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Abstract

This paper proposes a framework combining001
Neural Ordinary Differential Equations (Neu-002
ral ODEs) and robust control theory to en-003
hance the interpretability and control of large004
language models (LLMs). By utilizing Neu-005
ral ODEs to model the dynamic evolution of006
input-output relationships and introducing con-007
trol mechanisms to optimize output quality, we008
demonstrate the effectiveness of this approach009
across multiple question-answer datasets. Ex-010
perimental results show that the integration of011
Neural ODEs and control theory significantly012
improves output consistency and model inter-013
pretability, advancing the development of ex-014
plainable AI technologies.015

1 Introduction016

1.1 The Challenge of Interpreting LLMs017

Large Language Models (LLMs) have demon-018

strated impressive performance across a range019

of natural language processing tasks, from ma-020

chine translation to text generation and summa-021

rization(Brown et al., 2020). Despite their remark-022

able capabilities,interpreting the decision-making023

processing of these models remains a significant024

challenge. The opacity of LLMs raises critical025

questions about their reliability, fairness, and eth-026

ical implication in real-word application (Lipton,027

2017). Understanding the underlying mechanisms028

of LLMs is essential for building trust and ac-029

countability in AI systems, particularly when these030

systems are deployed in high-stakes environments031

such as healthcare and low.032

2 Literature Review033

2.1 Current Methods for Enhancing034

Interpretability in LLMs035

The interpretability of large language models036

(LLMs) has become a central concern in AI re-037

search. To address this challenge, various ap-038

proaches have been proposed, which can broadly 039

be categorized into local and global analyses. 040

2.1.1 Local Analysis 041

Local analysis focuses on interpreting individual 042

predictions made by a model by examining specific 043

input-output relationships. The primary goal is to 044

understand the contribution of each input feature 045

to the model’s output. Key approaches within local 046

analysis include feature attribution methods and 047

analyzing transformer blocks. 048

Feature attribution methods quantify the influ- 049

ence of each input feature on the model’s predic- 050

tions. Common techniques include gradient-based 051

methods and vector-based methods. Gradient- 052

based methods, such as Integrated Gradients (Sun- 053

dararajan et al., 2017), compute the gradients of 054

the output with respect to inputs, attributing signif- 055

icance based on how changes in input features af- 056

fect the model’s predictions. Vector-based methods, 057

such as the Shapley Value framework (Lundberg 058

and Lee, 2017), evaluate the contribution of each 059

feature by considering all possible combinations of 060

input variables. These methods allow researchers 061

to identify influential features and gain insights into 062

why the model produces specific outputs. 063

For transformer-based models like BERT and 064

GPT, analyzing components such as multi-head 065

self-attention (MHSA) and multi-layer perceptron 066

(MLP) sublayers can provide valuable insights into 067

the model’s behavior. For example, examining 068

MHSA sublayers reveals how attention weights 069

are distributed across input tokens, helping to de- 070

termine if the model focuses on relevant words 071

or phrases (Vig, 2019). Similarly, analyzing MLP 072

sublayers reveals how feature combinations are pro- 073

cessed and transformed, elucidating the flow of in- 074

formation through the network. These analyses can 075

uncover how specific tokens drive shifts in atten- 076

tion across layers, leading to richer interpretations 077

of model decisions (Beltagy et al., 2020). 078
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2.1.2 Global Analysis079

