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ABSTRACT

Classification tasks where data contains skewed class proportions (aka imbalanced
data) arises in many real-world applications including medical diagnosis. Safe
deployment of classifiers for imbalanced data settings require theoretically-sound
uncertainty quantification. Conformal prediction (CP) is a promising framework
for producing prediction sets from black-box classifiers with a user-specified
coverage (i.e., true class is contained with high probability). Existing class-
conditional CP (CCP) method employs a black-box classifier to find one threshold
for each class during calibration and then includes every class label that meets the
corresponding threshold for testing inputs, leading to large prediction sets. This
paper studies the problem of how to develop provable CP methods with small
prediction sets for the class-conditional coverage setting and makes several con-
tributions. First, we theoretically show that marginal CP can perform arbitrarily
poorly and cannot provide coverage guarantee for minority classes. Second, we
propose a principled algorithm referred to as k-Class-conditional CP (k-CCP).
The k-CCP method estimates class-specific non-conformity score threshold using
inflated coverage and calibrated rank threshold depending on the top-k error of the
classifier for each class. Given a testing input, k-CCP includes only those class
labels which satisfy both class-specific thresholds for score and calibrated rank
to produce the prediction set. We prove that k-CCP provides class-conditional
coverage and produces smaller prediction sets over the CCP method. Our experi-
ments on benchmark datasets demonstrate that k-CCP achieves class-conditional
coverage and produces significantly smaller prediction sets over baseline methods.

1 INTRODUCTION

Many real-world applications such as those in healthcare domain inherently exhibit classification
data with long-tailed distributions of class labels, i.e., imbalanced data (He and Garcia, 2009). The
labels with high and low frequency are referred to as majority and minority classes respectively.
In imbalanced data settings, the minority classes are very important (e.g., cancer class in medical
diagnosis) (Mazurowski et al., 2008). For safe deployment of ML classifiers in such imbalanced data
scenarios, we require uncertainty quantification (UQ) methods with strong theoretical guarantees.

Conformal prediction (CP) (Shafer and Vovk, 2008) captures the deviation of the predicted label
from the true label in the form of a prediction set (subset of candidate class labels). For example,
in medical diagnosis applications, such prediction sets will allow the doctor to rule out lung cancer
even though the most likely diagnosis is flu. CP provides theoretical guarantees for a given target
coverage: true label is present in the prediction set with a user-specified probability 1 - α (e.g., 90%).
CP methods involve two main steps: 1) Employ a trained classifier (e.g., neural network) to compute
conformity scores which measure the similarity between calibration data and a testing input; and 2)
Using the conformity scores on calibration data to find a threshold for producing prediction sets to
satisfy the marginal coverage constraint 1 - α. It is easy to achieve high coverage by producing large
prediction sets (e.g., all candidate labels in the worst-case), but it increases the burden of human
expert in human-ML collaborative systems (Straitouri et al., 2023; Babbar et al., 2022). Therefore,
CP methods which produce smaller prediction sets by satisfying the target coverage are desirable in
practice. The main research question of this paper is: how can we develop provable CP methods
for the imbalanced data setting to produce small prediction sets? To answer the question, this paper
proposes a novel algorithm referred to as k-Class-Conditional Conformal Prediction (k-CCP).
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In spite of the recent successes of CP (Angelopoulos and Bates, 2021), there is relatively less
work for imbalanced datasets to rigorously understand the challenges for CP. We first derive class-
conditional coverage bounds for marginal CP and demonstrate that without further assumptions,
marginal CP can perform arbitrarily poor on some classes (e.g., minority ones). The key idea behind
k-CCP is to use the rank order of the candidate class labels from the classifier to modify the calibra-
tion procedure and the mechanism to produce prediction sets. As the name suggests, k-CCP uses a
single conformity scoring function based on the trained classifier and performs calibration for each
class label separately. For each class, k-CCP estimates the conformity score threshold using inflated
coverage and the calibrated rank threshold depending on the top-k accuracy of the classifier for
that class. Given a testing input, k-CCP includes only those labels which satisfy both class-specific
thresholds for score and calibrated rank to produce the prediction set.

The primary CP method for imbalanced data (Vovk, 2012; Sadinle et al., 2019; Angelopoulos and
Bates, 2021) which we refer to as CCP differs from k-CCP in two ways. First, CCP only estimates
class-specific conformity score threshold to achieve 1−α coverage for every class. k-CCP performs
double-calibration: one for score threshold (same as CCP) and one for calibrated rank threshold for
each of the classes. It uses different inflated coverage for each class c: 1 − α̃c > 1 − α (e.g., 91%
instead of 90%). The inflated coverage is used to enable the second condition based on calibrated
rank thresholds for different classes to achieve improved trade-off between class-conditional cover-
age and prediction set size. Second, to produce prediction sets for every testing input, CCP iterates
over all classes by comparing the conformity score of each class with the corresponding threshold.
For each class label, k-CCP compares with the corresponding conformity score and calibrated rank
threshold, and adds only those classes which satisfy both conditions to the prediction set. k-CCP
degenerates to CCP in the worst-case when the label rank threshold for each class is set to the total
number of classes. Intuitively, the reduction is prediction set sizes from k-CCP over CCP depends
on how small the label rank thresholds are which is classifier-dependent. We prove that k-CCP
guarantees class-conditional coverage for each class and produces smaller prediction set sizes when
compared to the CCP baseline. Our experiments on multiple benchmark datasets demonstrate that
k-CCP produces smaller prediction sets over the baseline CCP method.

