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Abstract

This paper proposes a framework combining
Neural Ordinary Differential Equations (Neu-
ral ODEs) and robust control theory to en-
hance the interpretability and control of large
language models (LLMs). By utilizing Neu-
ral ODEs to model the dynamic evolution of
input-output relationships and introducing con-
trol mechanisms to optimize output quality, we
demonstrate the effectiveness of this approach
across multiple question-answer datasets. Ex-
perimental results show that the integration of
Neural ODEs and control theory significantly
improves output consistency and model inter-
pretability, advancing the development of ex-
plainable AI technologies.

1 Introduction

1.1 The Challenge of Interpreting LL.Ms

Large Language Models (LLMs) have demon-
strated impressive performance across a range
of natural language processing tasks, from ma-
chine translation to text generation and summa-
rization(Brown et al., 2020). Despite their remark-
able capabilities,interpreting the decision-making
processing of these models remains a significant
challenge. The opacity of LLMs raises critical
questions about their reliability, fairness, and eth-
ical implication in real-word application (Lipton,
2017). Understanding the underlying mechanisms
of LLMs is essential for building trust and ac-
countability in Al systems, particularly when these
systems are deployed in high-stakes environments
such as healthcare and low.

2 Literature Review

2.1 Current Methods for Enhancing
Interpretability in LLMs

The interpretability of large language models
(LLMs) has become a central concern in Al re-
search. To address this challenge, various ap-

proaches have been proposed, which can broadly
be categorized into local and global analyses.

2.1.1 Local Analysis

Local analysis focuses on interpreting individual
predictions made by a model by examining specific
input-output relationships. The primary goal is to
understand the contribution of each input feature
to the model’s output. Key approaches within local
analysis include feature attribution methods and
analyzing transformer blocks.

Feature attribution methods quantify the influ-
ence of each input feature on the model’s predic-
tions. Common techniques include gradient-based
methods and vector-based methods. Gradient-
based methods, such as Integrated Gradients (Sun-
dararajan et al., 2017), compute the gradients of
the output with respect to inputs, attributing signif-
icance based on how changes in input features af-
fect the model’s predictions. Vector-based methods,
such as the Shapley Value framework (Lundberg
and Lee, 2017), evaluate the contribution of each
feature by considering all possible combinations of
input variables. These methods allow researchers
to identify influential features and gain insights into
why the model produces specific outputs.

For transformer-based models like BERT and
GPT, analyzing components such as multi-head
self-attention (MHSA) and multi-layer perceptron
(MLP) sublayers can provide valuable insights into
the model’s behavior. For example, examining
MHSA sublayers reveals how attention weights
are distributed across input tokens, helping to de-
termine if the model focuses on relevant words
or phrases (Vig, 2019). Similarly, analyzing MLP
sublayers reveals how feature combinations are pro-
cessed and transformed, elucidating the flow of in-
formation through the network. These analyses can
uncover how specific tokens drive shifts in atten-
tion across layers, leading to richer interpretations
of model decisions (Beltagy et al., 2020).



2.1.2 Global Analysis

In contrast to local analysis, global analysis seeks
to provide a broader understanding of a model’s be-
havior by exploring the underlying principles that
govern its representations and knowledge. This ap-
proach includes probing-based methods and mech-
anistic interpretability.

Probing-based methods involve training auxil-
iary models on hidden representations to assess the
knowledge encoded within the model. Techniques
such as probing knowledge and probing represen-
tations allow researchers to evaluate the extent to
which LLMs capture linguistic properties, syntac-
tic structures, or semantic features (Tenney et al.,
2019). These methods help identify the high-level
knowledge embedded in the model, offering in-
sights into its internal decision-making processes.

Mechanistic interpretability focuses on under-
standing how specific mechanisms within the
model contribute to its predictions. Techniques
like causal tracing (Meng et al., 2023) provide in-
sights into how neural networks, especially LLMs
like GPT, represent and utilize factual knowledge.
By locating factual associations, researchers can
identify which parts of the model are responsible
for generating specific factual outputs.