In contrast to local analysis, global analysis seeks080

to provide a broader understanding of a model’s be-081

havior by exploring the underlying principles that082

govern its representations and knowledge. This ap-083

proach includes probing-based methods and mech-084

anistic interpretability.085

Probing-based methods involve training auxil-086

iary models on hidden representations to assess the087

knowledge encoded within the model. Techniques088

such as probing knowledge and probing represen-089

tations allow researchers to evaluate the extent to090

which LLMs capture linguistic properties, syntac-091

tic structures, or semantic features (Tenney et al.,092

2019). These methods help identify the high-level093

knowledge embedded in the model, offering in-094

sights into its internal decision-making processes.095

Mechanistic interpretability focuses on under-096

standing how specific mechanisms within the097

model contribute to its predictions. Techniques098

like causal tracing (Meng et al., 2023) provide in-099

sights into how neural networks, especially LLMs100

like GPT, represent and utilize factual knowledge.101

By locating factual associations, researchers can102

identify which parts of the model are responsible103

for generating specific factual outputs.104

While local analysis provides insights into spe-105

cific model decisions, global analysis offers a more106

holistic view of the model’s overall behavior. These107

two approaches are complementary: local analysis108

helps interpret individual predictions, while global109

analysis aids in understanding how the model gen-110

eralizes across different tasks and domains.111

2.2 Neural ODEs in LLMs112

Neural Ordinary Differential Equations (ODEs)113

have emerged as a powerful framework for114

continuous-time modeling, with applications115

across various domains, including language models116

(LLMs).117

Introduced by Chen et al. (2019) (Chen et al.,118

2019), Neural ODEs model the evolution of latent119

variables as a continuous-time dynamical system.120

Unlike traditional neural networks, which rely on121

discrete layers, Neural ODEs define a differential122

equation parameterized by neural networks, allow-123

ing for flexible representations of data evolving124

over time. Neural ODEs are particularly useful125

for modeling the temporal patterns seen in lan-126

guage processing, enabling the model to adaptively127

learn how different linguistic structures evolve128

(Rubanova et al., 2019). 129

Additionally, integrating Neural ODEs with at- 130

tention mechanisms has led to scalable LLMs capa- 131

ble of processing and interpreting real-time sensor 132

data (Wang et al., 2024). A promising direction 133

is combining Neural ODEs with Transformer ar- 134

chitectures, which has revealed natural correspon- 135

dences between Neural ODEs and Transformer 136

attention mechanisms, offering new insights into 137

deep learning models (Hashimoto et al., 2024). 138

However, despite their potential, current appli- 139

cations of Neural ODEs in understanding neural 140

models often fall short in directly correlating these 141

dynamics with specific input-output relationships, 142

particularly in complex architectures like LLMs. 143

Existing frameworks typically do not address how 144

these learned dynamics can be tuned based on ex- 145

ternal objectives, such as ensuring fairness or ro- 146

bustness. This presents a significant challenge in 147

applying Neural ODEs to real-world LLM applica- 148

tions. 149

2.3 Control Theory in LLMs 150

Control theory offers critical insights into the 151

dynamics and optimization of complex systems, 152

making it highly relevant for improving the inter- 153

pretability and reliability of Large Language Mod- 154

els (LLMs). The application of robust control helps 155

address uncertainty within these models and en- 156

sures they meet performance standards. 157

Control is crucial in LLM research. As noted 158

by (Liang et al., 2024), controllable text genera- 159

tion aims to generate text according to specific re- 160

quirements, including content and attribute control. 161

Fine-tuning and retraining adjust the model during 162

training, while reinforcement learning and prompt 163

engineering guide the model during inference to 164

enhance text controllability. Researchers in control 165

engineering (Kevian et al., 2024) use specialized 166

datasets and evaluation methods to understand the 167

problem-solving capabilities of different advanced 168

LLMs in control engineering contexts, guiding fu- 169

ture improvements. 170

Control theory in LLMs is an evolving field. By 171

exploring text generation, safety, multimodal tasks, 172

and domain-specific applications, control theory 173

can make LLMs more interpretable, reliable, and 174

powerful, with broad applications in areas such as 175

autonomous systems, healthcare, and finance. 176
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3 Contributions and Structure of the177

