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ABSTRACT

Reasoning is the critical capability of multimodal large language models
(MLLMs) to solve complex multimodal tasks, and judging the correctness of
reasoning steps is crucial to improving this capability. Recently, MLLM-based
process judges (MPJs) have been widely used to judge the correctness of reason-
ing steps in multimodal reasoning tasks. Therefore, evaluating the capability of
MPJs is crucial for identifying their limitations and guiding future improvements.
However, existing benchmarks for MPJs primarily focus on evaluating capabilities
such as step correctness classification and reasoning process search, while over-
looking a critical dimension: whether the confidence scores produced by MPJs at
the step level are reliable. To fill this gap, we propose ConfProBench, the first
comprehensive benchmark designed to systematically evaluate the reliability of
step-level confidence scores generated by MPJs. This benchmark constructs three
types of adversarially perturbed reasoning steps: Lexical Level, Syntactic Level,
and Multimodal Level, to evaluate the robustness of MPJs’ confidence under per-
turbations. Furthermore, we propose three novel evaluation metrics: Confidence
Robustness Score (CRS), Confidence Sensitivity Score (CSS), and Confidence
Calibration Score (CCS), which are designed to capture three complementary as-
pects of MPJs’ confidence—robustness, sensitivity, and calibration. We evaluate
14 state-of-the-art MLLMs, including both proprietary and open-source models.
Through extensive experiments, we reveal limitations in existing MPJs’ confi-
dence performance and provide competitive baselines, thereby paving the way for
future research in this field. Our dataset is provided in the supplementary materi-
als.

1 INTRODUCTION

Reasoning is a core capability of Multimodal Large Language Models (MLLMs) when tackling
complex multimodal tasks Yan et al. (2024); Shi et al. (2024); Li et al. (2025); Xiang et al. (2024).
Judging the correctness of each reasoning step is crucial for further enhancing this capability. As the
reasoning chains generated by MLLMs become increasingly intricate, manually inspecting each in-
termediate step has become prohibitively costly. In response, recent studies have introduced MLLM-
based Process Judges (MPJs) to assess step-by-step reasoning in multimodal tasks Pu et al. (2025);
Chen et al. (2024); Huang et al. (2024); Sun et al. (2024); Zhang et al. (2024); Jiang et al. (2025).
These MPJs analyze the reasoning process generated by MLLMs to identify potential flaws, improve
interpretability, and facilitate targeted model improvements.

However, this paradigm shift raises a fundamental question: Can we trust the judgments made
by MPJs? To address this, existing benchmarks evaluate multiple aspects of MPJs, such as step
correctness, error type identification, and answer aggregation Ai et al. (2025); Xu et al. (2025);
Wang et al. (2025). Nevertheless, they overlook an essential aspect: the reliability of the confidence
scores produced by MPJs at the step level. Confidence not only reflects a model’s self-assessed
certainty but also directly affects controllability, reliability, and safety in downstream applications
Geng et al. (2023). Under adversarial perturbations, robust and interpretable confidence scores are
vital.

To fill this gap, we propose ConfProBench, the first benchmark specifically designed to systemati-
cally evaluate the confidence performance of MPJs. ConfProBench constructs perturbed variants of
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reasoning steps using three types of adversarial perturbations: Lexical Level, Syntactic Level, and
Multimodal Level. These perturbations support the assessment of confidence robustness.

Furthermore, we introduce a comprehensive evaluation metric suite that includes three core compo-
nents: Confidence Robustness Score (CRS), Confidence Sensitivity Score (CSS), and Confidence
Calibration Score (CCS). CRS measures the robustness of confidence under adversarial perturba-
tions. CSS measures the sensitivity of confidence scores to erroneous reasoning steps. CCS evalu-
ates the consistency between confidence scores and classification accuracy.

In summary, our main contributions are as follows:

• We propose ConfProBench, the first benchmark dedicated to systematically evaluating the
confidence performance of MPJs, and the first benchmark to assess confidence robustness
and sensitivity.

• We construct three types of adversarial perturbation data to evaluate the robustness of
MPJs’ confidence. We further introduce the first comprehensive confidence evaluation
suite for MPJs, consisting of three complementary metrics: CRS, CSS, and CCS, which
assess robustness, sensitivity, and calibration.

• We conduct comprehensive experiments on 14 state-of-the-art MPJs, including both pro-
prietary and open-source models. Through fine-grained analysis using the core metrics and
their subcomponents, we reveal critical limitations in current models’ confidence perfor-
mance and highlight directions for future improvement.

2 RELATED WORKS

2.1 CONFIDENCE EVALUATION AND ESTIMATION

Confidence is the estimated probability that a model’s prediction matches the ground-truth label Guo
et al. (2017). Assessing the confidence of large language models (LLMs) is essential for building
reliable systems Geng et al. (2023). Most studies focus on calibration, which measures how well
predicted confidence aligns with actual prediction accuracy Zhao et al. (2024); Geng et al. (2023).
Confidence estimation and evaluation are distinct: the former extracts signals from the model, while
the latter assesses their trustworthiness and stability Geng et al. (2023). Estimation methods include
logit-based Duan et al. (2023), internal state-based Burns et al. (2022), consistency-based Manakul
et al. (2023), and verbalized approaches Xiong et al. (2023). Verbalized methods prompt LLMs to
express confidence via natural language or numerical values, and are valued for their model-agnostic
design and efficiency Geng et al. (2023); Tian et al. (2023); Yang et al. (2024). We adopt this ap-
proach by prompting MPJs to produce step-level verbalized confidence and evaluate its robustness,
sensitivity, and calibration.

Benchmark Multimodal Step
Annotation

MPJ-specific
Confidence Metrics

Adversarial
Perturbed Steps

Confidence
Evaluation Paradigm

ProcessBench No Yes No No No
PRMBench No Yes Yes No No
VisualProcessBench Yes Yes No No No
MPBench Yes Yes No No No
ProJudgeBench Yes Yes No No No

ConfProBench (Ours) Yes Yes Yes Yes Yes

Table 1: Comparison between related benchmarks with our ConfProBench.

2.2 BENCHMARKS FOR MLLM-BASED PROCESS JUDGES

In recent years, the process judgment capabilities of MLLMs have attracted increasing attention,
and several related evaluation benchmarks have been proposed Wang et al. (2025); Xu et al. (2025);
Ai et al. (2025). VisualProcessBench Wang et al. (2025) provides human-annotated step-wise cor-
rectness labels to evaluate the ability of multimodal Process Reward Models (PRMs) to identify
erroneous steps in multimodal reasoning tasks. MPBench Xu et al. (2025) aims to assess the per-
formance of multimodal PRMs across three tasks: determining the correctness of each reasoning
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step (Step Correctness), selecting the optimal solution from multiple candidates (Answer Aggrega-
tion), and guiding the search of reasoning processes (Reasoning Process Search). ProJudgeBench
Ai et al. (2025) is a multimodal, multidisciplinary benchmark specifically designed to evaluate the
fine-grained error detection, classification, and diagnosis capabilities of MPJs.