Contributions. The main contributions of this paper are as follows.

• Design of a novel k-CCP algorithm for class-conditional coverage by calibrating a pair of
thresholds, one based on the conformity score, one based on the ranking of the score of the
classifier, for each class to exploit the top-k accuracy of the given classifier.

• Developing a theoretical analysis to demonstrate the failure of marginal CP, to prove that
k-CCP guarantees class-conditional coverage and produces smaller prediction sets.

• Performing experimental evaluation of k-CCP on multiple imbalanced data benchmarks to
demonstrate its efficacy over prior CP methods. Our anonymized code is in the Appendix.

2 PROBLEM SETUP AND NOTATIONS

We consider the problem of uncertainty quantification of classifiers for imbalanced data using the
CP framework. Suppose (X,Y ) is a data sample where X is an input from the input space X and
Y ∈ Y = {1, 2, · · · , C} is the ground-truth label, where C is the number of candidate classes.
Assume all data can be treated as random variables drawn from an underlying distribution P defined
on X × Y . We consider imbalanced data settings where the frequency distribution of class labels
exhibits long-tail. Let f denote a soft classifier (produces scores for all candidate classes, e.g., soft-
max scores) trained on a given training set of m examples Dtr = {(X1, Y1), · · · , (Xm, Ym)}, and
Dc

tr = {(Xi, Yi) : Yi = c} denotes the data from class c where mc = |Dc
tr| is the number of training

examples for class c. We are provided with a calibration set Dcal = {(X1, Y1), · · · , (Xn, Yn)}
to enable CP. Let Ic = {i : Yi = c, for all (Xi, Yi) ∈ Dcal} and nc = |Ic| is the number of
calibration examples for class c. We define the top-k error for class c of the trained classifier f as
ϵkc = P{rf (X,Y ) > k|Y = c}, where rf (x, y) =

∑C
c=1 1[f(x)c ≥ f(x)y] gives the rank of y in

prediction f(x), where 1[·] is an indicator function.

Problem Definition. Our goal is to study provable CP methods that achieve class-conditional cov-
erage and produce small prediction sets. Specifically, given a user-specified target coverage 1 − α,
our aim is to construct small prediction sets Ĉ(X) to achieve class-conditional coverage for any
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c ∈ Y = {1, 2, · · · , C} on population level, where probability is over both calibration and test sets:

P{Y ∈ Ĉ(X)|Y = c} ≥ 1− α (1)

3 FAILURE OF MARGINAL CONFORMAL PREDICTION

Marginal CP (MCP). Let V : X × Y → R denote a non-conformity scoring function to measure
how different a new example is from old examples (Vovk et al., 2005). It is employed to compare
a given testing input (X,Y ) with a set of calibration data Dcal: if the non-conformity score is large,
the new example (X,Y ) conforms less to calibration samples. For simplicity of notation, we denote
the corresponding non-conformity score of the i-th calibration example as Vi = V (Xi, Yi).

For a target coverage 1− α, we find the empirical quantile on calibration data Dcal defined as

Q̂MCP
1−α = min

{
t :

n∑
i=1

1

n
· 1[Vi ≤ t] ≥ 1− α

}
(2)

Q̂MCP
1−α can be determined by finding the ⌈(1−α)(1+n)⌉-th smallest value of {Vi}ni=1. The prediction

set of a new testing input Xn+1 can be constructed by thresholding with Q̂MCP
1−α:

ĈMCP
1−α(Xn+1) = {y ∈ Y : V (Xn+1, y) ≤ Q̂MCP

1−α} (3)

Prior work has considered the design of good non-conformity scoring functions V , e.g., (Angelopou-
los and Bates, 2021; Shafer and Vovk, 2008; Romano et al., 2020) which produce small prediction
sets. (Romano et al., 2020) has proposed APS score for classification tasks based on ordered prob-
abilities that is defined as follows. For a given input X , we sort the probabilities for all classes
{1, · · · , C} using the classifier f such that 1 ≥ f(X)(1) ≥ · · · ≥ f(X)(C) ≥ 0, where f(x)(c)
denotes the c-th largest prediction. Then APS score for a sample (x, y) can be computed as follows:

V (x, y) = f(x)(1) + · · ·+ f(x)(rf (x,y)−1) + U · f(x)(rf (x,y)) (4)

where U ∈ [0, 1] is a random variable drawn from uniform distribution to break ties and rf (x, y) =∑C
c=1 1[f(x)c ≥ f(x)y] is the rank for y of f(x) in a descending order. Using the above definition

of V in (4), ĈMCP (3) gives a marginal coverage guarantee (Romano et al., 2020):

P{Y ∈ ĈMCP
1−α(X)} ≥ 1− α (5)

Below we show that even under a ubiquitous condition, MCP results in over or under-coverage on
some classes, where under-coverage violates the class-conditional coverage constraint.

