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a b s t r a c t 

We propose a 3-step method for structure and motion computation from two or more images taken by 

a one or multiple moving rolling shutter cameras. This work is motivated by the realization that existing 

reconstruction methods using rolling shutter images do not give satisfactory results or even fail in many 

configurations due to singularities and degenerate configurations. The first contribution consists in de- 

coupling the rotate ego motion from the remaining parameters by adding a constraint on image curves 

basing on the a priori knowledge that they correspond to world 3D straight lines with unknown direc- 

tions. Straight lines frequently appear in man-made environments such as urban or indoor scenes. After 

introducing the parameterization of a curve projected from a 3D straight line observed by a moving cam- 

era using three rolling shutter projection models, we show how to linearly extract angular velocity of 

each camera by using detected curves. Then we develop a linear method to recover the translational ve- 

locities and the motion between the cameras using point-matches, after compensating effects of angular 

velocity on each image. The second contribution consists in a novel point based bundle adjustment for 

rolling shutter cameras (C-RSBA) which does not consider a static row index during structure and motion 

optimization contrarily to existing methods. This enables to refine the parameters obtained thanks to the 

straightness constraint by avoiding degenerate configurations, thus outperforming existing RSBA methods. 

The approach was evaluated on both synthetic and real data. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

.1. Motivation 

Many modern CMOS cameras are equipped with rolling shut-

er (RS). In such acquisition mode, pixel rows are exposed sequen-

ially from top to bottom. Therefore, images captured by moving

S cameras can have distortion effects (e.g. Wobble or Skew). RS

ffects must be considered in real Structure from Motion (SfM) ap-

lications where the camera moves fast such as UAVs or vehicles.

ecently, more and more SfM methods were specifically designed

or RS cameras addressing pose estimation [1,2] , 3D reconstruction

rom stereo rig [3,16,17] , bundle adjustment (BA) [10] , relative pose

roblem [6] , dense matching [12] and degeneracies [5,11] . Nev-

rtheless, almost all existing works totally rely on detecting and

atching point features. To the best of our knowledge, except in

2,14] , line features have never been used despite the fact that they
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re abundant in many man-made environment such as building

nteriors or urban cityspaces. Furthermore, using straight lines as

eatures offers several advantages such as detection accuracy and

he possibility to handle partial occlusions. 

When using RS cameras, straight segments can be rendered as

urves under different kinematic models. If correctly parameter-

zed, a curve corresponding to the projection of a 3D straight line

ill carry information about camera ego-motion. We will show

hat it is then possible to partially recover this ego-motion from

urve parameters, thus making the structure and motion computa-

ion more consistent. 

.2. Related work 

Due to the complexity and the high non-linearity of rolling

hutter perspective projection model, strong assumptions which

sually do not hold in practice, have been made in existing liter-

tures in order to solve the SfM problem with RS cameras. Some

pproaches require continuity and “smoothing” of the movement

uring the shooting, but also between the views thus imposing

ery high rate frame [10,12] which makes both data transferring

https://doi.org/10.1016/j.patrec.2018.04.004
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and processing very time and memory consuming, not to men-

tion the case where multiple cameras with wide baselines are

used. Other approaches consider simplified movements such as

pure translation [16] , pure rotation [11] or small angular velocity

[6] . We believe that a method based on a more general kinematic

model and which handles wide baselines would give significant

improvement not only in terms of accuracy in pose and motion

estimation, but also in terms of automatic data matching perfor-

mances (namely outliers rejection). 

With numerous parameters and highly non-linear projection

models, problems of local minima occur more frequently in RS

bundle adjustment [10] . Some RS degeneracies were firstly re-

ported in [3] that a pure translational motion nearly parallel to the

baseline gives an infinity of solutions due to the coupling between

shape and motion parameters. Albl et al. [5] and Ito and Okatani

[11] analyzed the case of planar degeneracy which occurs most of-

ten for RS SfM and prove that images captured by cameras hav-

ing parallel read-out directions is a critical motion sequence (CMS)

with specific angular velocities as degenerate solutions. They both

suggested that it could be avoided by using RS images with differ-

ent readout directions, which is obviously not a convenient solu-

tion for practical applications. 

