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ABSTRACT

The ability to make zero-shot predictions about the fitness consequences of
protein sequence changes with pre-trained machine learning models enables
many practical applications. Such models can be applied for downstream
tasks like genetic variant interpretation and protein engineering without
additional labeled data. The advent of capable protein structure prediction
tools has led to the availability of orders of magnitude more precomputed
predicted structures, giving rise to powerful structure-based fitness predic-
tion models. Through our experiments, we assess several modeling choices
for structure-based models and their effects on downstream fitness predic-
tion. Zero-shot fitness prediction models can struggle to assess the fitness
landscape within disordered regions of proteins, those that lack a fixed 3D
structure. We confirm the importance of matching protein structures to
fitness assays and find that predicted structures for disordered regions can
be misleading and affect predictive performance. Lastly, we evaluate an ad-
ditional structure-based model on the ProteinGym substitution benchmark
and show that simple multi-modal ensembles are strong baselines.

INTRODUCTION

Designing proteins with desired properties carries immense promise with applications in
therapeutic development, agriculture, chemical manufacturing, and biofuels (Liu et al., 2022).
Effectively navigating the large design space of proteins requires understanding the relation
between a protein’s sequence and its function (Romero et al., 2013). The opportunities
in this scientific domain and excitement around protein science complemented by the rise
in popularity of machine learning methods have driven a wide variety of new methods
for quantitative protein function prediction (Yang et al., 2019). Computational methods
built using aligned sequences or multiple sequence alignments (MSAs) (Rao et al., 2021) for
evolutionarily related proteins can estimate protein fitness scores based on conservation or the
likelihood a new sequence belongs to the protein family. In contrast, protein language models
(PLMs) (Rives et al., 2021) train on and represent all known natural protein sequences to
learn more general statistical patterns of evolution.

Protein structures provide additional information for estimating the fitness consequences of
sequence changes. The increase in quality of predicted protein structures from models like
AlphaFold 2 (Jumper et al., 2021) has been followed by an increasing number of structure-
based models for predicting protein properties (Dauparas et al., 2022; Hsu et al., 2022;
Blaabjerg et al., 2023). The initial ProteinGym 0.1 (Notin et al., 2022a), a benchmark for
quantitative protein fitness prediction that used deep mutational scanning (DMS) assays for
evaluation, did not contain structure-based models. However, ProteinGym 1.0 (Notin et al.,
2023) was released with three inverse folding methods that use structures: ESM-IF1 (Hsu
et al., 2022), ProteinMPNN (Dauparas et al., 2022), and MIF (Yang et al., 2023). Additional
structure-based models were added after the ProteinGym publication. This warrants a closer
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examination of structure-based models’ behavior and protein fitness prediction performance
to determine what modeling choices and biological factors affect their predictions.

Here we explore some design choices around using structure-based models for protein fitness
prediction using the ProteinGym benchmark (Notin et al., 2023). We examine how the type
of protein structure (predicted or experimental) can affect model predictions. We observe that
a number of assays in the ProteinGym benchmark involve proteins containing intrinsically
disordered regions (IDRs). These are regions in the protein sequence that lack any rigid 3D
structure and can adopt multiple varied conformations (Trivedi & Nagarajaram, 2022). We
demonstrate how IDRs can affect model predictions made by various models. Finally, we
expand the structure-based models in ProteinGym, comparing them to strong existing MSA-
and PLM-based models. We show strengths of uni-modal and multi-modal structure-based
models, especially for stability assays. Additionally, we show that simple ensemble models
that include structure perform surprisingly well compared to more sophisticated models.

RESULTS

We use ProteinGym (Notin et al., 2023) to explore structure-based predictions of protein
fitness. ProteinGym hosts a collection of DMS substitution assays measuring quantitative
function of proteins belonging to different taxonomies and five different function types:
activity, binding, expression, organismal fitness, and stability (Table 3). Furthermore, the
benchmark hosts a variety of models sorted according to their average Spearman correlation
with measured function across protein and function types.

CHOICE OF STRUCTURE AFFECTS ZERO-FUNCTION PROTEIN FUNCTION PREDICTION

Previous work on PLMs has shown that given a corrupted protein sequence, predicting
log-likelihood of mutations at the corrupted residue can be indicative of protein fitness (Rives
et al., 2021; Yang et al., 2024). Unlike sequence-based PLMs, inverse folding models take
a corrupted sequence as well as the backbone structure of a protein and try to predict the
likelihood of the corrupted residue. This explicit conditioning on protein structure has shown
to improve recovery of the corrupted residues (Yang et al., 2023) and is therefore indicative
of better fitness prediction.