While local analysis provides insights into spe-
cific model decisions, global analysis offers a more
holistic view of the model’s overall behavior. These
two approaches are complementary: local analysis
helps interpret individual predictions, while global
analysis aids in understanding how the model gen-
eralizes across different tasks and domains.

2.2 Neural ODEs in LLMs

Neural Ordinary Differential Equations (ODEs)
have emerged as a powerful framework for
continuous-time modeling, with applications
across various domains, including language models
(LLMs).

Introduced by Chen et al. (2019) (Chen et al.,
2019), Neural ODEs model the evolution of latent
variables as a continuous-time dynamical system.
Unlike traditional neural networks, which rely on
discrete layers, Neural ODEs define a differential
equation parameterized by neural networks, allow-
ing for flexible representations of data evolving
over time. Neural ODEs are particularly useful
for modeling the temporal patterns seen in lan-
guage processing, enabling the model to adaptively
learn how different linguistic structures evolve

(Rubanova et al., 2019).

Additionally, integrating Neural ODEs with at-
tention mechanisms has led to scalable LLMs capa-
ble of processing and interpreting real-time sensor
data (Wang et al., 2024). A promising direction
is combining Neural ODEs with Transformer ar-
chitectures, which has revealed natural correspon-
dences between Neural ODEs and Transformer
attention mechanisms, offering new insights into
deep learning models (Hashimoto et al., 2024).

However, despite their potential, current appli-
cations of Neural ODEs in understanding neural
models often fall short in directly correlating these
dynamics with specific input-output relationships,
particularly in complex architectures like LLMs.
Existing frameworks typically do not address how
these learned dynamics can be tuned based on ex-
ternal objectives, such as ensuring fairness or ro-
bustness. This presents a significant challenge in
applying Neural ODE:s to real-world LLM applica-
tions.

2.3 Control Theory in LLMs

Control theory offers critical insights into the
dynamics and optimization of complex systems,
making it highly relevant for improving the inter-
pretability and reliability of Large Language Mod-
els (LLMs). The application of robust control helps
address uncertainty within these models and en-
sures they meet performance standards.

Control is crucial in LLM research. As noted
by (Liang et al., 2024), controllable text genera-
tion aims to generate text according to specific re-
quirements, including content and attribute control.
Fine-tuning and retraining adjust the model during
training, while reinforcement learning and prompt
engineering guide the model during inference to
enhance text controllability. Researchers in control
engineering (Kevian et al., 2024) use specialized
datasets and evaluation methods to understand the
problem-solving capabilities of different advanced
LLMs in control engineering contexts, guiding fu-
ture improvements.

Control theory in LLMs is an evolving field. By
exploring text generation, safety, multimodal tasks,
and domain-specific applications, control theory
can make LLLMs more interpretable, reliable, and
powerful, with broad applications in areas such as
autonomous systems, healthcare, and finance.



3 Contributions and Structure of the
Paper

This paper introduces an innovative approach for
enhancing the interpretability and reliability of
Large Language Models (LLMs) by integrating
Neural Ordinary Differential Equations (Neural
ODEs) with robust control mechanisms. The key
contributions are as follows:

 Innovative Integration Method: We pioneer
the integration of Neural ODEs and robust
control for LLMs, offering a new perspec-
tive on analyzing input-output relationships in
LLMs that has not been explored before.

* Enhanced Model Understanding: This work
enables the transformation of LLM inputs
and outputs into a lower-dimensional latent
space, providing a means to study internal
information-processing pathways, which sig-
nificantly enhances model interpretability.

e Improved Output Quality: The application
of robust control ensures that LLM outputs
meet specific performance criteria, improving
their quality and reliability for practical use.