One way to handle problems of degeneracy and local minima

mentioned above consists in adding constraints on scene geome-

try. However, the constraint should be convenient and feasible in

practical situations. Straight lines can be used to partially constrain

the geometry of a scene. Advantages of using line features in com-

puter vision are well known (vanishing point detection, uncoupling

rotation and translation parameters, etc.). In the case of a moving

RS camera, straight lines do not project as straight lines anymore

but as curves whose shape depends from the motion during im-

age scanning. Thus, motion parameters are hiding in the deviation

from those curves to a straight line. This is the basis of the ‘Straight

line have to be straight’ principle used in [7] to remove radial dis-

tortion effects. 

Rengarajan et al. [14] propose to estimate the angular ego-

motion by optimizing a non linear functional which forces image

curves to be aligned with vanishing directions. The lines used here

are assumed to comply with the so called Manhattan World As-

sumption (i.e. with orthogonal directions) which is a strong limita-

tion according to the authors themselves. 

In summary, SfM with moving RS cameras remains a topic with

many open problems. How to use unordered two or more RS im-

ages with wide base-lines taken by one moving camera or by mul-

tiple cameras, to correctly reconstruct a 3D scene and estimate

motion (avoiding degeneracies and without constraining the cap-

ture style)? 

1.3. Paper contributions and content 

We propose a method for the RS SfM problem by introducing

a straightness constraint on image curves assuming that they are

matched with 3D straight lines. 

After introducing the perspective projection model for RS cam-

eras ( Section. 2 ), we show that the parameterization of the projec-

tion of a 3D straight line leads to a first, second or third degree

polynomial depending on the kinematic model considered during

image acquisition ( Section. 3 ). 

Thanks to this parameterization, we address the SfM problem

for RS cameras in three steps. First, starting from a pair of RS im-

ages, on which curves corresponding to 3D straight lines are de-

tected, the rotational part of the velocity is recovered for each im-

age ( Section. 4 ). Second, the SfM problem is solved by compen-

sating effects of rotational speed on each image and then com-

puting the remaining parameters (i.e. the translational velocity of

each camera and the motion between them) using the 5 × 5 essen-
ial matrix seen in [6] ( Section. 5 ). Finally, all the parameters are

efined using a new BA technique which enables to avoid degen-

racy reported in the state-of-the-art. Unlike existing methods, the

roposed RS BA does not impose a constant row index on image

oints during optimization. This makes the projection at each it-

ration more consistent and thus constrains better structure and

otion parameters. ( Section. 6 ). 

Experiments on both real and synthetic data shows that the

roposed approach outperforms existing methods and handles

ases where other approaches fail ( Section. 7 ). In comparison to

he closest existing work, our approach contributions can be sum-

arized as follows: 

• Parametric formulation of the projection of a 3D line under

general motion model; 
• Theoretical analysis of translational and angular velocities effect

on the projection of a 3D line; 
• Linear solution for the rotational ego-motion estimation with-

out pre-knowledge about 3D straight lines directions or angles

between these lines; 
• A novel camera-based RS BA (C-RSBA) which handles common

degenerate configurations and does not impose a specific cap-

ture style. 

. Rolling shutter camera model 

In the static scene, a RS camera is equivalent to a global shutter

GS) one. It follows the classical pinhole projection model defined

y intrinsic parameter matrix K , rotation R and translation T be-

ween world and camera coordinate systems [9] : 

 [ m , 1 ] 
T = K [ R T ] [ P , 1 ] 

T 
(1)

here s is a scale factor, P = [ X, Y, Z] is a 3D point in the world

oordinate system and , m = [ u, v ] is its image coordinates. 

For a moving RS camera, each row will be captured at a dif-

erent pose during frame exposure. Therefore, for a general cam-

ra motion model (with both angular and translational velocities),

q. (1) becomes: 

 [ m , 1 ] 
T = K [ R δR i T + δT i ] [ P , 1 ] 

T 
(2)

R i and T i are the rotation and the translation between time t 1 
nd t i ( t i is the time of exposure of i th row). Since row-wise scan-

ing speed is constant, we have t i = τv i where τ is the time delay

etween two successive image line exposures. Usually τ for con-

umer cameras is short enough to make assumption that the cam-

ra is under uniform motion during one image acquisition. There-

ore, rotation and translation can be formulated based on small ro-

ate approximation of Rodrigues and translational velocity formu-

as: 

δR i = I + τv i [ ω] × δT i = τv i d (3)

here I is the 3 × 3 identity matrix, d is the translational velocity

hile [ ω] × is the skew-symmetric matrix of ω. 

