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The success of deep learning is due, to a large extent, to the remarkable effectiveness 
of gradient-based optimization methods applied to large neural networks. The 
purpose of this work is to propose a modern view and a general mathematical 
framework for loss landscapes and efficient optimization in over-parameterized 
machine learning models and systems of non-linear equations, a setting that 
includes over-parameterized deep neural networks. Our starting observation is that 
optimization landscapes corresponding to such systems are generally not convex, 
even locally around a global minimum, a condition we call essential non-convexity. 
We argue that instead they satisfy PL∗, a variant of the Polyak-Łojasiewicz 
condition [32,25] on most (but not all) of the parameter space, which guarantees 
both the existence of solutions and efficient optimization by (stochastic) gradient 
descent (SGD/GD). The PL∗ condition of these systems is closely related to the 
condition number of the tangent kernel associated to a non-linear system showing 
how a PL∗-based non-linear theory parallels classical analyses of over-parameterized 
linear equations. We show that wide neural networks satisfy the PL∗ condition, 
which explains the (S)GD convergence to a global minimum. Finally we propose a 
relaxation of the PL∗ condition applicable to “almost” over-parameterized systems.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

A singular feature of modern machine learning is a large number of trainable model parameters. Just in 
the last few years we have seen state-of-the-art models grow from tens or hundreds of millions parameters 
to much larger systems with hundreds billion [6] or even trillions parameters [14]. Invariably these models 
are trained by gradient descent based methods, such as Stochastic Gradient Descent (SGD) or Adam [19]. 
Why are these local gradient methods so effective in optimizing complex highly non-convex systems? In the 
past few years an emerging understanding of gradient-based methods have started to focus on the insight 
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that optimization dynamics of “modern” over-parameterized models with more parameters than constraints 
are very different from those of “classical” models when the number of constraints exceeds the number of 
parameters.

The goal of this paper is to provide a modern view of the optimization landscapes, isolating key mathe-
matical and conceptual elements that are essential for an optimization theory of over-parameterized models.

We start by characterizing a key difference between under-parameterized and over-parameterized land-
scapes. While both are generally non-convex, the nature of the non-convexity is rather different: under-
parameterized landscapes are (generically) locally convex in a sufficiently small neighborhood of a local 
minimum. Thus classical analyses apply, if only locally, sufficiently close to a minimum. In contrast, 
over-parameterized systems are “essentially” non-convex systems, not even convex in arbitrarily small neigh-
borhoods around global minima.

Thus, we cannot expect the extensive theory of convexity-based analyses to apply to such over-
parameterized problems. In contrast, we argue that these systems typically satisfy the Polyak-Łojasiewicz 
condition [32,25], or more precisely, its slightly modified variant that we call the PL∗ condition, on most 
(but not all) of the parameter space. This condition ensures existence of solutions and convergence of GD 
and SGD, if it holds in a ball of sufficient radius. Importantly, we show that sufficiently wide neural networks 
satisfy the PL∗ condition around their initialization point, thus guaranteeing convergence. In addition, we 
show how the PL∗ condition can be relaxed without significantly changing the analysis. We conjecture that 
in practice many large but not over-parameterized systems behave as if they were over-parameterized along 
the stretch of their optimization path from the initialization to the early stopping point.

In a typical supervised learning task, given a training dataset of size n, D = {xi, yi}ni=1, xi ∈ Rd, y ∈ R, 
and a parametric family of models f(w; x), e.g., a neural network, one aims to find a model with parameter 
vector w∗, that fits the training data, i.e.,

f(w∗;xi) ≈ yi, i = 1, 2, . . . , n. (1)

Mathematically, training such a model is equivalent to solving, exactly or approximately, a system of n
equations.1 Aggregating the predictions in the map F and the labels in the vector y (and suppressing the 
dependence on xi in the notation) we write:

F(w) = y, where w ∈ Rm, y ∈ Rn, F(·) : Rm → Rn. (2)

Here (F(w))i := f(w; xi).
The system in Eq. (2) is solved through minimizing a certain loss function L(w), e.g., the square loss

L(w) = 1
2‖F(w) − y‖2 = 1

2

N∑
i=1

(f(w;xi) − yi)2

constructed so that the solutions of Eq. (2) are global minimizers of L(w). This is a non-linear least squares 
problem, which is well studied under classical under-parameterized settings (see [29], Chapter 10). An exact 
solution of Eq. (2) corresponds to interpolation, where a predictor fits the data exactly.

As we discuss below, for over-parameterized systems (m > n), we expect exact solutions to exist.

Essential non-convexity. Our starting point, discussed in detail in Section 3, is the observation that the 
loss landscape of an over-parameterized system is generally not convex in any neighborhood of any global 
minimizer. This is different from the case of under-parameterized systems, where the loss landscape is 

1 The same setup works for multiple outputs. For examples for multi-class classification problems both the prediction f(w; xi)
and labels yi (one-hot vector) are c-dimensional vectors, where c is the number of classes. In this case, we are in fact solving n × c
equations. Similarly, for multi-output regression with c outputs, we have n × c equations.
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Fig. 1. Panel (a): Loss landscape is locally convex at local minima. Panel (b): Loss landscape incompatible with local convexity as 
the set of global minima is not locally linear.

globally not convex, but still typically locally convex, in a sufficiently small neighborhood of a (locally 
unique) minimizer. In contrast, the set of solutions of over-parameterized systems is generically a manifold 
of positive dimension [11] (and indeed, systems large enough have no non-global minima [22,28,37]). Unless 
the solution manifold is linear (which is not generally the case) the landscape cannot be locally convex. The 
contrast between over and under-parametrization is illustrated pictorially in Fig. 1.

The non-zero curvature of the curve of global minimizers at the bottom of the valley in Fig. 1(b) indicates 
the essential non-convexity of the landscape. In contrast, an under-parameterized landscape generally has 
multiple isolated local minima with positive-definite Hessian of the loss, where the function is locally convex. 
Thus we posit that

Convexity is not the right framework for analysis of over-parameterized systems, even locally.

Without assistance from local convexity, what alternative mathematical framework can be used to analyze 
loss landscapes and optimization behavior of non-linear over-parameterized systems?

In this paper we argue that such a framework is provided by the Polyak-Łojasiewicz condition [32,25], 
or, more specifically, by a variant that we call the PL∗ condition (independently introduced as local PL 
condition in [30]). We say that a non-negative function L satisfies μ-PL∗ on a set S ⊂ Rm for μ > 0, if

‖∇L(w)‖2 ≥ μL(w), ∀ w ∈ S. (3)

We will now outline some key reasons why the PL∗ condition provides a general framework for analyzing 
over-parameterized systems. In particular, we show that it is satisfied by the loss functions of sufficiently 
wide neural networks, although the corresponding loss functions are certainly non-convex.

PL∗ condition =⇒ existence of solutions and exponential convergence of (S)GD. The first key point (see 
Section 5), is that if L satisfies the μ-PL∗ condition in a ball of radius O(1/μ) then L has a global minimum 
in that ball (corresponding to a solution of Eq. (2)). Furthermore, (S)GD initialized at the center of such 
a ball2 converges exponentially to a global minimum of L. Thus to establish both existence of solutions to 
Eq. (2) and efficient optimization, it is sufficient to verify the PL∗ condition in a ball of a certain radius.