The paper is structured as follows: Section 4
utilizes Ordinary Differential Equations (ODEs)
to model LLM processes, offering a continuous
and interpretable framework, with robust control
mechanisms introduced to enhance output reliabil-
ity and ensure ethical standards. Section 5 presents
the methodological framework, integrating Neu-
ral ODEs with and without control mechanisms to
model dynamic processes within LLMs. Section
6 provides a comparative analysis of Neural ODE
models, with and without control, focusing on train-
ing/validation loss, prediction accuracy, and latent
space dynamics. Finally, Section 7 demonstrates
how integrating control mechanisms into Neural
ODEs enhances LLM stability and generalization,
which is crucial for developing trustworthy Al in
high-stakes domains, setting the stage for future
research on transparent and accountable Al tech-
nologies.

4 Theoretical Framework

4.1 Neural ODEs

Because Ordinary Differential Equations (ODEs)
are inherently unable to model text directly, we

need to map the input and output of Large Lan-
guage Models (LLMs) into a latent space. This
latent space representation allows us to work with
continuous-time dynamics, enabling the use of
Neural ODEs for modeling the evolution of LLM
inputs and outputs in a more flexible and accurate
manner. Neural Ordinary Differential Equations
(Neural ODEs) offer a powerful framework for
modeling continuous-time dynamics. Their appli-
cation in large language models (LLMs) provides
a way to better capture the temporal relationships
inherent in language data. Unlike traditional dis-
crete models (e.g., RNNs or LSTMs), which treat
sequences of data as a series of steps, Neural ODEs
model the evolution of latent variables continuously
over time, offering a more flexible and accurate rep-
resentation of sequential data.

In the context of LLMs, we define the hidden
state h(t) as a function of time ¢. The evolution of
this state is described by the following equation:

dh(t) _
7 - f(t7 h‘(t)v 0) (1)

where f is a function parameterized by a neural
network. For simplicity, assume that f is a single-
layer neural network with a linear transformation
followed by an activation function o

JEh(1),0) = (W -h(t) +8) @)

Here, W is the weight matrix, b is the bias vector,
and 6 represents the parameters of the network.

This continuous modeling approach is particu-
larly useful for time-series and language processing
tasks, where data evolves over time. To solve the
differential equation, numerical methods like Eu-
ler’s method can be applied:

h(t + At) ~ h(t) + At - f(t,h(t),0)  (3)

This update rule models how the hidden state
evolves over small time steps, enabling the model
to learn how language structures change dynam-
ically. Compared to traditional discrete models
like RNNs or LSTMs, Neural ODEs offer several
advantages, including more natural modeling of
continuous temporal patterns and flexibility in cap-
turing complex dependencies over time.

The mapping of LLM inputs and outputs to a la-
tent space allows us to model the input-output rela-
tionships using continuous-time dynamics. Specifi-
cally, the input sequence X = [z1,x2,...,27] is
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Figure 1: Model Architecture for Methodology
first embedded into a latent space Z via an embed-
ding function ¢: y=g(h,u) (©)

Zp = ¢(Xy) C))

where Z; represents the embedded representa-
tion of the input at time step ¢, and ¢ is the func-
tion mapping the raw input tokens into the latent
space. The output sequence Y = [y1,y2, ..., yr]
is then modeled in the same latent space, allowing
the Neural ODE to capture the temporal evolution
and dynamic mapping between the inputs and the
corresponding outputs.

This formulation enables Neural ODEs to model
the continuous-time evolution of LLM states, of-
fering a powerful tool for handling sequential data
with complex dependencies, such as language. By
operating in the latent space, the Neural ODE
framework is able to handle the high-dimensional,
variable-length sequences typical of language mod-
els more efficiently and flexibly.