Paper178

This paper introduces an innovative approach for179

enhancing the interpretability and reliability of180

Large Language Models (LLMs) by integrating181

Neural Ordinary Differential Equations (Neural182

ODEs) with robust control mechanisms. The key183

contributions are as follows:184

• Innovative Integration Method: We pioneer185

the integration of Neural ODEs and robust186

control for LLMs, offering a new perspec-187

tive on analyzing input-output relationships in188

LLMs that has not been explored before.189

• Enhanced Model Understanding: This work190

enables the transformation of LLM inputs191

and outputs into a lower-dimensional latent192

space, providing a means to study internal193

information-processing pathways, which sig-194

nificantly enhances model interpretability.195

• Improved Output Quality: The application196

of robust control ensures that LLM outputs197

meet specific performance criteria, improving198

their quality and reliability for practical use.199

The paper is structured as follows: Section 4200

utilizes Ordinary Differential Equations (ODEs)201

to model LLM processes, offering a continuous202

and interpretable framework, with robust control203

mechanisms introduced to enhance output reliabil-204

ity and ensure ethical standards. Section 5 presents205

the methodological framework, integrating Neu-206

ral ODEs with and without control mechanisms to207

model dynamic processes within LLMs. Section208

6 provides a comparative analysis of Neural ODE209

models, with and without control, focusing on train-210

ing/validation loss, prediction accuracy, and latent211

space dynamics. Finally, Section 7 demonstrates212

how integrating control mechanisms into Neural213

ODEs enhances LLM stability and generalization,214

which is crucial for developing trustworthy AI in215

high-stakes domains, setting the stage for future216

research on transparent and accountable AI tech-217

nologies.218

4 Theoretical Framework219

4.1 Neural ODEs220

Because Ordinary Differential Equations (ODEs)221

are inherently unable to model text directly, we222

need to map the input and output of Large Lan- 223

guage Models (LLMs) into a latent space. This 224

latent space representation allows us to work with 225

continuous-time dynamics, enabling the use of 226

Neural ODEs for modeling the evolution of LLM 227

inputs and outputs in a more flexible and accurate 228

manner. Neural Ordinary Differential Equations 229

(Neural ODEs) offer a powerful framework for 230

modeling continuous-time dynamics. Their appli- 231

cation in large language models (LLMs) provides 232

a way to better capture the temporal relationships 233

inherent in language data. Unlike traditional dis- 234

crete models (e.g., RNNs or LSTMs), which treat 235

sequences of data as a series of steps, Neural ODEs 236

model the evolution of latent variables continuously 237

over time, offering a more flexible and accurate rep- 238

resentation of sequential data. 239

In the context of LLMs, we define the hidden 240

state h(t) as a function of time t. The evolution of 241

this state is described by the following equation: 242

dh(t)

dt
= f(t, h(t), θ) (1) 243

where f is a function parameterized by a neural 244

network. For simplicity, assume that f is a single- 245

layer neural network with a linear transformation 246

followed by an activation function σ: 247

f(t, h(t), θ) = σ(W · h(t) + b) (2) 248

Here, W is the weight matrix, b is the bias vector, 249

and θ represents the parameters of the network. 250

This continuous modeling approach is particu- 251

larly useful for time-series and language processing 252

tasks, where data evolves over time. To solve the 253

differential equation, numerical methods like Eu- 254

ler’s method can be applied: 255

h(t+∆t) ≈ h(t) + ∆t · f(t, h(t), θ) (3) 256

This update rule models how the hidden state 257

evolves over small time steps, enabling the model 258

to learn how language structures change dynam- 259

ically. Compared to traditional discrete models 260

like RNNs or LSTMs, Neural ODEs offer several 261

advantages, including more natural modeling of 262

continuous temporal patterns and flexibility in cap- 263

turing complex dependencies over time. 264

The mapping of LLM inputs and outputs to a la- 265

tent space allows us to model the input-output rela- 266

tionships using continuous-time dynamics. Specifi- 267

cally, the input sequence X = [x1, x2, . . . , xT ] is 268
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Figure 1: Model Architecture for Methodology

first embedded into a latent space Z via an embed-269

ding function ϕ:270

Zt = ϕ(Xt) (4)271

where Zt represents the embedded representa-272

tion of the input at time step t, and ϕ is the func-273

tion mapping the raw input tokens into the latent274

space. The output sequence Y = [y1, y2, . . . , yT ]275

is then modeled in the same latent space, allowing276

the Neural ODE to capture the temporal evolution277

and dynamic mapping between the inputs and the278

corresponding outputs.279

This formulation enables Neural ODEs to model280

the continuous-time evolution of LLM states, of-281

fering a powerful tool for handling sequential data282

with complex dependencies, such as language. By283

operating in the latent space, the Neural ODE284

framework is able to handle the high-dimensional,285

variable-length sequences typical of language mod-286

els more efficiently and flexibly.287

4.2 Control Mechanism288

To improve the reliability of the LLM outputs, we289

introduce a robust control mechanism. The goal290

is to minimize the difference between the model’s291

output y and the desired output ydesired. The cost292

function J is defined as:293

J =
n∑

i=1

wi · Li(y, ydesired) (5)294

where Li represents the individual loss compo-295

nents, and wi are their respective weights. This296

cost function quantifies the discrepancy between297

the predicted and desired outputs across different298

loss components.299

The output y depends on the hidden state h and300

control input u, and is given by:301

y = g(h, u) (6) 302

where g(h, u) = V · (h + u) + c is a neural 303

network-based function, with V and c as additional 304

parameters. The control input u is adjusted during 305

training to minimize the cost function J . This can 306

be formulated as: 307

u∗(t) = argmin
u

J(u)

