.46 63.44 47.74 88.76 54.93 82.53 97.22 54.11 75.22 73.37
KNNSun et al. (2022) 71.86 83.31 78.89 70.09 79.60 70.86 72.89 80.05 80.91 71.33 76.83 75.13

With contrastive learning
CSI∗Tack et al. (2020) 64.50 84.62 25.88 95.93 70.62 80.83 61.50 86.74 83.08 77.11 61.12 85.05
CIDERMing et al. (2022b) 16.47 96.23 45.45 81.64 66.01 82.21 49.79 87.48 82.66 68.39 52.08 83.19
KNN+∗Sun et al. (2022) 32.50 93.86 47.41 84.93 39.82 91.12 43.05 88.55 63.26 79.28 45.20 87.55

With auxiliary OOD data
OEHendrycks et al. (2018) 28.95 95.08 10.95 97.98 49.55 89.29 41.50 91.57 49.75 89.87 36.14 92.76
Energy-OELiu et al. (2020) 23.80 96.18 31.90 94.88 41.40 91.67 48.10 88.09 56.50 87.66 40.34 91.69
DALWang et al. (2024a) 19.30 95.75 16.20 96.71 30.70 93.85 43.15 91.36 55.10 88.39 32.89 93.21
PFSWu et al. (2024) 24.70 95.81 12.65 97.78 38.35 91.44 44.20 91.32 51.85 90.33 34.35 93.33
Ours: VPC 9.95 97.98 26.25 95.75 26.50 94.97 45.05 89.67 52.45 89.88 32.04 93.65

and a cosine schedule. For our VPC method, the temperature τ used in all loss functions is set to 0.1.
All other settings follow the original paper’s setup.

One-stage Training Setting. Beyond the stepwise pretraining fine-tuning paradigm for OOD models,
we additionally investigate a one-stage training scheme to explore stable separation between ID and
OOD samples under a more entangled optimization setting. On the CIFAR-10 benchmark, we jointly
train on ID and OE data for 150 epochs; on CIFAR-100, we train for 200 epochs. All other settings
follow the two-stage experiments.

Scoring functions. We compare the classic MSP (Maximum Softmax Probability)(Hendrycks &
Gimpel, 2016), the EDL (Evidential Deep Learning) Uncertainty Score (Sensoy et al., 2018), and
our proposed VPC Score. In the default configuration, VPC Score uses α = −1 and β = 100. We
also evaluate single-subspace variants: VPC Score∗ (α = −1, β = 0, ID-EBVs subspace) and VPC
Score† (α = 0, β = 100, OOD-VEBVs subspace).

Compared Methods. We compare our method with post-hoc approaches, contrastive learning based
methods, and auxiliary OOD data based methods. The post-hoc methods include MSP (Hendrycks
& Gimpel, 2016), Energy (Liu et al., 2020), Maha (Lee et al., 2018), and KNN (Sun et al., 2022).
The contrastive learning based methods include CSI (Tack et al., 2020), CIDER (Ming et al., 2022b),
and KNN+ (Sun et al., 2022). The auxiliary OOD data based methods include OE (Hendrycks et al.,
2018), Energy-OE (Liu et al., 2020), DAL (Wang et al., 2024a) and PFS (Wu et al., 2024). For other
methods, we adopt their suggested setups for fairness.
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Evaluation Metrics. We report three classic metrics commonly used in OOD detection (Hendrycks &
Gimpel, 2016; Liang et al., 2017): (i) FPR95 (False Positive Rate at 95% True Positive Rate): the FPR
for OOD samples when the TPR for ID samples reaches 95%. (ii) AUROC (Area Under the Receiver
Operating Characteristic Curve): the area under the TPR-FPR curve over all thresholds. (iii) AUPR
(Area Under the Precision-Recall Curve): the area under the precision-recall curve, emphasizing the
balance between OOD detection accuracy and coverage.

4.1 MAIN RESULTS

Tables 1 and 2 present the primary results on the large-scale ImageNet-1k benchmark and the widely-
used CIFAR-10/100 benchmarks, respectively. Compared with conventional supervised or contrastive
learning methods that rely solely on ID data, incorporating auxiliary outlier exposure (OE) data
during training significantly reduces FPR95 and enhances AUROC, clearly highlighting the value of
OE-based training in OOD detection research. We compare our approach against several state-of-the-
art OE-based methods, including the original OE method (Hendrycks et al., 2018), the Energy-based
OE method (Energy-OE (Liu et al., 2020)), the Distributional Adversarial Learning (DAL (Wang
et al., 2024a)), and the PFS method leveraging Neural Collapse (NC) (Papyan et al., 2020) properties.
Our proposed VPC achieves superior performance across all benchmarks. On ImageNet-1k (Table 1),
VPC demonstrates robust advantages. With the ResNet50 backbone, VPC achieves an average FPR95
of 56.50%, significantly outperforming the next-best baseline (PFS) by 1.35% while also attaining
the highest AUROC. This advantage is maintained on the ViT-B-16 backbone, where VPC (56.20%)
surpasses the strongest competitors (DAL at 56.78% and PFS at 56.93%) while also achieving the
highest AUROC (85.20%) and maintaining competitive ID accuracy. This strong performance is
mirrored on the CIFAR benchmarks (Table 2). On CIFAR-10, VPC reduces the average FPR95
to 2.27%, clearly surpassing the best-performing baseline (PFS at 2.68%). On CIFAR-100, VPC
achieves an average FPR95 of 32.04%, outperforming both DAL (32.89%) and PFS (34.35%), and
again reaches the highest AUROC score of 93.65% among the compared methods.

4.2 TWO-STAGE TRAINING

Under the two-stage pretraining fine-tuning setup (Table 3), our method achieves overall superiority
on CIFAR-10 with WideResNet-40-2 and DenseNet-121, and attains the best FPR95 on ResNet-18
while its AUROC/AUPR are slightly below DAL. On CIFAR-100, it shows robust advantages on
WideResNet-40-2 (best FPR95 and AUROC, with AUPR tied with PFS) and on DenseNet-121 (best
on all three metrics), whereas on ResNet-18 it minimizes FPR95 but trails PFS in overall ranking
and PR area. Collectively, these results indicate that our approach effectively suppresses OOD false
acceptance while improving overall separability.

Table 3: Two-stage Training Results on CIFAR-10 and CIFAR-100 with WideResNet-40-2, ResNet-
18, DenseNet-121. Metrics are reported as FPR95↓/AUROC↑/AUPR↑.

Method CIFAR-10 CIFAR-100
WideResNet-40-2 ResNet-18 DenseNet-121 WideResNet-40-2 ResNet-18 DenseNet121

OEHendrycks et al. (2018) 3.44/99.05/99.79 3.46/98.36/99.67 2.84/98.86/99.75 36.14/92.76/98.38 48.75/89.36/97.54 36.46/93.23/98.53
Energy-OELiu et al. (2020) 3.75/98.66/99.69 3.88/98.26/99.62 3.45/98.71/ 99.71 40.34/91.69/98.00 46.34/90.70/97.91 44.87/91.82/98.21

DALWang et al. (2024a) 3.17/98.84/99.74 3.02/ 98.96/99.77 2.58/98.72/99.71 32.89/93.21/98.44 44.57/90.87/97.99 36.75/90.66/97.68
PFSWu et al. (2024) 2.68/98.66/99.65 3.05/98.72/99.72 2.87/98.47/99.66 34.35/93.33/98.53 40.15/ 92.64/98.41 43.80/90.96/97.99

Ours 2.27/99.18/99.81 2.84/98.32/99.67 2.10/98.86/99.77 32.04/93.65/98.53 38.96/92.03/98.20 31.17/94.01/98.71

4.3 ONE-STAGE TRAINING

As reported in Table 4, we further investigate a single-stage training paradigm, which differs from
the prior two-stage setup. The goal is to train OOD detectors directly with fewer steps and hyperpa-
rameters, this direct setup has been underexplored because it exacerbates the difficulty of controlling
representation geometry. When jointly optimizing ID and OE data without stage separation, our
method attains highly competitive results across the board. This corroborates the effectiveness of
imposing the OEFS geometric prior on the representation space and, via a dual-optimization strategy,
strengthens VPC’s ability to suppress representation drift under noisy gradients while maintaining
stable ID/OOD decision boundaries.
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Table 4: One-stage Training Results on CIFAR-10 and CIFAR-100 with WideResNet-40-2, ResNet-
18, DenseNet-121. Metrics are reported as FPR95↓/AUROC↑/AUPR↑.