4.2 Control Mechanism

To improve the reliability of the LLM outputs, we
introduce a robust control mechanism. The goal
is to minimize the difference between the model’s
output y and the desired output Ygesireq- The cost
function J is defined as:

n
J = w; - Li(y, Ydesirea) )
i=1
where L; represents the individual loss compo-
nents, and w; are their respective weights. This
cost function quantifies the discrepancy between
the predicted and desired outputs across different
loss components.
The output y depends on the hidden state & and
control input u, and is given by:

where g(h,u) = V - (h 4+ u) + ¢ is a neural
network-based function, with V' and c as additional
parameters. The control input « is adjusted during
training to minimize the cost function .J. This can
be formulated as:

u*(t) = argmin J(u)

n
= arg muin Z w; - Ly (g(ha u): ydesired)
=1
(7

By optimizing the control input u, we ensure
that the model’s output y closely aligns with the
desired output. This control mechanism enhances
the LLM’s stability and reliability, making it more
robust in real-world applications.

4.3 Integrating Neural ODE and Control
Mechanism

To further enhance the LLM’s performance, we
integrate the Neural ODE with the control mecha-
nism. By incorporating the control input u into the
Neural ODE, the evolution of the hidden state h(t)
is modeled as:

dh(t)

In this combined framework, the cost function J
depends on the entire sequence of outputs {y(t)},
where y(t) = g(h(t),u(t)) fort = 0,At,...,T.
The optimization problem is then formulated as:

(u 1) = axgmin J({g(h(t), u(®)} ) ©)



This integrated approach ensures that the LLM’s
output reflects both the internal processing of input
data and the external control criteria. By optimizing
both the hidden state and the control input, we can
improve the model’s stability, generalization, and
adaptability to various tasks.

The combination of Neural ODEs and control
mechanisms allows for a more flexible and inter-
pretable model. This approach is particularly bene-
ficial for high-stakes applications where the model
needs to be both interpretable and reliable. Further-
more, the continuous-time nature of Neural ODE:s,
combined with the control theory, provides a ro-
bust framework for optimizing model performance
across a wide range of tasks, including real-time
language processing and decision-making in dy-
namic environments.

4.4 Conclusion

In this section, we introduced a theoretical frame-
work that integrates Neural ODEs with control
mechanisms to optimize the performance and inter-
pretability of LLMs. This approach provides flexi-
bility in modeling sequential data and ensures that
the model output meets specific performance cri-
teria. Additionally, exploring how this framework
can be adapted to handle diverse types of language
data, such as multimodal inputs or noisy real-world
data, would significantly expand its applicability.
Further investigations into the interpretability of the
combined model could also help provide deeper in-
sights into how both internal dynamics and control
inputs contribute to the model’s decision-making
process.

5 Methodology

Building on the theoretical foundations established
in the previous section, this section presents two
algorithmic frameworks designed to enhance the in-
terpretability and reliability of large language mod-
els (LLMs). These frameworks integrate Neural
ODEs (Ordinary Differential Equations) and robust
control mechanisms. The first framework utilizes
Neural ODEs alone, encoding LLM inputs and
outputs into a latent space and evolving the state us-
ing advanced optimization techniques. The second
framework incorporates control mechanisms into
the Neural ODEs, allowing for dynamic adjustment
of the model’s state to achieve stable and reliable
outputs. Both frameworks aim to improve the trans-
parency and performance of LLMs by revealing

their continuous and dynamic transformations.

5.1 Neural ODE for LLM Input-Output
Mapping

The first algorithm uses a basic Neural ODE frame-

work to model the input-output relationships in

LLMs without any control mechanisms. This

framework consists of three key components, de-

tailed in Algorithm 1.

Algorithm 1 Train Neural ODE for LLM Input-
Output Mapping

1: Input: Dataset (Q), A), Parameters 6, Learning
rate o, Epochs
Output: Optimized parameters 6*
Initialize model M <— NeuralODE(6)
Initialize optimizer Opt <— Adam(M, «)
for epoch = 1to F do
for each (¢,a) € (Q,A) do
h + Integrate(M, q)
loss < MSE(h, a)
Opt.step(loss)
end for
: end for
: Return: 6*

D AR AN

—

The algorithm models the relationships between
inputs and outputs using Neural ODEs without
incorporating any additional control mechanisms.
The architecture consists of three key components:
the input layer, which transforms raw input tokens
into a lower-dimensional latent space using an em-
bedding layer; the Neural ODE block, which mod-
els the hidden state dynamics as a continuous-time
evolution governed by the Neural ODE; and the
output layer, which maps the final hidden state to
the desired output using a fully connected (dense)
layer followed by an activation function.

