

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CONFPROBENCH: A CONFIDENCE EVALUATION BENCHMARK FOR MLLM-BASED PROCESS JUDGES

Anonymous authors

Paper under double-blind review

ABSTRACT

Reasoning is the critical capability of multimodal large language models (MLLMs) to solve complex multimodal tasks, and judging the correctness of reasoning steps is crucial to improving this capability. Recently, MLLM-based process judges (MPJs) have been widely used to judge the correctness of reasoning steps in multimodal reasoning tasks. Therefore, evaluating the capability of MPJs is crucial for identifying their limitations and guiding future improvements. However, existing benchmarks for MPJs primarily focus on evaluating capabilities such as step correctness classification and reasoning process search, while overlooking a critical dimension: whether the confidence scores produced by MPJs at the step level are reliable. To fill this gap, we propose ConfProBench, the first comprehensive benchmark designed to systematically evaluate the reliability of step-level confidence scores generated by MPJs. This benchmark constructs three types of adversarially perturbed reasoning steps: Lexical Level, Syntactic Level, and Multimodal Level, to evaluate the robustness of MPJs' confidence under perturbations. Furthermore, we propose three novel evaluation metrics: Confidence Robustness Score (CRS), Confidence Sensitivity Score (CSS), and Confidence Calibration Score (CCS), which are designed to capture three complementary aspects of MPJs' confidence—robustness, sensitivity, and calibration. We evaluate 14 state-of-the-art MLLMs, including both proprietary and open-source models. Through extensive experiments, we reveal limitations in existing MPJs' confidence performance and provide competitive baselines, thereby paving the way for future research in this field. Our dataset is provided in the supplementary materials.

1 INTRODUCTION

Reasoning is a core capability of Multimodal Large Language Models (MLLMs) when tackling complex multimodal tasks Yan et al. (2024); Shi et al. (2024); Li et al. (2025); Xiang et al. (2024). Judging the correctness of each reasoning step is crucial for further enhancing this capability. As the reasoning chains generated by MLLMs become increasingly intricate, manually inspecting each intermediate step has become prohibitively costly. In response, recent studies have introduced MLLM-based Process Judges (MPJs) to assess step-by-step reasoning in multimodal tasks Pu et al. (2025); Chen et al. (2024); Huang et al. (2024); Sun et al. (2024); Zhang et al. (2024); Jiang et al. (2025). These MPJs analyze the reasoning process generated by MLLMs to identify potential flaws, improve interpretability, and facilitate targeted model improvements.

However, this paradigm shift raises a fundamental question: Can we trust the judgments made by MPJs? To address this, existing benchmarks evaluate multiple aspects of MPJs, such as step correctness, error type identification, and answer aggregation Ai et al. (2025); Xu et al. (2025); Wang et al. (2025). Nevertheless, they overlook an essential aspect: the reliability of the confidence scores produced by MPJs at the step level. Confidence not only reflects a model's self-assessed certainty but also directly affects controllability, reliability, and safety in downstream applications Geng et al. (2023). Under adversarial perturbations, robust and interpretable confidence scores are vital.

To fill this gap, we propose ConfProBench, the first benchmark specifically designed to systematically evaluate the confidence performance of MPJs. ConfProBench constructs perturbed variants of

054 reasoning steps using three types of adversarial perturbations: Lexical Level, Syntactic Level, and
 055 Multimodal Level. These perturbations support the assessment of confidence robustness.
 056

057 Furthermore, we introduce a comprehensive evaluation metric suite that includes three core components:
 058 Confidence Robustness Score (CRS), Confidence Sensitivity Score (CSS), and Confidence
 059 Calibration Score (CCS). CRS measures the robustness of confidence under adversarial perturba-
 060 tions. CSS measures the sensitivity of confidence scores to erroneous reasoning steps. CCS eval-
 061 uates the consistency between confidence scores and classification accuracy.
 062

063 In summary, our main contributions are as follows:
 064

- 065 • We propose ConfProBench, the first benchmark dedicated to systematically evaluating the
 066 confidence performance of MPJs, and the first benchmark to assess confidence robustness
 067 and sensitivity.
- 068 • We construct three types of adversarial perturbation data to evaluate the robustness of
 069 MPJs' confidence. We further introduce the first comprehensive confidence evaluation
 070 suite for MPJs, consisting of three complementary metrics: CRS, CSS, and CCS, which
 071 assess robustness, sensitivity, and calibration.
- 072 • We conduct comprehensive experiments on 14 state-of-the-art MPJs, including both pro-
 073 prietary and open-source models. Through fine-grained analysis using the core metrics and
 074 their subcomponents, we reveal critical limitations in current models' confidence perfor-
 075 mance and highlight directions for future improvement.

076 2 RELATED WORKS

077 2.1 CONFIDENCE EVALUATION AND ESTIMATION

078 Confidence is the estimated probability that a model's prediction matches the ground-truth label Guo
 079 et al. (2017). Assessing the confidence of large language models (LLMs) is essential for building
 080 reliable systems Geng et al. (2023). Most studies focus on calibration, which measures how well
 081 predicted confidence aligns with actual prediction accuracy Zhao et al. (2024); Geng et al. (2023).
 082 Confidence estimation and evaluation are distinct: the former extracts signals from the model, while
 083 the latter assesses their trustworthiness and stability Geng et al. (2023). Estimation methods include
 084 logit-based Duan et al. (2023), internal state-based Burns et al. (2022), consistency-based Manakul
 085 et al. (2023), and verbalized approaches Xiong et al. (2023). Verbalized methods prompt LLMs to
 086 express confidence via natural language or numerical values, and are valued for their model-agnostic
 087 design and efficiency Geng et al. (2023); Tian et al. (2023); Yang et al. (2024). We adopt this ap-
 088 proach by prompting MPJs to produce step-level verbalized confidence and evaluate its robustness,
 089 sensitivity, and calibration.
 090

Benchmark	Multimodal	Step Annotation	MPJ-specific Confidence Metrics	Adversarial Perturbed Steps	Confidence Evaluation Paradigm
ProcessBench	No	Yes	No	No	No
PRMBench	No	Yes	Yes	No	No
VisualProcessBench	Yes	Yes	No	No	No
MPBench	Yes	Yes	No	No	No
ProJudgeBench	Yes	Yes	No	No	No
ConfProBench (Ours)	Yes	Yes	Yes	Yes	Yes

091 Table 1: Comparison between related benchmarks with our ConfProBench.
 092

101 2.2 BENCHMARKS FOR MLLM-BASED PROCESS JUDGES

102 In recent years, the process judgment capabilities of MLLMs have attracted increasing attention,
 103 and several related evaluation benchmarks have been proposed Wang et al. (2025); Xu et al. (2025);
 104 Ai et al. (2025). VisualProcessBench Wang et al. (2025) provides human-annotated step-wise cor-
 105 rectness labels to evaluate the ability of multimodal Process Reward Models (PRMs) to identify
 106 erroneous steps in multimodal reasoning tasks. MPBench Xu et al. (2025) aims to assess the per-
 107 formance of multimodal PRMs across three tasks: determining the correctness of each reasoning

108 step (Step Correctness), selecting the optimal solution from multiple candidates (Answer Aggregation),
 109 and guiding the search of reasoning processes (Reasoning Process Search). ProJudgeBench
 110 Ai et al. (2025) is a multimodal, multidisciplinary benchmark specifically designed to evaluate the
 111 fine-grained error detection, classification, and diagnosis capabilities of MPJs.

112 Our ConfProBench is distinguished from prior benchmarks in three key aspects, as shown in Ta-
 113 ble 1. First, it is the first benchmark specifically designed for multimodal process judges (MPJs)
 114 with MPJ-specific, process-level confidence evaluation metrics, going beyond generic correctness
 115 or error-type assessment. Second, ConfProBench introduces three dimensions of adversarial per-
 116 turbations—lexical, syntactic, and multimodal—providing a principled framework to evaluate the
 117 robustness of confidence under semantically preserving variations. Third, it enables comprehen-
 118 sive confidence evaluation through a suite of three complementary metrics (CRS, CSS, and CCS),
 119 which jointly capture robustness, sensitivity, and calibration at the step level, offering a finer-grained
 120 perspective than traditional confidence measures.

3 CONFPROBENCH

3.1 TASK DEFINITION

127 The multimodal process judging task in Conf-
 128 ProBench is framed as a binary classification prob-
 129 lem. Our dataset contains two class labels: reason-
 130 ing steps without errors are labeled as “correct” (1),
 131 while those with errors are labeled as “incorrect” (0).
 132 Specifically, the MPJ is required to output the prob-
 133 ability that a reasoning step belongs to the correct
 134 class, which is used for both classification and con-
 135 fidence scoring.

136 As illustrated in Figure 1, given a scientific problem
 137 P , its final answer A , and a step-by-step reasoning
 138 process $S = \{s_0, s_1, \dots, s_{n-1}\}$ generated by a stu-
 139 dent model, the MPJ outputs a tuple (l_i, p_i, e_i) for
 140 each reasoning step s_i . Here, $l_i \in \{1, 0\}$ indicates
 141 whether s_i is belong to the correct class ($l_i = 1$) or
 142 incorrect class($l_i = 0$); $p_i \in [0, 1]$ denotes the prob-
 143 ability that s_i belongs to the correct class; and e_i rep-
 144 presents the error type if s_i is belongs to the incorrect
 145 class.

146 The probability p_i determines the predicted classi-
 147 fication label and confidence score, while l_i and e_i
 148 assist in correcting potential inconsistencies in the
 149 result.