Analytic form of PL∗ condition via the spectrum of the tangent kernel. Let DF(w) be the differential of 
the map F at w, viewed as a n ×m matrix. The tangent kernel of F is defined as an n × n matrix

K(w) = DF(w)DFT (w). (4)

2 The constant in O(1/μ) is different for GD and SGD.
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Fig. 2. The loss function L(w) is μ-PL∗ inside the shaded domain. Singular set corresponds to parameters w with degenerate 
tangent kernel K(w). Every ball of radius R = O(1/μ) within the shaded set intersects with the set of global minima of L(w), i.e., 
solutions to F(w) = y.

It is clear that K(w) is a positive semi-definite matrix. It can be seen (Section 4) that the square loss L is 
μ-PL∗ at w, where

μ = λmin(K(w)), (5)

is the smallest eigenvalue of the kernel matrix. Thus verification of the PL∗ condition reduces to analyzing 
the spectrum of the tangent kernel matrix associated to F .

It is worthwhile to compare this to the standard analytical condition for convexity, requiring that the 
Hessian of the loss function, HL, is positive definite. While these spectral conditions appear to be similar, 
the similarity is superficial as K(w) contains first order derivatives, while the Hessian is a second order 
operator. Hence, as we discuss below, the tangent kernel and the Hessian have very different properties 
under coordinate transformations and in other settings.

Why PL∗ holds across most of the parameter space for over-parameterized systems. We will now discuss 
the intuition why μ-PL∗ should be expected to hold for a sufficiently small μ over a domain containing 
most (but not all) of the parameter space Rm. The intuition is based on simple parameter counting. For 
the simplest example consider the case n = 1. In that case the tangent kernel is a scalar and K(w) =
‖DF(w)‖2 is singular if and only if ‖DF(w)‖ = 0. Thus, by parameter counting, we expect the singular 
set {w : K(w) = 0} to have co-dimension m and thus, generically, consist of isolated points. Because of 
the Eq. (5) we generally expect most points sufficiently removed from the singular set to satisfy the PL∗

condition. By a similar parameter counting argument, the singular set of w, such that K(w) is not full rank 
will of co-dimension m −n +1. As long as m > n, we expect the surroundings of the singular set, where the 
PL∗ condition does not hold, to be “small” compared to the totality of the parameter space. Furthermore, 
the larger the degree of the model over-parameterization (m −n) is, the smaller the singular set is expected 
to be. This intuition is represented graphically in Fig. 2.

Note that under-parameterized systems are always rank deficient and have λmin(K(w)) ≡ 0. Hence such 
systems never satisfy PL∗.

Wide neural networks satisfy PL∗. We show that wide neural networks, as special cases of over-parameterized 
models, are PL∗, using the technical tools developed in Section 4. This property of the neural networks is 
a key step to understand the success of the gradient descent based optimization, as seen in Section 5. To 
show the PL∗ condition for wide neural networks, a powerful, if somewhat crude, tool is provided by the 
remarkable recent discovery [17] that tangent kernels (so-called NTK) of wide neural networks with linear 
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Fig. 3. The loss landscape of “almost over-parameterized” systems. The landscape looks over-parameterized except for the grey area 
where the loss is small. Local minima of the loss are contained there. (For interpretation of the colors in the figure(s), the reader 
is referred to the web version of this article.)

output layer are nearly constant in a ball B of a certain radius around the ball with a random center. More 
precisely, it can be shown that the norm of the Hessian tensor ‖HF(w)‖ = O∗(1/

√
m), where m is the 

width of the neural network and w ∈ B [24].
Furthermore (see Section 4.1):

|λmin(K(w)) − λmin(K(w0))| < O

(
sup
w∈B

‖HF (w)‖
)

= O(1/
√
m).

Bounding the kernel eigenvalue at the initialization point λmin(K(w0)) from below (using the results 
from [12,13]) completes the analysis.

To prove the result for general neural networks (note that the Hessian norm is typically large for such 
networks [24]) we observe that they can be decomposed as a composition of a network with a linear output 
layer and a coordinate-wise non-linear transformation of the output. The PL∗ condition is preserved under 
well-behaved non-linear transformations which yields the result.

Relaxing the PL∗ condition: when the systems are almost over-parameterized. Finally, a framework for 
understanding large systems cannot be complete without addressing the question of transition between 
under-parameterized and over-parameterized systems. While neural network models such as those in [6,
14] have billions or trillions of parameters, they are often trained on very large datasets and thus have 
comparable number of constraints. Thus in the process of optimization they may initially appear to be over-
parameterized, while no truly interpolating solution may exist. Such an optimization landscape is shown in 
Fig. 3. While an in-depth analysis of this question is beyond the scope of this work, we propose a version 
of the PL∗ condition that can account for such behavior by postulating that the PL∗ condition is satisfied 
for values of L(w) above a certain threshold and that the optimization path from the initialization to the 
early stopping point lies in the PL∗ domain. Approximate convergence of (S)GD can be shown under this 
condition, see Section 6.

1.1. Related work

Loss landscapes of over-parameterized machine learning models, especially deep neural networks, have 
recently been studied in a number of papers including [11,22,28,37,20,26]. The work [11] suggests that the 
solutions of an over-parameterized system typically are not discrete and form a lower dimensional manifold 
in the parameter space. In particular [22,28] show that sufficiently over-parameterized neural networks 
have no strict local minima under certain mild assumptions. Furthermore in [20] it is proved that, for 
sufficiently over-parameterized neural networks, each local minimum (if it exists) is “path connected” to a 
global minimum where the loss value on the path is non-increasing. While the above works mostly focus on 
the properties of the minima of the loss landscape, in this paper we on the landscape within neighborhoods 
of these minima, which can often cover the whole optimization path of gradient-based methods.
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There has also been a rich literature that particularly focuses on the optimization of wide neural net-
works using gradient descent [33,12,13,21,3,2,10,18,30], and SGD [1,38], especially after the discovery of the 
constancy of neural tangent kernels (NTK) for certain neural networks [17]. Many of these analyses are 
based on the observation that the constancy of the tangent kernel implies that the training dynamic of 
these networks is approximately that of a linear model [21]. This type of analysis can be viewed within our 
framework of Hessian norm control.

The Polyak-Łojasiewicz (PL) condition has attracted interest in connection with convergence of neural 
networks and other non-linear systems as it allows to prove some key properties of convexity with respect 
to the optimization in non-convex settings. For example, the work [8] proved that a composition of strongly 
convex function with a one-layer leaky ReLU network satisfies the PL condition. The paper [4] proved fast 
convergence of stochastic gradient descent with constant step size for over-parameterized models, while [30]
refined this result showing SGD convergence within a ball with a certain radius. In related work [15] shows 
that the optimization path length can be upper bounded.

Finally, it is interesting to point out the connections with the contraction theory for differential equations 
explored in [36].