5.2 Neural ODE with Control Mechanism

The second algorithm incorporates a control mech-
anism into the Neural ODE framework. This frame-
work is designed to dynamically adjust the model’s
hidden state and ensure output reliability. The key
components of this model are outlined in Algo-
rithm 2.

The algorithm integrates a robust control mecha-
nism into the Neural ODE framework, dynamically
adjusting the hidden state to improve output relia-
bility. The architecture includes the input layer,
which transforms raw input tokens into embed-
dings; the Neural ODE block with control, which



Algorithm 2 Train Neural ODE with Control for
LLMs
1: Input: Dataset (), A), Parameters 0, Learning
rate , Epochs F, Control type ¢

2: Output: Optimized parameters 6*

3: Initialize model M < NeuralODE(6)

4: Initialize optimizer Opt +— Adam(M, «)

5: for epoch = 1to ' do

6: for each (q, a) S (Q U Qtest; AU Atest) do

7: h < g {Initialize hidden state}

8: fort=1to 7T do

9: f < Dynamics(h, ) {Compute dy-
namics }

10: H < Control(h, g, c) {Apply control }

11 h < h+At-(f+ H) {Update hidden
state }

12: end for

13: loss <~ MSE(h, a) {Compute loss}

14: Opt.step(loss) {Optimize model param-

eters }
15:  end for
16: end for

17: Return: 6*

models hidden state dynamics while incorporating
a control input u(t) to guide the state evolution;
the control module, which computes the optimal
control input based on the current hidden state and
predefined standards; and the output layer, which
maps the controlled hidden state to the desired out-
put.

6 Experiment and Results

The experiments aim to validate these two methods’
contributions to improving model performance in
various contexts. Specifically, we conduct two ex-
periments:

Experiment I visualizes the input-output re-
lationships using Neural ODEs across multiple
question-answer (QA) datasets from diverse do-
mains, demonstrating the ability of Neural ODEs
to capture complex input-output dynamics. Experi-
ment II, on the other hand, applies Control Theory
to regulate LLM outputs, assessing the impact of
control mechanisms on model performance and re-
liability, particularly in terms of consistency and
stability.

6.1 Experimental Data

Experiment I For Experiment I, we selected six
distinct QA datasets that cover a range of domains,
including factual knowledge bases, commonsense
reasoning tasks, medical information, mathemati-
cal problem-solving, and truthful response gener-
ation. These datasets allow us to assess the versa-
tility and adaptability of Neural ODEs in diverse
settings. Table 2 provides an overview of these
datasets, detailing their repositories, sizes, and spe-
cific tasks.

Experiment II  For Experiment II, we utilized the
aligner/aligner-20K dataset, which consists of
20,000 aligned QA pairs carefully curated to en-
sure high relevance and accuracy between the input
questions and their corresponding answers. This
dataset is ideal for assessing the role of Control
Theory in stabilizing model outputs. Experiment II
is designed to evaluate the effectiveness of Control
Theory in regulating model outputs and improving
consistency.

6.2 Experiment I: Results and Analysis

For Experiment I, the Neural ODE model was
trained on six different QA datasets. The train-
ing losses across epochs were recorded to assess
the model’s convergence behavior. Table 1 presents
the training and validation losses for each dataset.