Failure Analysis of MCP. To analyze the class-conditional coverage performance of MCP, we first
define the class-wise empirical quantile for a given coverage probability 1− α as follows:

Q̂class
1−α(y) = min

{
t :
∑
i∈Iy

1

ny
· 1[V (Xi, Yi) ≤ t] ≥ 1− α

}
(6)

Moreover, we need to define a set of robust classes for a fixed α, i.e., Rob(α) := {y ∈ Y :

Q̂class
1−α(y) ≤ Q̂MCP

1−α}, which includes all classes whose class-wise empirical quantile Q̂class
1−α(y) is

smaller than the marginal empirical quantile Q̂MCP
1−α.

Proposition 1. (Class-conditional over- and under-coverage of MCP) Given α, assume |Rob(α)| <
C. If there exist ξ, ξ′ > 0 such that for y ∈ Rob(α), y′ /∈ Rob(α):

P{V (X,Y ) ≤ Q̂class
1−α(Y )|Y = y ∈ Rob(α)} − P{V (X,Y ) ≤ Q̂MCP

1−α|Y = y ∈ Rob(α)} ≤ −ξ,
P{V (X,Y ) ≤ Q̂class

1−α(Y )|Y = y′ /∈ Rob(α)} − P{V (X,Y ) ≤ Q̂MCP
1−α|Y = y′ /∈ Rob(α)}

≥ 1/ny′ + ξ′. (7)

Then class y and y′ are over- and under-covered, respectively:

P{V (X,Y ) ≤ Q̂MCP
1−α|Y = y} ≥ 1− α+ ξ, P{V (X,Y ) ≤ Q̂MCP

1−α|Y = y′} ≤ 1− α− ξ′
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Algorithm 1 k-Class-Conditional Conformal Prediction (k-CCP)

1: Input: error level α ∈ (0, 1).
2: Randomly split data into train Dtr and calibration Dcal and train the classifier f on Dtr
3: for c ∈ {1, · · · , C} do
4: Compute {Vi}nc

i=1 for all (Xi, Yi) ∈ Dcal such that Yi = c

5: Configure nominated error α̃c and calibrate label rank k̂(c) as shown in (10) and (11)
6: Q̂class

1−α̃(c)← ⌈(1− α̃c)(1 + nc)⌉-th smallest value in {Vi}nc
i=1 as shown in (6)

7: end for
8: Construct Ĉk-CCP

1−α (Xn+1) for a new testing input Xn+1 using (9)

Remark 1. The above result shows that the universal threshold Q̂MCP
1−α derived from MCP can

achieve poor class-conditional coverage on some classes, as long as (7) holds. The interpretation
of condition in (7) is that some class-wise quantiles Q̂class

1−α(y) deviate from (either smaller or larger
than) the marginal quantile Q̂MCP

1−α with a class-conditional coverage margin ξ or ξ′ on corresponding
classes. In fact, this condition happens very frequently, particularly on imbalanced classification
data, including training with standard loss (e.g., cross-entropy loss) or balanced loss (e.g., (Cao et
al., 2019)). We empirically demonstrate the deviation of class-wise quantiles from the marginal
quantile, on real-world datasets in Figure 1 (first column) of Section 5.2. In summary, this theoreti-
cal/empirical analysis result shows the critical challenge for achieving class-conditional coverage.

4 TOP-k CLASS-CONDITIONAL CONFORMAL PREDICTION

In this section, we first describe the details of the proposed top-k Class-Conditional Conformal
Prediction (denoted by k-CCP) algorithm followed by its theoretical analysis.

4.1 ALGORITHM DESIGN

Before we discuss our proposed k-CCP algorithm, we briefly describe the key idea behind the exist-
ing class-conditional CP algorithm(Angelopoulos and Bates, 2021; Sadinle et al., 2019; Vovk, 2012)
(denoted by CCP throughout this paper) to motivate our algorithm design. Specifically, CCP per-
forms class-wise calibration on Dcal by finding class-wise empirical quantiles Q̂class

1−α(y), as defined
in (6), for each y ∈ Y . For a given testing input Xn+1, CCP constructs the prediction set by

ĈCCP
1−α(Xn+1) = {y ∈ Y : V (Xn+1, y) ≤ Q̂class

1−α(y)} (8)

The above equation (8) shows that, for a given testing input Xn+1, CCP iterates every single y ∈ Y
to compare the non-conformity score V (Xn+1, y) to Q̂class

1−α(y): includes the corresponding class
label y into the prediction set if the quantile can cover the score V (Xn+1, y). We argue that, under
some mild conditions, this principle behind CCP which scans all y ∈ Y can result in large prediction
sets which is detrimental to human-ML collaborative systems.

Our proposed k-CCP algorithm (summarized in Algorithm 1) avoids scanning all class labels y ∈ Y
by leveraging good properties of the given classifier f in terms of its top-k accuracy. Intuitively, if
f is sufficiently accurate, then the top-k predicted class labels of f(Xn+1) for a given testing input
Xn+1 will likely cover the true label Yn+1. Specifically, k-CCP performs thresholding using class-
wise quantiles only on a small subset of classes, i.e., top-k classes, based on the soft scores of the
trained classifier f . Consequently, we are able to avoid including irrelevant labels which are ranked
after top-k into the prediction set, thereby significantly reducing the prediction set size. So higher
the top-k accuracy of classifier f , smaller the prediction sets from k-CCP over the CCP method.