Method CIFAR-10 CIFAR-100
WideResNet-40-2 ResNet-18 DenseNet-121 WideResNet-40-2 ResNet-18 DenseNet121

OEHendrycks et al. (2018) 2.74/99.01/99.79 3.86/98.43/99.68 3.12/98.61/99.70 35.43/92.67/98.33 45.83/91.80/98.26 37.77/92.68/98.37
Energy-OELiu et al. (2020) 2.29/98.79/99.72 3.66/98.21/99.63 3.09/98.76/99.73 36.08/92.76/98.28 41.79/91.90/98.18 34.12/93.30/98.44

DALWang et al. (2024a) 2.95/98.88/99.75 3.71/98.44/99.67 2.73/97.74/99.53 32.34/92.28/98.24 43.10/91.76/98.16 36.55/92.63/98.34
PFSWu et al. (2024) 2.44/98.87/99.68 3.64/98.72/99.69 2.42/98.95/99.75 32.84/93.22/98.48 41.14/91.70/98.14 39.91/91.76/98.15

Ours 2.01/99.19/99.82 3.45/98.73/99.73 2.29/98.74/99.74 32.15/93.65/98.50 38.41/92.69/98.42 32.31/93.41/98.54

4.4 DIFFERENT SCORE FUNCTIONS

This section provides a detailed comparison between the proposed VPC Score and a range of
scoring functions across multiple network architectures (see Table 5). Built upon the twin-subspace
representation of OEFS, VPC employs a class-agnostic L2 activation magnitude as the separation
signal to enhance OOD discriminability. On CIFAR-100, VPC Score achieves the best AUROC and
AUPR on all three backbones and reaches, or closely approaches, the lowest FPR95. By contrast,
MSP suffers from bias because OOD features cannot remain orthogonal to the ID classifier weights;
EDL Prob introduces evidence priors that partially alleviate this bias yet remains suboptimal; and
Uncertainty aggregates evidence strength without imposing explicit geometric constraints on the
representation space. Leveraging the orthogonal subspace–induced, class-agnostic L2 activation,
VPC Score delivers consistent gains across nearly all architectures while retaining interpretability
and strong generalization. Additional discussion of VPC Score is provided in Appendix A.5.

Table 5: Different score functions on CIFAR-10 and CIFAR-100 with WideResNet-40-2, ResNet-18,
DenseNet-121. Metrics are reported as FPR95↓/AUROC↑/AUPR↑.

Score Function CIFAR-10 CIFAR-100
WideResNet-40-2 ResNet-18 DenseNet-121 WideResNet-40-2 ResNet-18 DenseNet-121

MSP 2.74/99.18/99.81 3.13/98.81/99.75 2.46/98.99/99.79 33.95/92.36/98.11 44.75/89.79/97.44 33.65/92.79/98.36
EDL Prob 2.55/99.19/99.81 3.07/98.82/99.75 2.39/99.00/99.79 33.87/92.57/98.16 44.47/90.08/97.53 33.42/93.00/98.42

Uncertainty 2.30/99.13/99.80 2.91/98.72/99.74 2.06/99.08/99.80 31.20/93.26/98.32 39.58/91.23/97.83 33.42/93.00/98.42
VPC Score 2.27/99.19/99.81 2.84/98.32/99.67 2.10/98.86/99.77 32.04/93.65/98.53 38.96/92.03/98.20 31.17/94.01/98.71

4.5 ABLATION RESULTS

4.5.1 SCALE OF ORTHOGONAL EQUIANGULAR FEATURE SPACE

In a fixed ID dimensionality (CIFAR-10 with K=10, CIFAR-100 with K=100), we conduct an
ablation on the VEBV subspace size V (see Table 6). On CIFAR-10, as V increases from 10 to
2000, performance improves monotonically, and indicates that a larger VEBV subspace provides
more fine-grained geometric anchors, enabling more precise resolution of diverse OOD modes
and strengthening the subspace’s L2 activation. On CIFAR-100, performance peaks at V=1000,
suggesting that when K is large, excessively increasing V causes subspace dispersion and more
diffuse gradients, thereby weakening optimization pressure toward that subspace.

Table 6: Ablation on OEFS subspace size V (number of VEBVs) with WideResNet-40-2 backbone.
Metrics are reported as FPR95↓/AUROC↑/AUPR↑.

OEFS CIFAR-10 OEFS CIFAR-100

10 2.68/98.96/99.75 100 34.89/92.78/98.39
500 2.61/99.11/99.79 500 34.65/93.01/98.41

1000 2.27/99.18/99.81 1000 32.04/93.65/98.53
2000 2.21/99.21/99.85 2000 32.56/93.31/98.49

4.5.2 ABLATION ON TRAINING LOSS

This section analyzes different loss combinations to validate the geometric logic of OEFS. As shown
in Table 7, we compare: (i) Baseline (CE + OE); (ii) Neural Collapse + orthogonality constraint (see
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Appendix §16); (iii) Evidential Neural Collapse (LENC) + orthogonality constraint (LOC); and (iv)
the full method adding LVEBV. The progressive improvements across these configurations clearly
indicate that OEFS’s core value lies in constructing two orthogonal subspaces, which in turn relies on
the synergy of the losses: LENC stabilizes the convergence of ID features toward EBV prototypes,
LOC strengthens subspace orthogonality, and LVEBV guides OOD features to activate the orthogonal
VEBVs, thereby explicitly characterizing their complex intrinsic variability. Each component is
indispensable. Notably, LVEBV is pivotal for breaking the performance bottleneck: its introduction
elevates the OEFS geometric separation from ID-side only optimization to a dual-sided ID-OOD
constraint, ultimately yielding superior OOD detection performance.

Table 7: Ablation on Training Loss. Metrics are reported as FPR95↓/AUROC↑/AUPR↑.

Training Loss CIFAR-10 CIFAR-100

LCE + LOE 3.44/99.05/99.79 36.14/92.76/98.38
LNC + LOC 2.71/98.97/99.74 34.65/93.05/98.41
LENC + LOC 2.68/98.96/99.75 34.89/92.78/98.39

LENC + LOC + LVEBV 2.27/99.18/99.81 32.04/93.65/98.53

4.6 VISUALIZATION

We visualize ID/OOD activations on a unified VPC model under three scoring rules: VPC Score,
Uncertainty, and MSP (Figure 2); additional examples appear in Appendix B.4. On CIFAR-10/100,
VPC Score produces two sharply separated modes: ID samples primarily excite EBVs, whereas
OOD samples activate VEBVs. When challenging OOD data partially align with an ID EBV, MSP
is readily confounded. Uncertainty and our class-agnostic VPC Score suppress this bias, with VPC
Score achieving superior discriminability.

Figure 2: Visualization of ID and OOD detection using different scoring functions in CIFAR-10.
VPC Score maintains distinguishability even when MSP and Uncertainty perform poorly.

5 CONCLUSION

In this paper, we present VPC, a geometry-driven framework that predefines an OEFS to explicitly
separate ID and OOD representations. Beyond ID-only classifiers, VPC injects a training-time prior
using an ENC loss for ID–EBV alignment, an orthogonality loss to shield the ID subspace from
OOD, and a VEBV exploration loss to enrich the OOD subspace. The resulting VPC Score measures
subspace L2 activation, offering class-agnostic, interpretable, and robust discrimination. On CIFAR-
10/100 and large scale ImageNet-1k benchmark, and multiple architectures, VPC achieves strong and
consistent performance. These findings highlight geometric priors plus evidential modeling as an
effective path to feature-separation OOD detection with auxiliary OOD data.
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A THEORETICAL ANALYSIS AND METHODOLOGICAL DISCUSSIONS

A.1 NEURAL COLLAPSE

Recent studies have shown that, in the late stage of training, classification networks exhibit the Neural
Collapse geometry: within-class collapse, inter-class equiangular separation, and alignment between
class means and classifier prototypes. This geometry achieves simultaneous intra-class compactness
and maximal inter-class separation, and is regarded as the natural convergent state of classification
models (Papyan et al., 2020; Seo et al., 2024; Yang et al., 2023; Markou et al., 2024).

In OE-based OOD detection, relying only on output-layer uniformization or simple orthogonality
constraints is insufficient to maintain a controllable and stable representation geometry during joint
ID and OE fine-tuning. We therefore treat NC as an explicit alignment target. We fix the ID subspace
to a simplex ETF using preset Equiangular Basic Vectors (EBVs) and expand a bank of Vast EBVs
(VEBVs) to characterize diverse OOD features, forming an Orthogonal Equiangular Feature Space
(OEFS). We next introduce the simplex ETF induced by EBVs, summarize the core properties of NC,
and present the corresponding optimization.

A Simplex Equiangular Tight Frame Let K ≥ 2 and d ≥ K−1, where d is the feature embedding
dimension. A simplex equiangular tight frame (ETF) is a matrix E = [w1, . . . , wK ] ∈ Rd×K whose
columns satisfy

w⊤
k1
wk2

=
K

K − 1
δk1,k2

− 1

K − 1
, 1 ≤ k1, k2 ≤ K, (10)

so that all columns have the same squared norm K/(K − 1) and any two distinct columns have inner
product −1/(K − 1). A constructive form is

E =

√
K

K − 1
U
(
IK − 1

K
1K1⊤

K

)
, U⊤U = IK , (11)

which yields zero-sum columns E 1K = 0 and achieves the minimum possible cosine similarity
among K equiangular vectors in Rd. In our setting, these K columns serve as preset EBVs that fix
the ID subspace. For OOD representation we append a large bank of VEBVs constructed analogously
in the same ambient space with d ≥ K + V − 1, which together instantiate OEFS and provide preset
classifiers for both ID and OOD.