Table 1: Training and Validation Losses at Epoch 30 for
QA Datasets in Experiment [

Dataset Name  Training Validation
Loss Loss

commonsense_ga 0.0290 0.0610

GammaCorpus- 0.0278 0.0578

fact-qa

medical-qa 0.0053 0.0224

rvv- 0.0048 0.0086

karma_Math-

QA

trivia_qa 0.0291 0.0597

Truthful QA 0.0052 0.0339

Principal Component Analysis (PCA) was used
to reduce the dimensionality of the embedding vec-
tors to two dimensions for visualization purposes.
Figure 2 shows the PCA projections of embeddings
from all six datasets, highlighting the clustering
patterns and input-output transformation across di-
verse datasets.
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Figure 2: Input-to-Output Transformation Diagram
Across Various QA Datasets (Yellow represents the start-
ing point, and green represents the ending point)

Dataset Feature Analysis The trajectory distri-
butions for commonsense_ga and trivia_qga are
relatively dispersed, indicating that the input-output
mappings in commonsense reasoning tasks are
complex, with diverse transformation paths. On
the other hand, medical-ga shows a more con-
centrated endpoint distribution (with yellow points
clustered on the right), suggesting that answers in
the medical domain may have a more standard-
ized format or structure. The rvv-karma_Math-QA
dataset exhibits a distinctly radial distribution,
which likely reflects the logical reasoning path in-
volved in solving mathematical problems. Lastly,
the trajectories for TruthfulQA are relatively short
and evenly distributed, suggesting that the transfor-
mation process for truthfulness verification is more
straightforward.

Common Features All datasets demonstrate a
continuous transformation process from input (yel-
low points) to output (blue points), validating that
Neural ODE:s can effectively model the dynamic
characteristics of LLMs. The trajectories gener-
ally exhibit nonlinear features, indicating that the
input-output transformation in these QA tasks is
complex.

Conclusion In terms of modeling effectiveness,
Neural ODE successfully captured the dynamic
features of different QA tasks across various do-
mains. The model was able to adapt to the specific
characteristics of different datasets, demonstrating
its versatility.

Regarding domain differences, the input-output
transformations for different QA tasks revealed
unique patterns. Specialized domains, such as med-
ical and mathematical QA, showed more structured
and regular transformation paths compared to com-

monsense reasoning tasks. This suggests that spe-
cialized fields benefit from more predictable and
structured transformations, while more general do-
mains, such as commonsense reasoning, involve
more complex mappings.

6.3 Experiment II: Results and analysis

Experiment II examines the impact of Control The-
ory on the model’s training process. We applied
four control strategies, as detailed in the appendix,
and compared the results with and without the use
of control mechanisms. PCA was employed to vi-
sualize the output embeddings generated by the
model in both scenarios, with and without the ap-
plication of Control Theory.

Aggregated Trajectories (PCA) - NoControl
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Figure 3: Trajectory Plots without Control

Trajectory Feature Analysis The analysis of
the five trajectory plots—NoControl, LQRControl,
MPCControl, RLControl, and SMControl—reveals
several key patterns in the control mechanisms’ per-
formance. In the NoControl scenario, the trajec-
tories appear scattered with no clear pattern, and
the path from start to end is irregular. The absence
of clear directionality and the significant variation
in trajectory length highlight the instability of the
model without control mechanisms.

Aggregated Trajectories (PCA) - LQRControl

Second principal Component

First Principal Component

Figure 4: Trajectory Plots with LQR Control

When LQRControl is applied, the trajectories
become notably smoother. The endpoint distribu-



tion is more concentrated, reflecting the symmet-
rical characteristics typical of linear control. This
demonstrates that LQRControl provides more con-
sistent results than NoControl.

Aggregated Trajectories (PCA) - MPCControl
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Figure 5: Trajectory Plots with MPC Control

With MPCControl, the trajectories exhibit a pre-
dictive feature, where the path planning becomes
more rational, and the trajectory is more coherent.
The endpoint distribution is moderate, indicating
that MPCControl achieves a balanced optimization.
The model demonstrates characteristics of model
predictive control, where future trajectories are ac-
counted for, guiding the model toward better output
predictions.

Aggregated Trajectories (PCA) - RLControl
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Figure 6: Trajectory Plots with RL Control

RLControl, in contrast, shows a stronger direc-
tionality. The model’s adaptation through reinforce-
ment learning allows it to learn an effective control
strategy, leading to a more concentrated endpoint
distribution. The trajectories in this case reflect the
self-adaptive nature of reinforcement learning, as
the model learns and refines its control policy over
time.