We first benchmark zero-shot predictive performance of the structure-based ESM-IF1 on all
DMS substitution assays from ProteinGym for which we could obtain matching experimental
structures. One key difference between experimental and predicted structures might be that
predicted structures only contain the coordinates of a target chain whereas an experimental
structure might contain a protein complex with multiple chains. Therefore, in order to
explicitly account for this difference, we separate the results according to whether the
experimental structure is a monomer (has a single chain) or a multimer (has multiple chains).
We compare the difference of Spearman correlation using predicted versus experimental
structures. Previous work has shown that experimental structures improve prediction of
protein properties such as Enzyme Commission number (EC) and Gene Ontology term
(GO) relative to structures predicted by AlphaFold 2 (Huang et al., 2024). Our results show
that, for most assays in ProteinGym with experimental structures, Spearman correlation
achieved using AlphaFold 2 predicted structures tends to be higher than that achieved using
experimental structures (Table 1). A more detailed breakdown can be found in Figure 1 in
the Appendix.

Structure Type Ppred — Pexp = 0 Ppred — Pexp < 0 % with Ppred — Pexp = 0

Monomers 38 13 74.5%
Multimers 8 2 80%

Table 1: Count of DMS assays in ProteinGym with positive and negative ppred — Pexp
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INTRINSICALLY DISORDERED REGIONS ARE PREVALENT IN PROTEINGYM AND INFORM
STRUCTURE-BASED MODEL PERFORMANCE

52 of the 186 (28%) unique UniProt IDs in ProteinGym are proteins that are annotated
as having disordered regions in DisProt in regions of the sequence covered by the DMS
assay (Table 4). These proteins are associated with 63 of the 217 (29%) ProteinGym DMS
substitution assays. Their disorder content ranges from 1.45% to 100% with a median of
15.67% and a mean of 23.56%. Nine proteins have over 45% disorder content. The Appendix
details our process of identifying disordered regions in ProteinGym assays.

We assess the effect disordered regions have on function prediction at the protein and residue-
level. We first benchmark models in Table 2 as well as ESM2 650M (Lin et al., 2023) on
63 DMS assays that have disordered regions in the target sequence defined by ProteinGym
(Table 4). There is some variation in performance across models, which may be related to
the models’ different input modalities (Figure 2).

In order to more directly assess how disordered regions affect zero-shot fitness prediction
quality, we examine the subset of 43 DMS assays that contain mutations in both disordered
and ordered regions corresponding to 36 proteins (Tables 4 and 5). Disordered regions
affect not only structure-based models like ESM-IF1 (Figure 3a), but also multi-modal
models like ProtSSN (Tan et al., 2024) (Figure 3b), SaProt (Su et al., 2023) (Figure 3g),
and TranceptEVE L (Notin et al., 2022b) (Figure 3c) for most function types. Disorder in
proteins can also be detrimental to predictions made by PLMs (Figure 3d, 3f, 4). We also
observe this phenomenon in ensembles of different models (Figure 3i, 3j, 3k, 31; ensembles
defined in Table 2). Disordered regions tend to be fast-evolving and less conserved (Brown
et al., 2002; Light et al., 2013; Fawzy & Marsh, 2025), which may partially explain this
observation.

Because many structure-aware protein function prediction methods rely on structures pre-
dicted by models like AlphaFold 2, studying the consequences of disordered regions on
predicted structures can inform fitness prediction outputs. We take a more in-depth look at
two such proteins with disordered regions: P37840 (human o-synuclein) and Q99801 (human
NKX3-1). a-synuclein is a protein associated with Parkinson’s disease that can take on disor-
dered, helical, or B-sheet-rich aggregate conformations (Newberry et al., 2020b;a). DMS data
(Newberry et al., 2020b;a) support that an a-helicial membrane-bound conformation with
increasing disorder toward the C-terminal end is relevant for a-synuclein toxicity. Comparing
experimental and predicted a-synuclein structures (Figure 5), neither is a perfect match for
this membrane-bound conformation, but the helical experimental structure is much more
similar. The substantial difference between the two structures likely explains why this DMS
assay SYUA HUMAN _Newberry 2020 has the most negative ppred — pexp in Figure 1.

NKX3-1 has a small positive ppred — pexp for the NKX31 HUMAN _Tsuboyama_2023_2LI9R
DMS assay (Figure 1). Although the protein contains disordered regions, closer examination
shows that the DMS assay only spans 61 positions of the protein that are ordered. The
experimental and predicted structures cover this same region of the protein and are quite
similar (Figure 6), consistent with the minimal difference in DMS prediction performance.

MULTI-MODAL MODELS ARE BETTER ZERO-SHOT PREDICTORS

Besides the choice of input structure, another aspect that affects the performance of structure-
based models is how and whether the structural information is combined with other data
modalities. Both MSAs (Marks et al., 2011) and PLM embeddings (Rives et al., 2021; Zhang
et al., 2024) already provide some information about protein structure. We assess whether
multi-modal models that explicitly use protein structure input have different performance
characteristics on the protein fitness prediction task than models that implicitly contain
structural information via MSA, PLM, or both inputs. We create ensembles of strong existing
zero-shot models by choosing the best-performing sequence- and MSA-based models from
ProteinGym and combining each with the ESM-IF1 structure-based model to assess how
adding the structure input affects predictive performance.
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Benchmarking strong models for different input modalities as well as ensembles using these
models on the ProteinGym benchmark shows that combining different modalities (through
ensembling or using joint architectures) exhibits some of the highest metrics (Tables 2 and
6). Models that incorporate protein structure information tend to perform well on DMS
substitution assays measuring stability, consistent with previous results (Paul et al., 2023;
Blaabjerg et al., 2024). Furthermore, we see that even simple ensembles of models combining
different modalities achieve some of the highest values across both Spearman correlation
and Top 10 recall. This suggests that multi-modal models seem to capture complementary
predictive signals that models operating on a single modality do not. Furthermore, multi-
modal models such as ProtSSN, SSEmb, TranceptEVE L, and SaProt may still underperform
simpler ensembled methods like StructSeq (Paul et al., 2023) and others.