Basic properties of Neural Collapse Neural Collapse at the end of training is characterized by
four coupled properties.

NC1 (within-class collapse):

Σ
(k)
W = Avgi

[
(µk,i − µk)(µk,i − µk)

⊤]→ 0, (12)

where µk,i is the penultimate feature of sample i in class k and µk is the class mean.

NC2 (simplex-ETF class means):

µ̂k =
µk − µG

∥µk − µG∥
, 1 ≤ k ≤ K, (13)

where µG is the global mean. The centered and normalized means {µ̂k} approach the vertices of a
simplex ETF, that is, their pairwise inner products converge to −1/(K − 1).

NC3 (mean–prototype alignment):

µ̂k =
wk

∥wk∥
, 1 ≤ k ≤ K, (14)

namely the centered class means align with their classifier prototypes.

NC4 (nearest-center decision):

argmax
k

⟨µ, wk⟩ = argmin
k

∥µ− µk∥, (15)
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Figure 3: Overview of First-Order Risk Minimization Models and Evidential Deep Learning Based
on Second-Order Risk Minimization.

Figure 4: Overview of Evidential Prior Guided Neural Collapse. (a) Training drives final-layer
features, class means, and classifier vectors towards a Simplex ETF. (b) Our Evidential Prior Guided
Neural Collapse further regularises this collapse.

which holds when the equal-norm alignment in equation 13–equation 14 is satisfied. Together,
equation 12–equation 15 describe an optimally discriminative geometry with minimal within-class
dispersion and maximal inter-class separation.

Neural Collapse Loss To operationalize this geometry, Neural Collapse Loss loss fix the ID subspace
to a simplex ETF via preset EBVs and optimize features to align angularly with these EBVs:

LNC(x
id
i ) = − log

exp
(
m̂id⊤

i ŵebv
j /τ

)∑K
j=1 exp

(
m̂id⊤

i ŵebv
j /τ

) . (16)

This objective is the discriminative counterpart of our ENC likelihood, both share the same cosine-
based targets; ENC further fuses a uniform evidential prior to temper over-confidence and stabilize
alignment.

A.2 EVIDENTIAL PRIOR GUIDED NEURAL COLLAPSE

Traditional first order risk minimization fits a point estimate of p(y | x) and directly learns the
parameters θ of the data generating distribution according to the task, for example the Bernoulli
parameter for binary classification, the multinomial parameter for multiclass classification, or the
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Gaussian parameter for regression. This paradigm struggles to provide reliable uncertainty under
distribution shift and hard examples. In contrast, second order models predict the parameters of
conjugate priors, such as Beta for Bernoulli, Dirichlet for multinomial, or Normal Inverse Gamma
(NIG) for Gaussian, and compute the final predictive probability or regression value from these
distributional parameters. Evidential Deep Learning (EDL) (Sensoy et al., 2018; Jøsang, 2016; Sentz
& Ferson, 2002) adopts the second order view. The network first predicts nonnegative evidence ek
and maps it to Dirichlet parameters αk = ek + 1, which defines a prior posterior family Dir(α)
over class probabilities π ∈ ∆K−1. The Dirichlet parameters αk can be interpreted as pseudocounts
for class k, and the total evidence S =

∑
k αk quantifies overall confidence. When S is small, the

model should remain unconfident. Figure 4 summarizes the differences between first order risk
minimization and the second order evidential formulation.

Our ENC loss builds an explicit bridge between NC’s geometric alignment and EDL’s second-
order evidence modeling. Rather than deriving evidence from learnable classifier activations, ENC
computes cosine similarities between features and OEFS EBVs, applies the evidence activation (Eq.
(4)), and injects a uniform evidence prior, forming a unified angular adjustment that is further made
learnable via Bayesian inference. In joint ID+OE training, ENC concurrently regulates direction and
scale, stabilizes class-wise collapse, suppresses unsupported high evidence, and prevents hard OE
samples from eliciting large, non-uniform responses on the ID classifier. Figure 3 compares ENC
with standard Neural Collapse.

A.2.1 OPTIMALITY ANALYSIS

We first analyze the optimality of the ID subspace optimization. We adopt the unconstrained
feature model (Papyan et al., 2020), omitting the backbone architecture to focus on the convergence
properties of the final-layer features.

Problem Setup. Consider N ID samples distributed across K classes, with nk samples per class
k. Let ŴETF = [ŵ1, . . . , ŵK ] ∈ Rd×K denote the fixed, pre-defined EBVs forming a Simplex ETF.
The optimization objective for the feature matrix M under the ENC loss is defined as:

min
M

LENC =
1

N

K∑
k=1

nk∑
i=1

(
logS∗

i − logα∗
k,i

)
,

s.t. ∥mk,i∥2 ≤ 1, ∀k ∈ {1, . . . ,K}, i ∈ {1, . . . , nk},

(17)

where e∗j,i = exp(ŵ⊤
j mk,i/τ), α∗

j,i = e∗j,i + 1, and S∗
i =

∑K
j=1 α

∗
j,i.

Theorem 1 (Global Optimality of ENC). For any class k ∈ {1, . . . ,K} and sample i, the global
minimizer m̂k,i of the optimization problem in Eq. (17) satisfies m̂k,i = ŵk. This implies that
minimizing LENC strictly enforces the Neural Collapse geometry where features collapse to their
corresponding class prototypes.

Proof. Based on the definition of the EBVs (ŴETF), we have:

ŵ⊤
k ŵk′ =

K

K − 1
δk,k′ − 1

K − 1
, ∀k, k′ ∈ [1,K]. (18)

Furthermore, ŴETF · 1K = 0d, which implies:

K∑
j=1

ŵj = 0d,

K∑
j ̸=k

ŵj = −ŵk. (19)

When ŴETF is fixed, LENC is convex with respect to mk,i, and the constraint ∥mk,i∥2 ≤ 1 is also
convex. Therefore, we can use the Kuhn-Tucker conditions (KKT) conditions to determine its global
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optimality. The Lagrangian function is constructed as:

L =
1

N

K∑
k=1

nk∑
i=1

[
log
( K∑
j=1

exp(ŵ⊤
j mk,i/τ) +K

)
− log

(
exp(ŵ⊤

k mk,i/τ) + 1
)]

+

K∑
k=1

nk∑
i=1

λk,i (∥mk,i∥2 − 1).

(20)

The gradient form with respect to mk,i is (using the definitions of S∗
i and α∗

k,i):

∇mk,i
L =

1

Nτ

(∑K
j=1 e

∗
j,iŵj

S∗
i

−
e∗k,iŵk

α∗
k,i

)
+ 2λk,imk,i. (21)

When λk,i = 0, the gradient equation simplifies to:∑K
j=1 e

∗
j,iŵj

S∗
i

=
e∗k,iŵk

α∗
k,i

. (22)

That is: ∑K
j ̸=k e

ŵT
j mk,i/τ ŵj

S∗
i

=

(
1

α∗
k,i

− 1

S∗
i

)
eŵ

T
k mk,i/τ ŵk. (23)

Multiplying both sides by ŵ⊤
k , we obtain:

− 1

K − 1

∑K
j ̸=k e

ŵT
j mk,i/τ

S∗
i

=

(
1

α∗
k,i

− 1

S∗
i

)
eŵ

T
k mk,i/τ . (24)

The left-hand side is always ≤ 0. Since S∗
i > α∗

k,i, the term ( 1
α∗

k,i
− 1

S∗
i
) is > 0, making the

right-hand side > 0. Therefore, the condition ∇L = 0 cannot be satisfied when λk,i = 0.

When λk,i > 0, by KKT conditions, the global optimal solution m̂k,i satisfies the active constraint:

∥m̂k,i∥2 = 1. (25)

The gradient equation ∇mk,i
L = 0 is then:(∑K

j ̸=k e
∗
j,iŵj

S∗
i

+

(
1

S∗
i

− 1

α∗
k,i

)
e∗k,iŵk

)
+ 2Nτλk,imk,i = 0. (26)

Multiplying both sides by ŵ⊤
j (j ̸= k) gives:(∑K

j ̸=k e
∗
j,i

S∗
i

+

(
1

α∗
k,i

− 1

S∗
i

)
1

K − 1
e∗k,i

)
+ 2Nτλk,im

⊤
k,iŵj = 0. (27)

Based on the definition S∗
i =

∑K
j=1(e

∗
j,i+1) = (

∑K
j=1 e

∗
j,i)+K, we have

∑K
j ̸=k e

∗
j,i = S∗

i −K−e∗k,i.
Therefore: (

S∗
i −K − e∗k,i

S∗
i

+

(
1

α∗
k,i

− 1

S∗
i

)
1

K − 1
e∗k,i

)
+ 2Nτλk,im

⊤
k,iŵj = 0.

(28)

Multiplying the gradient equatio by ŵ⊤
k gives:(

S∗
i −K − e∗k,i

S∗
i

+

(
1

α∗
k,i

− 1

S∗
i

)
1

K − 1
e∗k,i

)
ŵk

=
1

K − 1
2Nτλk,imk,i.