However, a critical challenge for this algorithmic design choise is how to determine the appropriate
value of k. k-CCP addresses this challenge by using two inter-related threshold-based conditions to
include a candidate class label y in the prediction set of a given input Xn+1: one for the conformity
score V (Xn+1, y) and another for the rank of the label y, rf (Xn+1, y). These two thresholds
collectively enable different trade-offs between class-conditional coverage and prediction set size.
Our proposed k-CCP algorithm makes specific choices to estimate these two thresholds to achieve
optimized trade-offs. k-CCP estimates class-wise quantiles Q̂class

1−α̃(y) for y ∈ Y and calibrates the
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value of k for each class y, k̂(y) on Dcal in a class-wise manner. k-CCP constructs the prediction set
for a given testing input Xn+1 as follows:

Ĉk-CCP
1−α (Xn+1) = {y ∈ Y : V (Xn+1, y) ≤ Q̂class

1−α̃y
(y)︸ ︷︷ ︸

inflated quantile

, rf (Xn+1, y) ≤ k̂(y)︸ ︷︷ ︸
calibrated label rank k

} (9)

Comparing (9) to (8), there are two different design ideas. First, Q̂class
1−α̃y

is the class-wise quantile
with corresponding probability 1 − α̃y in (9), rather than the class-wise quantile with 1 − α in (8).
We require 1 − α̃y ≥ 1 − α, as an inflation on nominated coverage, so that the trade-off of the
calibrated rank k̂(y) can be enabled. Second, k-CCP additionally employs calibrated class-wise
k̂(y) to reduce the candidate labels considered for inclusion in the prediction set (8). We investigate
how to choose this class-specific inflation and calibrated label ranks in Section 4.2 based on Theorem
1 and Remark 2. Therefore, k-CCP actually introduces a trade-off between the calibration of non-
conformity scores and calibration of label ranks, so that k-CCP can reduce the prediction set size.
k-CCP degenerates to CCP when k̂(y) is set to C for every class y. Intuitively, the reduction of
prediction set sizes by k-CCP over CCP depends on how small the values of k̂(y) ∈ [1, C]. The
k̂(y) values depend on the classifier. In the worst-case when k̂(y) = C, k-CCP will exhibit the same
behavior as CCP.

4.2 THEORETICAL ANALYSIS

In this section, we provide theoretical analysis of the k-CCP algorithm in terms of class-conditional
coverage guarantee and reduced size of the prediction sets compared to the CCP algorithm.

Class-conditional Coverage Analysis. Before presenting the main result, we first introduce class-
wise top-k error for a given class-wise calibrated label rank k̂(y), i.e., ϵy := PZ{rf (X,Y ) >

k̂(y)|Y = y}, where Z = (X,Y ) is the joint random variable over input-output pairs and we drop
the superscript k in ϵkc , since k̂(y) is a function of y. We highlight that k̂(y) ∈ [C] can be any
integer from 1 to C, and ϵy decreases as k(y) increases. Specifically, ϵy reduces to top-1 error if
k̂(y) = 1 (the minimum rank), whereas ϵy = 0 if k̂(y) = C (the maximum rank). The following
main result indicates the feasible range of ϵy , and thus the feasible range of k̂(y).

Theorem 1. (k-CCP guarantees class-conditional coverage) Suppose that selecting {k̂(y)}y∈Y
results in class-wise top-k errors {ϵy}y∈Y . For a target class-conditional coverage 1-α, if the nom-
inated mis-coverage probability α̃y of k-CCP for class y is set as follows

α̃y ≤ α− εny
− δ − ϵy, for 0 < δ < 1, εny

=
√
(3(1− α) log(2/δ))/ny, (10)

then k-CCP can achieve the class-conditional coverage as defined in equation (1), where ny is the
number of calibration examples whose class label is y.
Remark 2. The above result shows that the inflation of the nominated coverage from the target 1−α
in class-conditional coverage of (1) to the nominated level 1 − α̃y of k-CCP for class y is bounded
by εny + ϵy + δ. This implies that k-CCP can use the ϵy to set α̃ once k̂(y) is determined for each
class y. On the other hand, since α̃ > 0, we can also derive the feasible range of ϵy ≤ α− εny − δ,
which means that we have to select a sufficiently large k̂(y) , so that ϵy is small enough to satisfy
this constraint. The effectiveness of k-CCP to produce small prediction sets over CCP depends on
how small k̂(y) values are. If k̂(y) = C, then k-CCP reduces to CCP. The reduction in prediction
set size is proportional to how small k̂(y) values are. Empirically, for each class y, we determine:

k̂(y) = min{c ∈ [C] :
1

ny

∑
i∈Iy

1[rf (Xi, Yi) > c] ≤ α− g/
√
ny}, (11)

where g ∈ {0.1, 0.15, · · · , 1} is a hyper-parameter which is tuned on validation data in terms of
small prediction sets. Indeed, our results in Figure 1 (the last column) demonstrate that classifiers
trained on real-world datasets have small k̂(y) values (shown in terms of σy ∈ [0, 1] which is
introduced below).
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Prediction Set Size Analysis. After deriving the guarantee for the class-conditional coverage of
k-CCP, we study under what conditions k-CCP can produce smaller expected prediction set size
compared to the CCP baseline. For fair comparison, we assume both k-CCP and CCP algorithms
guarantee 1−α class-conditional coverage. For the result of class-conditional coverage for CCP, we
refer readers to (Vovk, 2012; Sadinle et al., 2019; Angelopoulos and Bates, 2021). Before presenting
the main result, we define a condition number as follows:

σy =PXn+1

[
V (Xn+1, y) ≤ Q̂class

1−α̃(y), rf (Xn+1, y) ≤ k̂(y)
]/

PXn+1

[
V (Xn+1, y) ≤ Q̂class

1−α(y)
]

Specifically, σy represents the benefit for the trade-off between the coverage with inflated quantile
Q̂class

1−α̃ and the constraint with calibrated rank k̂(y).
Theorem 2. (k-CCP produces smaller prediction sets than CCP) Suppose the following inequality
holds for any y ∈ Y:∑

y∈Y
σy · PXn+1

[
V (Xn+1, y) ≤ Q̂class

1−α(y)
]
≤
∑
y∈Y

PXn+1

[
V (Xn+1, y) ≤ Q̂class

1−α(y)
]

(12)

Then k-CCP produces smaller expected prediction sets than CCP, i.e.,

EXn+1
[|Ĉk-CCP

1−α̃ (Xn+1)|] ≤ EXn+1
[|ĈCCP

1−α(Xn+1)|]
Remark 3. The above result demonstrates that for a target class-conditional coverage 1− α, when
both k-CCP and CCP achieves the target class-conditional coverage, under the condition of (12), k-
CCP produces smaller prediction sets than CCP. Now we can interpret the term σy as class-specific
weights for aggregating the coverage using Q̂class

1−α. In (12), when the σy-weighted coverage aggrega-
tion (left side) is smaller than the uniform one (right side), k-CCP produces smaller prediction sets
when compared to CCP. Our comprehensive experiments (Section 5.2, Figure 1, the last column)
show σy values are much smaller than 1 for all datsets, so that demonstrate the practical utility of
our theoretical analysis to produce small prediction sets using k-CCP. Note that the reduction in
prediction set size of k-CCP over CCP is proportional to how small the σy values are, which are
classifier-dependent.

5 EXPERIMENTS AND RESULTS

5.1 EXPERIMENTAL SETUP

Classification datasets. We consider four datasets for evaluation: CIFAR-10, CIFAR-100
(Krizhevsky et al., 2009), mini-ImageNet (Vinyals et al., 2016), and Food-101 (Bossard et al., 2014)
using the standard training and validation split. We employ the same methodology as (Menon et al.,
2020; Cao et al., 2019; Cui et al., 2019) to create an imbalanced long-tail setting for each dataset:
1) We use the original training split as training set for training f with Ntr samples, and randomly
split the original (balanced) validation set into Ncal calibration samples and Ntest testing samples.
2) We define an imbalance ratio ρ, the ratio between the sample size of the smallest and largest
class: ρ = mini{# samples in class i}

maxi{# samples in class i} . 3) For each training set, we create three different imbalanced
distributions using three decay types over the class indices c ∈ {1, · · · , C}: (a) An exponential-
based decay (EXP) with Ntr

C × ρ
c
C examples in class c, (b) A polynomial-based decay (POLY) with

Ntr

C ×
1√
c

10ρ+1
examples in class c, and (c) A majority-based decay (MAJ) with Ntr

C × ρ examples

in classes c > 1. We keep the calibration and test set balanced and unchanged. We provide an
illustrative examples of the three decay types in Appendix (Section C.3, Figure 3).

Deep Neural Network Models. We consider ResNet-20 (He et al., 2016) as the main architecture
to train classifiers. To handle imbalanced data, we employ the training algorithm “LDAM” proposed
by (Cao et al., 2019) that assigns different margins to classes, where larger margins are assigned to
minority classes in the loss function. We also add the conformalized training (Stutz et al., 2021) 1

for CIFAR-100 dataset to demonstrate synergistic benefits of k-CCP. These results are summarized
in Table 17 of Appendix F. We will add more results in final paper.

CP Baselines. We consider four CP methods: 1) MCP that targets marginal coverage as in Euqation
(3); 2) CCP which estimates class-wise score thresholds and produces prediction set using Equation
(8); 3) cluster-CP (Ding et al., 2023) 2 that performs calibration over clusters to reduce predic-

1https://github.com/google-deepmind/conformal training/tree/main
2https://github.com/tiffanyding/class-conditional-conformal/tree/main
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tion set sizes; and 4) k-CCP that produces prediction set using Equation (9). All CP methods are
built on the same classifier and non-conformity scoring function (either APS (Romano et al., 2020)
or RAPS (Angelopoulos et al., 2020) for a fair comparison. We tune the hyper-parameters for each
baselines according to their recommended ranges based on the same criterion (See Appendix C.2
for details). We repeat experiments over 10 different random calibration-testing splits and report the
average performance with standard deviation.