Avg. p by Assay Function

Model Modality Avg. p
Activity Binding Expression Organismal Stability
Fitness

ESM-IF1* Structure 0.368 0.389 0.407 0.331 0.624 0.424
GEMME* MSA 0.482 0.383 0.438 0.453 0.519 0.455
VESPA* PLM 0.468 0.366 0.404 0.442 0.500 0.436
ProtSSN (ensemble) *  Structure + PLM  0.466 0.366 0.449 0.397 0.568 0.449
SSemb Structure + MSA 0.436 0.386 0.469 0.422 0.596 0.462
TranceptEVE L* MSA + PLM 0.487 0.376 0.457 0.460 0.500 0.456
SaProt (650M)* Structure + PLM  0.458 0.379 0.488 0.373 0.592 0.458
Ensemble 1 Structure +

StructSeq MSA + PLM 0.485 0.432 0.483 0.439 0.639 0.495
Ensemble 2 Structure +

ESM-IF1, Tranception MSA + PLM 0.479 0.418 0.491 0.438 0.621 0.489
Ensemble 3 Structure +

ESM-IF1, GEMME MSA 0.491 0.387 0.440 0.454 0.529 0.460
Ensemble 4 Structure +

ESM-IF1, VESPA PLM 0.485 0.372 0.416 0.449 0.558 0.456

Table 2: Spearman correlation coefficient (p) of model predictions versus DMS assay scores according
to the function type of each DMS assay. Scores for model names annotated with an asterisk (*) were
calculated using their predictions provided in ProteinGym (Notin et al., 2023). Scores highlighted in red,
olive, blue represent the 15, 2", and 3¢ highest score for each group. See Figure 7 for score distributions.

METHODS

We obtain DMS data and AlphaFold 2 predicted protein structures from ProteinGym (Notin
et al., 2023), experimental protein structures from the RCSB Protein Data Bank (PDB)
(Zardecki et al., 2016), and disordered protein annotations from DisProt (Aspromonte et al.,
2024). Predicted monomer structures in the ProteinGym were generated using AlphaFold 2
v2.3.1 with full dbs and default parameters (Notin, 2025). Additional dataset details are in
the Appendix.

There are many protein fitness prediction algorithms included in ProteinGym and far more not
integrated into the benchmarking framework. We prioritized representative alignment-based,
PLM-based, and structure-based models that performed well on the ProteinGym zero-shot
DMS substitution assays as well as additional structure-based models and ensembles. The
specific models and ensembles are described in the Appendix.

In order to evaluate the performance of each model on the ProteinGym dataset, we consider
two metrics: Spearman correlation (p) and Top 10 Recall (Appendix). The average score for
each metric follows the convention established by ProteinGym. We first take the average
of scores belonging to assays targeting the same protein (determined by UniProt IDs). We
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then take the average of the per protein averages across assay functions. Finally, the average
column in Tables 2 and 6 represents a mean of per function average scores.

DiscussioN

Our goal is not to assert that one algorithm is the best overall for zero-shot protein fitness
prediction. Rather, we provide insights into the strengths and weaknesses of different
algorithms, input protein representations, and their combinations. Although MSA-based
models (Marks et al., 2011) and PLMs (Rives et al., 2021; Zhang et al., 2024) implicitly
contain information about protein structure, explicit structure-based models do in fact
benefit in zero-shot prediction performance on the ProteinGym DMS substitution assays.
This finding is further bolstered by observing how combining different modalities can lead
to improved predictive performance. In addition, structure-based models using predicted
structures as inputs often show better performance on ProteinGym’s zero-shot prediction
tasks. We note that ESM-IF is explicitly trained on AlphaFold 2 predicted structures (Hsu
et al., 2022), which could explain why predicted structures outperform experimental ones in
our experiments.

Another reason for the discrepancy between model performance on predicted and experimental
structures could be the lack of manual validation of our chosen structures. As detailed in
the Appendix, we may have selected experimental structures misaligned with the fitness
prediction assays we benchmark in Figure 1. Due to the presence of proteins bound to
other molecules, alternative conformations, and protein modifications made to facilitate
structure characterization in the PDB, experimental structures can be misaligned with a
functional property of interest. However, this problem—as evident in Figure 5—can also be
observed in predicted structures. Our finding highlights the need for matching structures with
downstream properties when making zero-shot fitness predictions and interpreting structure
prediction models like AlphaFold 2 to understand how a protein’s structure was predicted.
Lastly, Rives et al. (2021); Yang et al. (2024) found that masked language modeling is highly
indicative of protein fitness, but this may not be the case for GO and EC prediction tasks
used by (Huang et al., 2024).