2. Notation and standard definitions

We use bold lowercase letters, e.g., v, to denote vectors; capital letters, e.g., W , to denote matrices; 
and bold capital letters, e.g., W, to denote tuples of matrices or higher order tensors. We denote the set 
{1, 2, · · · , n} as [n]. Given a function σ(·), we use σ′(·) and σ′′(·) to denote its first and second respectively. 
For vectors, we use ‖ · ‖ to denote the Euclidean norm and ‖ · ‖∞ for the ∞-norm. For matrices, we use ‖ · ‖F
to denote the Frobenius norm and ‖ · ‖2 to denote the spectral norm (i.e., 2-norm). We use DF to represent 
the differential map of F : Rm → Rn. Note that DF is represented as a n ×m matrix, with (DF)ij := ∂Fi

∂wj
. 

We denote Hessian of the function F as HF , which is an n ×m ×m tensor with (HF )ijk = ∂2Fi

∂wj∂wk
, and 

define the norm of the Hessian tensor to be the maximum of the spectral norms of each of its Hessian 
components, i.e., ‖HF‖ = maxi∈[n] ‖HFi

‖2, where HFi
= ∂2Fi/∂w2. When necessary, we also assume that 

HF is continuous. We also denote the Hessian matrix of the loss function as HL := ∂2L/∂w2, which is an 
m ×m matrix. For a symmetric matrix A, λmin(A) denotes the smallest eigenvalue of A.

In this paper, we consider the problem of solving a system of equations of the form Eq. (2), i.e., finding w, 
such that F(w) = y. This problem is solved by minimizing a loss function L(F(w), y), such as the square 
loss L(w) = 1

2‖F(w) −y‖2, with gradient-based algorithms. Specifically, the gradient descent method starts 
from the initialization point w0 and updates the parameters as follows:

wt+1 = wt − η∇L(wt), ∀t ∈ N. (6)

We call the set {wt}∞t=0 the optimization path, and put w∞ = limt→∞ wt (assuming the limit exists).
Throughout this paper, we assume the map F is Lipschitz continuous and smooth as defined below.

Definition 1 (Lipschitz continuity). We say the map F : Rm → Rn is LF -Lipschitz continuous, if

‖F(w) −F(v)‖ ≤ LF‖w − v‖, ∀w,v ∈ Rm. (7)

Remark 1. In supervised learning cases, (F(w))i = f(w; xi). If we denote Lf as the Lipschitz constant of the 
machine learning model f(w; x) w.r.t. the parameters w, then ‖F(w) −F(v)‖2 =

∑
i(f(w; xi) −f(v; xi))2 ≤

nL2
f‖w − v‖2. One has LF ≤ √

nLf .

A direct consequence of the LF -Lipschitz condition is that ‖DF(w)‖2 ≤ LF for all w ∈ Rm. Furthermore, 
it is easy to see that the tangent kernel has bounded spectral norm:
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Proposition 1. If the map F is LF -Lipschitz, then its tangent kernel K satisfies ‖K(w)‖2 ≤ L2
F .

Definition 2 (Smoothness). We say the map F : Rm → Rn is βF -smooth, if

‖F(w) −F(v) −DF(v)(w − v)‖2 ≤ βF
2 ‖w − v‖2, ∀w,v ∈ Rm. (8)

Jacobian matrix. Given a map Φ : z ∈ Rn �→ Φ(z) ∈ Rn, the corresponding Jacobian matrix JΦ is defined 
as following: each entry

(JΦ)ij := ∂Φi

∂zj
. (9)

3. Essential non-convexity of loss landscapes of over-parameterized non-linear systems

In this section we discuss the observation that over-parameterized systems give rise to landscapes that 
are essentially non-convex – there typically exists no neighborhood around any global minimizer where the 
loss landscape is convex. This is in contrast to under-parameterized systems where such a neighborhood 
typically exists, although it can be small.

For over-parameterized system of equations, the number of parameters m is larger than the number of 
constraints n. In this case, the system of equations generically has exact solutions, which form a continuous
manifold (or several continuous manifolds), typically of dimension m − n > 0 so that none of the solutions 
are isolated. A specific result in this direction is given in Appendix A. It can be informally stated as the 
following

Proposition 2 (Informal). A feedforward neural network of sufficient width does not have isolated global 
minima. That is, given a global minimum w∗, there are other global minima in any neighborhood of w∗.

It is important to note that such continuous manifolds of solutions generically have non-zero curvature,3
due to the non-linear nature of the system of equations. This results in the lack of local convexity of the loss 
landscape, i.e., the loss landscape is nonconvex in any neighborhood of a solution (i.e., a global minimizer of 
L). This can be seen from the following argument. Suppose that the loss function landscape of L is convex 
within a ball B that intersects the set of global minimizers M. The minimizers of a convex function within 
a convex domain form a convex set, thus M ∩S must also be convex. Hence M ∩S must be a convex subset 
within a lower dimensional linear subspace of Rm and cannot have curvature (either extrinsic ot intrinsic). 
This geometric intuition is illustrated in Fig. 1b, where the set of global minimizers is of dimension one.

To provide an alternative analytical intuition (leading to a precise argument) consider an over-
parameterized system F(w) : Rm → Rn, where m > n, with the square loss function

L(w) := L(F(w),y) = 1
2‖F(w) − y‖2. (10)

The Hessian matrix of the loss function takes the form

HL(w) = DF(w)T ∂2L
∂F2 (w)DF(w)︸ ︷︷ ︸
A(w)

+
n∑

i=1
(F(w) − y)i HFi

(w)
︸ ︷︷ ︸

B(w)

, (11)

3 Both extrinsic, the second fundamental form, and intrinsic Gaussian curvature.
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where HFi
(w) ∈ Rm×m is the Hessian matrix of ith output of F with respect to w.

Let w∗ be a solution to Eq. (2). Since w∗ is a global minimizer of L, B(w∗) = 0. We note that A(w∗) is 
a positive semi-definite matrix of rank at most n with at least m − n zero eigenvalues.

Yet, in a neighborhood of w∗ there typically are points where B(w) has rank m. As we show below, this 
observation, together with a mild technical assumption on the loss, implies that HL(w) cannot be positive 
semi-definite in any ball around w∗ and hence the loss landscape is not locally convex. To see why this is 
the case, consider an example of a system with only one equation (n = 1). The loss function takes the form 
as L(w) = 1

2 (F(w) − y)2, y ∈ R and the Hessian of the loss function can be written as

HL(w) = DF(w)TDF(w) + (F(w) − y)HF (w). (12)

Let w∗ be a solution to F(w∗) = y and suppose that DF(w∗) does not vanish. In the neighborhood of w∗, 
there exist arbitrarily close points w∗ + δ and w∗ − δ, such that F(w∗ + δ) − y > 0 and F(w∗ − δ) − y < 0. 
Assuming that the rank of HF(w∗) is greater than one, and noting that the rank of DF(w)TDF(w) is 
at most one in this example, it is easy to see that either HL(w∗ + δ) or HL(w∗ − δ) must have negative 
eigenvalues, which rules out local convexity at w∗.