Evaluation methodology. We use the target coverage 1−α = 90% (marginal coverage for MCP and
class-conditional coverage for CCP and k-CCP). We compute two metrics on the testing set:

• Under Coverage Ratio (UCR). UCR :=
∑

c∈[C] 1

[∑
(x,y)∈Dtest

1[y∈Ĉ(x) s.t. y=c]∑
(x,y)∈Dtest

1[y=c] < 1− α
]
/C.

• Average Prediction Set Size (APSS). APSS =
∑

c∈[C]

∑
(x,y)∈Dtest

1[y=c]·|Ĉ(x)|∑
(x,y)∈Dtest

1[y=c] /C.

For the three class-conditional CP algorithms, i.e., CCP, cluster-CP, and our k-CCP, we con-
trol their UCR as the same value that is close to 0 for a fair comparison of APSS. To this end,
we uniformly add g/

√
n to inflate the nominated coverage 1 − α to each baseline, and tune

g ∈ {0.1, 0.15, · · · , 1} on validation in terms of prediction set size. The actual achieved UCR
values are shown in the complete results (see Table 15 and 16 of Appendix D and E).

5.2 RESULTS AND DISCUSSION

We list empirical results in Table 1 for an overall comparison on all four datasets with ρ = 0.5, 0.1
using all three training distributions (EXP, POLY and MAJ) based on the considered APS and RAPS

ρ = 0.5 ρ = 0.1 ρ = 0.5 ρ = 0.1 ρ = 0.5 ρ = 0.1

MCP 1.132 ± 0.033 1.406 ± 0.045 1.117 ± 0.028 1.214 ± 0.038 1.196 ± 0.032 2.039 ± 0.046
CCP 1.481 ± 0.082 2.032 ± 0.096 1.487 ± 0.090 1.945 ± 0.087 1.765 ± 0.093 2.964 ± 0.123

cluster-CP 1.445 ± 0.017 2.323 ± 0.015 1.612 ± 0.013 2.102 ± 0.015 1.787 ± 0.019 2.969 ± 0.025
k-CCP 1.481 ± 0.082 2.032 ± 0.096 1.487 ± 0.090 1.945 ± 0.087 1.765 ± 0.093 2.964 ± 0.123
MCP 1.143 ± 0.004 1.419 ± 0.013 1.118 ± 0.004 1.233 ± 0.006 1.196 ± 0.032 2.043 ± 0.016
CCP 1.502 ± 0.007 2.049 ± 0.013 1.558 ± 0.010 1.776 ± 0.012 1.786 ± 0.020 2.628 ± 0.012

cluster-CP 1.493 ± 0.017 2.323 ± 0.015 1.612 ± 0.013 1.981 ± 0.013 1.787 ± 0.019 2.968 ± 0.024
k-CCP 1.502 ± 0.007 2.049 ± 0.013 1.558 ± 0.010 1.776 ± 0.012 1.786 ± 0.020 2.628 ± 0.012

MCP 10.303 ± 0.111 14.544 ± 0.119 15.729 ± 0.126 25.888 ± 0.197 11.680 ± 0.117 23.796 ± 0.159
CCP 44.194 ± 0.514 50.963 ± 0.481 49.895 ± 0.489 64.366 ± 0.389 48.323 ± 0.548 64.640 ± 0.621

cluster-CP 30.922 ± 0.454 43.883 ± 1.070 56.696 ± 0.393 63.208 ± 0.364 33.623 ± 0.395 50.382 ± 0.711
k-CCP 20.355 ± 0.357 25.185 ± 0.278 25.843 ± 0.300 37.034 ± 0.244 21.196 ± 0.320 35.630 ± 0.232
MCP 10.300 ± 0.080 14.554 ± 0.107 15.755 ± 0.103 25.850 ± 0.150 11.684 ± 0.091 23.708 ± 0.137
CCP 44.243 ± 0.340 50.969 ± 0.345 49.877 ± 0.354 64.247 ± 0.234 48.337 ± 0.355 64.580 ± 0.536

cluster-CP 30.971 ± 0.454 43.883 ± 1.073 56.656 ± 0.354 63.113 ± 0.397 33.656 ± 0.388 50.365 ± 0.701
k-CCP 20.355 ± 0.005 25.185 ± 0.011 25.843 ± 0.006 37.035 ± 0.005 21.197 ± 0.005 35.631 ± 0.007

MCP 9.705 ± 0.101 8.930 ± 0.093 9.810 ± 0.101 9.665 ± 0.101 9.840 ± 0.091 9.123 ± 0.086
CCP 26.666 ± 0.415 34.867 ± 0.445 26.620 ± 0.369 29.852 ± 0.360 27.306 ± 0.377 29.200 ± 0.379

cluster-CP 27.786 ± 0.307 33.114 ± 0.418 21.273 ± 0.369 25.550 ± 0.279 25.288 ± 0.226 25.229 ± 0.352
k-CCP 18.129 ± 0.453 17.769 ± 0.463 17.784 ± 0.438 19.153 ± 0.412 18.110 ± 0.414 18.594 ± 0.439
MCP 9.703 ± 0.076 9.003 ± 0.067 9.806 ± 0.079 9.714 ± 0.075 9.865 ± 0.060 9.146 ± 0.063
CCP 26.689 ± 0.177 29.750 ± 0.219 21.352 ± 0.196 26.266 ± 0.218 36.535 ± 0.196 25.641 ± 0.217

cluster-CP 27.466 ± 0.268 32.991 ± 0.434 21.212 ± 0.298 36.061 ± 0.475 32.085 ± 0.424 25.269 ± 0.375
k-CCP 15.101 ± 0.003 18.418 ± 0.003 15.331 ± 0.003 17.465 ± 0.003 17.388 ± 0.003 17.167 ± 0.004