(29)
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Let β = (K−1)
2Nλk,i

(
S∗
i −K−e∗k,i

S∗
i

+
(

1
α∗

k,i
− 1

S∗
i

)
1

K−1e
∗
k,i

)
. Since λk,i > 0 and S∗

i > α∗
k,i > e∗k,i > 0,

we get β > 0:
mk,i = βŵk. (30)

Introducing the feature unit norm constraint:

∥mk,i∥ = 1. (31)

And the ETF column vectors (EBVs) satisfy:

∥ŵk∥ = 1. (32)

Substituting ∥mk,i∥ = 1 into mk,i = βŵk gives:

1 = ∥mk,i∥ = ∥βŵk∥ = |β| ∥ŵk∥ = β. (33)

Thus:
β = 1, m̂k,i = ŵk. (34)

This shows that the ID features are optimally aligned with the corresponding class prototypes EBVs,
reaching the theoretical Neural Collapse state at the global minimum.

A.2.2 STABILITY ANALYSIS

We explicitly analyze the gradient properties of ENC to demonstrate its robustness against interference
from optimization interference arising from the massive auxiliary data. We formulate this as a bound
on the sensitivity of the evidential prior mechanism.

Consider a single sample m with true class k. We define the logits sj = ŵ⊤
j m/τ , the evidence

e∗j = exp(sj), and the Dirichlet parameters α∗
j = e∗j + 1. The total strength is S∗ =

∑K
j=1 α

∗
j . The

per-sample LENC term (denoted as ℓENC) is defined as:

ℓENC = logS∗ − logα∗
k. (35)

We formally state the smoothing mechanism in the following proposition.
Proposition 1 (Evidential Prior Smoothing). The evidential prior mechanism imposes a strict bound
on the gradient sensitivity. Specifically, the magnitude of the gradient of the log Dirichlet parameter
ratio Rk,j with respect to the evidence e∗k is strictly bounded by 1, acting as a geometric rate-limiter.

Proof. We prove this mechanism by analyzing the partial derivatives. First, the partial derivative of
the loss ℓENC with respect to the evidence e∗j is derived as:

∂ℓENC

∂e∗j
=

{ 1
S∗ , j ̸= k,

1
S∗ − 1

α∗
k
, j = k.

(36)

Next, to quantify the angular separation stability, for any j ̸= k, we define the log Dirichlet parameter
ratio:

Rk,j = log
α∗
k

α∗
j

= log
esk + 1

esj + 1
. (37)

We examine how this ratio changes with respect to the target evidence. Because Rk,j depends on e∗k
only through α∗

k, the partial derivative is:

∂Rk,j

∂e∗k
=

∂

∂e∗k

(
logα∗

k − logα∗
j

)
=

1

α∗
k

=
1

e∗k + 1
. (38)

Since the evidence is non-negative (e∗k ≥ 0), we have α∗
k ≥ 1. Consequently:

∂Rk,j

∂e∗k
≤ 1. (39)

This bound (≤ 1) represents the smoothing effect. It proves that the gradient step’s effect on the
angular separation (Rk,j) is strictly limited. This prevents uncontrolled, rapidly diverging attraction
of m toward an EBV, rendering the alignment process resilient to optimization interference induced
by massive OE samples.
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A.3 THEORETICAL JUSTIFICATION OF ORTHOGONALITY CONSTRAINT

In Section 3.4, we introduced the Orthogonality Constraint loss LOC to regulate the alignment of
OE features. Formally, this loss minimizes the KL divergence between the predicted probability
distribution poe→ebv and the uniform distribution. In this section, we provide a rigorous proof
demonstrating that, governed by the zero-sum property of the Simplex Equiangular Tight Frame
(ETF), achieving the global minimum of this loss is mathematically equivalent to imposing a hard
orthogonality constraint between the OE feature and all ID prototypes.
Proposition 2 (Geometric Equivalence of Uniformity). Let the ID prototypes {ŵebv

j }Kj=1 form a
centered Simplex ETF in Rd. An OE feature vector m̂oe ∈ Rd yields a exactly uniform probability
distribution poe→ebv over these prototypes if and only if it is orthogonal to every prototype, i.e.,
m̂oe⊤ŵebv

j = 0,∀j ∈ {1, . . . ,K}.

Proof. Let m̂oe denote the normalized feature vector of an OE sample, and {ŵebv
j }Kj=1 be the set of

normalized Equiangular Basic Vectors (EBVs) representing the K ID classes. By definition, these
EBVs constitute a Simplex ETF, which inherently satisfies the structural zero-sum property:

K∑
j=1

ŵebv
j = 0d. (40)

The objective of LOC is to induce a uniform probability distribution over the K classes. The
probability for the j-th class, denoted as (poe→ebv)j , is derived via the Softmax function applied to
the scaled cosine similarities. To achieve a exactly uniform distribution (i.e., (poe→ebv)j = 1/K, ∀j),
the logits (cosine similarities) must be invariant across all classes. Let c ∈ R denote this constant
scalar:

m̂oe⊤ŵebv
j = c, ∀j ∈ {1, . . . ,K}. (41)

We establish the proof by evaluating the aggregate projection of m̂oe onto the set of ID prototypes,
denoted as S =

∑K
j=1(m̂

oe⊤ŵebv
j ).

Imposing the uniformity condition from Eq. (41), the summation algebraically becomes:

S =

K∑
j=1

c = K · c. (42)

Conversely, invoking the linearity of the inner product and the ETF zero-sum property (Eq. 40), the
summation must geometrically satisfy:

S = m̂oe⊤

 K∑
j=1

ŵebv
j

 = m̂oe⊤ · 0d = 0. (43)

Equating Eq. (42) and Eq. (43) yields K · c = 0. Since K > 0, it follows that c = 0. Substituting
c = 0 back into Eq. (41), we arrive at the necessary condition for optimality:

m̂oe⊤ŵebv
j = 0, ∀j ∈ {1, . . . ,K}. (44)

This concludes the proof that within the OEFS geometry, the only state in which an OE feature
can minimize LOC is when it lies in the null space of the ID prototypes. Thus, the uniformity loss
effectively functions as a geometric orthogonality constraint.

A.4 FROM LEARNABLE CLASSIFIERS TO VAST PREDEFINED CLASSIFIERS

To elucidate the design motivations and advantages of the VPC framework, we review the architectural
evolution of OOD detection paradigms (Figure 5). Vanilla DNN-based OOD detection (Figure 5a)
employs a learnable ID classifier optimized via first-order logits. Training with LOE enforces output
uniformity, while detection relies on post-hoc confidence-based measures like MSP. Limitations
include: (1) representation drift from optimization interference of OE data during joint ID/OE
optimization; (2) non-uniform OOD probabilities due to ID-centric classification. PFS exploits
Neural Collapse (ETF formation between ID features and classifiers) to orthogonalize OOD features
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Figure 5: The architectural evolution of VPC. (a) Vanilla DNN relying on a learnable classifier and
first-order logits. (b) Evidential DNN introducing second-order uncertainty quantification. (c) DNN
equipped with a predefined in-distribution (ID) classifier. (d) Our proposed VPC: a second-order
model that jointly aligns ID and OE features with the predefined classifier in the OEFS space.

against ID weights, yet the classifier’s limited capacity hinders adaptation to diverse OOD patterns.
Evidential DNNs (Figure 5b) substitute logits with second-order evidence, mitigating over-confidence
and enabling explicit OOD uncertainty quantification, thus avoiding non-uniform outputs. The
uniform evidence prior reduces drift in ID/OE optimization but fails to ensure low OOD evidence
activation via the ID classifier. EBV-based DNNs (Figure 5c) replace learnable classifiers with fixed,
predefined EBVs Shen et al. (2025), optimizing Neural Collapse’s ETF prior via first-order LNC to
align ID features with EBVs. This stabilizes ID representations but remains ID-centric.

VPC (Figure 5d) integrates these advances: adopting EBV priors from (c), incorporating second-order
evidence from (b) via LENC (replacing LNC), which ensures stable alignment of ID features with
EBVs under OOD perturbations. VPC extends to a bilateral framework with predefined VEBVs,
creating an orthogonal subspace provided with distinct geometric anchors to resolve diverse OOD
patterns. LOC and LV EBV guide OOD activation therein while minimizing ID interference.

We next compare VPC’s parameter and computational overhead against learnable classifier
DNNs. Parameter-wise, Vanilla DNNs (Figure 5a, b) incur O(dfeat × K) for the final classi-
fier. VPC eliminates this, adding a projection layer O(dfeat × doefs) to meet dimensional con-
straints Shen et al. (2025); Papyan et al. (2020). The (K + V ) EBVs/VEBVs are fixed constants,
excluding them from trainable parameters.

As quantified in Table 8, this change is modest. For instance, on CIFAR-100 (K = 100) with a
ResNet-18 (dfeat = 512), VPC replaces the ≈ 0.051M parameter classifier (the vanilla head) with a
≈ 0.524M parameter projection layer. This results in a net increase of only ≈ 0.47M parameters,
which constitutes just ≈ 4.2% of the 11.2M total model parameters. This modest overhead is the
necessary cost to instantiate the structured geometric space. We provide fair comparisons by adding
this same projection layer to baselines in Appendix B.3.