A more general version of this argument is given in the following:

Proposition 3 (Local non-convexity). Consider an over-parameterized system F : Rm → Rn, and the square 
loss function Eq. (10). Let w∗ be a global minimizer of the loss function, i.e., L(w∗) = 0. Suppose that 
DF(w∗) �= 0 and, for at least one i ∈ [n], rank(HFi

(w∗)) > 2n. Then L(w) is not convex in any neighbor-
hood of w∗.

Remark 2. Note that in general we do not expect DF to vanish at w∗ as there is no reason why a solution 
to Eq. (2) should be a critical point of F .

Remark 3. For a general (non-square) loss function L(w), the assumption in Proposition 3 that DF(w∗) �= 0
is replaced by the condition 

(
d
dw

∂L
∂F

)
(w∗) �= 0.

A full proof of Proposition 3 for a general loss function can be found in Appendix B.

Comparison to under-parameterized systems. For under-parameterized systems, local minima are generally 
isolated, as illustrated in Fig. 1a. Since HL(w∗) is generically positive definite when w∗ is an isolated local 
minimizer, by the continuity of HL(·), positive definiteness holds in the neighborhood of w∗. Therefore, 
L(w) is locally convex around w∗.

4. Over-parameterized non-linear systems are PL∗ on most of the parameter space

In this section we argue that loss landscapes of over-parameterized systems satisfy the PL∗ condition 
across most of their parameter space. We begin by defining uniform conditioning of a system, an analytical 
condition closely related to PL∗.

Definition 3 (Uniform conditioning). We say that F(w) is μ-uniformly conditioned (μ > 0) on S ⊂ Rm if 
the smallest eigenvalue of its tangent kernel K(w) (defined in Eq. (4)) satisfies

λmin(K(w)) ≥ μ, ∀w ∈ S. (13)

The following important connection shows that uniform conditioning of the system is sufficient for the 
corresponding square loss landscape to satisfy the PL∗ condition.
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Theorem 1 (Uniform conditioning ⇒ PL∗ condition). If F(w) is μ-uniformly conditioned, on a set S ⊂ Rm, 
then the square loss function L(w) = 1

2‖F(w) − y‖2 satisfies μ-PL∗ condition on S.

Proof.

1
2‖∇L(w)‖2

= 1
2(F(w) − y)TK(w)(F(w) − y) ≥ 1

2λmin(K(w))‖F(w) − y‖2 = λmin(K(w))L(w) ≥ μL(w). �
We will now provide some intuition for why we expect λmin(K(w)) to be separated from zero over most 

but not all of the optimization landscape. The key observation is that

rankK(w) = rank
(
DF(w)DFT (w)

)
= rankDF(w)

Note that kernel K(w) is an n ×n positive semi-definite matrix by definition. Hence the singular set Ssing, 
where the tangent kernel is degenerate, can be written as

Ssing = {w ∈ Rm |λmin(K(w)) = 0} = {w ∈ Rm | rankDF(w) < n}.

Generically, rankDF(w) = min(m, n). Thus for over-parameterized systems, when m > n, we expect Ssing

to have positive codimension and to be a set of measure zero. In contrast, in under-parametrized settings, 
m < n and the tangent kernel is always degenerate, λmin(K(w)) ≡ 0 so such systems cannot be uniformly 
conditioned according to the definition above. Furthermore, while Eq. (13) provides a sufficient condition, 
it’s also in a certain sense necessary:

Proposition 4. If λmin(K(w0)) = 0 then the system F(w) = y cannot be PL∗ for all y on any set S
containing w0.

Proof. Since λmin(K(w0)) = 0, the matrix K(w0) has a non-trivial null-space. Therefore we can choose y
so that K(w0)(F(w0) − y) = 0 and F(w0) − y �= 0. We have

1
2‖∇L(w0)‖2 = 1

2(F(w0) − y)TK(w0)(F(w0) − y) = 0

and hence the PL∗ condition cannot be satisfied at w0. �
Thus we see that only over-parameterized systems can be PL∗, if we want that condition to hold for any 

label vector y.
By parameter counting, it is easy to see that the codimension of the singular set Ssing is expected to 

be m − n + 1. Thus, on a compact set, for μ sufficiently small, points which are not μ-PL∗ will be found 
around Ssing, a low-dimensional subset of Rm. This is represented graphically in Fig. 4. Note that the more 
over-parameterization we have, the larger the codimension of Ssing is expected to be.

To see a particularly simple example of this phenomenon, consider the case when DF(w) is a random 
matrix with Gaussian entries.4 Denote by

κ = λmax(K(w))
λmin(K(w))

4 In this the matrix “DF(w)” does not have to correspond to an actual map F , rather the intention is to illustrate how over-
parameterization leads to better conditioning.
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Fig. 4. μ-PL∗ domain and the singular set. We expect points away from the singular set to satisfy μ-PL∗ condition for sufficiently 
small μ.

the condition number of K(w). Note that by definition κ ≥ 1. It is shown in [9] that (assuming m > n)

E(log κ) < 2 log m

m− n + 1 + 5.

We see that as the amount of over-parameterization increases κ converges in expectation (and also can be 
shown with high probability) to a small constant. While this example is rather special, it is representative 
of the concept that over-parameterization helps with conditioning. In particular, as we discuss below in 
Section 4.2, wide neural networks satisfy the PL∗ with high probability within a random ball of a constant 
radius.

We will now provide techniques for proving that the PL∗ condition holds for specific systems and later 
in Section 4.2 we will show how these techniques apply to wide neural networks, demonstrating that they 
are PL∗. In Section 5 we discuss the implications of the PL∗ condition for the existence of solutions and 
convergence of (S)GD, in particular for deep neural networks.

4.1. Techniques for establishing the PL∗ condition

While we expect typical over-parameterized systems to satisfy the PL∗ condition at most points, directly 
analyzing the smallest eigenvalue of the corresponding kernel matrix is often difficult. Below we describe 
two methods for demonstrating the PL∗ condition of a system holds in a ball of a certain radius. First 
method is based on the observation that is well-conditioned in a ball provided it is well-conditioned at its 
center and the Hessian norm is not large compared to the radius of the ball. Interestingly, this “Hessian 
control” condition holds for a broad class of non-linear systems. In particular, as discussed in Sec 4.2, wide 
neural networks with linear output layer have small Hessian norm. In Appendix C, we use a simple family 
of neural models to illustrate the intuition behind the small Hessian norm of neural networks.

The second approach to demonstrating conditioning is by noticing that it is preserved under well-behaved 
transformations of the input or output or when composing certain models.

Combining these methods yields a general result on PL∗ condition for wide neural networks in Section 4.2.

Uniform conditioning through Hessian spectral norm. We will now show that controlling the norm of the 
Hessian tensor for the map F leads to well-conditioned systems. The idea of the analysis is that the change 
of the tangent kernel of F(w) can be bounded in terms of the norm of the Hessian of F(w). Intuitively, 
this is analogous to the mean value theorem, bounding the first derivative of F by its second derivative. If 
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the Hessian norm is sufficiently small, the change of the tangent kernel and hence its conditioning can be 
controlled in a ball B(w0, R) with a finite radius, as long as the tangent kernel matrix at the center point 
K(w0) is well-conditioned.