. Parametrization of 3D straight line projection 

.1. 3D Straight line representation 

In this paper we adopt the convenient formulation used in

18] and which represents a 3D straight line in R 

3 as a tuple

 = < R , (a, b)) > with 4 degrees of freedom (DoF) as illustrated

n Fig. 1 . 

.2. 3D Line projection with a GS camera 

With the assumption of a calibrated camera, intrinsic matrix K

s known. Schindler et al. prove that the projection of a 3D line

nto a GS camera image can be divided into three main steps [18] :
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Fig. 1. 3D line representation. The line can be treated as parallel to Z-axis and pass- 

ing through point ( a, b , 0) within XY -Plane (green line shown on left figure) which 

is then rotated by R to a new position (shown on the right figure). The final straight 

line passes through point R (ax + by ) , and is heading R z . (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version 

of this article.) 
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• Transformation into camera coordinate system. We denote

 3D line in the world coordinate system as < R w 

, ( a w 

, b w 

)) > and

he transformation between camera coordinate frame and world

rame as R 

w 

c and t w 

c . The 3D straight line can be expressed in the

amera coordinate system as: 

R c = R 

w 

c R w 

t c = (t x , t y , t z ) 
T = ( R w 

) T t w 

c 

( a c , b c ) = ( a w 

− t x , b w 

− t y ) 
(4) 

• Perspective projection. The direction m cip = [ m x , m y , m z ] 
T of

 straight line so that m x u + m y v + m z = 0 within plane at z = 1 in

he camera frame can be calculated by the cross product of R c z

nd R c (a c x + b c y ) : 

 cip = a c R c2 − b c R c1 (5) 

Where R c2 and R c1 are the second and first columns of R c . 
• Image space. Image lines can be obtained as: m ci =

K 

T 
)−1 

m cip . Finally, we can write the projection of a 3D straight 

ine for a GS camera as follows: 

S F 1 u + 

GS F 2 v + 

GS F 3 = 0 (6)

.3. 3D Line projection with uniform RS model 

Under the realistic assumption of a uniform motion with both

ngular and translational velocities, the camera pose for a given

ow can be denoted by Eq. (3) as: 

R c = ((I + [ ω ] ×v ]) R 

c 
w 

)) T R w 

t c = (t x , t y , t z ) 
T = ( R w 

) T ( t w 

c + dv ) 
(7) 

Using the same reasoning than in the previous subsection, the

rojection of a point belonging to a 3D straight line leads now to

he following parametric equation: 

Uni f F 1 v 3 + 

Uni f F 2 v 2 u + 

Uni f F 3 v 2 + 

Uni f F 4 v u 

+ 

Uni f F 5 v + 

Uni f F 6 u + 

Uni f F 7 = 0 

(8) 

Seven coefficients are then defined by K , 3D line parameters,

amera initial pose ( R and T ) and kinematics during image acqui-

ition ( d, ω). 

From the uniform model of Eq. (8) , one can derive two sim-

ler models: a linear RS model and a rotate-only model, which

ssume pure translation and pure rotation during image acquisi-

ion. By forcing translational velocity d and angular velocity ω to

e equal to 0 respectively, we will both obtain a hyperbolic curve.

he parameterizations of a 3D straight line projection with differ-

nt RS models are summarized in Table 1 . 
. Extraction of angular velocities from curves 

.1. 16-Curves linear solution for uniform RS model 

For a single RS image, if we assume the camera frame as world

oordinate system, we obtain R 

c 
w 

= I and t c w 

= [0 , 0 , 0] T . Then,

ased on Eq. (8) , ω can be denoted by seven coefficients of cubic

urves (details in supplemental material): [
C 1 · · · C 17 

][
W 1 · · · W 17 

]T = 0 

(9) 

here C i are 17 auxiliary variables determined by K and cubic

urve coefficients uni f F 1 to 
uni f F 7 while W i are 17 vectors consisted

y components of ω. Finally, this equation can be solved linearly

y SVD with at least 16 detected curves. 