Computationally, VPC decouples the loss functions: LENC and LOC are computed in the low-
dimensional K-space, while LVEBV operates in the V -space. The gradients for LVEBV are diagonal,
leading to a backpropagation complexity of O(V ). In contrast, naive frameworks with (K + V )-
dimensional outputs require dense softmax Jacobians, resulting in a computational cost that scales as
O(K + V )2, which becomes prohibitive for large V .

At inference time, VPC is equally efficient. Our VPC score computes similarities against all
prototypes (EBVs and VEBVs) at once by merging them into a single weight matrix and performing
one unified matrix-vector multiplication (O(doefs × (K + V ))). By comparison, baseline methods
like MSP/Uncertainty perform a smaller O(dfeat ×K) multiplication, but due to the parallel nature of
GPUs, the practical wall-clock time difference between the two is negligible. This efficiency stands in
sharp contrast to neighborhood-based methods like KNN (Sun et al., 2022), which require computing
distances against the entire training set (N samples) at inference time (O(N × dfeat)) and are thus
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Table 8: Comparison of learnable parameter overhead. All units are in Millions (M). dfeat is the
penultimate feature dimension. The projection dimension doefs for CIFAR is 1024; for ImageNet-1k,
it is set to 2048 per analysis.

Dataset Model Total (M) dfeat Vanilla Head (M) doefs VPC Proj. (M) Added Params (M)

CIFAR-10
WRN-40-2 2.20 128 0.00129 1024 0.13107 +0.13
ResNet-18 11.20 512 0.00513 1024 0.52429 +0.52
DenseNet-121 8.00 1024 0.01025 1024 1.04858 +1.04

CIFAR-100
WRN-40-2 2.20 128 0.01290 1024 0.13107 +0.12
ResNet-18 11.20 512 0.05130 1024 0.52429 +0.47
DenseNet-121 8.00 1024 0.10250 1024 1.04858 +0.95

ImageNet-1k ResNet-50 25.56 2048 2.049 2048 4.194 +2.15
ViT-B-16 86.56 768 0.769 2048 1.573 +0.80

prohibitively slow on large datasets. Therefore, VPC exchanges a modest, linear computational
overhead for the significant performance benefit of explicitly modeling the OOD space, a capability
the baselines lack.

A.5 WHY DOES THE VPC SCORE YIELD ADDITIONAL DISCRIMINATIVE POWER?

Prior methods are confined to ID-class features and the learnable ID-class classifier, building various
scoring functions on top of that setup. Our approach steps outside this limitation. To our knowledge,
we are the first to explicitly expand a large preset classifier for OOD features. We analyze the effect
through cosine similarity, Euclidean distance, and L2 activation strength.

Note that all our metrics are computed between normalized features and the preset EBVs/VEBVs. By
contrast, the metrics for PFS and OE are computed between normalized features and the normalized
classifier weights of the ID classes. For Euclidean distance and cosine similarity, we apply a unified
MSP (max over classes) reduction and then average the per-sample values. The final aggregated
results under different settings are reported in Table 9. If evaluation is restricted to metrics based
solely on the ID classifiers or EBVs, our gains are comparable to those of the state-of-the-art PFS, as
both methods impose orthogonality on OOD features, while the latter emphasizes uniform output.
The additional benefit of our approach is the use of predefined VEBVs to generate supplementary L2
activation differences, which constitutes a distinctive advantage over competing methods.

In addition to the above findings, Table 10 provides a comprehensive comparison of the VPC Score
under L1 (Manhattan) and L2 (Euclidean) norms, ablating the influence of the EBV subspace
coefficient (α) and the VEBV subspace coefficient (β). The results first indicate that the L2 norm
generally yields superior or more stable performance than the L1 norm. This superiority likely
arises because the L2 norm, which squares activations, more faithfully captures the variations in
activation magnitude that are highly informative for complex OOD samples. Under the L1 norm,
performance is highly sensitive to the coefficient choice. Notably, relying solely on the VEBV
subspace (α = 0, β = 100) consistently and significantly outperforms relying only on the EBV
subspace (α = −1, β = 0), especially on the more complex CIFAR-100 dataset. This demonstrates
the critical role of the VEBV subspace in capturing OOD variability.

The most striking finding, however, comes from the L2 norm results. Performance is remarkably
stable and remains near-optimal across all tested combinations of α and β. Whether using only the
ID-EBV subspace (α = −1, β = 0), only the OOD-VEBV subspace (α = 0, β = 100), or our
main combined score (α = −1, β = 100), the detection metrics are nearly indistinguishable. This
strongly implies that our OEFS training successfully creates a geometric separation where the L2
activation strength in either subspace alone becomes a sufficient and robust signal for OOD detection,
a capability rarely observed in previous methods.

A.6 ACTIVATION STRENGTH IS A BETTER OOD SCORING FUNCTION

Building on the previous section, we introduce a new L2 activation-strength score for both PFS and
OE. Specifically, for PFS the activation matrix is the cosine similarity between normalized features
and the normalized classifier weights; for OE we directly use the model’s activation outputs. As
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Table 9: Statistical results for ID/OOD under different metrics on CIFAR-10, cosine similarity,
Euclidean distance, and L2 activation strength. Our method obtains additional discriminative scores
by using the L2 activation strength within the subspaces spanned by EBVs and VEBVs. We report
ID/OOD averages and the gap (Diff↑).

Method Euclidean Distance Cosine Similarity L2 (logits/weight/EBVs) L2 (VEBVs)
ID OOD Diff↑ ID OOD Diff↑ ID OOD Diff↑ ID OOD Diff↑

OE 0.62 1.08 0.46 0.80 0.40 0.40 0.87 0.55 0.32 – – –
PFS 0.67 1.38 0.71 0.75 0.05 0.70 0.87 0.06 0.82 – – –
Ours: VPC 0.70 1.39 0.69 0.73 0.03 0.70 0.77 0.04 0.72 0.63 1.03 0.40

Table 10: Ablation study on the impact of norm types (L1 vs. L2) and subspace coefficients (α, β)
of VPC score on CIFAR-10 and CIFAR-100 across backbones (WideResNet-40-2, ResNet-18,
DenseNet-121). Metrics are reported as FPR95↓/AUROC↑/AUPR↑.

Norm VPC Score CIFAR-10 CIFAR-100
α β WRN-40-2 ResNet-18 DenseNet-121 WRN-40-2 ResNet-18 DenseNet-121

L1

-1 0 2.41/99.04/99.71 2.95/98.24/99.62 2.01/98.81/99.70 39.57/88.01/96.39 40.01/89.26/97.03 38.63/89.08/96.84
0 100 2.29/99.00/99.78 2.86/97.29/99.50 2.10/96.55/99.38 32.43/93.52/98.52 38.71/92.08/98.21 31.01/94.00/98.70
-1 1 2.25/99.10/99.79 2.88/98.16/99.64 2.08/98.34/99.68 38.60/91.12/97.59 38.39/92.10/98.20 32.41/93.78/98.65
-1 10 2.28/99.02/99.78 2.87/97.58/99.54 2.10/96.84/99.43 34.90/93.26/98.46 38.48/92.09/98.21 31.22/93.98/98.70
-1 100 2.29/99.00/99.78 2.86/97.32/99.50 2.10/96.58/99.38 32.40/93.50/98.52 38.74/92.08/98.21 31.03/94.00/98.70

L2

-1 0 2.27/99.19/99.81 2.85/98.50/99.70 2.08/98.95/99.78 32.04/93.65/98.55 39.10/92.03/98.20 31.19/94.01/98.71
0 100 2.27/99.18/99.81 2.84/98.32/99.67 2.10/98.70/99.74 32.03/93.65/98.53 38.98/92.03/98.20 31.17/94.01/98.71
-1 1 2.27/99.19/99.81 2.85/98.50/99.70 2.10/98.95/99.78 32.07/93.65/98.53 39.11/92.03/98.20 31.19/94.01/98.71
-1 10 2.27/99.18/99.81 2.84/98.49/99.70 2.10/98.94/99.78 32.05/93.65/98.53 38.98/92.03/98.20 31.17/94.01/98.71
-1 100 2.27/99.18/99.81 2.84/98.32/99.67 2.10/98.86/99.77 32.04/93.65/98.53 38.96/92.03/98.20 31.17/94.01/98.71

shown in Table 11, incorporating the L2 strength yields substantial improvements, further validating
the benefit of class-agnostic score design for OOD detection.

Prior approaches typically rely on constraining OOD features to be orthogonal to the ID classifier or
enforcing near-uniform outputs. However, MSP tends to exaggerate the non-uniform outputs of hard
samples, often leading to inseparable cases. In contrast, computing the overall activation strength
(L2) naturally benefits from both orthogonality and uniformity regularization, producing a more
discriminative score.