Our ConfProBench is distinguished from prior benchmarks in three key aspects, as shown in Ta-
ble 1. First, it is the first benchmark specifically designed for multimodal process judges (MPJs)
with MPJ-specific, process-level confidence evaluation metrics, going beyond generic correctness
or error-type assessment. Second, ConfProBench introduces three dimensions of adversarial per-
turbations—lexical, syntactic, and multimodal—providing a principled framework to evaluate the
robustness of confidence under semantically preserving variations. Third, it enables comprehen-
sive confidence evaluation through a suite of three complementary metrics (CRS, CSS, and CCS),
which jointly capture robustness, sensitivity, and calibration at the step level, offering a finer-grained
perspective than traditional confidence measures.

3 CONFPROBENCH

3.1 TASK DEFINITION

Step 1: To determine the correct graph, we need to 
analyze the properties of the...    
Step 2 ~ Step 11
Step 12: Option A: This graph shows an exponential 
function that is decreasing and a logarithmic function that 
is increasing...
Step 13: Option B: This graph shows an exponential 
function that is increasing and a logarithmic function that 
is decreasing...
Step 14: Option C: This graph shows an exponential 
function that is increasing and a logarithmic function that 
is increasing...
Step 15: Option D: This graph shows an exponential 
function that is decreasing and a logarithmic function that 
is decreasing...
......

Student’s reasoning steps：

     Problem: Given that � > 0 and � ≠ 1, the graphs of the 
functions � = �� and � = ����(−�) could be ( )
A. <image_1>    B. <image_2>    C. <image_3>    D. <image_4>

Final Answer: B

0.8

0.85

0.9

0.9

0.75

⋮ ⋮

⋮ ⋮

Figure 1: An example of the process
judge task for MLLM-based process judges
(MPJs), which perform binary classification
of each reasoning step’s correctness and pro-
vide associated confidence scores.

The multimodal process judging task in Conf-
ProBench is framed as a binary classification prob-
lem. Our dataset contains two class labels: reason-
ing steps without errors are labeled as “correct” (1),
while those with errors are labeled as “incorrect” (0).
Specifically, the MPJ is required to output the prob-
ability that a reasoning step belongs to the correct
class, which is used for both classification and con-
fidence scoring.

As illustrated in Figure 1, given a scientific problem
P , its final answer A, and a step-by-step reasoning
process S = {s0, s1, · · · , sn−1} generated by a stu-
dent model, the MPJ outputs a tuple (li, pi, ei) for
each reasoning step si. Here, li ∈ {1, 0} indicates
whether si is belong to the correct class (li = 1) or
incorrect class(li = 0); pi ∈ [0, 1] denotes the prob-
ability that si belongs to the correct class; and ei rep-
resents the error type if si is belongs to the incorrect
class.

The probability pi determines the predicted classi-
fication label and confidence score, while li and ei
assist in correcting potential inconsistencies in the
result.

To obtain the binary step-level prediction, pi is con-
verted into a correctness label l̂i according to the following rule:

l̂i =

{
1, if pi ≥ 0.5,

0, otherwise,
(1)

Based on l̂i and pi, the confidence score ci is defined as:

ci =

{
pi, if l̂i = 1,

1− pi, if l̂i = 0,
(2)

pi, l̂i, and ci are subsequently used to compute the proposed evaluation metrics.
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Syntactic 

Level

Example:

In this case, the wavelength, which is the distance between 

points A and B, measures $0.75m$, and it is the distance 

between two consecutive in-phase points in a wave, such 

as crests or troughs.

The wavelength of a wave is the distance between two 

consecutive points in a wave that are in phase, such as 

two crests or two troughs. In this case, the wavelength is 

the distance between points A and B, which is $0.75m$."

ConfProBench

Multimodal 

Level

Syntactic 

Level

Lexical 

Level

Original Data

Middl school

High school

Competition

Math. Phys. Biol.Chem.

Final answers

Correct and incorrect steps 

Error 

types
Reasoning 

Errors

No solution 

provided error

Questions of varying difficulty levels

Three-dimensional Perturbation Framework

Multimodal 

Level

Lexical 

Level
The suitable answer is Image-1, as it directly ties to the 

concept of enzyme function and its effect on reaction rates.

Example:

The correct answer is Image-1, as it directly relates to the 

concept of enzyme function and its effect on reaction rates.

Example:

Rotate Invert

Manual Filtering

Figure 2: An overview of the data construction process for ConfProBench.

3.2 DATASET CONSTRUCTION

Meta Data Extraction. We construct our benchmark based on ProJudgeBench Ai et al. (2025) by
sampling 1,200 problems spanning three difficulty levels (Middle School, High School and Compe-
tition), four scientific disciplines (Math, Physics, Chemistry, Biology), three modality types (Single
Image, Multi Images, Pure Text), and seven types of reasoning errors (Numerical Calculation Error,
Reasoning Error, Symbolic Calculation Error, Knowledge Error, Visual Interpretation Error, Ques-
tion Understanding Error, and No Solution Provided). The resulting dataset maintains a balanced
distribution across difficulty levels and scientific disciplines, offering a robust foundation for a com-
prehensive evaluation of MPJs’ confidence performance. Please refer to Appendix B for detailed
statistics of ConfProBench.

Adversarial Perturbation Construction. We design a three-dimensional perturbation framework
spanning lexical, syntactic, and multimodal levels, which preserves semantics while diversifying ex-
pression. The framework is extensible to other perturbation types (e.g., numerical substitution, style
rewriting, chart transformation). Multimodal perturbations apply only to Single-Image or Multi-
Image samples. For balanced evaluation, we partition the 1,200 scientific problems into three equal
subsets, each subjected to one perturbation type.

Lexical Level: We prompt GPT-4o to generate five distinct synonym-substituted versions for each
reasoning step and randomly select one. In each version, at least one non-technical term, such as
mathematical symbols, scientific terminology, programming syntax, technical jargon, or domain-
specific abbreviations, is replaced with a semantically equivalent synonym. As many such terms as
possible are substituted while ensuring grammatical correctness and semantic consistency.

Syntactic Level: We prompt GPT-4o to generate five distinct Syntactic Level versions for each step
that preserve the original semantic information while exhibiting distinct syntactic structures, and
randomly select one. Each Syntactic Level version strictly applies one of the following six prede-
fined Syntactic Levels: (1) voice alternation (active to passive), (2) adverbial position adjustment, (3)
clause order or structural variation, (4) phrase simplification or expansion, (5) inversion or emphasis
construction, and (6) transformation of conditional, purposive, or resultative constructions.

Multimodal Level: We apply image-level perturbations to the image inputs of multimodal scien-
tific problems. Specifically, one image transformation is randomly selected from the following set
of operations: scaling, rotation, Gaussian noise injection, or color inversion. These transforma-
tions are designed to modify the low-level visual features of the input while preserving its semantic
information.

Examples of each perturbation type are shown in Figure 2.