.2. Comparison of the three RS models 

Some existed works assumed that only angular velocities play

 main role for hand-held devices [14,15] and vehicles [8] . We try

o give a qualitative and quantitative analysis of RS effects on 3D

ine projection. Although linear RS model will introduce a hyper-

olic curve, its second order coefficients Lin F 1 = K 22 
−T ( R w21 R w2 

T −
 w22 R w1 

T ) d , Lin F 2 = K 11 
−T ( R w11 R w2 

T − R w12 R w1 
T ) d are prov-

ble much smaller compared to Lin F 3 = K 22 
−T (a w 

R w22 −
 w 

R w21 ) + 

K 31 
−T 

K 11 
−T 

Lin 

F 2 + 

K 32 
−T 

K 22 
−T 

Lin 

F 1 + ( R w31 R w2 
T − R w32 R w1 

T ) d and

in F 4 = K 11 
−T (a w 

R w12 − b w 

R w11 ) and can approximately be ignored

n practice. The simulated experiment shown in Fig. 2 confirmed

hat even with high translational speeds, Lin F 1 , 
Lin F 2 are relatively

ow, and projected curves (blue) are close to a straight line as for

S case (green). In practice, the effect of these last two parameters

n the curves is even covered by the curve detection noise. There-

ore, we chose to extract angular velocity based on the rotate-only

S model instead of the uniform model, which needs much more

etected curves. However, the 16-curves method still can be used

n very specific applications where the translational speed is very

igh in comparison to scan speed, and where curve detection can

e achieved with a very high accuracy (sub-pixellic). 

.3. Practical 4-curves linear solution 

It is provable that if we denote 3D line structural parameters as

 c R w2 − b c R w1 = [ s 1 , s 2 , s 3 ] 
T , for five hyperbolic coefficients of each

urve, we can formulate a group of equations: 

F 1 = K 22 
−T (s 1 ω 3 − s 3 ω 1 ) F 2 = K 11 

−T (s 3 ω 2 − s 2 ω 3 ) 

F 3 = K 22 
−T s 2 + K 31 

−T (s 3 ω 2 − s 3 ω 3 ) 

+ K 32 
−T (s 1 ω 3 − s 3 ω 1 ) + (s 2 ω 1 − s 1 ω 2 ) 

F 4 = K 11 
−T s 1 F 5 = K 11 

−T s 1 + K 32 
−T s 2 + s 3 

(10) 

here s 1 , s 2 and s 3 are different for each curve. There are six un-

nowns inside Eq. (10) , therefore, with more curves we can extract

 from curve coefficients. 

Using five equations such as Eq. (10) , s 1 , s 2 , s 3 and ω 3 can be

ubstituted by ω 1 and ω 2 (more details are given in supplemental

aterials), we can obtain bivariate cubic polynomial. Where new

oefficients C 1 to C 8 are only determined by K and coefficients F 1 
o F 5 . Now, by giving four curves, we have: ∣∣∣∣∣∣
C 1 1 · · · C 1 8 
. . . 

. . . 
. . . 

C 4 1 · · · C 4 8 

∣∣∣∣∣∣[ ω 1 
3 , ω 2 

2 ω 1 , ω 1 
2 , ω 2 

2 , ω 1 ω 2 , ω 1 , ω 2 , 1] T = 0 (11) 

Again, we substitute ω 2 by ω 1 and 32 coefficients C 
j 
i 

in

q. (11) (details in supplemental materials), we obtain the follow-
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Table 1 

Parametric representation of 3D straight line projection with different RS models. 

Camera model Projection equation Curve type Parameters 

GS camera GS F 1 u + 

GS F 2 v + 

GS F 3 = 0 Straight line R, t 

Linear RS camera Lin F 1 v 2 + 

Lin F 2 v u + 

Lin F 3 v + 

Lin F 4 u + 

Lin F 5 = 0 Hyperbolic curve R, t, d 

Rotate-only RS camera Rot F 1 v 2 + 

Rot F 2 v u + 

Rot F 3 v Rot + F 4 u + 

Rot F 5 = 0 Hyperbolic curve R, t, ω 

Uniform RS camera Uni f F 1 v 3 + 

Uni f F 2 v 2 u + 

Uni f F 3 v 2 + Cubic curve R, t, d, ω 

Uni f F 4 v u + 

Uni f F 5 v + 

Uni f F 6 u + 

Uni f F 7 = 0 

Fig. 2. Projections of 3D straight lines with different RS camera kinematics. (a) A 

simulated 3D straight line projected as different forms of curves in case of non ego- 

motion (green), translation-only (blue), rotate-only (pink) and uniform ego-motion 