= argmin
u

n∑
i=1

wi · Li(g(h, u), ydesired)

(7)

308

By optimizing the control input u, we ensure 309

that the model’s output y closely aligns with the 310

desired output. This control mechanism enhances 311

the LLM’s stability and reliability, making it more 312

robust in real-world applications. 313

4.3 Integrating Neural ODE and Control 314

Mechanism 315

To further enhance the LLM’s performance, we 316

integrate the Neural ODE with the control mecha- 317

nism. By incorporating the control input u into the 318

Neural ODE, the evolution of the hidden state h(t) 319

is modeled as: 320

dh(t)

dt
= f(t, h(t), θ, u) (8) 321

In this combined framework, the cost function J 322

depends on the entire sequence of outputs {y(t)}, 323

where y(t) = g(h(t), u(t)) for t = 0,∆t, . . . , T . 324

The optimization problem is then formulated as: 325

(u∗, h∗) = argmin
u,h

J({g(h(t), u(t))}Tt=0) (9) 326
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This integrated approach ensures that the LLM’s327

output reflects both the internal processing of input328

data and the external control criteria. By optimizing329

both the hidden state and the control input, we can330

improve the model’s stability, generalization, and331

adaptability to various tasks.332

The combination of Neural ODEs and control333

mechanisms allows for a more flexible and inter-334

pretable model. This approach is particularly bene-335

ficial for high-stakes applications where the model336

needs to be both interpretable and reliable. Further-337

more, the continuous-time nature of Neural ODEs,338

combined with the control theory, provides a ro-339

bust framework for optimizing model performance340

across a wide range of tasks, including real-time341

language processing and decision-making in dy-342

namic environments.343

4.4 Conclusion344

In this section, we introduced a theoretical frame-345

work that integrates Neural ODEs with control346

mechanisms to optimize the performance and inter-347

pretability of LLMs. This approach provides flexi-348

bility in modeling sequential data and ensures that349

the model output meets specific performance cri-350

teria. Additionally, exploring how this framework351

can be adapted to handle diverse types of language352

data, such as multimodal inputs or noisy real-world353

data, would significantly expand its applicability.354

Further investigations into the interpretability of the355

combined model could also help provide deeper in-356

sights into how both internal dynamics and control357

inputs contribute to the model’s decision-making358

process.359

5 Methodology360

Building on the theoretical foundations established361

in the previous section, this section presents two362

algorithmic frameworks designed to enhance the in-363

terpretability and reliability of large language mod-364

els (LLMs). These frameworks integrate Neural365

ODEs (Ordinary Differential Equations) and robust366

control mechanisms. The first framework utilizes367

Neural ODEs alone, encoding LLM inputs and368

outputs into a latent space and evolving the state us-369

ing advanced optimization techniques. The second370

framework incorporates control mechanisms into371

the Neural ODEs, allowing for dynamic adjustment372

of the model’s state to achieve stable and reliable373

outputs. Both frameworks aim to improve the trans-374

parency and performance of LLMs by revealing375

their continuous and dynamic transformations. 376

5.1 Neural ODE for LLM Input-Output 377

Mapping 378

The first algorithm uses a basic Neural ODE frame- 379

work to model the input-output relationships in 380

LLMs without any control mechanisms. This 381

framework consists of three key components, de- 382

tailed in Algorithm 1. 383

Algorithm 1 Train Neural ODE for LLM Input-
Output Mapping

1: Input: Dataset (Q,A), Parameters θ, Learning
rate α, Epochs E

2: Output: Optimized parameters θ∗

3: Initialize modelM← NeuralODE(θ)
4: Initialize optimizer Opt← Adam(M, α)
5: for epoch = 1 to E do
6: for each (q, a) ∈ (Q,A) do
7: h← Integrate(M, q)
8: loss← MSE(h, a)
9: Opt.step(loss)