Data Quality Control. We conducted comprehensive manual verification of all adversarial per-
turbation results to ensure their quality and validity. Each reasoning step with Lexical Level was
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examined to ensure that: (1) at least one non-technical term was replaced; (2) the original syntactic
structure and semantic information were preserved; (3) technical terms and domain-specific vocab-
ulary remained unchanged; (4) numerical values and mathematical expressions were not modified;
and (5) the rewritten step was grammatically correct and fluent. Each syntactically transformed
reasoning step was reviewed to ensure that: (1) no mathematical derivations, intermediate steps, or
key expressions were omitted; (2) all numerical and symbolic content remained intact; (3) the sen-
tence maintained its original meaning; and (4) the target structural transformation was appropriately
applied. For Multimodal Levels, we examined each transformed image to ensure that the applied
modifications did not introduce semantic information drift or obscure essential visual information.
If a perturbed result failed to meet these criteria, we re-applied the corresponding perturbation pro-
cedure to the same reasoning step until a valid adversarial variant was obtained. Our verification
process followed clear and objective standards, and the task required minimal subjectivity, inter-
annotator agreement scores were not needed. Two PhD student from our team conducted the review
and the rejection rate during this process was only 0.8%.

3.3 EVALUATION METRICS

Confidence 

Sensitivity Score

(CSS)

Confidence 

Change Rate 

(CCR)

Average 

Confidence 

Change 

Magnitude 

(ACCM)

Significant 

Confidence 

Change Rate 

(SCCR)

ΔP of No 

Solution 

Provided Error

ΔP of 

Reasoning 

Error

ΔP of 

Numerical 

Calculation 

Error
ΔP of 

Symbolic 

Calculation 

Error ΔP of 

Knowledge 

Error

ΔP of Visual 

Interpretation 

Error

ΔP of 

Question 

Understanding 

Error 

Expected 

Calibration 

Error 

(ECE)

Delta Expected 

Calibration 

Error between 

Classes 

(ΔECE)

Confidence 

Robustness 

Score (CRS)

Confidence 

Calibration 

Score

(CCS)
ConfProBench

Figure 3: An overview of the proposed eval-
uation metric suite, consisting of three core
metrics: CRS, CSS, and CCS. Each core
metric is composed of a set of sub-metrics.

Here we describe our evaluation framework in de-
tail. As illustrated in Figure 3, it integrates robust-
ness, sensitivity, and calibration aspects within a uni-
fied suite. To comprehensively evaluate the reliabil-
ity of confidence scores produced by MPJs, we in-
troduce a multi-dimensional suite of evaluation met-
rics, as illustrated in Figure 3. This metric suite is
designed to capture three complementary aspects of
confidence performance: robustness, sensitivity, and
calibration. These three metrics form a comprehen-
sive framework to assess whether an MPJ can reli-
ably express the uncertainty of its predictions, which
is an essential capability for trustworthy MPJs.

Confidence Robustness Score (CRS). We define
the Confidence Robustness Score (CRS) to measure
the robustness of confidence under designed adver-
sarial perturbations, including Lexical Level, Syn-
tactic Level, and Multimodal Level. Since these per-
turbations preserve the semantic consistency of the
reasoning steps, an ideal process judge should main-
tain consistent confidence scores across both per-
turbed and unperturbed inputs.

CRS integrates three sub-metrics to quantify confi-
dence robustness. Let ci represent the original confidence score, and c′i represent the confidence
score after perturbation. For each pair of original confidence score and post-perturbation confidence
score, we compute the following sub-metrics:

(1) Confidence Change Rate (CCR): The proportion of reasoning steps in which the confidence
scores change after perturbation. Specifically, if the absolute difference in confidence exceeds a
small threshold ϵ, we consider the confidence to have changed. CCR is defined as:

CCR =
1

N

N∑
i=1

I (|ci − c′i| > ϵ) , (3)

Where N is the total number of reasoning steps, and I(·) is the indicator function, which is used to
check if a condition is met. It returns 1 if the condition is true, and 0 if it is false. A lower CCR
indicates greater robustness of confidence.
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Model CRS↑ CSS↑ CCS↑ Avg.↑
Open-source MLLMs

InternVL3-8B 77.41 11.55 25.97 38.31
InternVL3-14B 50.78 21.19 46.75 39.57
InternVL3-38B 49.92 30.62 44.49 41.68
MiniCPM-V-2 6 68.05 6.60 -47.95 8.90
Qwen2.5-VL-3B 74.71 3.15 2.73 26.86
Qwen2.5-VL-7B 71.19 10.38 15.80 32.46
Qwen2.5-VL-32B 81.06 15.93 41.60 46.20
Qwen2.5-VL-72B 77.45 19.93 25.30 40.89
QVQ 74.17 12.60 30.69 39.15

Proprietary MLLMs
GPT-4o 57.37 30.71 62.00 50.03
GPT-4o-Mini 65.58 13.03 47.73 42.11
GPT-4.1 73.62 38.51 37.65 49.93
Gemini-2.5-flash 63.08 48.29 48.62 53.33
Gemini-2.5-flash-nothinking 51.20 42.13 51.55 48.29
Gemini-2.5-Pro 76.90 57.73 44.88 59.84
GPT-5 64.27 51.59 55.38 57.08

Table 2: The main results across different MLLM-based Process Judges (MPJs) on ConfProBench.
The best performance for each metric is shown in bold, while the second-best is underlined.

(2) Average Confidence Change Magnitude (ACCM): The average magnitude of confidence change
across all steps where the change exceeds the small threshold ϵ. Specifically, we define:

ACCM =
1

|S|
∑
i∈S

|ci − c′i|,

where S = {i | |ci − c′i| > ϵ} ,
(4)

A smaller ACCM indicates greater robustness of confidence.

(3) Significant Confidence Change Rate (SCCR): It refers to the proportion of reasoning steps where
the confidence score changes beyond a predefined threshold δ. We refer to this threshold as the sig-
nificant threshold, which is set to 0.2 in our experiments. This parameter can be adjusted according
to different application needs. The formal definition of SCCR is as follows:

SCCR =
1

N

N∑
i=1

I (|ci − c′i| > δ) , (5)

A lower SCCR indicates greater robustness of confidence.

We combine the three sub-metrics above to define the CRS as follows:
CRS = w1 · (1− CCR) + w2 · (1− s · ACCM)

+ w3 · (1− s · SCCR),
(6)

where w1, w2, and w3 are the weights of the three sub-metrics, and s is a scaling factor.

Confidence Sensitivity Score (CSS). We propose Confidence Sensitivity Score (CSS), a novel
metric that quantifies how sensitively confidence scores respond to reasoning errors.

For each error type t ∈ T , let pt denote the average value of pi over all steps labeled with the
ground-truth error type t, and let pcorrect denote the average pi over all steps labeled as ground-truth
correct. We then define ∆pt as the difference between pcorrect and pt, as follows:

∆pt = pcorrect − pt, (7)

A larger ∆pt indicates that pi significantly decreases when encountering an error of type t, showing
that pi is sensitive to this type of error. Conversely, a smaller or even negative ∆pt suggests that

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

pi has weak or no ability to recognize this error type. Since ci is derived from pi through a simple
linear transformation, the sensitivity of pi to reasoning errors directly reflects the model confidence’s
sensitivity.

To assess the overall confidence sensitivity, we define CSS as the average of ∆pt across all error
types:

CSS =
1

|T |
∑
t∈T

∆pt, (8)

where T is the set of all non-empty error types in the dataset.