Theorem 2 (PL∗ condition via Hessian norm). Given a point w0 ∈ Rm, suppose the tangent kernel matrix 
K(w0) is strictly positive definite, i.e., λ0 := λmin(K(w0)) > 0. If the Hessian spectral norm ‖HF‖ ≤

λ0−μ
2LF

√
nR

holds within the ball B(w0, R) for some R > 0 and μ > 0, then the tangent kernel K(w) is μ-
uniformly conditioned in the ball B(w0, R). Hence, the square loss L(w) satisfies the μ-PL∗ condition in 
B(w0, R).

Proof. First, let’s consider the difference between the tangent kernel matrices at w ∈ B(w0, R) and at w0.
By the assumption, we have, for all v ∈ B(w0, R), ‖HF (v)‖ < λ0−μ

2LF
√
nR

. Hence, for each i ∈ [n], 
‖HFi

(w)‖2 < λ0−μ
2LF

√
nR

. Now, consider an arbitrary point w ∈ B(w0, R). For all i ∈ [n], we have:

DFi(w) = DFi(w0) +
1∫

0

HFi
(w0 + τ(w − w0))(w − w0)dτ. (14)

Since τ is in [0, 1], w0 + τ(w − w0) is on the line segment S(w0, w) between w0 and w, which is inside of 
the ball B(w0, R). Hence,

‖DFi(w) −DFi(w0)‖ ≤ sup
τ∈[0,1]

‖HFi
(w0 + τ(w − w0))‖2 · ‖w − w0‖ ≤ λ0 − μ

2LF
√
nR

·R = λ0 − μ

2LF
√
n
.

In the second inequality above, we used the fact that ‖HFi
‖2 < λ0−μ

2LF
√
nR

in the ball B(w0, R). Hence,

‖DF(w) −DF(w0)‖F =
√∑

i∈[n]

‖DFi(w) −DFi(w0)‖2 ≤
√
n
λ0 − μ

2LF
√
n

= λ0 − μ

2LF
.

Then, the spectral norm of the tangent kernel change is bounded by

‖K(w) −K(w0)‖2 = ‖DF(w)DF(w)T −DF(w0)DF(w0)T ‖2

= ‖DF(w) (DF(w) −DF(w0))T + (DF(w) −DF(w0))DF(w0)T ‖2

≤ ‖DF(w)‖2‖DF(w) −DF(w0)‖2 + ‖DF(w) −DF(w0)‖2‖DF(w0)‖2

≤ LF · ‖DF(w) −DF(w0)‖F + ‖DF(w) −DF(w0)‖F · LF

≤ 2LF · λ0 − μ

2LF

= λ0 − μ.

In the second inequality above, we used the LF -Lipschitz continuity of F and the fact that ‖A‖2 ≤ ‖A‖F
for a matrix A.

By triangular inequality, we have, at any point w ∈ B(w0, R),

λmin(K(w)) ≥ λmin(K(w0)) − ‖K(w) −K(w0)‖2 ≥ μ. (15)

Hence, the tangent kernel is μ-uniformly conditioned in the ball B(w0, R).
By Theorem 1, we immediately have that the square loss L(w) satisfies the μ-PL∗ condition in the ball 

B(w0, R). �
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Below in Section 4.2, we will see that wide neural networks with linear output layer indeed have small 
Hessian norms.

Conditioning of transformed systems. We now discuss why the conditioning of a system F(w) = y is pre-
served under transformations of the domain or range of F , as long as the original system is well-conditioned 
and the transformation has a bounded inverse.

Remark 4. Note that the even if the original system had a small Hessian norm, there is no such guarantee 
for the transformed system.

Consider a transformation Φ : Rn → Rn that, composed with F , results in a new transformed system 
Φ ◦ F(w) = y. Put

ρ := inf
w∈B(w0,R)

1
‖J−1

Φ (w)‖2
, (16)

where JΦ(w) := JΦ(F(w)) is the Jacobian of Φ evaluated at F(w). We will assume that ρ > 0.

Theorem 3. If a system F is μ-uniformly conditioned in a ball B(w0, R) with R > 0, then the transformed 
system Φ ◦F(w) is μρ2-uniformly conditioned in B(w0, R). Hence, the square loss function 12‖Φ ◦F(w) −y‖2

satisfies the μρ2-PL∗ condition in B(w0, R).

Proof. First, note that,

KΦ◦F (w) = ∇(Φ ◦ F)(w)∇(Φ ◦ F)T (w) = JΦ(w)KF (w;X)JΦ(w)T .

Hence, if F(w) is μ-uniformly conditioned in B(w0, R), i.e. λmin(KF (w)) ≥ μ, we have for any v ∈ Rn with 
‖v‖ = 1,

vTKΦ◦F (w)v = (JΦ(w)Tv)TKF (w)(JΦ(w)Tv)

≥ λmin(KF (w))‖JΦ(w)Tv‖2

≥ λmin(KF (w))/‖J−1
Φ (w)‖2

2 ≥ μρ2.

Applying Theorem 1, we immediately obtain that 1
2‖Φ ◦ F(w) − y‖2 satisfies μρ2-PL∗ condition in 

B(w0, R). �
Remark 5. A result analogous to Theorem 3 is easy to obtain for a system with transformed input F◦Ψ(w) =
y. Assume the transformation map Ψ : Rm → Rm that applies on the input of the system w satisfies

ρ := inf
w∈B(w0,R)

1
‖J−1

Ψ (w)‖2
> 0. (17)

If F is μ-uniformly conditioned with respect to Ψ(w) in B(w0, R), then an analysis similar to Theorem 3
shows that F ◦ Ψ is also μρ2-uniformly conditioned in B(w0, R).

Conditioning of composition models. Although composing different large models often leads to non-constant 
tangent kernels, the corresponding tangent kernels can also be uniformly conditioned, under certain condi-
tions. Consider the composition of two models h := g ◦ f , where f : Rd → Rd′ and g : Rd′ → Rd′′ . Denote 
wf and wg as the parameters of model f and g respectively. Then, the parameters of the composition model 
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h are w := (wg, wf ). Examples of the composition models include “bottleneck” neural networks, where the 
modules below or above the bottleneck layer can be considered as the composing (sub-)models.

Let’s denote the tangent kernel matrices of models g and f by Kg(wg; Z) and Kf (wf ; X ) respectively, 
where the second arguments, Z and X , are the datasets that the tangent kernel matrices are evaluated on. 
Given a dataset D = {(xi, yi)}ni=1, denote f(D) as {(f(xi), yi)}ni=1.

Proposition 5. Consider the composition model h = g ◦ f with parameters w = (wg, wf ). Given a dataset 
D, the tangent kernel matrix of h takes the form:

Kh(w;D) = Kg(wg; f(D)) + Jg(f(D))Kf (wf ;D)Jg(f(D))T ,

where Jg(f(D)) ∈ Rd′′×d′ is the Jacobian of g w.r.t. f evaluated on f(D).