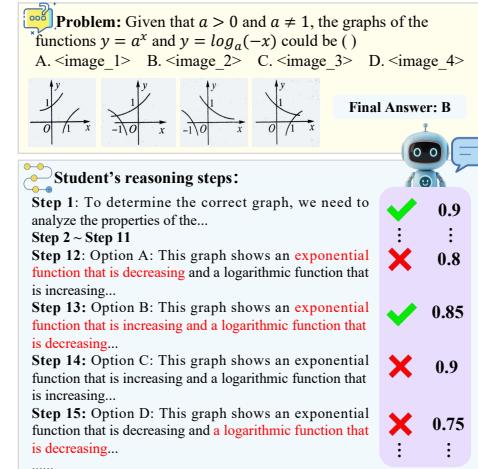
150 To obtain the binary step-level prediction, p_i is con-
 151 verted into a correctness label \hat{l}_i according to the following rule:

$$\hat{l}_i = \begin{cases} 1, & \text{if } p_i \geq 0.5, \\ 0, & \text{otherwise,} \end{cases} \quad (1)$$

152 Based on \hat{l}_i and p_i , the confidence score c_i is defined as:

$$c_i = \begin{cases} p_i, & \text{if } \hat{l}_i = 1, \\ 1 - p_i, & \text{if } \hat{l}_i = 0, \end{cases} \quad (2)$$

153 p_i , \hat{l}_i , and c_i are subsequently used to compute the proposed evaluation metrics.



154 Figure 1: An example of the process
 155 judge task for MLLM-based process judges
 156 (MPJs), which perform binary classifica-
 157 tion of each reasoning step’s correctness and
 158 provide associated confidence scores.

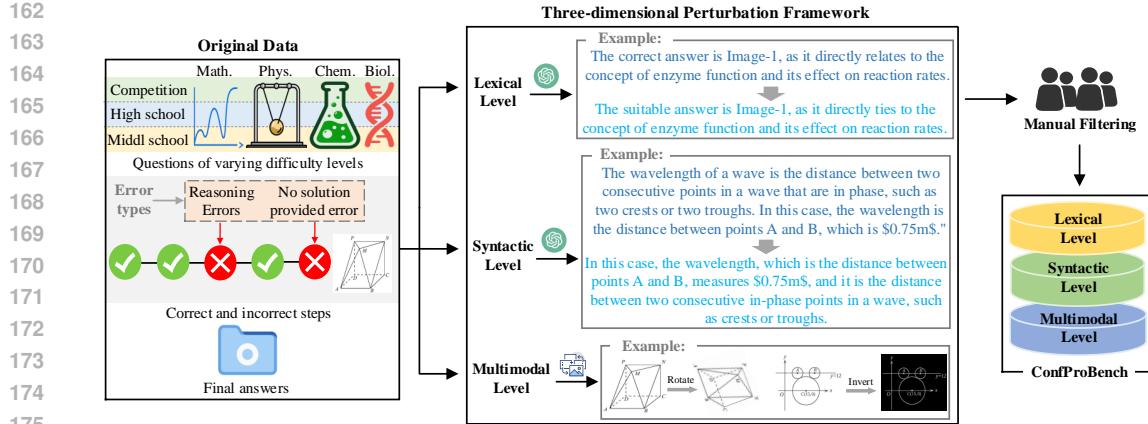


Figure 2: An overview of the data construction process for ConfProBench.

3.2 DATASET CONSTRUCTION

Meta Data Extraction. We construct our benchmark based on ProJudgeBench Ai et al. (2025) by sampling 1,200 problems spanning three difficulty levels (Middle School, High School and Competition), four scientific disciplines (Math, Physics, Chemistry, Biology), three modality types (Single Image, Multi Images, Pure Text), and seven types of reasoning errors (Numerical Calculation Error, Reasoning Error, Symbolic Calculation Error, Knowledge Error, Visual Interpretation Error, Question Understanding Error, and No Solution Provided). The resulting dataset maintains a balanced distribution across difficulty levels and scientific disciplines, offering a robust foundation for a comprehensive evaluation of MPJs' confidence performance. Please refer to Appendix B for detailed statistics of ConfProBench.

Adversarial Perturbation Construction. We design a three-dimensional perturbation framework spanning lexical, syntactic, and multimodal levels, which preserves semantics while diversifying expression. The framework is extensible to other perturbation types (e.g., numerical substitution, style rewriting, chart transformation). Multimodal perturbations apply only to Single-Image or Multi-Image samples. For balanced evaluation, we partition the 1,200 scientific problems into three equal subsets, each subjected to one perturbation type.

Lexical Level: We prompt GPT-4o to generate five distinct synonym-substituted versions for each reasoning step and randomly select one. In each version, at least one non-technical term, such as mathematical symbols, scientific terminology, programming syntax, technical jargon, or domain-specific abbreviations, is replaced with a semantically equivalent synonym. As many such terms as possible are substituted while ensuring grammatical correctness and semantic consistency.

Syntactic Level: We prompt GPT-4o to generate five distinct Syntactic Level versions for each step that preserve the original semantic information while exhibiting distinct syntactic structures, and randomly select one. Each Syntactic Level version strictly applies one of the following six predefined Syntactic Levels: (1) voice alternation (active to passive), (2) adverbial position adjustment, (3) clause order or structural variation, (4) phrase simplification or expansion, (5) inversion or emphasis construction, and (6) transformation of conditional, purposive, or resultative constructions.

Multimodal Level: We apply image-level perturbations to the image inputs of multimodal scientific problems. Specifically, one image transformation is randomly selected from the following set of operations: scaling, rotation, Gaussian noise injection, or color inversion. These transformations are designed to modify the low-level visual features of the input while preserving its semantic information.

Examples of each perturbation type are shown in Figure 2.

Data Quality Control. We conducted comprehensive manual verification of all adversarial perturbation results to ensure their quality and validity. Each reasoning step with Lexical Level was

examined to ensure that: (1) at least one non-technical term was replaced; (2) the original syntactic structure and semantic information were preserved; (3) technical terms and domain-specific vocabulary remained unchanged; (4) numerical values and mathematical expressions were not modified; and (5) the rewritten step was grammatically correct and fluent. Each syntactically transformed reasoning step was reviewed to ensure that: (1) no mathematical derivations, intermediate steps, or key expressions were omitted; (2) all numerical and symbolic content remained intact; (3) the sentence maintained its original meaning; and (4) the target structural transformation was appropriately applied. For Multimodal Levels, we examined each transformed image to ensure that the applied modifications did not introduce semantic information drift or obscure essential visual information. If a perturbed result failed to meet these criteria, we re-applied the corresponding perturbation procedure to the same reasoning step until a valid adversarial variant was obtained. Our verification process followed clear and objective standards, and the task required minimal subjectivity, inter-annotator agreement scores were not needed. Two PhD student from our team conducted the review and the rejection rate during this process was only 0.8%.

3.3 EVALUATION METRICS

Here we describe our evaluation framework in detail. As illustrated in Figure 3, it integrates robustness, sensitivity, and calibration aspects within a unified suite. To comprehensively evaluate the reliability of confidence scores produced by MPJs, we introduce a multi-dimensional suite of evaluation metrics, as illustrated in Figure 3. This metric suite is designed to capture three complementary aspects of confidence performance: robustness, sensitivity, and calibration. These three metrics form a comprehensive framework to assess whether an MPJ can reliably express the uncertainty of its predictions, which is an essential capability for trustworthy MPJs.

Confidence Robustness Score (CRS). We define the Confidence Robustness Score (CRS) to measure the robustness of confidence under designed adversarial perturbations, including Lexical Level, Syntactic Level, and Multimodal Level. Since these perturbations preserve the semantic consistency of the reasoning steps, an ideal process judge should maintain consistent confidence scores across both perturbed and unperturbed inputs.

CRS integrates three sub-metrics to quantify confidence robustness. Let c_i represent the original confidence score, and c'_i represent the confidence score after perturbation. For each pair of original confidence score and post-perturbation confidence score, we compute the following sub-metrics:

(1) Confidence Change Rate (CCR): The proportion of reasoning steps in which the confidence scores change after perturbation. Specifically, if the absolute difference in confidence exceeds a small threshold ϵ , we consider the confidence to have changed. CCR is defined as:

$$CCR = \frac{1}{N} \sum_{i=1}^N \mathbb{I}(|c_i - c'_i| > \epsilon), \quad (3)$$

Where N is the total number of reasoning steps, and $\mathbb{I}(\cdot)$ is the indicator function, which is used to check if a condition is met. It returns 1 if the condition is true, and 0 if it is false. A lower CCR indicates greater robustness of confidence.

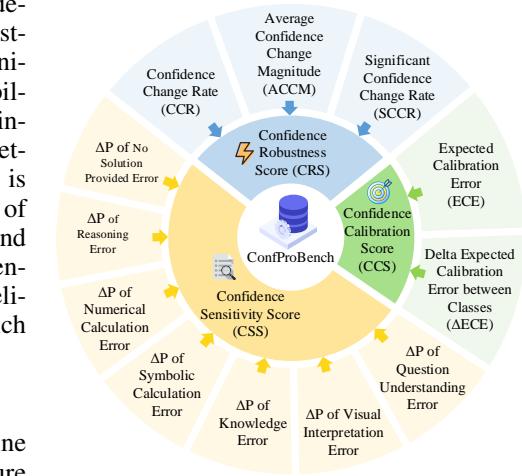


Figure 3: An overview of the proposed evaluation metric suite, consisting of three core metrics: CRS, CSS, and CCS. Each core metric is composed of a set of sub-metrics.

Model	CRS↑	CSS↑	CCS↑	Avg.↑
Open-source MLLMs				
InternVL3-8B	77.41	11.55	25.97	38.31
InternVL3-14B	50.78	<u>21.19</u>	46.75	39.57
InternVL3-38B	49.92	30.62	<u>44.49</u>	<u>41.68</u>
MiniCPM-V-2_6	68.05	6.60	<u>-47.95</u>	8.90
Qwen2.5-VL-3B	74.71	3.15	2.73	26.86
Qwen2.5-VL-7B	71.19	10.38	15.80	32.46
Qwen2.5-VL-32B	81.06	15.93	41.60	46.20
Qwen2.5-VL-72B	<u>77.45</u>	19.93	25.30	40.89
QVQ	74.17	12.60	30.69	39.15
Proprietary MLLMs				
GPT-4o	57.37	30.71	62.00	50.03
GPT-4o-Mini	65.58	13.03	47.73	42.11
GPT-4.1	<u>73.62</u>	38.51	37.65	49.93
Gemini-2.5-flash	63.08	48.29	48.62	53.33
Gemini-2.5-flash-nothinking	51.20	42.13	51.55	48.29
Gemini-2.5-Pro	76.90	57.73	44.88	59.84
GPT-5	64.27	<u>51.59</u>	<u>55.38</u>	<u>57.08</u>

Table 2: The main results across different MLLM-based Process Judges (MPJs) on ConfProBench. The best performance for each metric is shown in bold, while the second-best is underlined.