Confidence Calibration Score (CCS). Confidence Calibration Score (CCS) evaluates the con-
sistency between the confidence score and the actual accuracy of predictions . It incorporates two
aspects of calibration errors: the overall Expected Calibration Error (ECE) Guo et al. (2017), and
the gap in ECE between classes, denoted as ∆ECEcls.

The ECE is defined as:

ECE =

M∑
m=1

|Bm|
n

· |acc(Bm)− conf(Bm)| , (9)

where Bm is the m-th bin obtained by equally dividing the confidence range into M intervals,
|Bm| denotes the number of samples in bin Bm, and n is the total number of samples. acc(Bm)
and conf(Bm) represent the average accuracy and average confidence of samples within bin Bm,
respectively.

To better capture class-specific calibration performance, we compute the ECE separately for the
correct and incorrect categories of reasoning steps, denoted as: ECEcorrect and ECEincorrect. The
class-wise calibration gap is then defined as

∆ECEcls = |ECEcorrect − ECEincorrect| , (10)

A smaller ∆ECEcls indicates more balanced confidence calibration performance across different
classes.

Combining ECE and ∆ECEcls, we define CCS as follows:

CCS = 0.5 · (1− s · ECE) + 0.5 · (1−∆ECEcls), (11)

Where s (set to 5) is a scaling factor.

Our proposed CRS, CSS, and CCS go beyond classical metrics like ECE Guo et al. (2017) by
capturing step-level robustness, sensitivity, and calibration under semantic-preserving perturbations.
Such fine-grained step-level evaluation is particularly important for multimodal process judges to
ensure reliable and interpretable reasoning.

All three metrics—CRS, CSS, and CCS—employ parameter choices guided by theoretical and prac-
tical considerations. For CRS, the thresholds ϵ and δ distinguish meaningful confidence changes
from minor fluctuations, while the scaling factor s ensures that sub-metrics wites contribute com-
parably to the overall score; the weights w1, w2, and w3 balance emphasis across sub-metrics.
For CSS, ∆pt is naturally bounded within [-1,1], and averaging across all error types provides a
balanced, step-level sensitivity measure that treats different error types equally. For CCS, the scal-
ing factor s amplifies the impact of the typically smaller ECE relative to the class-wise calibration
gap ∆ECEcls, and equal weighting between these components captures both global calibration and
class-specific fairness. Across all metrics, these parameter settings are designed to suppress noise,
balance contributions from different sub-components, and maintain fine-grained interpretability of
step-level reasoning, making them particularly suitable for multimodal process judges. Accordingly,
for both CRS and CCS, each sub-metric is subtracted from 1 so that higher values indicate stronger
confidence robustness and better confidence calibration, respectively.
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

To provide a comprehensive evaluation on ConfProBench, we assess both proprietary and open-
source MPJs. The proprietary MPJs include GPT-4o OpenAI (2024b), GPT-4o-Mini OpenAI
(2024c), GPT-4.1 OpenAI (2024a), Gemini-2.5-flash (Dynamic thinking) DeepMind (2025a), and
Gemini-2.5-flash-nothinking DeepMind (2025b). The open-source MPJs span a variety of archi-
tectures and parameter scales, including InternVL3 (8B, 14B, 38B) Zhu et al. (2025), Qwen2.5-VL
(3B, 7B, 32B, 72B) Bai et al. (2025), MiniCPM-V-2 6 (8B) Yao et al. (2024), and QVQ (72B) Qwen
Team (2024).

For reproducibility and transparency, detailed parameter settings, including thresholds, scaling fac-
tors, and weights for CRS, CSS, and CCS, are provided in the Appendix C. All MPJs use a unified
prompt template, with detailed prompt designs provided in Appendix D. All metric values are pre-
sented as percentages in the tables.

To enable a consistent and fair comparison between proprietary and open-source MPJs, we adopt
verbalized confidence as the evaluation signal. This choice is motivated by the fact that propri-
etary models typically do not provide access to logits or internal probability distributions, making
verbalized confidence the feasible and generally comparable signal across all models (Xiong et al.,
2023).

4.2 RESULTS AND ANALYSIS

The primary experimental results for the three core metrics CRS, CSS, and CCS are presented in
Table 2. To enable more fine-grained analysis, the results of the sub-metrics that constitute these
core metrics are reported separately in Tables 4–6 in appendix.

4.3 RESULTS AND ANALYSIS

The primary experimental results for the three core metrics—CRS, CSS, and CCS—are presented
in Table 2. To support more fine-grained analysis, the decomposition results of the sub-metrics
that constitute these core metrics are reported separately in Tables 4–6 in the appendix. With the
inclusion of the newly released Gemini-2.5-Pro and GPT-5, several best and second-best results are
updated accordingly.

Confidence Robustness Analysis. As shown in Table 2, Gemini-2.5-Pro achieves the high-
est CRS score (76.90) among all proprietary MPJs, surpassing previous models such as GPT-4.1
(73.62) and Gemini-2.5-flash (63.08). However, several open-source MPJs—including InternVL3-
8B (77.41), Qwen2.5-VL-32B (81.06), Qwen2.5-VL-72B (77.45), and QVQ (74.17)—still outper-
form proprietary MPJs on CRS, indicating that confidence robustness does not simply scale with
model size or proprietary tuning. This further highlights the effectiveness of the CRS metric in
revealing robustness gaps. Even the strongest MPJs remain far below the theoretical maximum,
suggesting substantial room for improvement.

Table 4 provides additional insights through CRS sub-metrics. For example, Qwen2.5-VL-32B
exhibits low CCR, ACCM, and SCCR, indicating that confidence changes are infrequent, mild, and
seldom exceed the significance threshold. In contrast, InternVL3-38B demonstrates high values on
all three sub-metrics, indicating frequent and substantial confidence fluctuations under perturbations,
resulting in its low CRS.

Confidence Sensitivity Analysis. Gemini-2.5-Pro =achieves the highest CSS score (57.73), out-
performing all existing proprietary MPJs, including Gemini-2.5-flash (48.29). GPT-5 becomes the
second-best model in CSS (51.59), reshaping the sensitivity ranking among proprietary models.
Although these new models demonstrate noticeable improvement, the CSS scores remain far from
the theoretical upper bound, suggesting room for further enhancement.

Table 5 shows that proprietary MPJs generally achieve higher average confidence changes (∆p)
across error types. In contrast, some open-source MPJs, such as Qwen2.5-VL-3B (−4.22) and
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MiniCPM-V-2 6 (−21.62), display negative ∆p on QUE, indicating unreliable confidence that does
not properly reflect actual reasoning errors.

Confidence Calibration Analysis. As shown in Table 2, proprietary MPJs significantly outper-
form open-source MPJs in CCS. Among them, GPT-4o achieves the highest CCS score of 62.00,
indicating substantially stronger confidence calibration performance than other MPJs. However,
this is still far from the theoretical upper bound, suggesting ample room for further improvement.
In contrast, open-source MPJs, such as MiniCPM-V-2 6 and Qwen2.5-VL-3B, perform relatively
poorly. Notably, MiniCPM-V-2 6 exhibits a negative CCS (−47.95), indicating suboptimal confi-
dence calibration performance, involving both ECE and ∆ECE. Analysis of Table 5 shows that this
negative CCS is primarily due to a high ECE of 45.16, suggesting a significant mismatch between
the model’s predicted confidence and the actual correctness across many reasoning steps.