From the above proposition, we see that the tangent kernel of the composition model h can be decomposed 
into the sum of two positive semi-definite matrices, hence the minimum eigenvalue of Kh can be lower 
bounded by

λmin(Kh(w)) ≥ λmin(Kg(wg; f(D))). (18)

We note that g takes the outputs of f as inputs which depends on wf , while for the model f the inputs 
are fixed. Hence, if the model g is uniformly conditioned at all the inputs provided by the model f , we can 
expect the uniform conditioning of the composition model h.

We provide a simple illustrative example for how a “composition control” can be used to show that a 
“bottleneck” neural network satisfies the PL∗ condition in Appendix D.

4.2. Wide neural networks satisfy PL∗ condition

In this subsection, we show that wide neural networks satisfy a PL∗ condition, using the techniques we 
developed in the last subsection.

An L-layer (feedforward) neural network f(W; x), with parameters W and input x, is defined as follows:

α(0) = x,

α(l) = σl

(
1

√
ml−1

W (l)α(l−1)
)
, ∀l = 1, 2, · · · , L + 1,

f(W;x) = α(L+1). (19)

Here, ml is the width (i.e., number of neurons) of l-th layer, α(l) ∈ Rml denotes the vector of l-th hidden 
layer neurons, W := {W (1), W (2), . . . , W (L), W (L+1)} denotes the collection of the parameters (or weights) 
W (l) ∈ Rml×ml−1 of each layer, and σl is the activation function of l-th layer, e.g., sigmoid, tanh, linear 
activation. We also denote the width of the neural network as m := minl∈[L] ml, i.e., the minimal width of the 
hidden layers. In the following analysis, we assume that the activation functions σl are twice differentiable. 
Admittedly, this assumption excludes the popular ReLU activation function, which is not differentiable. 
However, it is likely that similar results can be obtained in for ReLU activation (see, e.g., [12,38] for related 
analyses in that setting).

Remark 6. The above definition of neural networks does not include convolutional (CNN) and residual 
(ResNet) neural networks. In Appendix E, we show that both CNN and ResNet also satisfy the PL∗

condition. Please see the definitions and analysis there.
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We study the loss landscape of wide neural networks in regions around randomly chosen points in param-
eter space. Specifically, we consider the ball B(W0, R), which has a fixed radius R > 0 (we will see later, in 
Section 5, that R can be chosen to cover the whole optimization path) and is around a random parameter 
point W0, i.e., W (l)

0 ∼ N (0, Iml×ml−1) for l ∈ [L + 1]. Note that such a random parameter point W0 is a 
common choice to initialize a neural network. Importantly, the tangent kernel matrix at W0 is generally 
strictly positive definite, i.e., λmin(K(W0)) > 0. Indeed, this is proven for infinitely wide networks as long 
as the training data is not degenerate (see Theorem 3.1 of [12] and Proposition F.1 and F.2 of [13]). As for 
finite width networks, with high probability w.r.t. the initialization randomness, its tangent kernel K(W0)
is close to that of the infinite network and the minimum eigenvalue λmin(K(W0)) = O(1).

Using the techniques in Section 4.1, the following theorem shows that neural networks with sufficient 
width satisfies a PL∗ condition over a ball of any fixed radius around W0, as long as the tangent kernel 
K(W0) is strictly positive definite.

Theorem 4 (Wide neural networks satisfy PL∗ condition). Consider the neural network f(W; x) in Eq. (19), 
and a random parameter setting W0 such that W (l)

0 ∼ N (0, Iml×ml−1) for l ∈ [L + 1]. Suppose that the last 
layer activation σL+1 satisfies |σ′

L+1(z)| ≥ ρ > 0 and that λ0 := λmin(K(W0)) > 0. For any μ ∈ (0, λ0ρ
2), 

if the width of the network

m = Ω̃
(

nR6L+2

(λ0 − μρ−2)2

)
, (20)

then the square loss function satisfies μ-PL∗ condition over the ball B(w0, R).

Remark 7. In fact, it is not necessary to require |σ′
L+1(z)| to be greater than ρ for all z. The theorem 

still holds as long as |σ′
L+1(z)| > ρ is true for all values z actually achieved by the output neuron before 

activation.

This theorem tells that while the loss landscape of wide neural networks is nowhere convex (as seen 
in Section 3), it can still can be described by the PL∗ condition at many points, in line with our general 
discussion.

Proof of Theorem 4. We divide the proof into two distinct steps based on representing an arbitrary neural 
network as a composition of network with a linear output layer and an output non-linearity σL+1(·). In Step 
1 we prove the PL∗ condition for the case of a network with a linear output layer (i.e., σL+1(z) ≡ z). The 
argument relies on the fact that wide neural networks with linear output layer have small Hessian norm 
in a ball around initialization. In Step 2 for general networks we observe that an arbitrary neural network 
is simply a neural network with a linear output layer from Step 1 with output transformed by applying 
σL+1(z) coordinate-wise. We obtain the result by combining Theorem 3 with Step 1.

Step 1. Linear output layer: σL+1(z) ≡ z. In this case, ρ = 1 and the output layer of the network has a 
linear form, i.e., a linear combination of the units from the last hidden layer.

As was shown in [24], for this type of network with sufficient width, the model Hessian matrix has 
arbitrarily small spectral norm (a transition to linearity). This is formulated in the following theorem:

Theorem 5 (Theorem 3.2 of [24]: transition to linearity). Consider a neural network f(W; x) of the form 
Eq. (19). Let m be the minimum of the hidden layer widths, i.e., m = minl∈[L] ml. Given any fixed R > 0, 
and any W ∈ B(W0, R) := {W : ‖W−W0‖ ≤ R}, with high probability over the initialization, the Hessian 
spectral norm satisfies the following:

‖Hf (W)‖ = Õ
(
R3L/

√
m
)
. (21)
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In Eq. (21), we explicitly write out the dependence of Hessian norm on the radius R, according to the 
proof in [24].

Directly plugging Eq. (21) into the condition of Theorem 2, letting ε = λ0 − μ and noticing that ρ = 1, 
we directly have the expression for the width m.

Step 2. General networks: σL+1(·) is non-linear. Wide neural networks with non-linear output layer generally 
do not exhibit transition to linearity or near-constant tangent kernel, as shown in [24]. Despite that, these 
wide networks still satisfy the PL∗ condition in the ball B(W0, R). Observe that this type of network can 
be viewed as a composition of a non-linear transformation function σL+1 with a network f̃ which has a 
linear output layer:

f(W;x) = σL+1(f̃(W;x)). (22)

By the same argument as in Step 1, we see that f̃ , with the width as in Eq. (20), is μ
ρ2 -uniformly conditioned.

Now we apply our analysis for transformed systems in Theorem 3. In this case, the transformation map 
Φ becomes a coordinate-wise transformation of the output given by

Φ(·) = diag(σL+1(·), σL+1(·), · · · , σL+1(·)︸ ︷︷ ︸
n

), (23)

and the norm of the inverse Jacobian matrix, ‖J−1
Φ (w)‖2 is

‖J−1
Φ (w)‖2 = 1

mini∈[n]
∣∣σ′

L+1(f̃(w;xi))
∣∣ ≤ ρ−1. (24)

Hence, the μ
ρ2 -uniform conditioning of f̃ immediately implies μ-uniform conditioning of f , as desired.