Table 11: L2 Activation Strength Driven Improvements in OOD Detection

Score Function Method
Far-OOD Datasets

SVHN LSUN iSUN Textures Places365 Average
FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

CIFAR-10
MSP OE 1.95 99.23 0.80 99.67 1.95 99.36 3.70 99.23 8.80 97.76 3.44 99.05
PFS Score PFS 0.75 98.95 0.35 99.51 1.30 99.26 2.85 98.49 7.25 97.02 2.50 98.65

L2 Score OE 1.45 99.26 0.35 99.70 0.90 99.43 2.75 99.26 7.20 97.90 2.53 (↓ 0.91) 99.11 (↑ 0.06)
PFS 0.70 98.58 0.35 99.43 1.30 99.23 2.90 98.26 7.10 96.91 2.47 (↓ 0.03) 98.48 (↓ 0.17)

CIFAR-100
MSP OE 34.95 93.75 14.90 97.23 49.50 88.16 43.35 90.63 52.50 87.68 39.04 91.49
PFS Score PFS 24.75 95.81 12.65 97.78 38.40 91.44 44.20 91.32 51.85 90.33 34.37 93.33

L2 Score OE 28.60 94.97 10.10 98.08 53.50 88.03 43.05 90.45 49.40 90.64 36.93 (↓ 2.11) 92.43 (↑ 0.94)
PFS 25.00 95.78 13.80 97.69 36.60 91.92 42.50 91.35 52.25 90.27 34.03 (↓ 0.34) 93.40 (↑ 0.07)

A.7 CONVERGENCE VS. DIVERGENCE OF OOD FEATURES

PFS is the first to leverage the properties of Neural Collapse to explore the subspace spanned by
ID-class classifier weights as a way to represent richly varying OOD features. However, it has several
limitations. It aligns ID features with ID classifiers in stages and then imposes an orthogonality
constraint that encourages OOD features to explore the representation space formed by the ID
classifiers. This staged scheme cannot guarantee a stable representation space while ID/OE data are
being jointly fine-tuned: ID features and ID classifiers may not be well aligned, and OOD outputs may
remain non-uniform. In such a dynamically changing and unstable space, enforcing orthogonality on
OOD features is unlikely to deliver the desired effect.
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Our method effectively addresses this issue by directly presetting an approximately orthogonal,
optimal classifier. It requires no staged constraints and can even achieve strong ID/OOD separability
with a single training run.Building on this well-behaved geometric constraint, we investigate whether
OOD features should diverge or converge. Beyond the divergence loss proposed in the main text,
which induces OOD features to explore the VEBV subspace, we additionally propose a VEBV
convergence loss that encourages OOD features to collapse onto any one VEBV, defined as follows:

Lcon
VEBV(x

oe
i ) = 1− max

1≤j≤V
m̂oe⊤

i ŵvebv
j . (45)

All other settings follow the main experiments. As shown in Table 12 , under our OEFS space
constraint, even forcing OOD features to collapse onto a single VEBV yields reasonably good OOD
detection, though the performance weakens as the number of ID classes increases. This is because
when all OOD features collapse onto one VEBV, maintaining orthogonality to all ID classes becomes
increasingly difficult.

Table 12: Divergence vs. Convergence Loss on the VEBVs Subspace.

Optimization Loss SVHN LSUN iSUN Textures Places365 Average

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
CIFAR-10

Lcon
VEBV 1.45 99.45 0.65 99.53 0.90 99.46 7.00 97.87 2.15 99.30 2.43 99.12

Ldiv
VEBV 0.85 99.62 0.45 99.50 1.10 99.50 2.25 99.38 6.70 97.91 2.27 99.18

CIFAR-100
Lcon
VEBV 24.10 95.89 18.60 96.79 55.35 88.01 52.90 89.70 39.40 91.96 38.07 92.47

Ldiv
VEBV 9.95 97.98 26.25 95.75 26.50 94.97 45.05 89.67 52.45 89.88 32.04 93.65

We further provide visualizations that clearly depict the starkly different activation patterns produced
by the two optimization regimes. As shown in Figure 6 and Figure 7, see Section B.4.1 for detailed
analysis.

B ADDITIONAL EXPERIMENTAL RESULTS AND VISUALIZATION

B.1 HARD OOD DETECTION

We further assess the generalization of VPC in a Hard OOD setting. We follow (Tack et al., 2020; Sun
et al., 2022; Wang et al., 2024a) and use CIFAR-10 as ID while evaluating on LSUN-Fix, ImageNet-
Resize, CIFAR-100, and Tiny-ImageNet, comparing VPC with OE, Energy-OE, DAL, and PFS
(13). Across different architectures, VPC consistently improves OOD detection. Notably, the mean
FPR95 on WideResNet-40-2 and DenseNet-121 is 11.97% and 10.65% (lowest among baselines),
and DenseNet-121 achieves the best mean AUROC = 97.55%, with leading subset performance on
LSUN-Fix (99.52%) and ImageNet-Resize (99.35%). These outcomes are attributable to VPC’s
explicit OEFS design and enforced geometric separation, which jointly curtail false positives and
preserve discriminative power in near-OOD regimes.

B.2 MORE RESULTS OF ONE-STAGE TRAINING AND TWO-STAGE TRAINING

Most existing OOD detection methods follow a two-stage training paradigm: pretrain on ID data,
then jointly fine-tune on ID and OOD (OE) data. Although this paradigm appears closer to real-
world deployment, in essence it relies on a large OE distribution that is mismatched with both the
ID distribution and the target test OOD distribution to cue the model to output discriminatively
low-confidence predictions whenever inputs deviate from ID. Prior work has leveraged auxiliary
OE datasets at tens-of-millions scale to push models away from non-ID samples, spurring a line
of subsequent research. However, this approach entails substantial engineering complexity and
reproducibility cost, and high sensitivity to numerous hyperparameters (e.g., OE ratio, loss weights,
thresholding, staged learning rates/schedules) and dependence on OE data selection bias and coverage.

To address these issues, we propose a one-stage joint training scheme that uses ID and OOD
data within a single optimization process under a unified objective, thereby markedly reducing
hyperparameter burden and training overhead. In the main text we systematically compare two-stage
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Table 13: Hard OOD detection on CIFAR-10 benchmark.

Model Method
Near-OOD Datasets

LSUN-Fix ImageNet-Resize CIFAR-100 Tiny-ImageNet Average
FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

CIFAR-10
With auxiliary OOD data

WRNet-40-2

OE 1.10 99.49 7.10 98.48 24.80 94.74 18.15 95.53 12.79 97.06
Energy-OE 2.15 99.11 8.75 97.34 32.50 91.57 21.75 94.03 16.29 95.51
DAL 1.25 99.41 4.55 98.33 27.00 93.94 19.40 95.08 13.05 96.69
PFS 0.70 98.59 5.35 98.20 25.15 88.88 17.45 92.41 12.16 94.52
Ours: VPC 1.20 99.46 5.40 98.59 25.25 94.24 16.05 95.59 11.97 96.97

ResNet-18

OE 1.45 99.26 4.45 98.29 24.30 94.78 17.70 95.61 11.97 96.99
Energy-OE 1.55 98.08 9.05 97.96 30.35 92.44 21.10 94.64 15.51 95.78
DAL 1.10 99.08 5.65 98.43 25.20 95.07 16.95 95.90 12.22 97.12
PFS 1.08 99.09 5.62 98.44 25.15 95.09 16.93 95.92 12.20 97.14
Ours: VPC 1.20 99.45 6.40 98.40 23.65 94.72 17.10 95.95 12.09 97.13

DenseNet-121

OE 1.35 99.31 1.85 98.99 24.30 94.75 15.65 95.95 10.79 97.25
Energy-OE 1.60 98.95 7.25 98.29 31.70 92.05 21.95 93.94 15.62 95.81
DAL 0.70 98.88 2.35 99.06 25.65 94.13 16.75 95.46 11.36 96.88
PFS 0.95 99.21 3.55 98.47 25.15 92.21 16.75 94.02 11.60 95.98
Ours: VPC 0.90 99.52 2.30 99.35 23.90 95.08 15.50 96.26 10.65 97.55

and one-stage training: in most settings, the one-stage approach achieves superior or comparable
OOD performance. Moreover, Table 14 reports ID classification accuracy (Acc), showing that one-
stage training does not incur a significant drop in ID accuracy, further corroborating its effectiveness
and practical deployability in improving OOD detection robustness while preserving ID performance.

Table 14: one-stage training vs. two-stage training on CIFAR-10 with WideResNet-40-2. We report
average FPR95↓, AUROC↑, AUPR↑, and ID Acc↑.