(2) Average Confidence Change Magnitude (ACCM): The average magnitude of confidence change across all steps where the change exceeds the small threshold ϵ . Specifically, we define:

$$\text{ACCM} = \frac{1}{|S|} \sum_{i \in S} |c_i - c'_i|, \quad (4)$$

where $S = \{i \mid |c_i - c'_i| > \epsilon\}$,

A smaller ACCM indicates greater robustness of confidence.

(3) Significant Confidence Change Rate (SCCR): It refers to the proportion of reasoning steps where the confidence score changes beyond a predefined threshold δ . We refer to this threshold as the significant threshold, which is set to 0.2 in our experiments. This parameter can be adjusted according to different application needs. The formal definition of SCCR is as follows:

$$\text{SCCR} = \frac{1}{N} \sum_{i=1}^N \mathbb{I}(|c_i - c'_i| > \delta), \quad (5)$$

A lower SCCR indicates greater robustness of confidence.

We combine the three sub-metrics above to define the CRS as follows:

$$\text{CRS} = w_1 \cdot (1 - \text{CCR}) + w_2 \cdot (1 - s \cdot \text{ACCM}) + w_3 \cdot (1 - s \cdot \text{SCCR}), \quad (6)$$

where w_1 , w_2 , and w_3 are the weights of the three sub-metrics, and s is a scaling factor.

Confidence Sensitivity Score (CSS). We propose Confidence Sensitivity Score (CSS), a novel metric that quantifies how sensitively confidence scores respond to reasoning errors.

For each error type $t \in \mathcal{T}$, let \bar{p}_t denote the average value of p_i over all steps labeled with the ground-truth error type t , and let \bar{p}_{correct} denote the average p_i over all steps labeled as ground-truth correct. We then define Δp_t as the difference between \bar{p}_{correct} and \bar{p}_t , as follows:

$$\Delta p_t = \bar{p}_{\text{correct}} - \bar{p}_t, \quad (7)$$

A larger Δp_t indicates that p_i significantly decreases when encountering an error of type t , showing that p_i is sensitive to this type of error. Conversely, a smaller or even negative Δp_t suggests that

324 p_i has weak or no ability to recognize this error type. Since c_i is derived from p_i through a simple
 325 linear transformation, the sensitivity of p_i to reasoning errors directly reflects the model confidence's
 326 sensitivity.

327 To assess the overall confidence sensitivity, we define CSS as the average of Δp_t across all error
 328 types:

$$330 \quad \text{CSS} = \frac{1}{|\mathcal{T}|} \sum_{t \in \mathcal{T}} \Delta p_t, \quad (8)$$

333 where \mathcal{T} is the set of all non-empty error types in the dataset.

335 **Confidence Calibration Score (CCS).** Confidence Calibration Score (CCS) evaluates the
 336 consistency between the confidence score and the actual accuracy of predictions. It incorporates two
 337 aspects of calibration errors: the overall Expected Calibration Error (ECE) Guo et al. (2017), and
 338 the gap in ECE between classes, denoted as $\Delta \text{ECE}_{\text{cls}}$.

339 The ECE is defined as:

$$341 \quad \text{ECE} = \sum_{m=1}^M \frac{|B_m|}{n} \cdot |\text{acc}(B_m) - \text{conf}(B_m)|, \quad (9)$$

345 where B_m is the m -th bin obtained by equally dividing the confidence range into M intervals,
 346 $|B_m|$ denotes the number of samples in bin B_m , and n is the total number of samples. $\text{acc}(B_m)$
 347 and $\text{conf}(B_m)$ represent the average accuracy and average confidence of samples within bin B_m ,
 348 respectively.

349 To better capture class-specific calibration performance, we compute the ECE separately for the
 350 correct and incorrect categories of reasoning steps, denoted as: $\text{ECE}_{\text{correct}}$ and $\text{ECE}_{\text{incorrect}}$. The
 351 class-wise calibration gap is then defined as

$$353 \quad \Delta \text{ECE}_{\text{cls}} = |\text{ECE}_{\text{correct}} - \text{ECE}_{\text{incorrect}}|, \quad (10)$$

355 A smaller $\Delta \text{ECE}_{\text{cls}}$ indicates more balanced confidence calibration performance across different
 356 classes.

357 Combining ECE and $\Delta \text{ECE}_{\text{cls}}$, we define CCS as follows:

$$359 \quad \text{CCS} = 0.5 \cdot (1 - s \cdot \text{ECE}) + 0.5 \cdot (1 - \Delta \text{ECE}_{\text{cls}}), \quad (11)$$

361 Where s (set to 5) is a scaling factor.

362 Our proposed CRS, CSS, and CCS go beyond classical metrics like ECE Guo et al. (2017) by
 363 capturing step-level robustness, sensitivity, and calibration under semantic-preserving perturbations.
 364 Such fine-grained step-level evaluation is particularly important for multimodal process judges to
 365 ensure reliable and interpretable reasoning.

367 All three metrics—CRS, CSS, and CCS—employ parameter choices guided by theoretical and practical
 368 considerations. For CRS, the thresholds ϵ and δ distinguish meaningful confidence changes
 369 from minor fluctuations, while the scaling factor s ensures that sub-metrics wites contribute comparably
 370 to the overall score; the weights w_1 , w_2 , and w_3 balance emphasis across sub-metrics.
 371 For CSS, Δp_t is naturally bounded within $[-1,1]$, and averaging across all error types provides a
 372 balanced, step-level sensitivity measure that treats different error types equally. For CCS, the scaling
 373 factor s amplifies the impact of the typically smaller ECE relative to the class-wise calibration
 374 gap $\Delta \text{ECE}_{\text{cls}}$, and equal weighting between these components captures both global calibration and
 375 class-specific fairness. Across all metrics, these parameter settings are designed to suppress noise,
 376 balance contributions from different sub-components, and maintain fine-grained interpretability of
 377 step-level reasoning, making them particularly suitable for multimodal process judges. Accordingly,
 378 for both CRS and CCS, each sub-metric is subtracted from 1 so that higher values indicate stronger
 379 confidence robustness and better confidence calibration, respectively.

378 4 EXPERIMENTS
379380 4.1 EXPERIMENTAL SETTINGS
381382 To provide a comprehensive evaluation on ConfProBench, we assess both proprietary and open-
383 source MPJs. The proprietary MPJs include GPT-4o OpenAI (2024b), GPT-4o-Mini OpenAI
384 (2024c), GPT-4.1 OpenAI (2024a), Gemini-2.5-flash (Dynamic thinking) DeepMind (2025a), and
385 Gemini-2.5-flash-nothinking DeepMind (2025b). The open-source MPJs span a variety of archi-
386 tectures and parameter scales, including InternVL3 (8B, 14B, 38B) Zhu et al. (2025), Qwen2.5-VL
387 (3B, 7B, 32B, 72B) Bai et al. (2025), MiniCPM-V-2.6 (8B) Yao et al. (2024), and QVQ (72B) Qwen
388 Team (2024).389 For reproducibility and transparency, detailed parameter settings, including thresholds, scaling fac-
390 tors, and weights for CRS, CSS, and CCS, are provided in the Appendix C. All MPJs use a unified
391 prompt template, with detailed prompt designs provided in Appendix D. All metric values are pre-
392 sented as percentages in the tables.393 To enable a consistent and fair comparison between proprietary and open-source MPJs, we adopt
394 verbalized confidence as the evaluation signal. This choice is motivated by the fact that propri-
395 etary models typically do not provide access to logits or internal probability distributions, making
396 verbalized confidence the feasible and generally comparable signal across all models (Xiong et al.,
397 2023).398 4.2 RESULTS AND ANALYSIS
399400 The primary experimental results for the three core metrics CRS, CSS, and CCS are presented in
401 Table 2. To enable more fine-grained analysis, the results of the sub-metrics that constitute these
402 core metrics are reported separately in Tables 4–6 in appendix.404 4.3 RESULTS AND ANALYSIS
405406 The primary experimental results for the three core metrics—CRS, CSS, and CCS—are presented
407 in Table 2. To support more fine-grained analysis, the decomposition results of the sub-metrics
408 that constitute these core metrics are reported separately in Tables 4–6 in the appendix. With the
409 inclusion of the newly released **Gemini-2.5-Pro** and **GPT-5**, several best and second-best results are
410 updated accordingly.412 **Confidence Robustness Analysis.** As shown in Table 2, **Gemini-2.5-Pro** achieves the high-
413 est CRS score (76.90) among all proprietary MPJs, surpassing previous models such as GPT-4.1
414 (73.62) and Gemini-2.5-flash (63.08). However, several open-source MPJs—including InternVL3-
415 8B (77.41), Qwen2.5-VL-32B (81.06), Qwen2.5-VL-72B (77.45), and QVQ (74.17)—still outper-
416 form proprietary MPJs on CRS, indicating that confidence robustness does not simply scale with
417 model size or proprietary tuning. This further highlights the effectiveness of the CRS metric in
418 revealing robustness gaps. Even the strongest MPJs remain far below the theoretical maximum,
419 suggesting substantial room for improvement.420 Table 4 provides additional insights through CRS sub-metrics. For example, Qwen2.5-VL-32B
421 exhibits low CCR, ACCM, and SCCR, indicating that confidence changes are infrequent, mild, and
422 seldom exceed the significance threshold. In contrast, InternVL3-38B demonstrates high values on
423 all three sub-metrics, indicating frequent and substantial confidence fluctuations under perturbations,
424 resulting in its low CRS.425 **Confidence Sensitivity Analysis.** **Gemini-2.5-Pro** achieves the highest CSS score (57.73), out-
426 performing all existing proprietary MPJs, including Gemini-2.5-flash (48.29). **GPT-5** becomes the
427 second-best model in CSS (51.59), reshaping the sensitivity ranking among proprietary models.
428 Although these new models demonstrate noticeable improvement, the CSS scores remain far from
429 the theoretical upper bound, suggesting room for further enhancement.431 Table 5 shows that proprietary MPJs generally achieve higher average confidence changes (Δp)
across error types. In contrast, some open-source MPJs, such as Qwen2.5-VL-3B (-4.22) and