10: end for
11: end for
12: Return: θ∗

The algorithm models the relationships between 384

inputs and outputs using Neural ODEs without 385

incorporating any additional control mechanisms. 386

The architecture consists of three key components: 387

the input layer, which transforms raw input tokens 388

into a lower-dimensional latent space using an em- 389

bedding layer; the Neural ODE block, which mod- 390

els the hidden state dynamics as a continuous-time 391

evolution governed by the Neural ODE; and the 392

output layer, which maps the final hidden state to 393

the desired output using a fully connected (dense) 394

layer followed by an activation function. 395

5.2 Neural ODE with Control Mechanism 396

The second algorithm incorporates a control mech- 397

anism into the Neural ODE framework. This frame- 398

work is designed to dynamically adjust the model’s 399

hidden state and ensure output reliability. The key 400

components of this model are outlined in Algo- 401

rithm 2. 402

The algorithm integrates a robust control mecha- 403

nism into the Neural ODE framework, dynamically 404

adjusting the hidden state to improve output relia- 405

bility. The architecture includes the input layer, 406

which transforms raw input tokens into embed- 407

dings; the Neural ODE block with control, which 408
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Algorithm 2 Train Neural ODE with Control for
LLMs

1: Input: Dataset (Q,A), Parameters θ, Learning
rate α, Epochs E, Control type c

2: Output: Optimized parameters θ∗

3: Initialize modelM← NeuralODE(θ)
4: Initialize optimizer Opt← Adam(M, α)
5: for epoch = 1 to E do
6: for each (q, a) ∈ (Q∪Qtest, A∪Atest) do
7: h← q {Initialize hidden state}
8: for t = 1 to T do
9: f ← Dynamics(h, θ) {Compute dy-

namics}
10: H ← Control(h, q, c) {Apply control}

11: h← h+∆t · (f +H) {Update hidden
state}

12: end for
13: loss← MSE(h, a) {Compute loss}
14: Opt.step(loss) {Optimize model param-

eters}
15: end for
16: end for
17: Return: θ∗

models hidden state dynamics while incorporating409

a control input u(t) to guide the state evolution;410

the control module, which computes the optimal411

control input based on the current hidden state and412

predefined standards; and the output layer, which413

maps the controlled hidden state to the desired out-414

put.415

6 Experiment and Results416

The experiments aim to validate these two methods’417

contributions to improving model performance in418

various contexts. Specifically, we conduct two ex-419

periments:420

Experiment I visualizes the input-output re-421

lationships using Neural ODEs across multiple422

question-answer (QA) datasets from diverse do-423

mains, demonstrating the ability of Neural ODEs424

to capture complex input-output dynamics. Experi-425

ment II, on the other hand, applies Control Theory426

to regulate LLM outputs, assessing the impact of427

control mechanisms on model performance and re-428

liability, particularly in terms of consistency and429

stability.430

6.1 Experimental Data 431

Experiment I For Experiment I, we selected six 432

distinct QA datasets that cover a range of domains, 433

including factual knowledge bases, commonsense 434

reasoning tasks, medical information, mathemati- 435

cal problem-solving, and truthful response gener- 436

ation. These datasets allow us to assess the versa- 437

tility and adaptability of Neural ODEs in diverse 438

settings. Table 2 provides an overview of these 439

datasets, detailing their repositories, sizes, and spe- 440

cific tasks. 441

Experiment II For Experiment II, we utilized the 442

aligner/aligner-20K dataset, which consists of 443

20,000 aligned QA pairs carefully curated to en- 444

sure high relevance and accuracy between the input 445

questions and their corresponding answers. This 446

dataset is ideal for assessing the role of Control 447

Theory in stabilizing model outputs. Experiment II 448

is designed to evaluate the effectiveness of Control 449

Theory in regulating model outputs and improving 450

consistency. 451

6.2 Experiment I: Results and Analysis 452

For Experiment I, the Neural ODE model was 453

trained on six different QA datasets. The train- 454

ing losses across epochs were recorded to assess 455

the model’s convergence behavior. Table 1 presents 456

the training and validation losses for each dataset. 457

Table 1: Training and Validation Losses at Epoch 30 for
QA Datasets in Experiment I