(yellow). Assuming the depth from 3D straight line to camera as 1 unit length, blue 

curves in (b) are the projected 3D line with translational velocities from 0.5 to 2.5 

unit/s, while green line is for the GS case. The variations of Lin F 1 , 
Lin F 2 , 

Lin F 3 and Lin F 4 
and the constant value of GS F 3 are shown in (c). (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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s  
ing quartic equation: 

(H 1 , H 2 , H 3 , H 4 , H 5 )( ω 1 
4 , ω 1 

3 , ω 1 
2 , ω 1 , 1) T = 0 

(12)

Thus, parameter ω 1 can be recovered by solving the Eq. (12) as

a linear non-homogeneous system with the unknown vector

[ ω 

4 
1 
, ω 

3 
1 
, ω 

2 
1 
, ω 1 ] 

T . Finally, ω 2 and ω 3 are recovered by substitution.

4.4. Straight line selection strategy 

Curve pixels are detected and fitted in the way described in

[14] . In order to distinguish curves which corresponds to actual 3D

straight lines and 3D curves, we perform a filtering procedure by

fitting curve pixels to cubic curve. The curves with big fitting errors

will be discarded. A more complex process based on a RANSAC-like

prediction verification will be used to discard curves which do not

correspond to actual 3D straight lines. 
Fig. 3. Two examples of double-projections pattern. On the left, a RS camera is under pur

axis (1,0,0) shown on the right. A 3D point X will be observed twice at row v 1 and v 2 if 
. SfM using extracted angular velocities 

After extracting angular velocities for each image, we still need

o recover both motion between cameras and the translational ve-

ocities for each camera. This is achieved as follows: first each im-

ge is rectified by compensating the angular velocities computed

n the previous section. This results in a new image pair, which

ooks like if each camera undergoes pure translational motion dur-

ng acquisition. Thus, the epipolar geometry between image pair

s computed along with the translational velocities of the cameras

sing the linear RS model. The advantage of using linear RS model

n SfM is to avoid planar degenerate solutions described [5,11] . This

egeneracy is caused by the fact that using angular velocities as

nknown parameters will collapse into specific values during non-

inear optimization. Thus, using linear RS model by fixing angular

elocities will avoid this degeneracy. 

In order to compensate effects of ω, we perform an inverse

apping to all point-matches between images: 

x compensate = K R (v ) 
−1 

K 

−1 x orginal (13)

This procedure maps original points x orginal (matches between

mages) to x compensate . Now, the corrected images can be regarded

s linear RS images. Rotation R(v) is calculated by using Eq. (3) . 

After the compensation, the relative pose problem of linear RS

ameras can be solved by using the 5 × 5 essential matrix with

oint matches [ u, v ] T ↔ [ u ′ , v ′ ] T proposed by Dai et al. [6] : ∣∣v ′ 2 v ′ u 

′ v ′ u 

′ 1 

∣∣E 5 ×5 

∣∣v 2 v u v u 1 

∣∣T = 0 

(14)

With at least 20 point correspondences, E 5 × 5 can be computed

s usual using a DLT (Direct Linear Transform) Algorithm. Then, the

elative pose [ R, t ] and the translational velocities are extracted

inearly from E 5 × 5 . Finall y, 3D points are reconstructed by trian-

ulation [4] . 

. Camera-based RS bundle adjustment 

Considering a sequence of two or more images where the pre-

ented method is applied on each pair, a BA can be performed to
e translation heading to [0; 1; 0] T rapidly. Besides, a example of pure-rotation with 

the speeds are big enough. 
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Fig. 4. Reprojection Errors Comparison. Results obtained with M-RSBA using mul- 

tiple RS views with parallel read-out directions. For each iteration during optimiza- 

tion. 
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Fig. 5. Evaluation of ego-rotation computation: (a) effects of an increasing angular 

velocity. (b) Effects of an increasing translational velocity. (c) Effects of image noise 

level. 