Furthermore, as shown in Table 6, it can be observed that across all MPJs, ECEcorrect is consistently
much lower than ECEincorrect, resulting in relatively large ∆ECE values. This indicates an imbal-
ance in confidence calibration across classes. Therefore, the calibration performance on erroneous
reasoning steps remains unsatisfactory and calls for urgent improvement.

Average Score Comparison. Gemini-2.5-Pro achieves the highest average score (59.84), estab-
lishing a new state-of-the-art among all MPJs. GPT-5 ranks second (57.08), surpassing GPT-4o
(50.03), GPT-4.1 (49.93), and Gemini-2.5-flash (53.33). Proprietary MPJs thus occupy the top po-
sitions, reflecting the benefits of advanced training and alignment techniques.

Most open-source MPJs remain within the 30–40 range, with MiniCPM-V-2 6 scoring the lowest
(8.90) primarily due to poor calibration performance. The InternVL series continues to outperform
the Qwen2.5-VL series, and its performance scales positively with model size, with InternVL3-
38B achieving the best average score among open-source models (41.68). Despite improvements
in larger Qwen models from 3B to 32B, performance degrades at 72B, indicating that scaling alone
does not guarantee improved confidence quality.

Impact of Model Scale on Confidence Performance. As shown in Table 2, model scale ex-
hibits varying effects on different aspects of confidence performance. Specifically, no clear positive
correlation is observed between model size and confidence robustness. For example, within the In-
ternVL3 series, CRS consistently decreases as model size increases from 8B to 38B. In contrast,
confidence sensitivity generally improves with scale. For instance, in the Qwen2.5-VL series, CSS
rises from 3.15 (3B) to 19.93 (72B), indicating enhanced confidence sensitivity. As for calibration,
larger models tend to perform better. For example, Qwen2.5-VL’s CCS increases from 2.73 (3B) to
41.60 (32B), but drops again at 72B, suggesting that increasing model size alone does not ensure
better calibration.

Impact of Thinking Mode on Confidence Performance. Table 2 presents the core metric results
for Gemini-2.5-flash and its no-thinking variant. Results show that enabling the thinking process
enhances confidence robustness under input perturbations, as evidenced by a higher CRS. Addi-
tionally, Gemini-2.5-flash exhibits a 6.16-point improvement in CSS, suggesting that the thinking
process enhances the model’s sensitivity to erroneous reasoning steps. However, its CCS is lower
than that of the no-thinking variant, indicating that the thinking process does not necessarily improve
confidence calibration quality.

5 CONCLUSION

We present ConfProBench, the first benchmark for evaluating the reliability of step-level confidence
scores produced by MPJs. It introduces three types of adversarial perturbations to assess the ro-
bustness of MPJs’ confidence under input variations. Furthermore, it proposes a comprehensive
evaluation suite comprising three complementary metrics: CRS, CSS, and CCS, which measure the
robustness, sensitivity, and calibration of MPJs’ confidence. Extensive experiments reveal key limi-
tations in current MPJs’ confidence performance and establish strong baselines, paving the way for
future research in this area. Beyond these contributions, we suggest two future directions. First,
conducting human confidence annotations and introducing new consistency metrics to assess the
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alignment between MPJ confidence and expert judgments. Second, extending ConfProBench to
encompass safety-critical scenarios where highly reliable confidence estimation is essential.

6 ETHICS STATEMENT

This research does not involve human subjects, personally identifiable information, or sensitive data;
therefore, no Institutional Review Board (IRB) approval was required. All datasets used are publicly
available and released under appropriate licenses. Our work poses no apparent ethical risks and has
no conflicts of interest.

7 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide detailed descriptions of the models and experimental settings
in the main text, with additional hyper-parameter configurations and implementation details included
in the appendix. All datasets used in our experiments are publicly available. Furthermore, we
provide the source code, configuration files, and execution scripts in the supplementary material,
enabling other researchers to faithfully reproduce our results.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We employ Large Language Models (LLMs) for grammar checking in our paper.

B DETAILED STATISTICS OF CONFPROBENCH

The detailed statistics of ConfProBench are summarized in Table 3.

C PARAMETER SETTINGS AND THEORETICAL RANGES FOR EVALUATION
METRICS

This appendix provides the detailed parameter settings and theoretical ranges for the three evaluation
metrics—Confidence Robustness Score (CRS), Confidence Sensitivity Score (CSS), and Confidence
Calibration Score (CCS)—used in ConfProBench.

C.1 CONFIDENCE ROBUSTNESS SCORE (CRS)

CRS measures the robustness of confidence under semantic-preserving adversarial perturbations
(Lexical, Syntactic, Multimodal). It consists of three sub-metrics: Confidence Change Rate (CCR),
Average Confidence Change Magnitude (ACCM), and Significant Confidence Change Rate (SCCR).

• Thresholds: ϵ = 0.01 for minor changes, δ = 0.2 for significant changes.
• Scaling factor: s = 5 to amplify ACCM and SCCR values.
• Weights: w1 = 0.4, w2 = 0.4, w3 = 0.2.

The combined CRS is computed as:

CRS = w1 · (1− CCR) + w2 · (1− s · ACCM) + w3 · (1− s · SCCR).

Theoretical range: [−2.4, 1], where 1 indicates perfect confidence robustness.

C.2 CONFIDENCE SENSITIVITY SCORE (CSS)

CSS quantifies how sensitively the confidence score responds to reasoning errors. For each error
type t:

∆pt = pcorrect − pt, CSS =
1

|T |
∑
t∈T

∆pt,

where pt is the average predicted probability for error type t, and T is the set of all error types.

Range: CSS ∈ [−1, 1]. Larger CSS indicates stronger sensitivity to errors.

C.3 CONFIDENCE CALIBRATION SCORE (CCS)

CCS evaluates calibration quality by combining global ECE and class-wise calibration gap
∆ECEcls:

CCS = 0.5 · (1− s · ECE) + 0.5 · (1−∆ECEcls),

with scaling factor s = 5.

Range: [−2, 1], where higher CCS reflects better calibration.

C.4 SUMMARY OF PARAMETER CHOICES

All three metrics use parameters chosen based on theoretical and practical considerations:

• CRS thresholds ϵ and δ distinguish minor versus significant confidence changes.
• Scaling factor s ensures smaller sub-metrics (ACCM, SCCR, ECE) contribute comparably.
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• Weights (w1, w2, w3) balance sub-metric contributions in CRS; CSS and CCS use uniform
averaging.

These settings suppress noise, balance contributions across sub-components, and maintain fine-
grained interpretability of step-level reasoning.

D PROMPT FOR ADVERSARIAL PERTURBATIONS GENERATION AND
PROCESS JUDGING

The prompt used to generate reasoning steps with syntactic transformation perturbations is shown
in Table 7. The prompt used to generate reasoning steps with synonym substitution perturbations is
shown in Table 8. The prompt used for the multimodal process judging task is shown in Table 9.