The best function prediction algorithm can depend on the protein and function (Tables 2
and 6). For some functions such as non-native enzymatic activity, zero-shot predictions
are uncorrelated with functional assays (Yang et al., 2025). Furthermore, the ProteinGym
assays represent only a fraction of available DMS assays, and our results may change across
a larger set of assays. ProtaBank (Wang et al., 2018) and MaveDB (Rubin et al., 2025)
catalog additional DMS datasets, and more are published continually.

One limitation of our study is that we did not use the same MSAs for all models. To get
the best representation for SSEmb (Blaabjerg et al., 2024) on zero-shot prediction tasks, we
generated MSAs using the process chosen by its authors instead of using ProteinGym MSAs.
Furthermore, despite the zero-shot setting being a useful paradigm, it is also important
to study how these models perform under supervised fine-tuning. Considering only MSAs,
structure, and sequence as input modalities leaves out models like METL (Gelman et al.,
2025) and RaSP (Blaabjerg et al., 2023) that are trained on alternate modalities like protein
stability and biophysical simulations. We could only analyze a small subset of DMS assays
with their experimental structures in part due to missing residues in the experimental
structures. We could expand this subset by relaxing our criteria for selecting experimental
structures to allow a small fraction of missing residues and model the missing residues with
Rosetta (Huang et al., 2011; Song et al., 2013; Leman et al., 2020). In addition, we only
considered a single experimental structure per protein and predicted structures from a single
algorithm. Further exploring the stability DMS assays, which are mostly ¢cDNA display
proteolysis assays (Tsuboyama et al., 2023), may explain why the two structure-based models
do not see same drop in performance for stability assays that they do in other function types.

Our preliminary examination of intrinsically disordered regions in ProteinGym proteins
shows how disorder can affect fitness predictions of not just structure based models, but those
based on sequences and MSAs. For example, Figure 4 shows ESM2 650M predictions for the
P53 HUMAN Giacomelli 2018 Null Etoposide assay separated by mutations in ordered
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and disordered regions. In the disordered region, ESM2 predicted pseudo log-likelihood
correlates less with DMS scores, and the masked marginal probabilities have a slightly smaller
range. Our results on DMS data are consistent with AlphaMissense’s lower performance for
pathogenic variant prediction within disordered regions (Cheng et al., 2023) and reduced
sensitivity in a systematic evaluation of pathogenicity prediction (Fawzy & Marsh, 2025).
Out of the structure-based models that we consider, ProtSSN (Tan et al., 2024) and SSEmb
(Blaabjerg et al., 2024), do not give special treatment to disordered regions of a protein or low
confidence regions of a predicted structure. ESM-IF1 (Hsu et al., 2022) on the other hand,
takes the confidence of AlphaFold 2 (Jumper et al., 2021) predicted structures into account by
masking low pLDDT coordinates. SaProt (Su et al., 2023) also takes confidence of predicted
structures into account by masking structure tokens corresponding to low pLDDT residues
and only using sequence tokens. Structure-based models are broadly applied for a variety of
tasks beyond fitness prediction (Fout et al., 2017; Gligorijevié¢ et al., 2021; Xia et al., 2021;
Gao et al., 2023), so our initial exploration of intrinsically disordered regions in ProteinGym
presents a general opportunity for future model development. Future structure-based models
could consider ways to account for the unique aspects of intrinsically disordered proteins or
support conformational ensembles (Lindorff-Larsen & Kragelund, 2021). Lastly, we see that
even though multi-modal models capture a more holistic representation of proteins, simple
ensembles of different models can often surpass their performance. This motivates further
research into architectures and training objectives that better combine information across
modalities as well as using simple multi-modal ensembles as baselines when developing those
models.

ACKNOWLEDGMENTS

We thank Sam Gelman and Bryce Johnson for feedback and modeling suggestions as well as
Moses Milchberg for protein structure discussions. This research was supported by National
Science Foundation awards CHE 2226451 and OAC 2030508 and computing resources at the
University of Wisconsin-Madison Center for High Throughput Computing (Center for High
Throughput Computing, 2006).

CODE AVAILABILITY

Code to reproduce our results can be found in our GitHub repository (https://github.
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APPENDIX

DATASETS

ProteinGym (Notin et al., 2023) is one of the most comprehensive datasets available for
evaluating zero-shot protein fitness prediction. It presents a collection of DMS substitution
assays measuring various protein functions: activity, binding, expression, organismal fitness,
and stability (Notin et al., 2023). Furthermore, the dataset also contains different input
data modalities for all the proteins. We used 216 DMS substitution assays from ProteinGym
(Table 3). We did not use BRCA2 HUMAN Erwood 2022 HEK293T. This is because
its structure is split across multiple files, and MSA generation for SSEmb proved to be
time-consuming.