432 MiniCPM-V-2.6 (-21.62), display negative Δp on QUE, indicating unreliable confidence that does
 433 not properly reflect actual reasoning errors.
 434

435 **Confidence Calibration Analysis.** As shown in Table 2, proprietary MPJs significantly outper-
 436 form open-source MPJs in CCS. Among them, GPT-4o achieves the highest CCS score of 62.00,
 437 indicating substantially stronger confidence calibration performance than other MPJs. However,
 438 this is still far from the theoretical upper bound, suggesting ample room for further improvement.
 439 In contrast, open-source MPJs, such as MiniCPM-V-2.6 and Qwen2.5-VL-3B, perform relatively
 440 poorly. Notably, MiniCPM-V-2.6 exhibits a negative CCS (-47.95), indicating suboptimal confi-
 441 dence calibration performance, involving both ECE and Δ ECE. Analysis of Table 5 shows that this
 442 negative CCS is primarily due to a high ECE of 45.16, suggesting a significant mismatch between
 443 the model’s predicted confidence and the actual correctness across many reasoning steps.
 444

445 Furthermore, as shown in Table 6, it can be observed that across all MPJs, ECE_{correct} is consistently
 446 much lower than $ECE_{\text{incorrect}}$, resulting in relatively large Δ ECE values. This indicates an imbal-
 447 ance in confidence calibration across classes. Therefore, the calibration performance on erroneous
 448 reasoning steps remains unsatisfactory and calls for urgent improvement.
 449

450 **Average Score Comparison.** Gemini-2.5-Pro achieves the highest average score (59.84), estab-
 451 lishing a new state-of-the-art among all MPJs. GPT-5 ranks second (57.08), surpassing GPT-4o
 452 (50.03), GPT-4.1 (49.93), and Gemini-2.5-flash (53.33). Proprietary MPJs thus occupy the top po-
 453 sitions, reflecting the benefits of advanced training and alignment techniques.
 454

455 Most open-source MPJs remain within the 30–40 range, with MiniCPM-V-2.6 scoring the lowest
 456 (8.90) primarily due to poor calibration performance. The InternVL series continues to outperform
 457 the Qwen2.5-VL series, and its performance scales positively with model size, with InternVL3-
 458 38B achieving the best average score among open-source models (41.68). Despite improvements
 459 in larger Qwen models from 3B to 32B, performance degrades at 72B, indicating that scaling alone
 460 does not guarantee improved confidence quality.
 461

462 **Impact of Model Scale on Confidence Performance.** As shown in Table 2, model scale ex-
 463 hibits varying effects on different aspects of confidence performance. Specifically, no clear positive
 464 correlation is observed between model size and confidence robustness. For example, within the In-
 465 ternVL3 series, CRS consistently decreases as model size increases from 8B to 38B. In contrast,
 466 confidence sensitivity generally improves with scale. For instance, in the Qwen2.5-VL series, CSS
 467 rises from 3.15 (3B) to 19.93 (72B), indicating enhanced confidence sensitivity. As for calibration,
 468 larger models tend to perform better. For example, Qwen2.5-VL’s CCS increases from 2.73 (3B) to
 469 41.60 (32B), but drops again at 72B, suggesting that increasing model size alone does not ensure
 470 better calibration.
 471

472 **Impact of Thinking Mode on Confidence Performance.** Table 2 presents the core metric results
 473 for Gemini-2.5-flash and its no-thinking variant. Results show that enabling the thinking process
 474 enhances confidence robustness under input perturbations, as evidenced by a higher CRS. Addi-
 475 tionally, Gemini-2.5-flash exhibits a 6.16-point improvement in CSS, suggesting that the thinking
 476 process enhances the model’s sensitivity to erroneous reasoning steps. However, its CCS is lower
 477 than that of the no-thinking variant, indicating that the thinking process does not necessarily improve
 478 confidence calibration quality.
 479

480 5 CONCLUSION

481 We present ConfProBench, the first benchmark for evaluating the reliability of step-level confidence
 482 scores produced by MPJs. It introduces three types of adversarial perturbations to assess the ro-
 483 bustness of MPJs’ confidence under input variations. Furthermore, it proposes a comprehensive
 484 evaluation suite comprising three complementary metrics: CRS, CSS, and CCS, which measure the
 485 robustness, sensitivity, and calibration of MPJs’ confidence. Extensive experiments reveal key limi-
 486 tations in current MPJs’ confidence performance and establish strong baselines, paving the way for
 487 future research in this area. Beyond these contributions, we suggest two future directions. First,
 488 conducting human confidence annotations and introducing new consistency metrics to assess the
 489

486 alignment between MPJ confidence and expert judgments. Second, extending ConfProBench to
 487 encompass safety-critical scenarios where highly reliable confidence estimation is essential.
 488

489 6 ETHICS STATEMENT

490
 491 This research does not involve human subjects, personally identifiable information, or sensitive data;
 492 therefore, no Institutional Review Board (IRB) approval was required. All datasets used are publicly
 493 available and released under appropriate licenses. Our work poses no apparent ethical risks and has
 494 no conflicts of interest.
 495

496 7 REPRODUCIBILITY STATEMENT

497 To ensure reproducibility, we provide detailed descriptions of the models and experimental settings
 498 in the main text, with additional hyper-parameter configurations and implementation details included
 499 in the appendix. All datasets used in our experiments are publicly available. Furthermore, we
 500 provide the source code, configuration files, and execution scripts in the supplementary material,
 501 enabling other researchers to faithfully reproduce our results.
 502

503 REFERENCES

504
 505 Jiaxin Ai, Pengfei Zhou, Zhaopan Xu, Ming Li, Fanrui Zhang, Zizhen Li, Jianwen Sun, Yukang
 506 Feng, Baojin Huang, Zhongyuan Wang, et al. Projudge: A multi-modal multi-discipline
 507 benchmark and instruction-tuning dataset for mllm-based process judges. *arXiv preprint*
 508 *arXiv:2503.06553*, 2025.

509
 510 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
 511 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
 512 2025.

513
 514 Collin Burns, Haotian Ye, Dan Klein, and Jacob Steinhardt. Discovering latent knowledge in lan-
 515 guage models without supervision. *arXiv preprint arXiv:2212.03827*, 2022.

516
 517 Dongping Chen, Ruoxi Chen, Shilin Zhang, Yaochen Wang, Yinuo Liu, Huichi Zhou, Qihui Zhang,
 518 Yao Wan, Pan Zhou, and Lichao Sun. Mllm-as-a-judge: Assessing multimodal lilm-as-a-judge
 519 with vision-language benchmark. In *Forty-first International Conference on Machine Learning*,
 520 2024.

521
 522 DeepMind. Gemini 2.5 Flash. <https://deepmind.google/models/gemini/flash/>,
 523 2025a. General availability announced June 17, 2025; illustrates the cost-efficient, fast 2.5 Flash
 524 variant. Accessed: 2025-07-31.

525
 526 DeepMind. Gemini-2.5-Flash (No-Thinking Mode). <https://ai.google.dev/gemini-api/docs/thinking>, 2025b. Accessed: 2025-07-31.

527
 528 Jinhao Duan, Hao Cheng, Shiqi Wang, Alex Zavalny, Chenan Wang, Renjing Xu, Bhavya Kailkhura,
 529 and Kaidi Xu. Shifting attention to relevance: Towards the predictive uncertainty quantification
 530 of free-form large language models. *arXiv preprint arXiv:2307.01379*, 2023.

531
 532 Jiahui Geng, Fengyu Cai, Yuxia Wang, Heinz Koepll, Preslav Nakov, and Iryna Gurevych. A
 533 survey of confidence estimation and calibration in large language models. *arXiv preprint*
arXiv:2311.08298, 2023.

534
 535 Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
 536 networks. In *International conference on machine learning*, pp. 1321–1330. PMLR, 2017.

537
 538 Zhen Huang, Zengzhi Wang, Shijie Xia, Xuefeng Li, Haoyang Zou, Ruijie Xu, Run-Ze Fan, Lyu-
 539 manshan Ye, Ethan Chern, Yixin Ye, et al. Olympicarena: Benchmarking multi-discipline cog-
 nitive reasoning for superintelligent ai. *Advances in Neural Information Processing Systems*, 37:
 19209–19253, 2024.

540 Dongzhi Jiang, Renrui Zhang, Ziyu Guo, Yanwei Li, Yu Qi, Xinyan Chen, Liuhi Wang, Jianhan
 541 Jin, Claire Guo, Shen Yan, et al. Mme-cot: Benchmarking chain-of-thought in large multimodal
 542 models for reasoning quality, robustness, and efficiency. *arXiv preprint arXiv:2502.09621*, 2025.
 543

544 Junxian Li, Di Zhang, Xunzhi Wang, Zeying Hao, Jingdi Lei, Qian Tan, Cai Zhou, Wei Liu, Yaotian
 545 Yang, Xinrui Xiong, et al. Chemvlm: Exploring the power of multimodal large language models
 546 in chemistry area. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39,
 547 pp. 415–423, 2025.