Fig. 6. Comparison of image rectification by compensating effects of ego-rotation: 

Synthetic RS image benchmark [13] (first row). Self-capture real RS images of urban 

scene (second and third rows). 

t

a  

t  

p

 

a  
efine together camera poses, camera velocities and scene struc-

ure. Parameters obtained using the method described above for

ach pair are combined and used as starting points for an iterative

inimization of a nonlinear cost function based on re-projection

rror. Assuming that l 3D points are observed on k images, pro-

ection errors will lead to the following non-linear error function:

(R , t , ω 

j , d 

j ) = 

k ∑ 

j=1 

l ∑ 

i =1 

∣∣ ˜ m 

j 

i 
− m 

j 

i 

∣∣2 
(15)

here ˜ m 

j 
i 

is the i th measurement on the j th image, while m 

j 
i 

is its

espected reprojection point. ω 

j and d 

j are rotate and translational

peeds of the j th camera respectively. 

M-RSBA. To the best of our knowledge, all existing works

5,10] used row index ˜ v 
j 
i 

of measurements ˜ m 

j 
i 

to calculate reprojec-

ion points m 

j 
i 
. This is called measurement-based projection ( p m ):

 [ m 

j 

i 
, 1 ] 

T = p m = K [ R 

j δR 

j 

i 
( ̃  v j 

i 
) T 

j + δT 

j 

i 
( ̃  v j 

i 
)] [ P , 1 ] 

T 
(16) 

δR 

j 
i 
( ̃ v 

j 
i 
) and δT 

j 
i 
( ̃ v 

j 
i 
) are obtained by using Eq. (3) based on

easurements ˜ v 
j 
i 
. This method uses image measurements as pre-

nowledge to calculate reprojection points and makes exposure-

elay of each point fixed. However, during parameter optimization,

xposure-delays should change at each iteration in order to main-

ain structure and motion consistency according to row indexes.

hus, two drawbacks of M-RSBA appear: i) It cannot simulate true

rojection during optimization, which leads to loss of accuracy. ii)

t brings risks of degeneracy as shown in [5] . 

C-RSBA. Alternatively, we propose a novelty approach to calcu-

ate reprojection points based on a pure RS camera model [ R 

j , T j ,

 

j , d 

j ], which do not use fixed measurement indexes. We called it

amera-based RS projection ( p c ): 

 

j 
i 
= 

(
u 

j 
i 

v j 
i 

)
= p c = 

( 

R (1) P + v ̂ R (1) P + T (1) + v d (1) 

R (3) P + v ̂ R (3) P + T (3) + v d (3) 

−b±
√ 

−4 ac+ b 2 
2 a 

) 

(17)

here ˆ R 

(k ) , R 

( k ) , T ( k ) and d 

( k ) are the k th row of ˆ R = [ ω 

j ] ×R 

j 
i 
, R 

j 
i 
,

 

j 
i 

and d 

j respectively. a, b and c are three auxiliary variables de-

ned as: a = 

ˆ R 

(3) X + d 

(3) , b = 

ˆ R 

(3) X + T (3) − ˆ R 

(2) X − d 

(2) and c =
ˆ R 

(2) X − T (2) . 

Double-projections pattern. The quadratic equation in Eq.-20

ields two theoretical solutions v 1 and v 2 named as double-

rojections pattern (shown in Fig. 3 ). In common and practical

onfigurations, there are usually one solution located within image

ange while another one far away from image range. We analyze

wo typical cases in Fig. 3 . A 3D point with 10 unit depth pro-

ected as two points within image range requires translation speed

t least 500 unit/s and angular speed 50 rad/s which is huge for

eal applications. 

Thus, since only one solution is consistent with the pose in

ractice. We propose to always select the solution that is nearer
o image by comparing reprojection values obtained by using v 1 
nd v 2 respectively during bundle adjustment (at each optimiza-

ion round). This selection provides a solution that maintains point

rojection within the camera field of view. 