E CONFIDENCE ROBUSTNESS ACROSS PERTURBATION TYPES

As shown in Figure 4, among all types of adversarial perturbations, MPJs exhibit the lowest confi-
dence robustness scores (CRS) under syntactic transformations. This suggests that MPJs are least
robust when facing syntactic transformations but semantically equivalent inputs. In contrast, they
demonstrate stronger confidence robustness under synonym substitution and image perturbation.
These results indicate that MPJs face considerable challenges in maintaining confidence robustness
under syntactic transformations, while other types of adversarial perturbations also present non-
negligible effects. Designing targeted strategies to enhance the confidence robustness of MPJs is
crucial for obtaining reliable confidence estimates.

F CONFIDENCE METRICS ACROSS DIFFICULTY LEVELS, SUBJECTS, AND
MODALITIES

F.1 CONFIDENCE METRIC ANALYSIS ACROSS DIFFERENT DIFFICULTY LEVELS.

The scores of the three core confidence metrics at different difficulty levels are shown in Figure 5.
Most MPJs exhibit the highest CSS at the Middle School (Mid) level, with noticeable declines at
High School (High) and Competition (Com) levels, though the trend is not strictly monotonic. In
contrast, CCS shows a clear and consistent downward trend as difficulty increases, indicating that
MPJs become increasingly miscalibrated, assigning overly high confidence to incorrect answers or
low confidence to correct ones on harder problems. CRS, however, remains relatively stable across
all difficulty levels for most MPJs, suggesting that confidence robustness to adversarial perturbations
is not significantly affected by task complexity. These results reveal that while MPJs’ sensitivity
and calibration degrade under more complex reasoning, their robustness remains largely unaffected,
highlighting distinct challenges in improving confidence reliability across different dimensions.

F.2 CONFIDENCE METRIC ANALYSIS ACROSS DIFFERENT INPUT MODALITIES.

The scores of the three core confidence metrics across different input modalities are shown in Fig-
ure 6. CSS shows clear modality dependence: most MPJs achieve higher scores in the Multi-image
(Multi) setting than in Single-image (Single) or Pure-text (Pure), indicating that richer visual context
enhances sensitivity to prediction correctness. In contrast, CCS remains largely consistent across
modalities for most MPJs, suggesting limited influence of input type on calibration. Similarly, CRS
scores are highly stable across modalities, indicating that robustness to perturbations is generally
unaffected. Overall, input modality notably influences sensitivity, while calibration and robustness
remain largely modality-invariant.

F.3 CONFIDENCE METRIC ANALYSIS ACROSS DIFFERENT SUBJECT DOMAINS.

The scores of the three core confidence metrics across different subject domains are shown in Fig-
ure 7. The performance of different MPJs on the Confidence Sensitivity Score (CSS) varies across
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Figure 4: Confidence Robustness Score (CRS) under Different Perturbations

subjects, but no consistent subject-specific trend is observed. This suggests that CSS is more de-
pendent on model-specific characteristics rather than being driven by subject domain, implying that
each MPJ may possess unique strengths and weaknesses when handling different types of knowl-
edge structures or symbolic reasoning. Most MPJs achieve higher Confidence Calibration Scores
(CCS) in the Biology domain, indicating better alignment between confidence and prediction cor-
rectness in that subject. In contrast, Confidence Robustness Scores (CRS) remain highly consistent
across all subjects and MPJs, with radar plots forming near-square shapes, suggesting that subject
domain has minimal impact on robustness. Overall, MPJs maintain consistent robustness against
perturbations across tasks from different subject domains.

G HIGH CLASSIFICATION PERFORMANCE DOES NOT ENSURE CONFIDENCE
RELIABILITY.

As shown in Table 10, strong classification performance of MPJs does not necessarily imply high
confidence reliability. For instance, GPT-4o achieves a solid Macro F1 score of 78.12, indicating
strong classification ability, yet its confidence sensitivity (CSS = 30.71) and calibration (CCS =
62.00) remain moderate. Similarly, while Gemini-2.5-flash attains the highest Macro F1 (81.74),
its CCS (48.62) and robustness (CRS = 63.08) are not the best, revealing a mismatch between clas-
sification accuracy and confidence reliability. In contrast, GPT-4.1 demonstrates a more balanced
profile, combining a high Macro F1 (80.87) with strong robustness (CRS = 73.62) and sensitivity
(CSS = 38.51), though its CCS is relatively lower (37.65).

Confidence Sensitivity Score (CSS). We propose Confidence Sensitivity Score (CSS), a novel
metric that quantifies how sensitively confidence scores respond to reasoning errors.
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Figure 5: Confidence metric performance of MPJs across different difficulty levels.

Figure 6: Confidence metric performance of MPJs across different input modalities.

Figure 7: Confidence metric performance of MPJs across different subject domains.
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Statistic Number
Total Samples 1200
Synonym Replacement / Sentence structure / Image Perturbations 400 / 400 / 400
Middle School / High School / Competition 400 / 400 / 400
Math / Physics / Chemistry / Biology 400 / 400 / 400
Single Image / Multi Images / Pure Text 823 / 162 /215

Table 3: Statistics of ConfProBench

Model CCR↓ ACCM↓ SCCR↓
Open-source MLLMs

InternVL3-8B 21.47 6.56 0.89
InternVL3-14B 61.57 9.35 5.89
InternVL3-38B 61.71 9.26 6.87
MiniCPM-V-2 6 22.49 10.68 1.60
Qwen2.5-VL-3B 15.78 8.65 1.69
Qwen2.5-VL-7B 24.97 8.31 2.19
Qwen2.5-VL-32B 15.83 6.29 0.04
Qwen2.5-VL-72B 21.81 6.63 0.58
QVQ 28.68 6.74 0.86

Proprietary MLLMs
GPT-4o 21.82 13.46 6.98
GPT-4o-Mini 27.68 9.55 4.24
GPT-4.1 34.96 5.47 1.46
Gemini-2.5-flash 38.56 8.17 5.15
Gemini-2.5-flash-nothinking 40.31 11.77 9.12

Table 4: The results of the sub-metrics that constitute the Confidence Robustness Score (CRS). The
best performance for each metric is shown in bold, while the second-best is underlined.

H EVALUATING CONFPROBENCH’S ROBUSTNESS TO DIFFERENT
PERTURBATION GENERATORS

To evaluate whether the perturbation construction process is fundamentally constrained by the ca-
pability of a specific MLLM, we conducted a cross-model perturbation robustness study. This
experiment assesses whether perturbations generated by different MLLMs lead to consistent evalu-
ation outcomes on ConfProBench.

EXPERIMENTAL SETUP

To directly test whether perturbation generation depends on the underlying model, we performed
the following controlled experiment:

• We randomly sampled 300 items from the full benchmark.