548 Potsawee Manakul, Adian Liusie, and Mark JF Gales. Selfcheckgpt: Zero-resource black-box hallu-
 549 cination detection for generative large language models. *arXiv preprint arXiv:2303.08896*, 2023.
 550

551 OpenAI. GPT-4.1. <https://openai.com/index/gpt-4-1/>, 2024a. Accessed: 2024-09-
 552 26.

553 OpenAI. GPT-4o System Card. <https://cdn.openai.com/gpt-4o-system-card.pdf>, 2024b. Accessed: 2024-09-26.
 555

556 OpenAI. GPT-4o Mini: Advancing Cost-Efficient Intelligence. <https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/>, 2024c.
 557 Accessed: 2024-09-26.
 558

559 Shu Pu, Yaochen Wang, Dongping Chen, Yuhang Chen, Guohao Wang, Qi Qin, Zhongyi Zhang,
 560 Zhiyuan Zhang, Zetong Zhou, Shuang Gong, et al. Judge anything: Mllm as a judge across any
 561 modality. *arXiv preprint arXiv:2503.17489*, 2025.
 562

563 Qwen Team. Preview of qwen-vl, qwen-audio, and qwen-72b. <https://qwenlm.github.io/blog/qvq-72b-preview/>, 2024. Accessed: 2025-07-31.
 564

565 Wenhao Shi, Zhiqiang Hu, Yi Bin, Junhua Liu, Yang Yang, See-Kiong Ng, Lidong Bing, and Roy
 566 Ka-Wei Lee. Math-llava: Bootstrapping mathematical reasoning for multimodal large language
 567 models. *arXiv preprint arXiv:2406.17294*, 2024.
 568

569 Kai Sun, Yushi Bai, Ji Qi, Lei Hou, and Juanzi Li. Mm-math: Advancing multimodal math eval-
 570 uation with process evaluation and fine-grained classification. *arXiv preprint arXiv:2404.05091*,
 571 2024.

572 Katherine Tian, Eric Mitchell, Allan Zhou, Archit Sharma, Rafael Rafailov, Huaxiu Yao, Chelsea
 573 Finn, and Christopher D Manning. Just ask for calibration: Strategies for eliciting calibrated
 574 confidence scores from language models fine-tuned with human feedback. *arXiv preprint
 575 arXiv:2305.14975*, 2023.
 576

577 Weiyun Wang, Zhangwei Gao, Lianjie Chen, Zhe Chen, Jinguo Zhu, Xiangyu Zhao, Yangzhou Liu,
 578 Yue Cao, Shenglong Ye, Xizhou Zhu, et al. Visualprm: An effective process reward model for
 579 multimodal reasoning. *arXiv preprint arXiv:2503.10291*, 2025.

580 Kun Xiang, Zhili Liu, Zihao Jiang, Yunshuang Nie, Runhui Huang, Haoxiang Fan, Hanhui Li,
 581 Weiran Huang, Yihan Zeng, Jianhua Han, et al. Atomthink: A slow thinking framework for
 582 multimodal mathematical reasoning. *arXiv preprint arXiv:2411.11930*, 2024.
 583

584 Miao Xiong, Zhiyuan Hu, Xinyang Lu, Yifei Li, Jie Fu, Junxian He, and Bryan Hooi. Can llms
 585 express their uncertainty? an empirical evaluation of confidence elicitation in llms. *arXiv preprint
 586 arXiv:2306.13063*, 2023.

587 Zhaopan Xu, Pengfei Zhou, Jiaxin Ai, Wangbo Zhao, Kai Wang, Xiaojiang Peng, Wenqi Shao,
 588 Hongxun Yao, and Kaipeng Zhang. Mpbench: A comprehensive multimodal reasoning bench-
 589 mark for process errors identification. *arXiv preprint arXiv:2503.12505*, 2025.
 590

591 Yibo Yan, Jiamin Su, Jianxiang He, Fangteng Fu, Xu Zheng, Yuanhuiyi Lyu, Kun Wang, Shen Wang,
 592 Qingsong Wen, and Xuming Hu. A survey of mathematical reasoning in the era of multimodal
 593 large language model: Benchmark, method & challenges. *arXiv preprint arXiv:2412.11936*,
 2024.

594 Daniel Yang, Yao-Hung Hubert Tsai, and Makoto Yamada. On verbalized confidence scores for
595 llms. *arXiv preprint arXiv:2412.14737*, 2024.

596
597 Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu Li,
598 Weilin Zhao, Zhihui He, et al. Minicpm-v: A gpt-4v level mllm on your phone. *arXiv preprint*
599 *arXiv:2408.01800*, 2024.

600 Renrui Zhang, Dongzhi Jiang, Yichi Zhang, Haokun Lin, Ziyu Guo, Pengshuo Qiu, Aojun Zhou,
601 Pan Lu, Kai-Wei Chang, Yu Qiao, et al. Mathverse: Does your multi-modal llm truly see the
602 diagrams in visual math problems? In *European Conference on Computer Vision*, pp. 169–186.
603 Springer, 2024.

604
605 Xinran Zhao, Hongming Zhang, Xiaoman Pan, Wenlin Yao, Dong Yu, Tongshuang Wu, and Jianshu
606 Chen. Fact-and-reflection (far) improves confidence calibration of large language models. *arXiv*
607 *preprint arXiv:2402.17124*, 2024.

608 Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen
609 Duan, Weijie Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes for
610 open-source multimodal models. *arXiv preprint arXiv:2504.10479*, 2025.

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 A THE USE OF LARGE LANGUAGE MODELS (LLMS)
649650 We employ Large Language Models (LLMs) for grammar checking in our paper.
651652 B DETAILED STATISTICS OF CONFPROBENCH
653654 The detailed statistics of ConfProBench are summarized in Table 3.
655657 C PARAMETER SETTINGS AND THEORETICAL RANGES FOR EVALUATION
658 METRICS
659660 This appendix provides the detailed parameter settings and theoretical ranges for the three evaluation
661 metrics—Confidence Robustness Score (CRS), Confidence Sensitivity Score (CSS), and Confidence
662 Calibration Score (CCS)—used in ConfProBench.
663664 C.1 CONFIDENCE ROBUSTNESS SCORE (CRS)
665666 CRS measures the robustness of confidence under semantic-preserving adversarial perturbations
667 (Lexical, Syntactic, Multimodal). It consists of three sub-metrics: Confidence Change Rate (CCR),
668 Average Confidence Change Magnitude (ACCM), and Significant Confidence Change Rate (SCCR).
669670

- **Thresholds:** $\epsilon = 0.01$ for minor changes, $\delta = 0.2$ for significant changes.
- **Scaling factor:** $s = 5$ to amplify ACCM and SCCR values.
- **Weights:** $w_1 = 0.4$, $w_2 = 0.4$, $w_3 = 0.2$.

673674 The combined CRS is computed as:
675

676
$$\text{CRS} = w_1 \cdot (1 - \text{CCR}) + w_2 \cdot (1 - s \cdot \text{ACCM}) + w_3 \cdot (1 - s \cdot \text{SCCR}).$$

677 **Theoretical range:** $[-2.4, 1]$, where 1 indicates perfect confidence robustness.
678679 C.2 CONFIDENCE SENSITIVITY SCORE (CSS)
680681 CSS quantifies how sensitively the confidence score responds to reasoning errors. For each error
682 type t :
683

684
$$\Delta p_t = \bar{p}_{\text{correct}} - \bar{p}_t, \quad \text{CSS} = \frac{1}{|\mathcal{T}|} \sum_{t \in \mathcal{T}} \Delta p_t,$$

685 where \bar{p}_t is the average predicted probability for error type t , and \mathcal{T} is the set of all error types.
686687 **Range:** $\text{CSS} \in [-1, 1]$. Larger CSS indicates stronger sensitivity to errors.
688689 C.3 CONFIDENCE CALIBRATION SCORE (CCS)
690691 CCS evaluates calibration quality by combining global ECE and class-wise calibration gap
692 $\Delta \text{ECE}_{\text{cls}}$:
693

694
$$\text{CCS} = 0.5 \cdot (1 - s \cdot \text{ECE}) + 0.5 \cdot (1 - \Delta \text{ECE}_{\text{cls}}),$$

695 with scaling factor $s = 5$.
696697 **Range:** $[-2, 1]$, where higher CCS reflects better calibration.
698699 C.4 SUMMARY OF PARAMETER CHOICES
700701 All three metrics use parameters chosen based on theoretical and practical considerations:
702703

- CRS thresholds ϵ and δ distinguish minor versus significant confidence changes.
- Scaling factor s ensures smaller sub-metrics (ACCM, SCCR, ECE) contribute comparably.

702 • Weights (w_1, w_2, w_3) balance sub-metric contributions in CRS; CSS and CCS use uniform
 703 averaging.
 704

705 These settings suppress noise, balance contributions across sub-components, and maintain fine-
 706 grained interpretability of step-level reasoning.
 707

708 D PROMPT FOR ADVERSARIAL PERTURBATIONS GENERATION AND 709 PROCESS JUDGING 710

711 The prompt used to generate reasoning steps with syntactic transformation perturbations is shown
 712 in Table 7. The prompt used to generate reasoning steps with synonym substitution perturbations is
 713 shown in Table 8. The prompt used for the multimodal process judging task is shown in Table 9.
 714

715 E CONFIDENCE ROBUSTNESS ACROSS PERTURBATION TYPES 716

717 As shown in Figure 4, among all types of adversarial perturbations, MPJs exhibit the lowest confi-
 718 dence robustness scores (CRS) under syntactic transformations. This suggests that MPJs are least
 719 robust when facing syntactic transformations but semantically equivalent inputs. In contrast, they
 720 demonstrate stronger confidence robustness under synonym substitution and image perturbation.
 721 These results indicate that MPJs face considerable challenges in maintaining confidence robustness
 722 under syntactic transformations, while other types of adversarial perturbations also present non-
 723 negligible effects. Designing targeted strategies to enhance the confidence robustness of MPJs is
 724 crucial for obtaining reliable confidence estimates.
 725