Advantages of C-RSBA. Albl et al. [5] investigated the mech-

nism of planar degeneracy, which often raised during RSBA us-
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Fig. 7. Reconstruction results of GSBA (blue), M-RSBA (red) and C-RSBA (green) by using images with parallel and perpendicular read-out directions in comparison to 

ground-truth (cyan). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Reconstruction errors of GSBA, M-RSBA and C-RSBA with read-out direction 

angles varying from 0 to 90 °. M-RSBA only provides better results than GSBA when 

read-out direction angles are big (higher than 60 °). C-RSBA obtains accurate and 

stable reconstructions independently from the read-out direction angles. 
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1 We self-implement the method and used in simulated experiments. The results 

in synthetic and real RS images are supplied by the authors upon request. 
ing measurements-based projection. Multiple RS views with paral-

lel read-out directions will collapse into solutions for which cam-

eras have ω = [ −1 0 0] T and 3D points located on y = 0 plane. In

contrast, we found out that by using camera-based method to cal-

culate reprojection errors, C-RSBA survives from degeneracy. The

theoretical explanation for why M-RSBA suffers from degeneracy

while C-RSBA survive from reprojection error standpoint is given

below: 

Proposition 1. When RSBA collapses towards a planar degenerate so-

lution, reprojection error calculated by p m gradually descends to 0

while errors using p c become huge ( Fig. 4 ). 

We assume a RS camera with referenced pose [ I, 0 ] and ego-

motion close to planar critical configuration as ω = [ −1 , 0 , 0] T , d = 0

and 3D points close to X = [ X, 0 , Z] T . 

Lemma 1. Reprojection error by using p m is, 

e = [ e u e v ] 
T = 

˜ m − p m (C , X , ̃  v ) = [ ̃  u − X 

Z 
0] T 

Simultaneously, [ X , 0, Z ] T be further optimized to make e u also re-

duced to 0. Finally, overall error e will descend to be 0. 

Lemma 2. Reprojection error by using p c is, 

e = [ e u e v ] 
T = 

˜ m − p c (C , X ) = [ ̃  u − X 

Z 
˜ v ] T 

The overall reprojection becomes 

∣∣∣v j i ∣∣∣, which is even larger than

reprojection error of the start point. 

Through Lemmas 1 and 2 , one can observe that planar degenerate

solution is a perfect minimum for cost function of M-RSBA while be-

ing a plateau for C-RSBA. This explains how C-RSBA successfully avoid

planar degeneracy. An example of reprojection errors of M-RSBA and

C-RSBA when configurations are slipping towards planar degeneracy

(shown in Fig. 4 ) illustrates Proposition 1 . 

Thus, without constraints on camera motions such as perpendicu-

lar read-out directions among RS views [5] , C-RSBA can successfully

avoid planar degeneracy. 

7. Experiments 

7.1. Angular velocity extraction with synthetic images 

A virtual scene composed of several sets of aligned 3D points

has been constructed. Images corresponding to random angular
elocities during acquisition were generated using the following

irtual camera parameters: focal length = 1 unit, resolution =
40 × 480 pixel and scan speed = 7 . 5 × 10 −5 s/row. Then values

f ω were computed from deformed edges using the linear ap-

roach described in Section. 4.3 . While ground-truths are available,

e evaluated the recovered ω from rotate axis a and rotate speed

 basing on the following distances: a error = subspace (a , a GT ) and

 error = | ω − ω GT | . We repeated each experiment 100 times to get

epresentative statistical results. 

We compare our method with the relative single-image based

S ego-motion estimation method by Rengarajan et al. [14] . 1 We

raw attention to the fact that the latter method requires 3D scene,

hich comply Manhattan World (orthogonal 3D lines) while ours

andles more general cases without pre-knowledge about direc-

ions of scene 3D lines. 

Accuracy vs Angular velocities . Experiments were carried out

ith | ω| varying from 5 to 20 rad/s. The results in Fig. 5 (a) show

hat we can stably estimate rotate axis and speed. The proposed

ethod performs better than the method of Rengarajan et al. [14] .

Accuracy vs Linear velocities . In this experiment, we increased

ranslational velocity d from 0 to 12 unit/s (1 unit = scene depth)

hich is too high and rarely occur in practice. The results in

ig. 5 (b) confirms our analysis in Section. 4.2 that ω play much

ore important role for RS effects than d , which confirms that the

sed model is relevant to realistic computer vision applications. 
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Fig. 9. SfM with similar read-out directions. Reconstruction results are obtained by GSBA (left), M-RSBA (middle) and C-RSBA (right). Obviously, M-RSBA surfers from planar 

degeneracy, while significant deformations can also be observed in GSBA reconstructions. C-RSBA provides correct reconstructed 3D scene. 
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Accuracy vs Pixel noise . We fixed the RS cameras under 1

nit/s translational speed and 5 rad/s rotate speed. Then we added

andom Gaussian noise to the projected pixels from 0 to 1.5 pixel.

he results in Fig. 5 (c) demonstrate that the proposed approach is

ore robust than [14] . 