SMControl stands out as the most orderly and
regular, with a clear sliding mode surface feature
evident in the trajectories. The control effect is the
most stable, and the directionality is the clearest,
reflecting the strengths of sliding mode control in
ensuring both stability and clarity in the model’s
output.

Aggregated Trajectories (PCA) - SMControl
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Figure 7: Trajectory Plots with SM Control

Conclusions In terms of overall evaluation, the
application of control theory significantly enhances
the model’s output quality. Each control strategy
exhibits its own unique advantages: SMControl
excels in stability, RLControl in adaptability, MPC-
Control in prediction, and LQRControl in linear
problems. These findings confirm that control the-
ory plays a crucial role in enhancing both the relia-
bility and interpretability of LLM outputs.

7 Conclusion and Future Research

This paper introduces a novel framework that in-
tegrates Neural Ordinary Differential Equations
(Neural ODEs) with robust control theory to en-
hance the interpretability and reliability of Large
Language Models (LLMs). Our empirical and theo-
retical analysis demonstrates that combining these
approaches significantly improves model perfor-
mance, stability, and adaptability. By implement-
ing various control strategies, such as LQR, MPC,
SM, and RL-based control, we validate their re-
spective strengths in regulating LLM outputs, par-
ticularly in dynamic and complex environments.
Looking forward, future research can explore the
development of hybrid control mechanisms, scal-
ability optimizations for large-scale deployment,
and the integration of advanced interpretability
techniques. Additionally, addressing the compu-
tational challenges and enhancing generalization
across diverse tasks will be crucial in refining this
framework. By extending the applications to multi-
modal systems and real-time language processing,
we can ensure that LLMs remain both reliable and
interpretable, paving the way for safer and more
effective Al systems in real-world applications.

8 Limitation

The proposed framework integrating Neural ODEs
with control theory offers significant advancements



in enhancing the interpretability and reliability of
Large Language Models (LLMs). However, sev-
eral limitations remain. First, the computational
complexity of integrating continuous-time model-
ing with control mechanisms introduces substan-
tial overhead, necessitating further optimization for
large-scale models. Second, the task of parameter
tuning for control strategies, such as feedback gains
or prediction horizons, is challenging and requires
further research to identify optimal settings across
diverse tasks. Additionally, while the framework
has shown promising results on specific datasets, its
generalization across different LLM architectures
and domains remains to be fully validated. Finally,
although control theory improves model stability,
further attention must be paid to ethical concerns
such as fairness and accountability to ensure the
responsible deployment of LLMs in high-stakes
applications.
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Table 2: Overview of QA Datasets Used in Experiment
I

Dataset Name Domain

Commonsense Rea-
soning

General Knowledge,
Fact-Checking

commonsense_ga

GammaCorpus-fact-qa

medical-qa Medical, Healthcare

rvv-karma_Math-QA Mathematics, Logical
Reasoning

trivia_qa Trivia, Common
Knowledge

Truthful QA Truthfulness, Ethics

A Detailed Experiment
B Appendix:Control Strategies Summary

In this section, we present four control strategies
implemented for regulating the outputs of Large
Language Models (LLMs): Linear Quadratic Reg-
ulator (LQR), Model Predictive Control (MPC),
Sliding Mode Control (SMC), and Reinforcement
Learning (RL) based control. Each of these meth-
ods employs different approaches to improve the
model’s performance, stability, and adaptability.

B.1 Linear Quadratic Regulator Control
(LQRControl)

Linear Quadratic Regulator (LQR) is an optimal
control strategy that minimizes a quadratic cost
function to stabilize the system. The objective is to
penalize both the state deviations and the control
effort. The control input  is calculated as the nega-
tive feedback of the error between the desired state
q and the model output y, scaled by the feedback
gain matrix K.