726 F CONFIDENCE METRICS ACROSS DIFFICULTY LEVELS, SUBJECTS, AND 727 MODALITIES 728

729 F.1 CONFIDENCE METRIC ANALYSIS ACROSS DIFFERENT DIFFICULTY LEVELS. 730

731 The scores of the three core confidence metrics at different difficulty levels are shown in Figure 5.
 732 Most MPJs exhibit the highest CSS at the Middle School (Mid) level, with noticeable declines at
 733 High School (High) and Competition (Com) levels, though the trend is not strictly monotonic. In
 734 contrast, CCS shows a clear and consistent downward trend as difficulty increases, indicating that
 735 MPJs become increasingly miscalibrated, assigning overly high confidence to incorrect answers or
 736 low confidence to correct ones on harder problems. CRS, however, remains relatively stable across
 737 all difficulty levels for most MPJs, suggesting that confidence robustness to adversarial perturbations
 738 is not significantly affected by task complexity. These results reveal that while MPJs’ sensitivity
 739 and calibration degrade under more complex reasoning, their robustness remains largely unaffected,
 740 highlighting distinct challenges in improving confidence reliability across different dimensions.
 741

742 F.2 CONFIDENCE METRIC ANALYSIS ACROSS DIFFERENT INPUT MODALITIES. 743

744 The scores of the three core confidence metrics across different input modalities are shown in Fig-
 745 ure 6. CSS shows clear modality dependence: most MPJs achieve higher scores in the Multi-image
 746 (Multi) setting than in Single-image (Single) or Pure-text (Pure), indicating that richer visual context
 747 enhances sensitivity to prediction correctness. In contrast, CCS remains largely consistent across
 748 modalities for most MPJs, suggesting limited influence of input type on calibration. Similarly, CRS
 749 scores are highly stable across modalities, indicating that robustness to perturbations is generally
 750 unaffected. Overall, input modality notably influences sensitivity, while calibration and robustness
 751 remain largely modality-invariant.
 752

753 F.3 CONFIDENCE METRIC ANALYSIS ACROSS DIFFERENT SUBJECT DOMAINS. 754

755 The scores of the three core confidence metrics across different subject domains are shown in Fig-
 ure 7. The performance of different MPJs on the Confidence Sensitivity Score (CSS) varies across

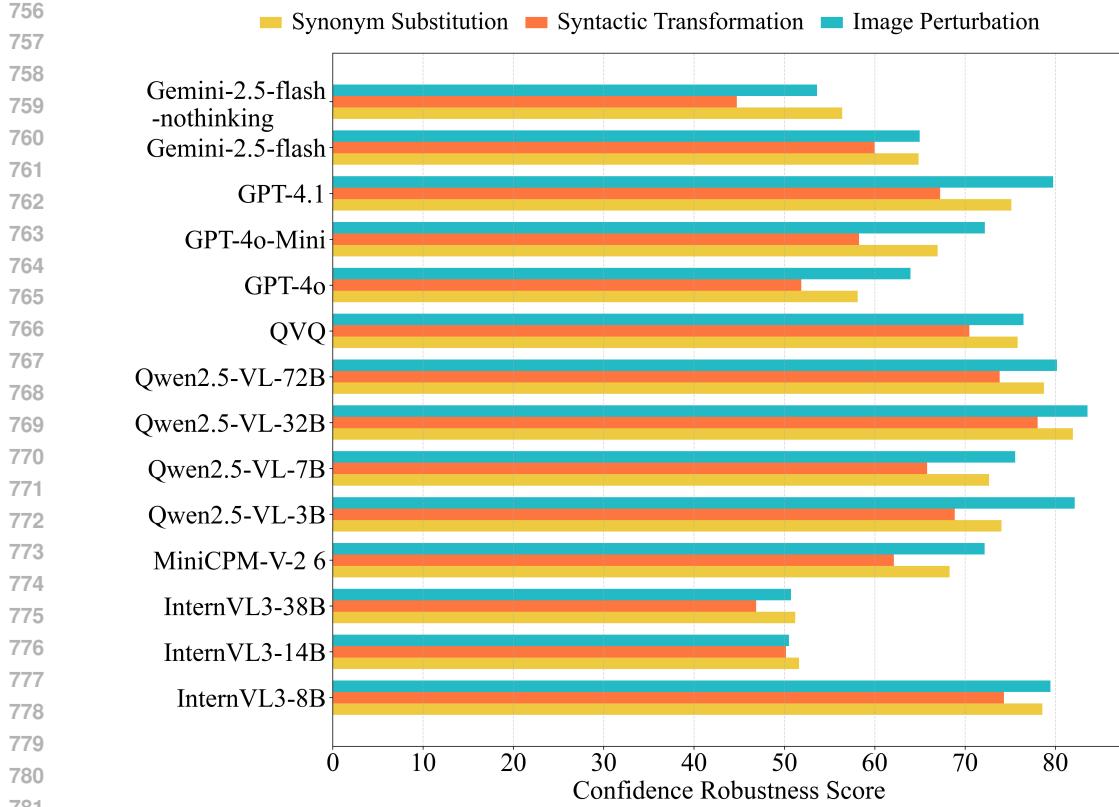


Figure 4: Confidence Robustness Score (CRS) under Different Perturbations

subjects, but no consistent subject-specific trend is observed. This suggests that CSS is more dependent on model-specific characteristics rather than being driven by subject domain, implying that each MPJ may possess unique strengths and weaknesses when handling different types of knowledge structures or symbolic reasoning. Most MPJs achieve higher Confidence Calibration Scores (CCS) in the Biology domain, indicating better alignment between confidence and prediction correctness in that subject. In contrast, Confidence Robustness Scores (CRS) remain highly consistent across all subjects and MPJs, with radar plots forming near-square shapes, suggesting that subject domain has minimal impact on robustness. Overall, MPJs maintain consistent robustness against perturbations across tasks from different subject domains.

G HIGH CLASSIFICATION PERFORMANCE DOES NOT ENSURE CONFIDENCE RELIABILITY.

As shown in Table 10, strong classification performance of MPJs does not necessarily imply high confidence reliability. For instance, GPT-4o achieves a solid Macro F1 score of 78.12, indicating strong classification ability, yet its confidence sensitivity (CSS = 30.71) and calibration (CCS = 62.00) remain moderate. Similarly, while Gemini-2.5-flash attains the highest Macro F1 (81.74), its CCS (48.62) and robustness (CRS = 63.08) are not the best, revealing a mismatch between classification accuracy and confidence reliability. In contrast, GPT-4.1 demonstrates a more balanced profile, combining a high Macro F1 (80.87) with strong robustness (CRS = 73.62) and sensitivity (CSS = 38.51), though its CCS is relatively lower (37.65).

Confidence Sensitivity Score (CSS). We propose Confidence Sensitivity Score (CSS), a novel metric that quantifies how sensitively confidence scores respond to reasoning errors.

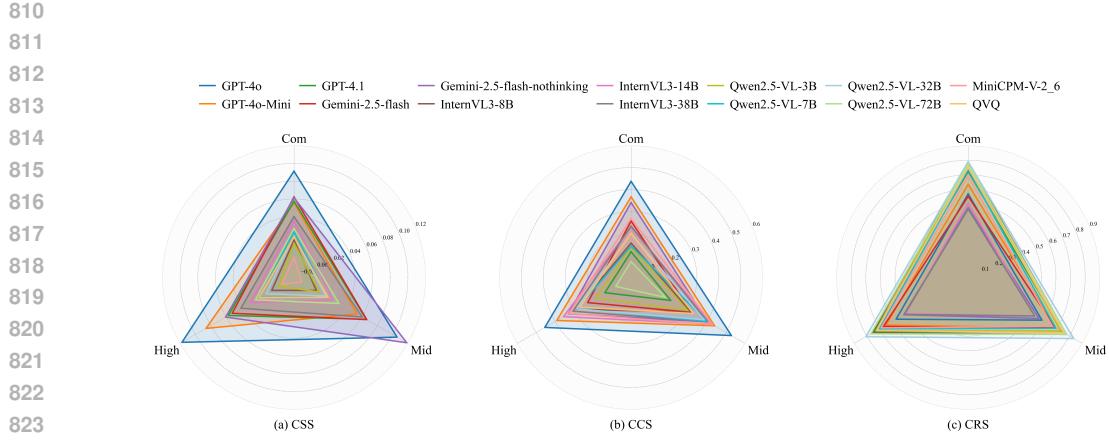


Figure 5: Confidence metric performance of MPJs across different difficulty levels.

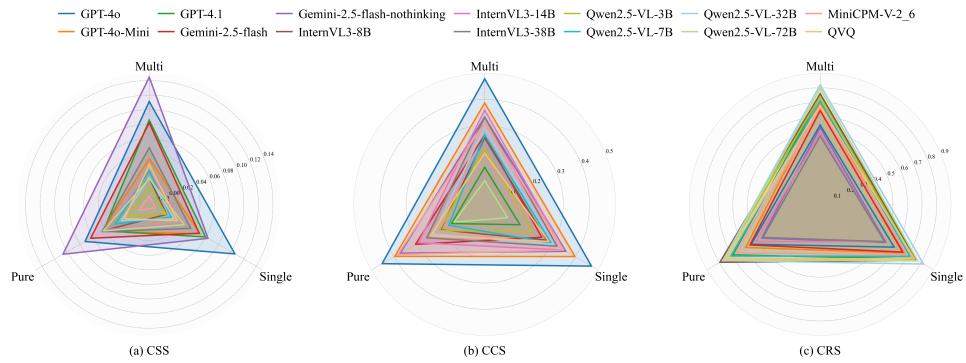


Figure 6: Confidence metric performance of MPJs across different input modalities.