5. PL∗ condition in a ball guarantees existence of solutions and fast convergence of (S)GD

In this section, we show that fast convergence of gradient descent methods is guaranteed by the PL∗

condition in a ball with appropriate size. We assume the map F(w) is LF -Lipschitz continuous and βF -
smooth on the local region S that we considered. In what follows S will typically be a Euclidean ball 
B(w0, R), with an appropriate radius R, chosen to cover the optimization path of GD or SGD.

First, we define the (non-linear) condition number, as follows:

Definition 4 (Condition number). Consider a system in Eq. (2), with a loss function L(w) = L(F(w), y)
and a set S ⊂ Rm. Suppose the loss L(w) is PL∗ on S and let μ > 0 be the largest number such that μ-PL∗

holds on S. Define the condition number κL,F(S):

κL,F (S) := supw∈S λmax(HL(w))
μ

, (25)

where HL(w) is the Hessian matrix of the loss function. The condition number for the square loss (used 
throughout the paper) will be written as simply κF (S), omitting the subscript L.

Remark 8. In the special case of a linear system F(w) = Aw with square loss 12‖Aw−y‖2, both the Hessian 
HL = ATA and the tangent kernel K(w) = A AT are constant matrices. As AAT and ATA have the same 
set of non-zero eigenvalues, the largest eigenvalue λmax(HL) is equal to λmax(K). In this case, the condition 
number κF (S) reduces to the standard condition number of the tangent kernel K,

κF (S) = λmax(K)
. (26)
λmin(K)
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Since F is LF -Lipschitz continuous and βF smooth by assumption, we directly get the following by 
substituting the definition of the square loss function into Eq. (25).

Proposition 6. For the square loss function L, the condition number is upper bounded by:

κF (S) ≤ L2
F + βF · supw∈S ‖F(w) − y‖

μ
. (27)

Remark 9. It is easy to see that the usual condition number κ(w) = λmax(K(w))/λmin(K(w)) of the tangent 
kernel K(w), is upper bounded by κF (S).

Now, we are ready to present an optimization theory based on the PL∗ condition. First, let the arbitrary 
set S be a Euclidean ball B(w0, R) around the initialization w0 of gradient descent methods, with a 
reasonably large but finite radius R. The following theorem shows that satisfaction of the PL∗ condition 
on B(w0, R) implies the existence of at least one global solution of the system in the same ball B(w0, R). 
Moreover, following the original argument from [32], the PL∗ condition also implies fast convergence of 
gradient descent to a global solution w∗ in the ball B(w0, R).

Theorem 6 (Local PL∗ condition ⇒ existence of a solution + fast convergence). Suppose the system F is 
LF -Lipschitz continuous and βF -smooth. Suppose the square loss L(w) satisfies the μ-PL∗ condition in the 
ball B(w0, R) := {w ∈ Rm : ‖w − w0‖ ≤ R} with R = 2LF‖F(w0)−y‖

μ . Then we have the following:

(a) Existence of a solution: There exists a solution (global minimizer of L) w∗ ∈ B(w0, R), such that 
F(w∗) = y.

(b) Convergence of GD: Gradient descent with a step size η ≤ 1/(L2
F + βF‖F(w0) − y‖) converges to a 

global solution in B(w0, R), with an exponential (a.k.a. linear) convergence rate:

L(wt) ≤
(
1 − κ−1

F (B(w0, R))
)t L(w0), (28)

where the condition number κF (B(w0, R)) = 1
ημ .

The proof of the theorem is deferred to Appendix F.
It is interesting to note that the radius R of the ball B(w0, R) takes a finite value, which means that the 

optimization path {wt}∞t=0 ⊂ B(w0, R) stretches at most a finite length and the optimization happens only 
within a region of definite radius around the initialization point. Hence, the conditioning of the tangent 
kernel and the satisfaction of the PL∗ condition outside of this ball are irrelevant to this optimization and 
are not required.

Indeed, this radius R has to be of order Ω(1). From the LF -Lipschitz continuity of F(w), it follows that 
there is no solution within the distance ‖F(w0) − y‖/LF from the initialization point. Any solution must 
have a Euclidean distance away from w0 at least Rmin = ‖F(w0) −y‖/LF , which is finite. This means that 
the parameter update Δw = w∗ − w0 cannot be too small in terms of the Euclidean distance. However, 
due to the large number m of the model parameters, each individual parameter wi may only undergo a 
small change during the gradient descent training, i.e., |wi −w0,i| = O(1/

√
m). That, indeed, this has been 

observed theoretically for wide neural networks (see, e.g., the discussion in [24]).
Below, we make an extension of the above theory: from (deterministic) gradient descent to stochastic 

gradient descent (SGD).

Convergence of SGD. In most practical machine learning settings, including typical problems of supervised 
learning, the loss function L(w) has the form
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L(w) =
n∑

i=1
�i(w).

For example, for the square loss L(w) =
∑n

i=1 �i(w), where �i(w) = 1
2(Fi(w) − yi)2. Here the loss �i

corresponds simply to the loss for ith equation. Mini-batch SGD updates the parameter w, according to 
the gradient of s individual loss functions �i(w) at a time:

wt+1 = wt − η
∑

i∈S⊂[n]

∇�i(wt),∀t ∈ N.

We will assume that each element of the set S is chosen uniformly at random at every iteration.
We now show that the PL∗ condition on L also implies exponential convergence of SGD within a ball, 

an SGD analogue of Theorem 6. Our result can be considered as a local version of Theorem 1 in [4] which 
showed exponential convergence of SGD, assuming PL condition holds in the entire parameter space. See 
also [30] for a related result.

Theorem 7. Given 0 < δ < 1, assume each �i(w) is β-smooth and L(w) satisfies the μ-PL∗ condition in the 

ball B(w0, R) with R = 2n
√

2βL(w0)
μδ . Then, with probability 1 − δ, SGD with mini-batch size s ∈ N and step 

size η ≤ nμ
nβ(n2β+μ(s−1)) converges to a global solution in the ball B(w0, R), with an exponential convergence 

rate:

E[L(wt)] ≤
(
1 − μsη

n

)t

L(w0). (29)

The proof is deferred to Appendix G.

5.1. Convergence for wide neural networks

Using the optimization theory developed above, we can now show convergence of (S)GD for sufficiently 
wide neural networks. As we have seen in Section 4.2, the loss landscapes of wide neural networks f(W; x)
defined in Eq. (19) obey the PL∗ condition over a ball B(W0, R) of an arbitrary radius R. We will now 
show convergence of (S)GD for these models. Since the argument is essentially the same, we state the main 
result for GD and note the difference with SGD in Remark 10.

As before (Section 4.2) write f(W; x) = σL+1(f̃(W; x)) where f̃(W; x) is a neural network with a linear 
output layer and we denoted F(W) = (f(W; x1), . . . , f(W; xn)), F̃(W) = (f̃(W; x1), . . . , f̃(W; xn)) and 
y = (y1, . . . , yn). We use tilde, e.g., Õ(·) to suppress logarithmic terms in Big-O notation.