In order to compute scores for SSemb (Blaabjerg et al., 2024), however, we had to use
MMseqs2 (Steinegger & Soding, 2017; Mirdita et al., 2022) to create new MSAs. We used
the notebook provided by SSemb to serially generate an alignment for each protein in the
ProteinGym DMS substitutions dataset by processing each pdb file from ProteinGym.

To get experimental structures for each assay in ProteinGym we queried the RCSB PDB
(Zardecki et al., 2016). Details on the query parameters and selection process can be
found below. We ended up with 65 different assays from the ProteinGym benchmark with
matching experimental structures. These assays are shown in Figure 1, and their functions
are summarized in Table 3. We aligned experimental and predicted structures with the RCSB
PDB pairwise structure alignment tool (Bittrich et al., 2024) and the TM-align alignment
(Zhang & Skolnick, 2005).

We obtained the disorder content from the 2024 12 DisProt release (Aspromonte et al., 2024).
We mapped the ProteinGym UniProt (The UniProt Consortium, 2023) entry names to IDs
(that is, accession numbers), replacing the outdated PSAE SYNP2 with PSAE _PICP2.
ANCSZ represents an ancestral sequence, not a UniProt ID, and could not be mapped, so
we obtained 186 unique UniProt IDs. We intersected these with all UniProt IDs from the
DisProt database.

PROTEIN FITNESS PREDICTION ALGORITHMS

Score for algorithms marked with an asterisk (*) were taken from the ProteinGym benchmark.
These scores can be obtained by downloading the zero shot substitution scores provided on
https://proteingym.org. For all other models, scores were generated manually by running
inference on the ProteinGym zero shot substitution benchmark.

¢ VESPA* (Marquet et al., 2022): This model uses protein sequence as an input.
It forgoes the need for MSA by using the embeddings from a pretrained PLM along
to compute conservation information along with log-probability odds for variants to
estimate their fitness effect.

¢ GEMME* (Laine et al., 2019): This model operates on the multiple sequence
alignment (MSA) of a protein as input. The key idea is to present sequences
homologous to the query as a tree (by sorting on sequence similarities) and extracting
conserved residues. This allows the model to predict protein functions based on
evolutionary signal for each protein.

e ESM Inverse Folding* (Hsu et al., 2022): This model proposes the idea of using
a structural encoder in addition to a sequence-to-sequence transformer model in
order to consume a protein’s folded structure and corrupted sequence to predict the
original sequence from it. We chose this model instead of ProteinMPNN (Dauparas
et al., 2022) because both the ProteinGym benchmark (Notin et al., 2023) as well
as prior work (Paul et al., 2023) have noted that ESM inverse folding provides a
stronger baseline representation for structure-based models.

e ProtSSN* (Tan et al., 2024) This model uses both protein sequence and struc-
ture as input. The model uses a graph neural network to process a protein’s
structure graph representation. The embeddings from a PLM are used as initial
node embeddings and processed over the structure graph.
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e TranceptEVE L* (Notin et al., 2022b): TranceptEVE combines signal pre-
dictive of protein function from the protein’s MSA (using EVE and Tranception’s
MSA retrieval (Notin et al., 2022a)) well as sequence (Tranception’s autoregressive
transformer). The idea behind TranceptEVE is that sequence and alignment signals
are conditionally independent and can be combined as follows:

log P(x;]|z1:-1) = (1 — ap)[(1 — Bp)Prransformer (Ti|Z1:i-1) + BpPmsa (@i]z1:i-1)])

+apPrvE(zil1i-1)

e SSemb (Blaabjerg et al., 2024): SSEmb proposes using a graph neural network
to consume protein structure graph and use embeddings from the MSA Transformer
model in order to make predictions.

e SaProt* (Su et al., 2023): SaProt uses Foldseek (van Kempen et al., 2024) to
generate protein residue tokens from its 3D structure. It then uses a PLM to process
the tokens and compute probabilities of the masked tokens within a context.

e ESM2 650M (Lin et al., 2023): Is a protein language model trained on protein
sequence datasets using masked language modeling. It uses a BERT-style encoder
architecture to learn continuous embedding representations of protein sequences.

e Ensemble 1 (StructSeq): This ensemble described in (Paul et al., 2023) assumes
that the probability of a masked token belonging to each amino acid class based on
its structure and alignment as well as that from a PLM are mutually independent.
Therefore, the three log probabilities can be added to compute the total probability.
This model combines log probabilities from ESM inverse folding and TranceptEVE.
Unlike other ensembling strategies (Kulikova et al., 2023), there is no additional
training after combining the base models.

o Ensemble 2: We ensemble scores from Tranception, which is a multi-modal model
combining PLM and MSA signals and ESM-IF1, which is a structure-based model.
We chose this model due to its similarity to Ensemble 1.

e Ensemble 3: We ensemble scores from GEMME, which is a MSA-based model,
and ESM inverse folding, which is a structure-based model.

e Ensemble 4: We ensemble scores from VESPA, which is a PLM, and ESM inverse
folding.

EVALUATION METRICS

Spearman p can be defined as:

N
N(NT—1)

where each d; is a rank difference between i*? prediction and i*" ground truth data point.