MCP 9.570 ± 0.076 13.998 ± 0.089 12.267 ± 0.079 16.468 ± 0.095 9.964 ± 0.078 23.796 ± 0.159
CCP 40.408 ± 0.378 60.762 ± 0.531 45.148 ± 0.342 65.6723 ± 0.515 41.453 ± 0.335 66.633 ± 0.622

cluster-CP 28.828 ± 0.294 44.885 ± 0.589 32.873 ± 0.307 38.326 ± 0.248 33.258 ± 0.450 46.430 ± 0.337
k-CCP 17.281 ± 0.225 20.610 ± 0.222 20.452 ± 0.209 24.771 ± 0.192 19.398 ± 0.223 26.584 ± 0.191
MCP 9.580 ± 0.037 14.039 ± 0.055 12.327 ± 0.046 16.541 ± 0.060 10.040 ± 0.051 16.293 ± 0.047
CCP 40.411 ± 0.285 60.790 ± 0.395 36.550 ± 0.141 41.755 ± 0.153 32.957 ± 0.224 36.797 ± 0.139

cluster-CP 28.919 ± 0.287 44.583 ± 0.667 32.928 ± 0.358 41.785 ± 0.220 32.983 ± 0.518 46.078 ± 0.312
k-CCP 17.282 ± 0.004 20.610 ± 0.006 20.452 ± 0.002 24.771 ± 0.004 19.398 ± 0.006 25.163 ± 0.002

Scoring Function Methods EXP POLY MAJ

CIFAR-10

APS

RAPS

CIFAR-100

APS

RAPS

mini-ImageNet

APS

RAPS

Food-101

APS

RAPS

Table 1: APSS results comparing MCP, CCP, cluster-CP, and k-CCP with ResNet-20 model under different
imbalance ratio ρ = 0.5 and ρ = 0.1. For a fair comparison of prediction set size, we set UCR of k-CCP the
same as or smaller (more restrictive) than that of CCP and cluster-CP under 0.16 on CIFAR-10 and 0.03
on other datasets. The specified UCR values are in Table 15 and 16 of Appendix D and E. The APSS results
show that k-CCP significantly outperforms CCP and cluster-CP in terms of average prediction set size.
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score functions. Complete experiment results under more values of ρ are in Appendix C). We make
the following observations: (i) MCP does not provide class-conditional coverage, which is straight-
forward; (ii) CCP, cluster-CP, and k-CCP can guarantee the class-conditional coverage (their
UCRs are all close to 0); and (iii) k-CCP significantly outperforms CCP and cluster-CP in APSS
on almost all settings (k-CCP still outperforms others in most cases even on CIFAR-10).

To investigate the challenge of imbalanced data and more importantly how k-CPP significantly im-
proves the APSS, we further conduct four justification experiments. We report the results on min-
ImageNet and Food-101 below and the complete ones in Appendix C. First, we visualize the dis-
tribution of class-wise quantiles compared to the marginal quantile (derived by MCP), highlighting
the large variance of class-wise quantiles on imbalanced data. Second, we report the histograms of
class-conditional coverage and the corresponding histograms of prediction set size. This experiment
verifies that k-CCP derives significantly more class-conditional coverage above 1 − α and thus re-
duces the prediction set size. Third, we empirically verify the trade-off condition number {σy}Cy=1
in Theorem 2 to reveal the underlying reason for k-CCP producing smaller prediction sets over CCP.
Finally, We add the ablation study to verify how hyper-parameter g affects the performance of CCP,
cluster-CP, and k-CCP. We set the range of g from {0.1, 0.15, · · · , 0.7} on four datasets with
imbalance ratio ρ = 0.1 EXP. Below we discuss our results and findings in more detail.
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Figure 1: Justification experiments: mini-ImageNet in first row and Food-101 in second row with ResNet20
model. First column: distribution of class-wise quantiles v.s. marginal quantile with imbalance type EXP and
imbalance ratio ρ = 0.5. Second and third columns: histograms of class-conditional coverage and prediction
set size achieved by MCP, CCP, cluster-CP, and k-CCP with imbalance type EXP and imbalance ratio
ρ = 0.1. The final column: the histogram of condition numbers σy in Theorem 2 with imbalance type EXP
and imbalance ratio ρ = 0.1.