.2. Angular velocity extraction and compensation on real images 

We evaluated angular velocity extraction on both synthetic and

eal RS images. Fig. 6 shows that the proposed first step linear ap-

roach can successfully obtain angular velocities of RS cameras. Af-

er ω compensation, distorted RS images become only affected by

emaining translational velocities. From the results, there are still

ignificant curvature left in images rectified of method by Rengara-

an et al. [14] , while our method obtains better visual corrections.

his demonstrate the effectiveness of angular velocity extraction

lgorithm compared superior to state-of-the-art work. 

.3. Evaluation of bundle adjustment 

Since the angles between read-out directions among image se-

uence have significant impact on final reconstruction quality, we

esigned a simulation experiment to evaluate GSBA, M-RSBA (ini-

ialized by GSBA) and C-RSBA (initialized by the proposed linear

wo-step method). Three cameras are generated randomly on a

phere with a radius of 1 unit and heading to a cubical scene with

arying average scanning angles from 0 to 90 °. In Fig. 7 , a de-

ormed 3D cube is being reconstructed by GSBA in both parallel

nd perpendicular read-out directions cases. M-RSBA obtains cor-
ect reconstruction using images with perpendicular read-out di-

ections but fails in parallel one, which is a commoner configura-

ion in practical applications. The proposed C-RSBA reconstructs a

orrect 3D scene in both parallel and perpendicular cases. 

In order to draw a quantitative conclusion, we used the sum

f distances between reconstructed 3D points and ground-truth

D points as a criteria to evaluate SfM performances. Results in

ig. 8 show that M-RSBA achieves better reconstruction than GSBA

hen read-out direction angles are bigger than 60 °, while C-RSBA

btains higher-accuracy and is more stable with close read-out di-

ections (below 30 °). 
Finally, we compare GSBA, M-RSBA and C-RSBA on two real RS

mage sequences. The first data set [10] captured by an iPhone4

amera for the facade of warehouse and a road along wall. The

econd dataset is a real complex building captured by a Logitech

amera with strong RS effects. All RS images are captured with

mall read-out direction angles. The results shown in Fig. 9 con-

rmed our prediction in Section. 6 and coincide the simulation

xperiments. GSBA gives distorted reconstruction since RS effects

resence. One can observe that the more strong distortion in RS

mage, the more deformations after SfM for GSBA. It is important

o realize that M-RSBA cannot handle the case where input RS im-

ges with small scanning direction angles (less than 60 °). Strong

eformations (flattened scenes) were observed in the 3D scene re-

onstructed with M-RSBA. 

Quite the contrary, C-RSBA provides significantly better recon-

tructions than GSBA and M-RSBA, which collapse into degeneracy.

his experiment shows that C-RSBA is feasible independently from

mage capture mode. 
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8. Conclusions 

A 3-step method which solves RS SfM was presented. Unlike

with existing methods, a general motion model is assumed and

no a-priori knowledge on the 3D lines is needed. Moreover, the

first two steps of the proposed solution are linear and work with

fewer matches than previous methods. We also provide a novelty

C-RSBA refinement method, which can successfully avoid planar

degeneracy without any constraint on read out direction as in ex-

isting approaches. Note that image capture style with similar read-

out directions are extremely natural and common in real applica-

tions while requirements of two distinct read-out directions will

extensively limit the application range. Experiments with both real

and synthetic data prove that the proposed method outperforms

existing ones and can handle degeneracies pointed out in the lit-

erature. We believe that this work will help to take an extra step

toward the use of RS cameras in SfM applications. Finally, since it

can handle very strong RS effects, the proposed method can also

be seen as a monocular ego-speed measurement technique. 

Supplementary material 

Supplementary material associated with this article can be

found, in the online version, at doi: 10.1016/j.patrec.2018.04.004. 
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