This metric is especially useful when judging how well a model’s predictions correlate with a
certain quantitative function in a protein. The average value indicates how well the model
predicts all protein functions on average.

Top 10 Recall can be defined as:

No. of data points that lie in the top 10% of both predicted and measured values
Top-10 Recall =

No. of data points in the top 10% of measured values

The utility of this metric is scenarios where we use a machine learning model to identify
mutations in a protein that increase a certain function the most, i.e. identifying the most
beneficial mutations. That setting is relevant for protein engineering.
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SELECTION PROCESS FOR DISORDERED PROTEINS

We follow a multi-step process to select proteins containing IDRs from the set of proteins
in ProteinGym. First, we select disordered annotations according to protein UniProt IDs
present in ProteinGym. Then, we perform a sequence matching operation. We need to do
this due to DisProt using protein sequences from UniProt (Aspromonte et al., 2024). This
convention is different from ProteinGym, where each DMS assay is mapped to the sequence
used to generate the DMS data (Notin et al., 2023). We found that target sequences in
ProteinGym can often be different from the UniProt sequences at arbitrary positions. For
example, the sequences for a-synuclein in UniProt and ProteinGym are of the same length
but differ in residues at arbitrary locations throughout the sequence. We detail the sequence
alignment procedure below. Lastly, we select mutations within substitution DMS assays in
ProteinGym.

e 15¢ Stage: We use the DisProt database to query each UniProt ID in ProteinGym
and retrieve the set of proteins that have disordered annotations in DisProt.

e 27d Stage:

— We first align the ProteinGym target sequence for each assay to its UniProt
sequence. We do this by handling two cases: sequences differing in arbitrary
mutations and target sequences that are subsets of UniProt sequences. If target
sequences are of the same length as their corresponding UniProt sequences,
we treat them as referring to the same sequence. If the target sequence and
UniProt sequence differ in length (the case where target sequences are a subset
of the UniProt sequence), we find the location of the target sequence within the
UniProt sequence.

— Using these aligned annotations, we select disordered annotations that lie within
the target sequence provided by ProteinGym for each UniProt ID (Notin et al.,
2023). At the end of this stage, we are left with DMS assays from ProteinGym
that contain at least one disordered region.

o 374 Stage: We select DMS assays that have mutations in both ordered and disordered
regions.

Stage 1 yields 58 of the 186 (31%) unique UniProt IDs in ProteinGym that are proteins
that are annotated as having disordered regions in DisProt (Table 4). These proteins are
associated with 69 of the 217 (32%) ProteinGym DMS substitution assays.

After Stage 2, we obtain 52 of the 186 (28%) unique UniProt IDs in ProteinGym associated
with 63 of the 217 (29%) of the DMS substitution assays. These assays contain a valid
disordered region in Table 4. We use the subset of assays obtained after Stage 2 in our
analysis in Figure 2 for benchmarking how different models score proteins which contain
disordered regions.

Lastly, in order to benchmark how well models predict functional effects of mutations in
ordered versus disordered regions, we select assays that contain mutations in both ordered
and disordered regions during Stage 3. After this stage, we are left with 36 unique UniProt
IDs corresponding to 43 different assays. The set of assays obtained after Stage 3 are marked
with a T in Table 4 and are used in Figure 3.

SELECTION PROCESS FOR EXPERIMENTAL STRUCTURES

We queried the RCSB PDB (Bittrich et al., 2024) to get structures that exactly match the
entire target sequence in ProteinGym. We used the logic to query PDB by performing a
search using sequence similarities from the code provided by Boca & Mathis (2023).

Our filtering process follows two steps:
e As our first filtering criteria, we discard proteins that do not have any matching

experimental structures. We used an E-value cutoff of 1.0 and identity cutoff of 90%.
We found 82 such experimental structures.
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e Our second filtering criteria is to drop any proteins that match to experimental
structures that do not contain coordinates for all residues in the ProteinGym target
sequence. This is due to the fact that the ESM-IF1 model would not be able to
process such structures.

A limitation of our approach is that we did not manually confirm that the selected structures
match the functional assays in the ProteinGym benchmark. This can be detrimental to making
fitness predictions. For example, if an experimental structure represents a conformation that
does not expose an active site, it will be less informative in predicting protein function.
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Figure 1: Difference in Spearman correlation between predictions made using predicted and experi-
mental structures. Each datapoint represents a DMS assay for which an experimental structure

exists.
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Figure 2: Protein-level Spearman p predicting function of proteins comprising some form of disordered
regions in the ProteinGym assay target sequence according to the DisProt database.
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Figure 3: Spearman correlation averaged across UniProtID and then function type for disordered
and ordered regions. These scores were computed across proteins that contain mutations in both
disordered and ordered regions.
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Figure 4: Predictions made by ESM2 650M on the P53  HUMAN _Giacomelli 2018 WT _Nutlin
dataset separated by disordered and ordered regions.
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Figure 5: Protein structure alignment between the experimental (orange, PDB 1XQ8 (Ulmer et al.,
2005)) and predicted (blue) structures for P37840 (human o-synuclein). The ProteinGym AlphaFold
2 predicted structure resembles an o-synuclein fibril, PDB 2NOA (Tuttle et al., 2016), which is a
different conformation than the predicted a-synuclein structure in the AlphaFold Protein Structure
Database (AF-P37840-F1-v4) (Varadi et al., 2024).