Dataset Name Training
Loss

Validation
Loss

commonsense_qa 0.0290 0.0610
GammaCorpus-
fact-qa

0.0278 0.0578

medical-qa 0.0053 0.0224
rvv-
karma_Math-
QA

0.0048 0.0086

trivia_qa 0.0291 0.0597
TruthfulQA 0.0052 0.0339

Principal Component Analysis (PCA) was used 458

to reduce the dimensionality of the embedding vec- 459

tors to two dimensions for visualization purposes. 460

Figure 2 shows the PCA projections of embeddings 461

from all six datasets, highlighting the clustering 462

patterns and input-output transformation across di- 463

verse datasets. 464
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Figure 2: Input-to-Output Transformation Diagram
Across Various QA Datasets (Yellow represents the start-
ing point, and green represents the ending point)

Dataset Feature Analysis The trajectory distri-465

butions for commonsense_qa and trivia_qa are466

relatively dispersed, indicating that the input-output467

mappings in commonsense reasoning tasks are468

complex, with diverse transformation paths. On469

the other hand, medical-qa shows a more con-470

centrated endpoint distribution (with yellow points471

clustered on the right), suggesting that answers in472

the medical domain may have a more standard-473

ized format or structure. The rvv-karma_Math-QA474

dataset exhibits a distinctly radial distribution,475

which likely reflects the logical reasoning path in-476

volved in solving mathematical problems. Lastly,477

the trajectories for TruthfulQA are relatively short478

and evenly distributed, suggesting that the transfor-479

mation process for truthfulness verification is more480

straightforward.481

Common Features All datasets demonstrate a482

continuous transformation process from input (yel-483

low points) to output (blue points), validating that484

Neural ODEs can effectively model the dynamic485

characteristics of LLMs. The trajectories gener-486

ally exhibit nonlinear features, indicating that the487

input-output transformation in these QA tasks is488

complex.489

Conclusion In terms of modeling effectiveness,490

Neural ODE successfully captured the dynamic491

features of different QA tasks across various do-492

mains. The model was able to adapt to the specific493

characteristics of different datasets, demonstrating494

its versatility.495

Regarding domain differences, the input-output496

transformations for different QA tasks revealed497

unique patterns. Specialized domains, such as med-498

ical and mathematical QA, showed more structured499

and regular transformation paths compared to com-500

monsense reasoning tasks. This suggests that spe- 501

cialized fields benefit from more predictable and 502

structured transformations, while more general do- 503

mains, such as commonsense reasoning, involve 504

more complex mappings. 505

6.3 Experiment II: Results and analysis 506

Experiment II examines the impact of Control The- 507

ory on the model’s training process. We applied 508

four control strategies, as detailed in the appendix, 509

and compared the results with and without the use 510

of control mechanisms. PCA was employed to vi- 511

sualize the output embeddings generated by the 512

model in both scenarios, with and without the ap- 513

plication of Control Theory. 514

Figure 3: Trajectory Plots without Control

Trajectory Feature Analysis The analysis of 515

the five trajectory plots—NoControl, LQRControl, 516

MPCControl, RLControl, and SMControl—reveals 517

several key patterns in the control mechanisms’ per- 518

formance. In the NoControl scenario, the trajec- 519

tories appear scattered with no clear pattern, and 520

the path from start to end is irregular. The absence 521

of clear directionality and the significant variation 522

in trajectory length highlight the instability of the 523

model without control mechanisms. 524

Figure 4: Trajectory Plots with LQR Control

When LQRControl is applied, the trajectories 525

become notably smoother. The endpoint distribu- 526
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tion is more concentrated, reflecting the symmet-527