MCP does not guarantee class-conditional coverage. From Table 1, MCP achieves a large UCR,
indicating its failure as described in Proposition 1. Recall that Proposition 1 indicates that MCP has
over or under-coverage on the classes where the corresponding class-wise quantiles deviate from
the marginal one. To further verify this condition, we compare the distribution of class-conditional
quantiles with the marginal quantile in histograms in the first column of Figure 1, which verifies that
this condition easily holds, even for relatively balanced datasets (i.e., ρ = 0.5).

k-CCP significantly outperforms CCP and Cluster-CP. First, it is clear from Table 1 that k-
CCP, CCP, and cluster-CP guarantee class-conditional coverage on all settings. This can also
be shown by the second column of Figure 1, where the class-conditional coverage bars of CCP and
k-CCP distribute on the right-hand side of the target probability 1 − α (red dashed line). Second,
k-CCP outperforms CCP with a large margin in terms of average prediction set size under the same
level of class-conditional coverage. We also report the histograms of the corresponding prediction
set sizes in the third column of Figure 1, which shows (i) k-CCP has more concentrated class-
conditional coverage distribution than CCP and cluster-CP; (ii) the distribution of prediction set
sizes produced by k-CCP is globally smaller than that produced by CCP and cluster-CP. This
observation can be justified by a better trade-off number of {σy}Cy=1 as shown below.

Verification of σy . The last column of Figure 1 verifies the validity of Theorem 2 on testing dataset
and confirms the optimized trade-off between the coverage with inflated quantile and the constraint
with calibrated rank leads to smaller prediction sets. Experiments even show a stronger condition
(σy is much less than 1 for all y) than the weighted aggregation condition in (12). We notice that
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k-CCP reduces to CCP on CIFAR-10, so σy = 1 for all y and there is no trade-off. On other three
datasets, we satisfy the conditions needed by k-CCP. In addition, we also verify the assumption of
σy firmly holds on calibration sets in Figure 24 of Appendix I.

Sensitivity for g. Figure 2 shows the sensitivity of CCP, cluster-CP, and k-CCP for g on mini-
ImageNet and Food-101 with APS scoring function. It is clear that the UCR and APSS of k-CCP are
much smaller than CCP and cluster-CP with the same g values on CIFAR-100, mini-ImageNet,
and Food-101. These results verify that k-CCP achieves a better trade-off between coverage and
prediction set size. In addition, we also study the the sensitivity of CCP, cluster-CP, and k-CCP
with RAPS scoring function in Figure 22 of Appendix H.

(a) mini-ImageNet (b) Food-101
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Figure 2: Results for under coverage ratio and average prediction set size achieved by CCP, cluster-CP,
and k-CCP methods as a function of g using APS scoring function with imbalance type EXP for imbalance
ratio ρ = 0.1.

6 RELATED WORK

Learning Classifiers for Imbalanced Data. Classification algorithms for imbalanced datasets can
be categorized into two main categories: 1) Re-sampling. This category aims to balance the popula-
tion of the majority class and the minority class by over-sampling (Chawla et al., 2002; Mohammed
et al., 2020; Krawczyk et al., 2019) or under-sampling (Tsai et al., 2019; Vuttipittayamongkol and
Elyan, 2020). 2) Re-weighting. This category aims to overcome the imbalanced data challenges by
assigning adaptive weights to different classes/samples (Huang et al., 2019; Madabushi et al., 2020).
There is also work on providing theoretical analysis for the trained classifiers (Cao et al., 2019; Got-
tlieb et al., 2021). However, prior work on learning classifiers does not consider the problem of
long-tailed label-distributions (i.e., imbalanced data) from an uncertainty quantification perspective.

Conformal Prediction. CP (Vovk et al., 1999; 2005; Romano et al., 2020) is a general framework
for uncertainty quantification that provides marginal coverage guarantees without any assumptions
on the underlying data distribution. Prior work has considered improving on the standard CP to
handle distribution shifts that may be caused by long-term distribution shift (Gibbs and Candes,
2021), covariate shift (Tibshirani et al., 2019), or label-distribution shift (Podkopaev and Ramdas,
2021). However, there is little work on studying instantiations of the CP framework to adapt to
the imbalanced data setting (Vovk, 2012; Sadinle et al., 2019; Angelopoulos and Bates, 2021). The
only known CP framework that guarantees class-conditional coverage was proposed in (Vovk, 2012;
Sadinle et al., 2019) and surveyed by (Angelopoulos and Bates, 2021). It builds one conformal pre-
dictor for each class resulting in large prediction sets. Clustered CP (Ding et al., 2023) groups class
labels into clusters and performs calibration over clusters to reduce prediction set sizes. However,
it does not provide theoretical guarantees on class-conditional coverage. Note that conditional CP
methods for input space (Gibbs et al., 2023; Feldman et al., 2021) are not applicable to output space,
i.e., the class-conditional setting. Our provable k-CCP approach leverages the ranking of candidate
class labels by the classifier to configure the calibration process to produce small prediction sets.

7 SUMMARY

This paper studies a provable conformal prediction (CP) algorithm that aims to provide class-
conditional coverage guarantee and produce small prediction sets for the challenging imbalanced
data settings. Our proposed k-CCP algorithm performs double-calibration, one over conformity
score and one over label rank for each class separately, to achieve this goal by leveraging the bene-
ficial properties of top-k accuracy of a trained classifier. Our extensive experiments clearly demon-
strate the significant efficacy of k-CCP over the baseline CCP algorithm.
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