Figure 6: Protein structure alignment between the experimental (orange, PDB 2L9R) and predicted
(blue) structures for Q99801 (human NKX3-1). The experimental structure has sequence length of
69 versus 61 for the predicted structure.
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Figure 7: Distribution of Spearman correlation of various models being considered across 216 DMS assays from

ProteinGym. Triangles denote the mean correlation. Ensemblel is the StructSeq method proposed by (Paul et al.,
2023).
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Assay function type Activity Binding Expression Organismal Stability Total

Assays with 43
predicted structures

Assays with 3
experimental structures

13

18 76

66 216

53 65

Table 3: Count of DMS assays by function type.

ProteinGym DMS ID UniProt Disorder content (%) Disordered
regions
A4 HUMAN Seuma_ 2022f P05067 5.19 671-710
ACE2 HUMAN Chan 2020 QIBYF1 4.60 768-804
ADRB2_ HUMAN Jones 2020% P07550 17.43 341-412
B2L11 HUMAN Dutta 2010 binding-Mcl-1 043521 55.56 0-40,96-164
BRCA1 HUMAN Findlay 20187 P38398 83.20 99-1648
BRCA2 HUMAN Erwood 2022 HEK293T P51587 6.93 47-283
CALM1_ HUMAN Weile 2017% PODP23  6.71 75-84
CASP3_HUMAN Roychowdhury 20207 P42574 16.28 28-37,172-182,136-156
CASP7 _HUMAN Roychowdhury 20207 P55210 5.34 173-187
CATR_CHLRE_Tsuboyama_ 2023 2AMIY P05434 4.17 0-2
CBS_HUMAN Sun_2020f P35520 7.26 0-39
CD19_HUMAN _Klesmith 2019 FMC _singles' P15391 2.70 137-151
CUE1_YEAST Tsuboyama 2023 2MYXT P38428 9.62 0-4
DLG4 HUMAN Faure 2021 P78352 9.81 0-70
DYR_ECOLI Nguyen 2023" POABQ4 27.04 8-23,62-71,115-131
DYR_ ECOLI Thompson 2019f POABQ4 27.04 8-23,62-71,115-131
ERBB2 HUMAN _Elazar 2016 P04626 21.35 987-1254
GAL4_YEAST Kitzman 2015 P04386  4.31 106-143
GCN4_YEAST_Staller 2018" P03069 47.69 0-133
HMDH HUMAN Jiang 20197 P04035 3.15 860-887
KCNE1_ HUMAN Muhammad 2023 expression’ P15382 50.39 23-44,71-90,106-128
KCNE1 HUMAN Muhammad 2023 function® P15382 50.39 23-44,71-90,106-128
MET HUMAN Estevam 20237 P08581 6.97 166-185
MKO1 HUMAN Brenan 20167 P28482 8.33 0-14,174-188
MTHR_HUMAN Weile 2021f P42898 1.68 160-170
NKX31 HUMAN Tsuboyama 2023 2L9R Q99801 0 Disordered region not
in target seq.
NPC1_HUMAN Erwood 2022 HEK293Tt 015118 12.83 287-332,373-382,604-619,
772-812,959-982,1251-1277
NPC1 HUMAN Erwood 2022 RPE1 015118 12.83 287-332,373-382,604-619,
772-812,959-982,1251-1277
NUSA ECOLI Tsuboyama 2023 1WCL POAFF6  100.0 0-68
P53 HUMAN Giacomelli 2018 Null Etoposidet P04637 37.66 0-92,290-311,360-392
P53 HUMAN Giacomelli 2018 Null Nutlin' P04637 37.66 0-92,290-311,360-392
P53 HUMAN Giacomelli 2018 WT Nutlin' P04637 37.66 0-92,290-311,360-392
P53 HUMAN _Kotler 2018t P04637 37.66 0-92,290-311,360-392
PABP YEAST Melamed 2013 P04147 14.56 418-501
PAI1_HUMAN Huttinger 20217 P05121 3.98 354-369
PA 134A1_ Wu_ 20157 P03433 3.63 371-396
PIN1 HUMAN Tsuboyama 2023 1I6Ct Q13526 15.38 33-38
POLG_ DEN26 Suphatrakul 2023 P29990 0 Disordered region not
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POLG_HCVJF Qi 2014 Q991IB8 6.73 2223-2316,2330-2439

PPARG_HUMAN Majithia_2016% P37231 59.21 8-210,237-297,442-476

PRKN HUMAN Clausen 2023% 060260 16.13 72-98,108-141,377-390

PTEN HUMAN Matreyek 20217 P60484 18.61 285-308,352-402

PTEN HUMAN Mighell 2018t P60484 18.61 285-308,352-402

R1AB_ SARS2 Flynn 2022 PODTD1 0 Disordered region not
B B B in target seq.