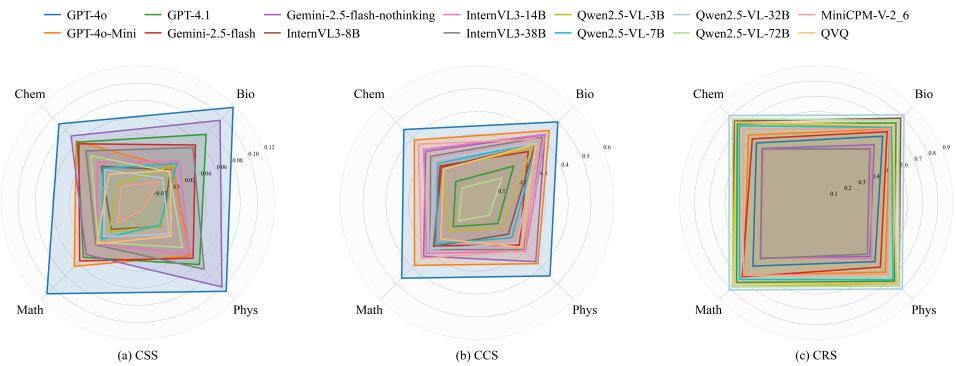


Figure 7: Confidence metric performance of MPJs across different subject domains.

Statistic	Number
Total Samples	1200
Synonym Replacement / Sentence structure / Image Perturbations	400 / 400 / 400
Middle School / High School / Competition	400 / 400 / 400
Math / Physics / Chemistry / Biology	400 / 400 / 400
Single Image / Multi Images / Pure Text	823 / 162 / 215

Table 3: Statistics of ConfProBench

Model	CCR \downarrow	ACCM \downarrow	SCCR \downarrow
Open-source MLLMs			
InternVL3-8B	21.47	<u>6.56</u>	0.89
InternVL3-14B	61.57	9.35	5.89
InternVL3-38B	61.71	9.26	6.87
MiniCPM-V-2_6	22.49	10.68	1.60
Qwen2.5-VL-3B	15.78	8.65	1.69
Qwen2.5-VL-7B	24.97	8.31	2.19
Qwen2.5-VL-32B	<u>15.83</u>	6.29	0.04
Qwen2.5-VL-72B	21.81	6.63	0.58
QVQ	28.68	6.74	0.86
Proprietary MLLMs			
GPT-4o	21.82	13.46	6.98
GPT-4o-Mini	<u>27.68</u>	9.55	4.24
GPT-4.1	34.96	5.47	1.46
Gemini-2.5-flash	38.56	<u>8.17</u>	5.15
Gemini-2.5-flash-nothinking	40.31	11.77	9.12

Table 4: The results of the sub-metrics that constitute the Confidence Robustness Score (CRS). The best performance for each metric is shown in bold, while the second-best is underlined.

H EVALUATING CONFPROBENCH’S ROBUSTNESS TO DIFFERENT PERTURBATION GENERATORS

To evaluate whether the perturbation construction process is fundamentally constrained by the capability of a specific MLLM, we conducted a **cross-model perturbation robustness study**. This experiment assesses whether perturbations generated by different MLLMs lead to consistent evaluation outcomes on ConfProBench.

EXPERIMENTAL SETUP

To directly test whether perturbation generation depends on the underlying model, we performed the following controlled experiment:

- We randomly sampled **300** items from the full benchmark.
- For each item, we generated perturbations using two different MLLMs:
 1. GPT-4o
 2. Gemini-2.5-Pro
- For each model, we produced perturbations covering all three perturbation types used in ConfProBench:
 - image-based perturbations (100 samples),
 - syntactic rewriting (100 samples),
 - synonym substitution (100 samples).

Model	$\Delta p_{\text{NSPE}} \uparrow$	$\Delta p_{\text{RE}} \uparrow$	$\Delta p_{\text{NCE}} \uparrow$	$\Delta p_{\text{SCE}} \uparrow$	$\Delta p_{\text{KE}} \uparrow$	$\Delta p_{\text{VIE}} \uparrow$	$\Delta p_{\text{QUE}} \uparrow$
Open-source MLLMs							
InternVL3-8B	8.80	13.48	4.40	7.59	18.86	6.36	<u>21.36</u>
InternVL3-14B	10.24	28.28	<u>28.35</u>	19.58	22.79	<u>15.26</u>	23.85
InternVL3-38B	60.46	35.14	31.79	24.81	32.84	17.94	11.38
MiniCPM-V-2_6	19.95	10.01	13.23	15.46	2.03	7.12	-21.62
Qwen2.5-VL-3B	12.40	1.67	0.02	2.12	8.35	1.73	-4.22
Qwen2.5-VL-7B	18.96	10.66	5.32	5.78	15.48	8.59	7.87
Qwen2.5-VL-32B	11.23	25.60	18.59	17.87	16.79	7.76	13.64
Qwen2.5-VL-72B	17.18	<u>28.24</u>	21.43	<u>20.16</u>	<u>23.90</u>	9.10	19.47
QVQ	<u>24.98</u>	12.91	6.77	14.28	14.01	6.81	8.49
Proprietary MLLMs							
GPT-4o	48.34	35.12	34.73	32.53	28.67	21.53	14.01
GPT-4o-Mini	7.22	18.28	13.67	23.08	11.83	7.35	9.81
GPT-4.1	2.38	<u>51.77</u>	56.23	45.68	<u>45.15</u>	<u>40.83</u>	27.49
Gemini-2.5-flash	<u>27.60</u>	54.03	<u>54.08</u>	53.99	53.89	49.48	<u>44.94</u>
Gemini-2.5-flash-nothinking	23.17	49.34	41.57	<u>46.61</u>	41.85	40.57	51.77

Table 5: The results of the sub-metrics that constitute the Confidence Sensitivity Score (CSS). The best performance for each metric is shown in bold, while the second-best is underlined. NCE denotes Numerical Calculation Error, RE denotes Reasoning Error, SCE denotes Symbolic Calculation Error, KE denotes Knowledge Error, VIE denotes Visual Interpretation Error, QUE denotes Question Understanding Error, and NSPE denotes No Solution Provided Error.

Model	$\text{ECE}(\text{C.}) \downarrow$	$\text{ECE}(\text{I.}) \downarrow$	$\Delta \text{ECE} \downarrow$	$\text{ECE} \downarrow$
Open-source MLLMs				
InternVL3-8B	8.86	90.18	81.32	13.35
InternVL3-14B	10.71	85.05	<u>74.34</u>	6.43
InternVL3-38B	8.80	<u>84.82</u>	76.03	<u>7.00</u>
MiniCPM-V-2_6	16.51	84.61	68.09	45.16
Qwen2.5-VL-3B	9.24	90.50	81.26	22.66
Qwen2.5-VL-7B	9.24	88.85	79.62	17.76
Qwen2.5-VL-32B	9.41	88.88	79.47	7.47
Qwen2.5-VL-72B	4.37	92.16	87.78	12.32
QVQ	<u>8.25</u>	89.72	81.47	11.43
Proprietary MLLMs				
GPT-4o	10.54	76.93	66.39	1.92
GPT-4o-Mini	10.32	83.33	73.01	6.31
GPT-4.1	3.00	89.81	86.81	7.58
Gemini-2.5-flash	<u>6.43</u>	87.56	81.13	<u>4.32</u>
Gemini-2.5-flash-nothinking	9.06	<u>82.02</u>	<u>72.97</u>	4.79

Table 6: The results of the sub-metrics that constitute the Confidence Calibration Score (CCS). C. indicates the correct class, and I. indicates the incorrect class. The best performance for each metric is shown in bold, while the second-best is underlined.

- Both perturbed datasets were evaluated using representative MLLM-based process judges (MPJs), and we computed the three proposed confidence metrics: CRS, CSS, and CCS.

This yielded two parallel perturbed datasets—one constructed using GPT-4o and one using Gemini-2.5-Pro—allowing us to directly measure the consistency of metric outcomes across perturbation sources.

972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983 You are a sentence structure rewriting assistant. Your task is to rewrite a given sentence while
 984 altering its structure, ensuring that the original meaning is preserved. For each sentence, you
 985 must generate five distinct rewritten versions, each applying only one syntactic transformation.
 986 The goal is to create varied sentence structures while maintaining semantic accuracy and natural
 987 grammar.
 988 **Syntactic Transformations (Choose One per Rewrite):**
 989 Voice Change (Active \leftrightarrow Passive)
 990 2. Adverbial Position Adjustment
 991 3. Clause Order or Structure Change
 992 4. Phrase Structure Simplification or Expansion
 993 5. Inversion or Emphatic Structure
 994 6. Conditional / Purpose / Result Structure Transformation
 995 **Key Constraints:**
 996 - Preserve all steps in multi-step logical reasoning chains.
 997 - Do not omit any mathematical derivations, steps, or intermediate expressions.
 998 - Do not change numbers or mathematical expressions, including LaTeX formulas.
 999 - Preserve meaning, grammar, and naturalness.
 1000 - Try to keep the length of the rewritten sentence close to the original (within 2–3 words difference).
 1001 Avoid significant shortening or lengthening unless necessary for syntactic transformation.
 1002 - Only one syntactic transformation type per rewritten sentence.
 1003 **Output Format:**
 1004 {
 1005 "Original Sentence": "The original sentence",
 1006 "Rewritten Sentences": [
 1007 "rewritten sentence 1",
 1008 "rewritten sentence 2",
 1009 "rewritten sentence 3",
 1010 "rewritten sentence 4",
 1011 "rewritten sentence 5"
 1012]
 1013 }
 1014 # Student's solution: step-by-step student's solution

1014 Table 7: Prompt for generating reasoning steps with syntactic transformation perturbations.
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025

1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037 **Task Description:** You are a synonym substitution assistant. Given an input sentence, your
 1038 task is to generate five distinct rewrites. In each version, you must replace at least one non-
 1039 technical term with an appropriate synonym, and should replace as many non-technical terms as
 1040 possible. Use different combinations of synonyms while keeping the original sentence structure
 1041 and meaning intact. All outputs must be grammatically correct and sound natural.
 1042 **Definition:** Technical terms refer to specialized vocabulary that is specific to a particular field
 1043 or discipline and should remain unchanged. These include, but are not limited to: mathematical
 1044 symbols, scientific terminology, programming syntax, technical jargon, and domain-specific
 1045 abbreviations.
 1046 **Key Constraints:**
 1047 - Do not modify any structural elements.
 1048 - Do not alter any numbers, numerical values, or mathematical expressions, including both
 1049 plain numbers and LaTeX formulas.
 1050 - Do not change list symbols, bullet points, or any other sequence markers.
 1051 - Replace only the natural language content—do not alter formatting, technical terms, or
 1052 domain-specific vocabulary.
 1053 - Ensure all rewritten sentences are grammatically correct, natural, and maintain the original
 1054 meaning.
 1055 - Each rewritten version must replace at least one non-technical word, and should replace as
 1056 many non-technical words as reasonably possible.
 1057 **Output Format:**
 1058 Provide your output in the following JSON structure:
 1059 {
 1060 "Original Sentence": "The original sentence",
 1061 "Synonym Substitutions": [
 1062 "Synonym Substitution 1",
 1063 "Synonym Substitution 2",
 1064 "Synonym Substitution 3",
 1065 "Synonym Substitution 4",
 1066 "Synonym Substitution 5"
 1067]
 1068 }
 1069 # Student's solution: step-by-step student's solution

Table 8: Prompt for generating reasoning steps with synonym substitution perturbations.