Method one-stage (ID + OE 150 epoch) two-stage (ID 200 epoch + OE 50 epoch)
FPR95↓ AUROC↑ AUPR↑ Acc↑ FPR95↓ AUROC↑ AUPR↑ Acc↑

OE 2.74 99.01 99.79 95.39 3.44 99.05 99.79 95.67
Energy-OE 2.29 98.79 99.72 93.55 3.75 98.66 99.69 90.85
DAL 2.95 98.88 99.75 94.99 3.17 98.84 99.74 94.96
PFS 2.44 98.87 99.68 94.68 2.68 98.66 99.65 94.65
Ours: VPC 2.01 99.19 99.82 95.32 2.27 99.18 99.81 95.74

B.3 FAIRNESS EVALUATION UNDER OEFS DIMENSIONAL CONSTRAINTS

OEFS requires scaling to a large bank of predefined classifiers (VEBVs) to sufficiently capture OOD
variability. Since the number of EBVs is limited by dimensionality, the OEFS dimensionality must
be greater than the combined count of EBVs and VEBVs. We therefore replace the final linear head
in WideResNet-40-2, ResNet-18, and DenseNet-121 with a learnable projector that lifts features
to a higher-dimensional space. For OEFS sizes 500, 1000, 2000, the projector outputs 512, 1024,
2048; its input equals each backbone’s penultimate feature dimension. This design increases trainable
parameters. To maintain fairness, we mirror the same projector in all compared baselines and also
report the original backbones’ detailed results (See Table 15 16 ).

Results reveal that projector-augmented baselines despite having strictly more trainable parameters
than ours exhibit inconsistent performance across methods/backbones. We hypothesize that the
extra dimensional transform exacerbates classifier learning, especially for PFS whose objective
hinges on enforcing weight orthogonality, thereby amplifying sensitivity to optimization and data
idiosyncrasies. Our approach circumvents this fragility: classifiers are pre-instantiated as optimal
prototypes and remain fixed; training focuses solely on aligning features to these prototypes. This
avoids the instability induced by learning classifier weights after projection and, consistently, delivers
superior OOD detection. The use of a projector is principled in VPC: it provides the necessary
ambient dimensionality to host a large set of equiangular prototypes without compromising ID
geometry.
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Table 15: Fair Comparison by adding Unified Projection layer with different architectures.

Model Method
Far-OOD Datasets

SVHN LSUN iSUN Textures Places365 Average
FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

CIFAR-10
With auxiliary OOD data

WideResNet-40-2
+ Projection Layer

OE 0.70 99.71 0.80 99.64 3.60 99.03 9.30 97.65 2.60 99.25 3.40 99.06
Energy-OE 0.60 99.58 0.60 99.10 4.30 98.83 7.10 97.85 2.20 99.16 2.96 98.90
DAL 0.90 99.56 0.50 99.50 3.05 98.98 2.85 99.21 8.30 97.58 3.12 98.97
PFS 0.75 99.48 0.70 99.42 3.40 99.03 8.00 96.86 2.55 98.74 3.08 98.70
Ours: VPC 0.85 99.62 0.45 99.50 1.10 99.50 2.25 99.38 6.70 97.91 2.27 99.18

ResNet-18
+ Projection Layer

OE 1.35 99.14 1.50 98.93 6.80 98.29 10.55 97.30 2.60 98.77 4.56 98.48
Energy-OE 0.65 99.18 2.30 97.90 5.80 98.20 9.40 97.38 2.75 98.80 4.18 98.29
DAL 0.50 99.02 1.20 98.92 3.95 98.53 2.60 98.56 9.65 97.08 3.58 98.42
PFS 0.85 98.30 1.10 98.60 6.75 97.54 8.00 96.78 3.35 97.72 4.01 97.79
Ours: VPC 0.95 98.56 1.60 98.81 2.00 98.61 2.55 98.30 7.10 97.34 2.84 98.32

DenseNet-121
+ Projection Layer

OE 1.40 99.33 0.65 99.52 1.80 99.16 8.10 97.51 2.20 99.06 2.83 98.91
Energy-OE 0.85 99.52 0.45 99.18 1.75 98.89 8.00 97.58 3.55 98.70 2.92 98.77
DAL 1.10 99.32 0.40 99.55 0.60 99.12 2.45 98.98 7.30 97.65 2.37 98.92
PFS 1.15 98.76 0.35 99.50 0.20 99.24 7.55 96.87 1.70 98.68 2.19 98.61
Ours: VPC 0.65 99.33 0.45 99.25 0.55 98.98 2.05 98.87 6.80 97.89 2.10 98.86

CIFAR-100
With auxiliary OOD data

WideResNet-40-2
+ Projection Layer

OE 42.25 92.80 14.40 97.40 53.00 85.80 51.80 87.55 43.90 90.47 41.07 90.80
Energy-OE 32.75 95.05 18.05 96.96 61.90 85.38 50.75 89.70 42.95 91.27 41.28 91.67
DAL 14.45 97.23 13.30 97.38 36.80 92.89 40.05 91.41 49.60 88.51 30.84 93.48
PFS 21.45 96.17 17.45 96.89 48.05 89.27 50.45 90.11 39.15 92.09 35.31 92.91
Ours: VPC 9.95 97.98 26.25 95.75 26.50 94.97 45.05 89.67 52.45 89.88 32.04 93.65

ResNet-18
+ Projection Layer

OE 47.55 91.28 37.05 92.81 43.55 91.71 56.85 85.96 53.85 87.48 47.77 89.85
Energy-OE 29.95 95.03 30.85 94.92 25.80 95.00 54.90 88.06 45.35 90.36 37.37 92.68
DAL 49.95 89.17 27.00 94.95 30.45 94.42 48.55 89.32 54.85 87.36 42.16 91.05
PFS 48.15 91.71 30.10 94.57 37.65 93.75 58.10 88.01 58.05 86.66 46.41 90.94
Ours: VPC 22.30 95.89 30.80 94.09 28.85 95.03 51.40 88.52 61.45 86.62 38.96 92.03

DenseNet-121
+ Projection Layer

OE 20.75 96.24 24.10 95.50 23.55 95.78 60.30 86.28 55.80 86.59 36.90 92.08
Energy-OE 17.40 97.03 18.35 96.75 56.40 89.37 56.50 89.34 45.05 92.08 38.74 92.92
DAL 16.85 96.62 16.25 96.92 49.80 88.28 41.40 90.52 59.50 86.72 36.76 91.81
PFS 22.45 96.33 18.50 96.89 56.80 88.73 56.20 88.69 45.60 91.06 39.91 92.34
Ours: VPC 12.50 97.71 19.65 96.67 22.70 95.98 42.50 91.20 58.50 88.49 31.17 94.01

Table 16: Detailed Results with different architectures. The best result is in bold.

Model Method
Far-OOD Datasets

SVHN LSUN iSUN Textures Places365 Average
FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

CIFAR-10
With auxiliary OOD data

WideResNet-40-2

OE 1.95 99.23 0.80 99.67 1.95 99.36 3.70 99.23 8.80 97.76 3.44 99.05
Energy-OE 1.90 99.32 0.95 98.99 3.35 98.72 4.00 98.85 8.55 97.42 3.75 98.66
DAL 1.40 99.36 0.95 99.53 1.35 99.02 3.50 98.99 8.65 97.39 3.17 98.84
PFS 1.10 98.74 0.35 99.61 1.35 99.20 2.85 98.58 7.75 97.17 2.68 98.66
Ours: VPC 0.85 99.62 0.45 99.50 1.10 99.50 2.25 99.38 6.70 97.91 2.27 99.18

ResNet-18

OE 3.25 98.37 1.25 98.97 1.30 98.78 3.05 98.35 8.45 97.34 3.46 98.36
Energy-OE 1.40 98.30 2.55 98.44 2.90 98.86 3.40 98.55 9.15 97.17 3.88 98.26
DAL 1.00 99.70 1.15 99.69 1.90 98.98 2.70 99.11 8.35 97.31 3.02 98.96
PFS 1.45 99.29 0.60 99.31 1.95 98.88 2.45 98.88 8.80 97.26 3.05 98.72
Ours: VPC 0.95 98.56 1.60 98.81 2.00 98.61 2.55 98.30 7.10 97.34 2.84 98.32

DenseNet-121

OE 2.05 99.18 0.85 99.44 0.45 99.33 3.20 98.77 7.65 97.56 2.84 98.86
Energy-OE 1.55 99.18 1.05 99.11 2.05 99.12 2.85 98.94 9.75 97.18 3.45 98.71
DAL 1.40 99.16 0.40 99.03 0.45 99.31 2.85 98.79 7.80 97.30 2.58 98.72
PFS 1.40 98.25 0.60 99.32 1.15 99.11 3.35 98.44 7.85 97.24 2.87 98.47
Ours: VPC 0.65 99.33 0.45 99.25 0.55 98.98 2.05 98.87 6.80 97.89 2.10 98.86

CIFAR-100
With auxiliary OOD data

WideResNet-40-2

OE 28.95 95.08 10.95 97.98 49.55 89.29 41.50 91.57 49.75 89.87 36.14 92.76
Energy-OE 23.80 96.18 31.90 94.88 41.40 91.67 48.10 88.09 56.50 87.66 40.34 91.69
DAL 19.30 95.75 16.20 96.71 30.70 93.85 43.15 91.36 55.10 88.39 32.89 93.21
PFS 24.70 95.81 12.65 97.78 38.35 91.44 44.20 91.32 51.85 90.33 34.35 93.33
Ours: VPC 9.95 97.98 26.25 95.75 26.50 94.97 45.05 89.67 52.45 89.88 32.04 93.65