RAF1 _HUMAN Zinkus-Boltz 2019 P04049 3.09 235-254

RASH HUMAN Bandaru 2017 P01112 10.58 169-188

RASK HUMAN_ Weng 2022 abundancef P01116 17.55 59-69,166-187

RASK HUMAN_ Weng 2022 binding-DARPin_ K557 P01116 17.55 59-69,166-187

RCD1_ARATH Tsuboyama 2023 50AOf Q8RY59  1.75 0-0

RCRO_LAMBD _Tsuboyama 2023 10RCT P03040 15.87 53-62

RD23A HUMAN _Tsuboyama_ 2023 1IFYT P54725 9.09 40-43

RFAH ECOLI_Tsuboyama 2023 2LCLY POAFWO0 12.73 0-6

RL20 AQUAE Tsuboyama 2023 1GYZT 067086 49.15 0-0, 31-58

SHOC2 HUMAN_ Kwon_2022f QoUQ13  14.60 0-84

SPIKE SARS2 Starr 2020 binding PODTC2  39.59 0-25,66-79,141-163,172-184,

245-261,318-540,620-639,
672-686,827-852,1146-1272
SPIKE SARS2 Starr 2020 expression PODTC2  39.59 0-25,66-79,141-163,172-184,
245-261,318-540,620-639,
672-686,827-852,1146-1272

SRBS1 HUMAN Tsuboyama 2023 202W Q9BX66 0 Disordered region not
in target seq.

SRC_HUMAN Ahler 2019 P12931 15.67 0-83

SRC HUMAN Chakraborty 2023 binding-DAS 25uM P12931 15.67 0-83

SRC_HUMAN Nguyen 2022 P12931 15.67 0-83

SUMO1_ HUMAN Weile 2017% P63165 17.82 0-17

SYUA HUMAN Newberry 2020 P37840 100.0 0-139

TADBP HUMAN Bolognesi 2019 Q13148 36.71 262-413

TAT HVI1IBR_Fernandes 2016 P04610 100.0 0-85

UBE4B_HUMAN Tsuboyama 2023 3L1X' 095155 1.45 0-0

UBR5 HUMAN Tsuboyama 2023 1I2T 095071 0 Disordered region not
in target seq.

VILI CHICK Tsuboyama 2023 1YUS5T P02640 3.08 0-1

YAP1 _HUMAN _Araya_2012f P46937 24.21 49-170

YNZC_ BACSU_Tsuboyama 2023 2JVD 031818 0 Disordered region not

in target seq.

Table 4: DisProt disorder content for ProteinGym proteins and the associated ProteinGym
substitution DMS assays. The disorder content and 0-indexed disordered regions pertain
only to the subset of the protein sequence covered by the DMS assay (target sequence).
Disordered regions for proteins with disordered annotation outside of the target sequence are
marked as such. Additionally, DMS assays used in Figure 3 containing mutations in both
ordered and disordered regions marked with ().

Assay function type Activity Binding Expression Organismal Stability Total

DMS ID Count 9 4 4 15 11 43

Table 5: Count of DMS IDs corresponding to disordered proteins identified by 36 unique
UniProt IDs that have mutations in both ordered and disordered regions.
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Top 10 Recall (R) by Assay Function

Model Modality Avg. Top 10 R
Activity Binding Expression Organismal Stability
Fitness

ESM-IF1* Structure 0.180 0.207 0.205 0.173 0.344 0.222
GEMME* MSA 0.194 0.200 0.198 0.215 0.233 0.208
VESPA* PLM 0.175 0.192 0.184 0.208 0.242 0.200
ProtSSN* (ensemble)  Structure + PLM  0.187 0.197 0.220 0.191 0.337 0.227
SSemb Structure + MSA 0.198 0.222 0.204 0.215 0.334 0.235
TranceptEVE L* MSA + PLM 0.197 0.221 0.224 0.229 0.278 0.230
SaProt (650M)* Structure + PLM  0.187 0.232 0.236 0.175 0.331 0.232
Ensemble 1 Structure +

StructSeq MSA + PLM 0.208 0.238 0.232 0.221 0.335 0.247
Ensemble 2 Structure +

ESM-IF1, Tranception MSA + PLM 0.206 0.224 0.221 0.221 0.328 0.240
Ensembled 3 Structure +

ESM-IF1, GEMME MSA 0.197 0.199 0.198 0.223 0.244 0.212
Ensemble 4 Structure +

ESM-IF1, VESPA PLM 0.184 0.194 0.186 0.213 0.278 0.211

Table 6: Top 10 Recall of predictions made by different models sorted according to function type of
each DMS assay. Scores for model names annotated with an asterisk (*) were calculated using their
predictions provided in the ProteinGym benchmark (Notin et al., 2023). Scores highlighted in red, olive,
blue represent the 15, 2" and 3" highest score for each group. Modalities represented in the table
are protein language models (PLMs), structure-based models (Structure), Multiple Sequence Alignment

(MSA).
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