The LQRControl class has three primary pa-
rameters: - Q € R™*™: A state penalty matrix
that penalizes deviations of the system state from
the desired state. - R € R™*"™: A control effort
penalty matrix that penalizes large control actions.
- K € R"*™: A feedback gain matrix that defines
how much influence the control input has over the
system’s state.

The control law is defined as follows:

u:—K-(q—y)'0<ZQ>/<ZR+E)

where o is the sigmoid activation function, and € is
a small constant to avoid division by zero.
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LQRControl is effective in stabilizing systems
where the relationship between the state and control
is linear, and it is particularly useful in scenarios
that require precise error correction.

B.2 Model Predictive Control (MPCControl)

Model Predictive Control (MPC) uses a model of
the system to predict future states and optimize
the control input over a finite time horizon. MPC
computes the control input by solving an optimiza-
tion problem that minimizes a cost function over
the predicted trajectory. This method is highly ef-
fective in systems where future behavior can be
predicted and adjusted.

The MPCControl class uses the following pa-
rameters: - Horizon € N: The prediction horizon
over which the system’s behavior is forecasted. -
StatePredictor: A neural network used to pre-
dict future system states based on the current state
and past control inputs. - Controller: A neural
network that computes the optimal control action
by considering the predicted states.

The MPC control input is computed as:

Horizon

u = argmin Z (lye = a:l® + Aulluel?)
t=1

where y; is the predicted state at time step £, g; is
the desired state, and )\, is a regularization param-
eter.

MPCControl is particularly suitable for systems
that require optimization over a planning horizon,
such as robotics and autonomous systems.

B.3 Sliding Mode Control (SMControl)

Sliding Mode Control (SMC) is a robust control
technique designed to handle systems with uncer-
tainties or disturbances. SMC forces the system
state to "slide" along a predefined sliding surface,
ensuring robustness and stability. The control input
is determined based on the system’s error and the
sliding surface function, which enforces the desired
behavior.

The SMControl class involves the following pa-
rameters: - A € R™: The scaling factor for the
sliding surface, which governs the control input’s
sensitivity. - n € R™: A parameter that adjusts the
system’s response to the error. - ¢ € R™: A param-
eter that controls the non-linearity in the sliding
surface.

The control law is defined as:

u=M\-s+k-sat(s/¢p)



where s = ¢ — y is the error, and sat(-) is the
saturation function, typically sat(z) = tanh(x).

SMControl is effective for systems requiring
high robustness against uncertainties and distur-
bances, such as in automotive or aerospace applica-
tions.

B.4 Reinforcement Learning Control
(RLControl)

Reinforcement Learning (RL) Control leverages
reinforcement learning to adaptively learn the op-
timal control policy based on feedback from the
environment. The RL controller utilizes a value
network to estimate the expected future reward and
a policy network to decide the control actions. The
advantage function adjusts the control input by cal-
culating the difference between expected and actual
outcomes.

The RLControl class includes the following com-
ponents: - v € [0,1]: The discount factor that
determines the importance of future rewards. -
ValueNetwork: A neural network that estimates
the value of the current state. - PolicyNetwork:
A neural network that generates the control action
based on the current state and the desired state.

The control input is computed as:

u = policy(y, q) - o(|lqg — y|| — value(y))

where o is the sigmoid activation function, ||g — y/|
is the norm of the error, and value(y) is the output
of the value network.

RLControl is suitable for complex, dynamic en-
vironments where the model must continuously
learn and adapt to new situations.

B.5 Conclusion

Each control strategy offers distinct advantages de-
pending on the application scenario. LQRControl
is well-suited for linear systems with simple con-
trol tasks, while MPCControl provides superior
performance in systems requiring trajectory opti-
mization and prediction. SMControl excels in envi-
ronments that demand robustness and stability, and
RLControl is ideal for tasks that require adaptive
learning and optimization in complex, dynamic set-
tings. The integration of these control strategies
demonstrates substantial improvements in model
performance, stability, and interpretability across a
variety of tasks.
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