ResNet-18

OE 52.40 90.28 34.90 93.25 45.00 90.92 52.75 86.47 58.70 85.91 48.75 89.36
Energy-OE 35.50 94.09 41.50 93.12 56.30 88.58 45.60 89.46 52.80 88.28 46.34 90.70
DAL 36.50 93.94 33.85 93.39 49.80 90.15 43.95 90.10 58.75 86.74 44.57 90.87
PFS 24.30 95.33 19.35 96.79 46.55 91.70 51.10 90.88 59.45 88.51 40.15 92.64
Ours: VPC 22.30 95.89 30.80 94.09 28.85 95.03 51.40 88.52 61.45 86.62 38.96 92.03

DenseNet-121

OE 23.80 95.89 28.05 95.11 31.00 95.07 46.95 91.07 52.50 88.99 36.46 93.23
Energy-OE 17.60 96.75 35.60 93.97 54.90 91.35 57.25 89.40 59.00 87.60 44.87 91.82
DAL 25.00 94.94 28.25 94.32 17.60 95.80 45.35 88.16 67.55 80.08 36.75 90.66
PFS 21.50 96.43 29.10 94.75 35.95 94.24 68.60 85.55 63.85 83.84 43.80 90.96
Ours: VPC 12.50 97.71 19.65 96.67 22.70 95.98 42.50 91.20 58.50 88.49 31.17 94.01

B.4 VISUALIZATION RESULTS AND ANALYSIS

This section presents a suite of visualizations to illustrate how VPC improves OOD detection on
CIFAR-10 and CIFAR-100. The figures highlight OEFS activations, feature orthogonality, ID/OOD
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score distributions, cross-metric comparisons, and failure analyses, providing an intuitive view of the
advantages of our approach.

B.4.1 OEFS ACTIVATION ANALYSIS

Figure 6 and 7 show the mean OEFS activations after optimizing VPC with the divergence loss and
the convergence loss on CIFAR-10 and CIFAR-100, respectively. The divergence loss induces a
canonical activation pattern across EBVs (i.e., activation shape is consistent across EBVs), reflecting
the scale and coverage of the OE data. Despite this, OOD samples still exhibit distinct L2 activation
magnitudes that our VPC Score can capture. Note that the seemingly higher ID activations along
EBVs arise because per-sample activations are dispersed and then averaged to approximately 1/C
over classes. In contrast, the convergence loss collapses OOD features toward a single EBV and also
influences the ID features.

B.4.2 ORTHOGONALITY OF OOD FEATURES

Figure 8 visualizes, on CIFAR-10, the projections of the first three class features, OOD features, and
the corresponding classifier weights/EBVs. Both PFS and our method enforce feature–weight/EBV
orthogonality, which leads to stronger OOD separability. We also observe class-wise drift under PFS,
whereas our ENC loss via a uniform evidence prior that suppresses such drift.

B.4.3 IMPACT OF SCORING FUNCTIONS ON ID/OOD DISTRIBUTIONS

Figure 9 and 10 compare ID/OOD score distributions under different scoring functions on CIFAR-10
and CIFAR-100. The VPC Score consistently reduces the overlap between ID and OOD distributions
and produces a sharper OOD peak, which is crucial for effective detection.

B.4.4 VISUAL PERFORMANCE ACROSS SCORING FUNCTIONS

Figure 11 and 12 illustrates that, on CIFAR-10/CIFAR-100, when MSP and Uncertainty perform
poorly, the VPC Score remains discriminative; the figure shows paired ID/OOD examples. Additional
qualitative results on CIFAR-100 are given in Figure 13 14 15 16 17 18 (ID and OOD datasets
including SVHN, LSUN, iSUN, Texture, and Places365), and the corresponding CIFAR-10 results
appear in Figure 19 20 21 22 23 24. In each figure, the left three panels depict cases where all metrics
perform well, while the right three highlight challenging cases where the VPC Score performs better.

B.4.5 FAILURE CASE ANALYSIS

Figure 25 focuses on failures in ID detection: the left panels show representative failures on CIFAR-
100, and the right panels show those on CIFAR-10, helping reveal model weaknesses and guide
improvements. Figure 26 presents failures in OOD detection, again split by dataset (left: CIFAR-100,
right: CIFAR-10), exposing the limitations of the methods under edge conditions.

C LIMITATIONS AND REPRODUCIBILITY STATEMENTS

C.1 LLM USAGE STATEMENT

We used large language models solely as a general-purpose writing assistant to improve grammar,
wording, and LATEX formatting. No part of the method design, theoretical development, or result
interpretation was delegated to an LLM. The authors are fully responsible for all scientific content.

C.2 CODE AVAILABILITY

To facilitate double-blind review, we have made the core code, configuration files,
and scripts required for reproduction available in an anonymous GitHub repository
https://anonymous.4open.science/r/VPC-2025; the complete version will be released once the paper
is accepted.
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C.3 LIMITATION

Our method, Vast Predefined Classifiers (VPC), is founded on a pre-specified Orthogonal Equiangular
Feature Space (OEFS), which is populated using a training paradigm guided by our proposed ENC,
VEBV, and OC losses. While this approach yields strong empirical results, its foundational design
choices introduce several key limitations. (i) The reliance on a predefined geometry imposes a primary
architectural constraint. Specifically, the OEFS architecture, derived from Equiangular Tight Frames
(ETFs), is subject to strict mathematical existence conditions that couple the feature dimension with
the number of in-distribution (K) and vast (V) vectors. This can limit the method’s scalability and
applicability beyond mere computational cost. (ii) The enforcement of a rigid equiangular structure
for in-distribution classes prioritizes maximal separability at the expense of potentially valuable
information regarding inter-class semantic similarity. While our focus is on leveraging OE data for
stable separation, incorporating hierarchical prototype structures into the OEFS framework remains
a promising avenue for future research. (iii) The multi-objective training paradigm presents its
own set of challenges. The stable convergence required to achieve an ideal Neural Collapse state
for in-distribution data can be disrupted by the competing objectives of attracting OOD features to
their subspace while enforcing orthogonality. This inherent tension makes the full materialization
of the ideal geometry difficult. (iv) The use of L1/L2 norms to measure activation patterns on the
OEFS represents a heuristic approach. We believe exploring more discriminative, OEFS-based
scoring functions and addressing the aforementioned constraints present compelling avenues for
future research in OOD detection.

Figure 6: OEFS mean activation after optimizing VPC with divergence and convergence losses on
CIFAR-10.
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Figure 7: OEFS mean activation after optimizing VPC with divergence and convergence losses on
CIFAR-100.

Figure 8: Orthogonality visualization of OOD features and top three class features on CIFAR-10,
comparing projections of the top three class features, OOD features with classifier weights/EBVs.
PFS and our method optimize OOD detection via orthogonal constraints.
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Figure 9: ID/OOD distribution plot on CIFAR-10 with various scoring functions for OOD detection.
VPC Score minimizes overlap and boosts OOD distribution peak sharpness.

Figure 10: ID/OOD distribution plot on CIFAR-100 with various scoring functions for OOD detection.
VPC Score minimizes overlap and boosts OOD distribution peak sharpness.

Figure 11: Visualization of ID and OOD detection using different scoring functions in CIFAR-100.
VPC Score maintains distinguishability even when MSP and Uncertainty perform poorly.
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Figure 12: Visualization of ID and OOD detection using different scoring functions in CIFAR-10.
VPC Score maintains distinguishability even when MSP and Uncertainty perform poorly.

Figure 13: Visualization of ID detection using different scoring functions in CIFAR-100.

Figure 14: Visualization of OOD:SVHN detection using different scoring functions in CIFAR-100.
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Figure 15: Visualization of OOD:LSUN detection using different scoring functions in CIFAR-100.

Figure 16: Visualization of OOD:iSUN detection using different scoring functions in CIFAR-100.

Figure 17: Visualization of OOD:Texture detection using different scoring functions in CIFAR-100.
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Figure 18: Visualization of OOD:Place365 detection using different scoring functions in CIFAR-100.

Figure 19: Visualization of ID detection using different scoring functions in CIFAR-10.

Figure 20: Visualization of OOD:SVHN detection using different scoring functions in CIFAR-10.
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Figure 21: Visualization of OOD:LSUN detection using different scoring functions in CIFAR-10.

Figure 22: Visualization of OOD:iSUN detection using different scoring functions in CIFAR-10.

Figure 23: Visualization of OOD:Texture detection using different scoring functions in CIFAR-10.
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Figure 24: Visualization of OOD:Place365 detection using different scoring functions in CIFAR-10.

Figure 25: Visualization of ID detection using different scoring functions in CIFAR-100 and CIFAR-
10. The left three images show failure cases for ID detection in CIFAR-100; the right three images
show failure cases in CIFAR-10.

Figure 26: Visualization of OOD detection using different scoring functions in CIFAR-100 and
CIFAR-10. The left three images show failure cases for OOD detection in CIFAR-100; the right three
images show failure cases in CIFAR-10.
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