1080
 1081
 1082
 1083
 1084 You are a teacher skilled in evaluating the intermediate steps of a student's solution to a given
 1085 problem. You are given a scientific problem, its correct final answer, and a student's step-by-
 1086 step solution.
 1087 Your task is as follows:
 1088 1. Carefully solve the problem yourself, using the correct final answer as a hint to guide you to
 1089 a consistent, correct reasoning path.
 1090 2. Then, evaluate the correctness of each step in the student's solution.
 1091 **For each step, output:**
 1092 - The full original step (as a string)
 1093 - A correctness label:
 1094 - 1: if the model believes the step is correct (i.e., if $P(\text{correct}) \geq 0.5$)
 1095 - 0: otherwise
 1096 - A probability estimate $P(\text{correct}) \in (0, 1)$, representing the model's assessment of the likeli-
 1097 hood that the step is correct (correctness label = 1)
 1098 - If the step is incorrect (correctness label = 0), also provide:
 1099 - An error category (from the list below):
 1100 - Numerical Calculation Error
 1101 - Symbolic Calculation Error
 1102 - Visual Interpretation Error
 1103 - Reasoning Error
 1104 - Knowledge Error
 1105 - Question Understanding Error
 1106 - No solution provided
 1107 **Output Format:**
 1108 Wrap your output in this Python list format (and nothing else), enclosed by `<evaluation>` and
 1109 `</evaluation>` tags:
 1110 `<evaluation>`
 1111 `[`
 1112 `["Step 1: ...", correctness_label, P_correct, "Error type if
 1113 incorrect"],`
 1114 `...`
 1115 `]`
 1116 `</evaluation>`
 1117 **Requirements:**
 1118 - You must return one and only one evaluation entry per step in the student's solution.
 1119 - The number of output entries must exactly match the number of steps (e.g., if the student has
 1120 15 steps, your output list must contain 15 entries).
 1121 - Do not skip, merge, or summarize steps.
 1122 - If the step is correct, use an empty string for the error type: `" "`.
 1123 - Keep each step as a single complete unit, even if it contains multiple sentences.
 1124 - Please evaluate each step one by one. Every step must be assessed and scored individually,
 1125 even if it is very short. Do not merge, omit, or skip any steps.
 1126 - Focus exclusively on the scientific, logical, or mathematical correctness of the solution. Ignore
 1127 differences in formatting, expression style, specific wording, or presentation order, as long as
 1128 the reasoning and results are valid.
 1129 # The given problem: {problem}
 1130 # The Correct Final Answer: {final answer}
 1131 # Student's solution: step-by-step student's solution

Table 9: Prompt for multimodal process judging.

Model	CRS↑	CSS↑	CCS↑	Avg.↑	Macro F1↑
Open-source MLLMs					
InternVL3-8B	77.41	11.55	25.97	38.31	59.21
InternVL3-14B	50.78	<u>21.19</u>	46.75	39.57	<u>70.17</u>
InternVL3-38B	49.92	30.62	<u>44.49</u>	<u>41.68</u>	73.66
MiniCPM-V-2 6	68.05	6.60	-47.95	8.90	38.31
Qwen2.5-VL-3B	74.71	3.15	2.73	26.86	50.90
Qwen2.5-VL-7B	71.19	10.38	15.80	32.46	56.88
Qwen2.5-VL-32B	81.06	15.93	41.60	46.20	67.13
Qwen2.5-VL-72B	<u>77.45</u>	19.93	25.30	40.89	68.33
QVQ	74.17	12.60	30.69	39.15	57.29
Proprietary MLLMs					
GPT-4o	57.37	30.71	62.00	<u>50.03</u>	78.12
GPT-4o-Mini	<u>65.58</u>	13.03	47.73	42.11	66.08
GPT-4.1	73.62	38.51	37.65	49.93	<u>80.87</u>
Gemini-2.5-flash	63.08	48.29	48.62	53.33	81.74
Gemini-2.5-flash-nothinking	51.20	<u>42.13</u>	<u>51.55</u>	48.29	79.02

Table 10: Performance comparison across different MLLM-based Process Judges on ConfProBench. The best performance for each metric is shown in bold, while the second-best is underlined.

RESULTS: HIGH CROSS-MODEL CONSISTENCY

For each MPJ, we compared the metric results obtained under GPT-4o-generated perturbations versus Gemini-generated perturbations. Across all MPJs, we computed Pearson correlations between the two perturbation sources. The results show extremely high agreement:

Metric	Correlation Across Perturbation Models
CRS	0.992
CSS	0.979
CCS	0.985

Table 11: Consistency of benchmark metrics between perturbations generated by GPT-4o and Gemini-2.5-Pro.

CONCLUSION

These results demonstrate that the benchmark outcomes are **highly consistent** across perturbation models. In particular:

- The evaluation metrics remain stable regardless of whether perturbations are generated by GPT-4o or Gemini-2.5-Pro.
- The benchmark does *not* overfit or depend on the perturbation style of a specific model.
- Updating the perturbation generator (e.g., when a stronger model becomes available) is **not necessary**, as it does not alter the evaluation conclusions.

This cross-model perturbation study confirms that ConfProBench is **model-agnostic**, scalable, and robust to changes in upstream perturbation generators.

I EVALUATING METRIC STABILITY ACROSS DIFFERENT PERTURBATION MODELS

To systematically examine potential bias from perturbation models, we conducted a cross-perturbation experiment using different MLLMs to generate lexical and syntactic perturbations. In

1188
 1189 Table 12: CRS / CSS / CCS scores of representative MPJs under perturbations generated by GPT-4o
 1190 and Gemini-2.5-Pro.

Perturbation Model	MPJ	CRS	CSS	CCS
GPT-4o	GPT-4o	0.579	0.2764	0.5451
Gemini-2.5-Pro	GPT-4o	0.5727	0.2919	0.5509
GPT-4o	Gemini-2.5-Pro	0.7764	0.5477	0.4085
Gemini-2.5-Pro	Gemini-2.5-Pro	0.7713	0.6061	0.4442
GPT-4o	GPT-4.1	0.7069	0.43	0.3846
Gemini-2.5-Pro	GPT-4.1	0.7125	0.44	0.3822
GPT-4o	GPT-5	0.6049	0.5122	0.5666
Gemini-2.5-Pro	GPT-5	0.6266	0.5012	0.5731
GPT-4o	Qwen2.5-VL-32B	0.8043	0.204	0.4035
Gemini-2.5-Pro	Qwen2.5-VL-32B	0.7892	0.2263	0.4261
GPT-4o	Qwen2.5-VL-72B	0.781	0.134	0.2965
Gemini-2.5-Pro	Qwen2.5-VL-72B	0.7868	0.2192	0.2744

1207 this experiment, we used two heterogeneous MLLMs (GPT-4o and Gemini-2.5-Pro) to generate
 1208 perturbed datasets, and then evaluated the same set of representative process judges (MPJs) on both
 1209 datasets to measure stability indicators (CRS, CSS, CCS). This setup allows us to assess: (i) whether
 1210 GPT-4o perturbations systematically favor OpenAI models, and (ii) whether the evaluation results
 1211 remain stable across different perturbation sources.

1212 **Experimental Setup.** For each target MPJ, we constructed two perturbed datasets:

- **GPT-4o perturbations:** fully generated by GPT-4o;
- **Gemini-2.5-Pro perturbations:** fully generated by Gemini-2.5-Pro.

1217 We then evaluated the following representative MPJs on both datasets:

1219 GPT-4o, Gemini-2.5-Pro, GPT-4.1, GPT-5, Qwen2.5-VL-32B, Qwen2.5-VL-72B.

1221 The corresponding CRS, CSS, and CCS scores are shown in Table 12.

1223 **Observations (based on Table 12).**

- **GPT-4o perturbations do not systematically favor OpenAI MPJs.** The scores of OpenAI models (GPT-4o, GPT-4.1, GPT-5) under different perturbation sources vary only slightly (typically < 0.03), without a consistent upward or downward trend.
- **Gemini MPJs are stable across perturbation sources.** The CRS/CSS/CCS of Gemini-2.5-Pro show minimal differences between the two perturbation sources, indicating that perturbation source has negligible impact on performance.
- **Qwen models also maintain consistent trends.** Both Qwen models show similar performance regardless of perturbation generator, further confirming the robustness of the evaluation.
- **Relative ranking of MPJs is preserved across perturbations.** The relative ordering of all MPJs remains nearly unchanged, demonstrating strong robustness of our evaluation metrics.

1238 **Conclusion.** The cross-perturbation experiment confirms that: Using GPT-4o to generate lexical
 1239 and syntactic perturbations does not introduce systematic bias favoring OpenAI models. All repre-
 1240 sentative MPJs show stable and consistent CRS, CSS, and CCS scores across different perturbation
 1241 sources.