rical characteristics typical of linear control. This528

demonstrates that LQRControl provides more con-529

sistent results than NoControl.530

Figure 5: Trajectory Plots with MPC Control

With MPCControl, the trajectories exhibit a pre-531

dictive feature, where the path planning becomes532

more rational, and the trajectory is more coherent.533

The endpoint distribution is moderate, indicating534

that MPCControl achieves a balanced optimization.535

The model demonstrates characteristics of model536

predictive control, where future trajectories are ac-537

counted for, guiding the model toward better output538

predictions.539

Figure 6: Trajectory Plots with RL Control

RLControl, in contrast, shows a stronger direc-540

tionality. The model’s adaptation through reinforce-541

ment learning allows it to learn an effective control542

strategy, leading to a more concentrated endpoint543

distribution. The trajectories in this case reflect the544

self-adaptive nature of reinforcement learning, as545

the model learns and refines its control policy over546

time.547

SMControl stands out as the most orderly and548

regular, with a clear sliding mode surface feature549

evident in the trajectories. The control effect is the550

most stable, and the directionality is the clearest,551

reflecting the strengths of sliding mode control in552

ensuring both stability and clarity in the model’s553

output.554

Figure 7: Trajectory Plots with SM Control

Conclusions In terms of overall evaluation, the 555

application of control theory significantly enhances 556

the model’s output quality. Each control strategy 557

exhibits its own unique advantages: SMControl 558

excels in stability, RLControl in adaptability, MPC- 559

Control in prediction, and LQRControl in linear 560

problems. These findings confirm that control the- 561

ory plays a crucial role in enhancing both the relia- 562

bility and interpretability of LLM outputs. 563

7 Conclusion and Future Research 564

This paper introduces a novel framework that in- 565

tegrates Neural Ordinary Differential Equations 566

(Neural ODEs) with robust control theory to en- 567

hance the interpretability and reliability of Large 568

Language Models (LLMs). Our empirical and theo- 569

retical analysis demonstrates that combining these 570

approaches significantly improves model perfor- 571

mance, stability, and adaptability. By implement- 572

ing various control strategies, such as LQR, MPC, 573

SM, and RL-based control, we validate their re- 574

spective strengths in regulating LLM outputs, par- 575

ticularly in dynamic and complex environments. 576

Looking forward, future research can explore the 577

development of hybrid control mechanisms, scal- 578

ability optimizations for large-scale deployment, 579

and the integration of advanced interpretability 580

techniques. Additionally, addressing the compu- 581

tational challenges and enhancing generalization 582

across diverse tasks will be crucial in refining this 583

framework. By extending the applications to multi- 584

modal systems and real-time language processing, 585

we can ensure that LLMs remain both reliable and 586

interpretable, paving the way for safer and more 587

effective AI systems in real-world applications. 588

8 Limitation 589

The proposed framework integrating Neural ODEs 590

with control theory offers significant advancements 591

8



in enhancing the interpretability and reliability of592

Large Language Models (LLMs). However, sev-593

eral limitations remain. First, the computational594

complexity of integrating continuous-time model-595

ing with control mechanisms introduces substan-596

tial overhead, necessitating further optimization for597

large-scale models. Second, the task of parameter598

tuning for control strategies, such as feedback gains599

or prediction horizons, is challenging and requires600

further research to identify optimal settings across601

diverse tasks. Additionally, while the framework602

has shown promising results on specific datasets, its603

generalization across different LLM architectures604

and domains remains to be fully validated. Finally,605

although control theory improves model stability,606

further attention must be paid to ethical concerns607

such as fairness and accountability to ensure the608

responsible deployment of LLMs in high-stakes609

applications.610
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Table 2: Overview of QA Datasets Used in Experiment
I

Dataset Name Domain

commonsense_qa Commonsense Rea-
soning

GammaCorpus-fact-qa General Knowledge,
Fact-Checking

medical-qa Medical, Healthcare
rvv-karma_Math-QA Mathematics, Logical

Reasoning
trivia_qa Trivia, Common

Knowledge
TruthfulQA Truthfulness, Ethics

A Detailed Experiment692

B Appendix:Control Strategies Summary693

In this section, we present four control strategies694

implemented for regulating the outputs of Large695

Language Models (LLMs): Linear Quadratic Reg-696

ulator (LQR), Model Predictive Control (MPC),697

Sliding Mode Control (SMC), and Reinforcement698

Learning (RL) based control. Each of these meth-699

ods employs different approaches to improve the700

model’s performance, stability, and adaptability.701

B.1 Linear Quadratic Regulator Control702

(LQRControl)703

Linear Quadratic Regulator (LQR) is an optimal704

control strategy that minimizes a quadratic cost705

function to stabilize the system. The objective is to706

penalize both the state deviations and the control707

effort. The control input u is calculated as the nega-708

tive feedback of the error between the desired state709

q and the model output y, scaled by the feedback710

gain matrix K.711

The LQRControl class has three primary pa-712

rameters: - Q ∈ Rn×n: A state penalty matrix713

that penalizes deviations of the system state from714

the desired state. - R ∈ Rm×m: A control effort715

penalty matrix that penalizes large control actions.716

- K ∈ Rn×m: A feedback gain matrix that defines717

how much influence the control input has over the718

system’s state.719

The control law is defined as follows:720

u = −K · (q − y) · σ
(∑

Q
)
/
(∑

R+ ϵ
)