• For each item, we generated perturbations using two different MLLMs:

1. GPT-4o
2. Gemini-2.5-Pro

• For each model, we produced perturbations covering all three perturbation types used in
ConfProBench:

– image-based perturbations (100 samples),
– syntactic rewriting (100 samples),
– synonym substitution (100 samples).
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Model ∆pNSPE ↑ ∆pRE ↑ ∆pNCE ↑ ∆pSCE ↑ ∆pKE ↑ ∆pVIE ↑ ∆pQUE ↑
Open-source MLLMs

InternVL3-8B 8.80 13.48 4.40 7.59 18.86 6.36 21.36
InternVL3-14B 10.24 28.28 28.35 19.58 22.79 15.26 23.85
InternVL3-38B 60.46 35.14 31.79 24.81 32.84 17.94 11.38
MiniCPM-V-2 6 19.95 10.01 13.23 15.46 2.03 7.12 -21.62
Qwen2.5-VL-3B 12.40 1.67 0.02 2.12 8.35 1.73 -4.22
Qwen2.5-VL-7B 18.96 10.66 5.32 5.78 15.48 8.59 7.87
Qwen2.5-VL-32B 11.23 25.60 18.59 17.87 16.79 7.76 13.64
Qwen2.5-VL-72B 17.18 28.24 21.43 20.16 23.90 9.10 19.47
QVQ 24.98 12.91 6.77 14.28 14.01 6.81 8.49

Proprietary MLLMs
GPT-4o 48.34 35.12 34.73 32.53 28.67 21.53 14.01
GPT-4o-Mini 7.22 18.28 13.67 23.08 11.83 7.35 9.81
GPT-4.1 2.38 51.77 56.23 45.68 45.15 40.83 27.49
Gemini-2.5-flash 27.60 54.03 54.08 53.99 53.89 49.48 44.94
Gemini-2.5-flash-nothinking 23.17 49.34 41.57 46.61 41.85 40.57 51.77

Table 5: The results of the sub-metrics that constitute the Confidence Sensitivity Score (CSS). The
best performance for each metric is shown in bold, while the second-best is underlined. NCE de-
notes Numerical Calculation Error, RE denotes Reasoning Error, SCE denotes Symbolic Calculation
Error, KE denotes Knowledge Error, VIE denotes Visual Interpretation Error, QUE denotes Ques-
tion Understanding Error, and NSPE denotes No Solution Provided Error.

Model ECE(C.)↓ ECE(I.)↓ ∆ECE↓ ECE↓
Open-source MLLMs

InternVL3-8B 8.86 90.18 81.32 13.35
InternVL3-14B 10.71 85.05 74.34 6.43
InternVL3-38B 8.80 84.82 76.03 7.00
MiniCPM-V-2 6 16.51 84.61 68.09 45.16
Qwen2.5-VL-3B 9.24 90.50 81.26 22.66
Qwen2.5-VL-7B 9.24 88.85 79.62 17.76
Qwen2.5-VL-32B 9.41 88.88 79.47 7.47
Qwen2.5-VL-72B 4.37 92.16 87.78 12.32
QVQ 8.25 89.72 81.47 11.43

Proprietary MLLMs
GPT-4o 10.54 76.93 66.39 1.92
GPT-4o-Mini 10.32 83.33 73.01 6.31
GPT-4.1 3.00 89.81 86.81 7.58
Gemini-2.5-flash 6.43 87.56 81.13 4.32
Gemini-2.5-flash-nothinking 9.06 82.02 72.97 4.79

Table 6: The results of the sub-metrics that constitute the Confidence Calibration Score (CCS). C.
indicates the correct class, and I. indicates the incorrect class. The best performance for each metric
is shown in bold, while the second-best is underlined.

• Both perturbed datasets were evaluated using representative MLLM-based process judges
(MPJs), and we computed the three proposed confidence metrics: CRS, CSS, and CCS.

This yielded two parallel perturbed datasets—one constructed using GPT-4o and one using Gemini-
2.5-Pro—allowing us to directly measure the consistency of metric outcomes across perturbation
sources.
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You are a sentence structure rewriting assistant. Your task is to rewrite a given sentence while
altering its structure, ensuring that the original meaning is preserved. For each sentence, you
must generate five distinct rewritten versions, each applying only one syntactic transformation.
The goal is to create varied sentence structures while maintaining semantic accuracy and natural
grammar.
Syntactic Transformations (Choose One per Rewrite):
Voice Change (Active ↔ Passive)
2. Adverbial Position Adjustment
3. Clause Order or Structure Change
4. Phrase Structure Simplification or Expansion
5. Inversion or Emphatic Structure
6. Conditional / Purpose / Result Structure Transformation
Key Constraints:
- Preserve all steps in multi-step logical reasoning chains.
- Do not omit any mathematical derivations, steps, or intermediate expressions.
- Do not change numbers or mathematical expressions, including LaTeX formulas.
- Preserve meaning, grammar, and naturalness.
- Try to keep the length of the rewritten sentence close to the original (within 2–3 words differ-
ence). Avoid significant shortening or lengthening unless necessary for syntactic transforma-
tion.
- Only one syntactic transformation type per rewritten sentence.
Output Format:
{

”Original Sentence”: ”The original sentence”,
”Rewritten Sentences”: [

”rewritten sentence 1”,
”rewritten sentence 2”,
”rewritten sentence 3”,
”rewritten sentence 4”,
”rewritten sentence 5”

]
}
# Student’s solution: step-by-step student’s solution

Table 7: Prompt for generating reasoning steps with syntactic transformation perturbations.
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Task Description: You are a synonym substitution assistant. Given an input sentence, your
task is to generate five distinct rewrites. In each version, you must replace at least one non-
technical term with an appropriate synonym, and should replace as many non-technical terms as
possible. Use different combinations of synonyms while keeping the original sentence structure
and meaning intact. All outputs must be grammatically correct and sound natural.
Definition: Technical terms refer to specialized vocabulary that is specific to a particular field
or discipline and should remain unchanged. These include, but are not limited to: mathematical
symbols, scientific terminology, programming syntax, technical jargon, and domain-specific
abbreviations.
Key Constraints:
- Do not modify any structural elements.
- Do not alter any numbers, numerical values, or mathematical expressions, including both
plain numbers and LaTeX formulas.
- Do not change list symbols, bullet points, or any other sequence markers.
- Replace only the natural language content—do not alter formatting, technical terms, or
domain-specific vocabulary.
- Ensure all rewritten sentences are grammatically correct, natural, and maintain the original
meaning.
- Each rewritten version must replace at least one non-technical word, and should replace as
many non-technical words as reasonably possible.
Output Format:
Provide your output in the following JSON structure:
{

”Original Sentence”: ”The original sentence”,
”Synonym Substitutions”: [

”Synonym Substitution 1”,
”Synonym Substitution 2”,
”Synonym Substitution 3”,
”Synonym Substitution 4”,
”Synonym Substitution 5”

]
}

# Student’s solution: step-by-step student’s solution

Table 8: Prompt for generating reasoning steps with synonym substitution perturbations.
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You are a teacher skilled in evaluating the intermediate steps of a student’s solution to a given
problem. You are given a scientific problem, its correct final answer, and a student’s step-by-
step solution.
Your task is as follows:
1. Carefully solve the problem yourself, using the correct final answer as a hint to guide you to
a consistent, correct reasoning path.
2. Then, evaluate the correctness of each step in the student’s solution.
For each step, output:
- The full original step (as a string)
- A correctness label:

- 1: if the model believes the step is correct (i.e., if P(correct) ≥ 0.5)
- 0: otherwise

- A probability estimate P(correct) ∈ (0, 1), representing the model’s assessment of the likeli-
hood that the step is correct (correctness label = 1)
- If the step is incorrect (correctness label = 0), also provide:

- An error category (from the list below):
- Numerical Calculation Error
- Symbolic Calculation Error
- Visual Interpretation Error
- Reasoning Error
- Knowledge Error
- Question Understanding Error
- No solution provided

Output Format:
Wrap your output in this Python list format (and nothing else), enclosed by <evaluation> and
</evaluation> tags:
<evaluation>
[
["Step 1: ...", correctness label, P correct, "Error type if
incorrect"],
...
]
</evaluation>
Requirements:
- You must return one and only one evaluation entry per step in the student’s solution.
- The number of output entries must exactly match the number of steps (e.g., if the student has
15 steps, your output list must contain 15 entries).
- Do not skip, merge, or summarize steps.
- If the step is correct, use an empty string for the error type: "".
- Keep each step as a single complete unit, even if it contains multiple sentences.
- Please evaluate each step one by one. Every step must be assessed and scored individually,
even if it is very short. Do not merge, omit, or skip any steps.
- Focus exclusively on the scientific, logical, or mathematical correctness of the solution. Ignore
differences in formatting, expression style, specific wording, or presentation order, as long as
the reasoning and results are valid.
# The given problem: {problem}
# The Correct Final Answer: {final answer}
# Student’s solution: step-by-step student’s solution

Table 9: Prompt for multimodal process judging.
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Model CRS↑ CSS↑ CCS↑ Avg.↑ Macro F1↑
Open-source MLLMs

InternVL3-8B 77.41 11.55 25.97 38.31 59.21
InternVL3-14B 50.78 21.19 46.75 39.57 70.17
InternVL3-38B 49.92 30.62 44.49 41.68 73.66
MiniCPM-V-2 6 68.05 6.60 -47.95 8.90 38.31
Qwen2.5-VL-3B 74.71 3.15 2.73 26.86 50.90
Qwen2.5-VL-7B 71.19 10.38 15.80 32.46 56.88
Qwen2.5-VL-32B 81.06 15.93 41.60 46.20 67.13
Qwen2.5-VL-72B 77.45 19.93 25.30 40.89 68.33
QVQ 74.17 12.60 30.69 39.15 57.29

Proprietary MLLMs
GPT-4o 57.37 30.71 62.00 50.03 78.12
GPT-4o-Mini 65.58 13.03 47.73 42.11 66.08
GPT-4.1 73.62 38.51 37.65 49.93 80.87
Gemini-2.5-flash 63.08 48.29 48.62 53.33 81.74
Gemini-2.5-flash-nothinking 51.20 42.13 51.55 48.29 79.02

Table 10: Performance comparison across different MLLM-based Process Judges on ConfProBench.
The best performance for each metric is shown in bold, while the second-best is underlined.

RESULTS: HIGH CROSS-MODEL CONSISTENCY

For each MPJ, we compared the metric results obtained under GPT-4o-generated perturbations ver-
sus Gemini-generated perturbations. Across all MPJs, we computed Pearson correlations between
the two perturbation sources. The results show extremely high agreement:

Metric Correlation Across Perturbation Models
CRS 0.992
CSS 0.979
CCS 0.985

Table 11: Consistency of benchmark metrics between perturbations generated by GPT-4o and
Gemini-2.5-Pro.

CONCLUSION

These results demonstrate that the benchmark outcomes are highly consistent across perturbation
models. In particular:

• The evaluation metrics remain stable regardless of whether perturbations are generated by
GPT-4o or Gemini-2.5-Pro.

• The benchmark does not overfit or depend on the perturbation style of a specific model.
• Updating the perturbation generator (e.g., when a stronger model becomes available) is not

necessary, as it does not alter the evaluation conclusions.

This cross-model perturbation study confirms that ConfProBench is model-agnostic, scalable, and
robust to changes in upstream perturbation generators.

I EVALUATING METRIC STABILITY ACROSS DIFFERENT PERTURBATION
MODELS

To systematically examine potential bias from perturbation models, we conducted a cross-
perturbation experiment using different MLLMs to generate lexical and syntactic perturbations. In
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Table 12: CRS / CSS / CCS scores of representative MPJs under perturbations generated by GPT-4o
and Gemini-2.5-Pro.

Perturbation Model MPJ CRS CSS CCS
GPT-4o GPT-4o 0.579 0.2764 0.5451
Gemini-2.5-Pro GPT-4o 0.5727 0.2919 0.5509

GPT-4o Gemini-2.5-Pro 0.7764 0.5477 0.4085
Gemini-2.5-Pro Gemini-2.5-Pro 0.7713 0.6061 0.4442

GPT-4o GPT-4.1 0.7069 0.43 0.3846
Gemini-2.5-Pro GPT-4.1 0.7125 0.44 0.3822

GPT-4o GPT-5 0.6049 0.5122 0.5666
Gemini-2.5-Pro GPT-5 0.6266 0.5012 0.5731

GPT-4o Qwen2.5-VL-32B 0.8043 0.204 0.4035
Gemini-2.5-Pro Qwen2.5-VL-32B 0.7892 0.2263 0.4261

GPT-4o Qwen2.5-VL-72B 0.781 0.134 0.2965
Gemini-2.5-Pro Qwen2.5-VL-72B 0.7868 0.2192 0.2744

this experiment, we used two heterogeneous MLLMs (GPT-4o and Gemini-2.5-Pro) to generate
perturbed datasets, and then evaluated the same set of representative process judges (MPJs) on both
datasets to measure stability indicators (CRS, CSS, CCS). This setup allows us to assess: (i) whether
GPT-4o perturbations systematically favor OpenAI models, and (ii) whether the evaluation results
remain stable across different perturbation sources.

Experimental Setup. For each target MPJ, we constructed two perturbed datasets:

• GPT-4o perturbations: fully generated by GPT-4o;
• Gemini-2.5-Pro perturbations: fully generated by Gemini-2.5-Pro.

We then evaluated the following representative MPJs on both datasets:

GPT-4o, Gemini-2.5-Pro, GPT-4.1, GPT-5, Qwen2.5-VL-32B, Qwen2.5-VL-72B.

The corresponding CRS, CSS, and CCS scores are shown in Table 12.

Observations (based on Table 12).

• GPT-4o perturbations do not systematically favor OpenAI MPJs. The scores of Ope-
nAI models (GPT-4o, GPT-4.1, GPT-5) under different perturbation sources vary only
slightly (typically < 0.03), without a consistent upward or downward trend.

• Gemini MPJs are stable across perturbation sources. The CRS/CSS/CCS of Gemini-
2.5-Pro show minimal differences between the two perturbation sources, indicating that
perturbation source has negligible impact on performance.

• Qwen models also maintain consistent trends. Both Qwen models show similar perfor-
mance regardless of perturbation generator, further confirming the robustness of the evalu-
ation.

• Relative ranking of MPJs is preserved across perturbations. The relative ordering of
all MPJs remains nearly unchanged, demonstrating strong robustness of our evaluation
metrics.

Conclusion. The cross-perturbation experiment confirms that: Using GPT-4o to generate lexical
and syntactic perturbations does not introduce systematic bias favoring OpenAI models. All repre-
sentative MPJs show stable and consistent CRS, CSS, and CCS scores across different perturbation
sources.
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