721

where σ is the sigmoid activation function, and ϵ is722

a small constant to avoid division by zero.723

LQRControl is effective in stabilizing systems 724

where the relationship between the state and control 725

is linear, and it is particularly useful in scenarios 726

that require precise error correction. 727

B.2 Model Predictive Control (MPCControl) 728

Model Predictive Control (MPC) uses a model of 729

the system to predict future states and optimize 730

the control input over a finite time horizon. MPC 731

computes the control input by solving an optimiza- 732

tion problem that minimizes a cost function over 733

the predicted trajectory. This method is highly ef- 734

fective in systems where future behavior can be 735

predicted and adjusted. 736

The MPCControl class uses the following pa- 737

rameters: - Horizon ∈ N: The prediction horizon 738

over which the system’s behavior is forecasted. - 739

StatePredictor: A neural network used to pre- 740

dict future system states based on the current state 741

and past control inputs. - Controller: A neural 742

network that computes the optimal control action 743

by considering the predicted states. 744

The MPC control input is computed as: 745

u = argmin
u

Horizon∑
t=1

(
∥yt − qt∥2 + λu∥ut∥2

)
746

where yt is the predicted state at time step t, qt is 747

the desired state, and λu is a regularization param- 748

eter. 749

MPCControl is particularly suitable for systems 750

that require optimization over a planning horizon, 751

such as robotics and autonomous systems. 752

B.3 Sliding Mode Control (SMControl) 753

Sliding Mode Control (SMC) is a robust control 754

technique designed to handle systems with uncer- 755

tainties or disturbances. SMC forces the system 756

state to "slide" along a predefined sliding surface, 757

ensuring robustness and stability. The control input 758

is determined based on the system’s error and the 759

sliding surface function, which enforces the desired 760

behavior. 761

The SMControl class involves the following pa- 762

rameters: - λ ∈ Rn: The scaling factor for the 763

sliding surface, which governs the control input’s 764

sensitivity. - η ∈ Rn: A parameter that adjusts the 765

system’s response to the error. - ϕ ∈ Rn: A param- 766

eter that controls the non-linearity in the sliding 767

surface. 768

The control law is defined as: 769

u = λ · s+ k · sat(s/ϕ) 770
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where s = q − y is the error, and sat(·) is the771

saturation function, typically sat(x) = tanh(x).772

SMControl is effective for systems requiring773

high robustness against uncertainties and distur-774

bances, such as in automotive or aerospace applica-775

tions.776

B.4 Reinforcement Learning Control777

(RLControl)778

Reinforcement Learning (RL) Control leverages779

reinforcement learning to adaptively learn the op-780

timal control policy based on feedback from the781

environment. The RL controller utilizes a value782

network to estimate the expected future reward and783

a policy network to decide the control actions. The784

advantage function adjusts the control input by cal-785

culating the difference between expected and actual786

outcomes.787

The RLControl class includes the following com-788

ponents: - γ ∈ [0, 1]: The discount factor that789

determines the importance of future rewards. -790

ValueNetwork: A neural network that estimates791

the value of the current state. - PolicyNetwork:792

A neural network that generates the control action793

based on the current state and the desired state.794

The control input is computed as:795

u = policy(y, q) · σ(∥q − y∥ − value(y))796

where σ is the sigmoid activation function, ∥q− y∥797

is the norm of the error, and value(y) is the output798

of the value network.799

RLControl is suitable for complex, dynamic en-800

vironments where the model must continuously801

learn and adapt to new situations.802

B.5 Conclusion803

Each control strategy offers distinct advantages de-804

pending on the application scenario. LQRControl805

is well-suited for linear systems with simple con-806

trol tasks, while MPCControl provides superior807

performance in systems requiring trajectory opti-808

mization and prediction. SMControl excels in envi-809

ronments that demand robustness and stability, and810

RLControl is ideal for tasks that require adaptive811

learning and optimization in complex, dynamic set-812

tings. The integration of these control strategies813

demonstrates substantial improvements in model814

performance, stability, and interpretability across a815

variety of tasks.816
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