We further assume σL+1(·) is Lσ-Lipschitz continuous and βσ-smooth.

Theorem 8. Consider the neural network f(W; x) and its random initialization W0 under the same con-
dition as in Theorem 4. If the network width satisfies m = Ω̃

(
n

μ6L+2(λ0−μρ−2)2

)
, then, with an appropriate 

step size, gradient descent converges to a global minimizer in the ball B(W0, R), where R = O(1/μ), with 
an exponential convergence rate:

L(Wt) ≤ (1 − ημ)tL(W0). (30)

Proof. The result is obtained by combining Theorem 4 and 6, after setting the ball radius R =
2LF‖F(W0) − y‖/μ and choosing the step size 0 < η < 1

L2
F+βF‖F(W0)−y‖ .

It remains to verify that all of the quantities LF , βF and ‖F(W0) −y‖ are of order O(1) with respect to 
the network width m. First note that, with the random initialization of W0 as in Theorem 4, it is shown in 
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[17] that with high probability, f(W0; x) = O(1) when the width is sufficiently large under mild assumption 
on the non-linearity functions σl(·), l = 1, ..., L + 1. Hence ‖F(W0) − y‖ = O(1).

Using the definition of LF , we have

LF = sup
W∈B(W0,R)

‖DF(W)‖

≤ Lσ

(
‖DF̃(W0)‖ + R

√
n · sup

W∈B(W0,R)
‖HF̃ (W)‖

)

=
√

‖KF̃ (W0)‖Lσ + LσR
√
n · Õ

(
1√
m

)
= O(1),

where the last inequality follows from Theorem 5, and ‖KF̃ (W0)‖ = O(1) with high probability over the 
random initialization.

Finally, βF is bounded as follows:

βF = sup
W∈B(W0,R)

‖HF (W)‖

= sup
W∈B(W0,R)

‖Hfk(W)‖

= sup
W∈B(W0,R)

∥∥∥σ′′
L+1

(
f̃k(W)

)
Df̃k(W)Df̃k(W)T + σ′

L+1
(
f̃k(W)

)
Hf̃k

(W)
∥∥∥

≤ βσ

(
sup

W∈B(W0,R)
‖Df̃k(W)‖

)2

+ Lσ sup
W∈B(W0,R)

‖Hf̃k
(W)‖

≤ βσ ·O(1) + Lσ · Õ
(

1√
m

)
= O(1),

where k = argmax
i∈[n]

(
sup

W∈B(W0,R)
‖Hfi(W)‖

)
. �

Remark 10. Using the same argument, a result similar to Theorem 8 but with a different convergence rate,

L(Wt) ≤ (1 − ηsμ)tL(W0), (31)

and with difference constants, can be obtained for SGD by applying Theorem 7.

Note that (near) constancy of the tangent kernel is not a necessary condition for exponential convergence 
of gradient descent or (S)GD.

6. “Almost” over-parameterized systems: relaxation of PL∗ to PL∗
ε condition

In certain situations, for example mildly under-parameterized cases, the PL∗ condition may not hold 
exactly, since an exact solution for system F(w) = w may not exist. In practice, however, the algorithms 
are rarely run a until exact convergence. Most of the time, early stopping is employed, i.e., the algorithm is 
stopped once it achieves a certain loss ε > 0. To account for that, we define PL∗

ε , a relaxed variant of PL∗

condition, which still implies fast convergence of gradient-based methods up to loss ε. While we propose a 
mathematical framework for “almost” over-parameterization, making connections to specific systems, such 
is neural networks, is left as a direction for future research.
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Fig. 5. The loss landscape of under-parameterized systems. In the set Sε, where the loss is larger than ε, PL∗ still holds. Beyond 
that, the loss landscape can be arbitrary, which is the grey area, and PL∗ doesn’t hold any more.

Definition 5 (PL∗
ε condition). Given a set S ⊂ Rm and ε > 0, define the set Sε := {w ∈ S : L(w) ≥ ε}. A 

loss function L(w) is μ-PL∗
ε on S, if the following holds:

1
2‖∇L(w)‖2 ≥ μL(w), ∀w ∈ Sε. (32)

Intuitively, the PL∗
ε condition is the same as PL∗ condition, except that the loss landscape can be arbitrary 

wherever the loss is less than ε. This is illustrated in Fig. 5.
Below, following a similar argument above, we show that a local PL∗

ε condition guarantees fast convergence 
to an approximation of a global minimizer. Basically, the gradient descent terminates when the loss is less 
than ε.

Theorem 9 (Local PL∗
ε condition ⇒ fast convergence). Assume the loss function L(w) (not necessarily the 

square loss) is β-smooth and satisfies the μ-PL∗
ε condition in the ball B(w0, R) := {w ∈ Rm : ‖w−w0‖ ≤ R}

with R = 2
√

2βL(w0)
μ . We have the following:

(a) Existence of a point which makes the loss less than ε: There exists a point w∗ ∈ B(w0, R), such that 
L(w∗) < ε.

(b) Convergence of GD: Gradient descent with the step size η = 1/ supw∈B(w0,R) ‖HL(w)‖2 after T =
Ω(log(1/ε)) iterations satisfies L(wT ) < ε in the ball B(w0, R), with an exponential (also known as 
linear) convergence rate:

L(wt) ≤
(
1 − κ−1

L,F (B(w0, R))
)t

L(w0), for all t ≤ T, (33)

where the condition number κL,F (B(w0, R)) = 1
ημ .

Proof. If L(w0) < ε, we let w∗ = w0 and we are done.
Suppose L(w0) ≥ ε. Following the similar analysis to the proof of Theorem 6, as long as L(wt) ≥ ε for 

t ≥ 0, we have

L(wt) ≤ (1 − ημ)tL(w0). (34)

Hence there must exist a minimum T > 0 such that

L(wT ) < ε. (35)

It’s not hard to see that ε ≤ (1 − ημ)TL(w0), from which we get T = Ω(log(1/ε)).
And obviously, w0, w1, ..., wT are also in the ball B(w0, R) with R = 2

√
2βL(w0) . �
μ
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Following similar analysis, when a PL∗
ε condition holds over a ball, SGD converges exponentially to an 

approximation of the global solution.

Theorem 10. Assume each �i(w) is γ-smooth and L(w) satisfies the μ-PL∗
ε condition in the ball B(w0, R)

with R = 2n
√

2γ
√

L(w0)
μδ where δ > 0. Then, with probability 1 − δ, SGD with mini-batch size s ∈ N and step 

size η∗(s) = nμ
nγ(n2γ+μ(s−1)) after at most T = Ω(log(1/ε)) iterations satisfies min (E[L(wT )],L(wT )) < ε

in the ball B(w0, R), with an exponential convergence rate:

E[L(wt)] ≤
(

1 − μsη∗(s)
n

)t

L(w0), t ≤ T. (36)

Proof. If L(w0) < ε, we let T = 0 and we are done.
Suppose L(w0) ≥ ε. By the similar analysis in the proof of Theorem 7, with the μ-PL∗

ε condition, for any 
mini-batch size s, the mini-batch SGD with step size η∗(s) := nμ

nλ(n2λ+μ(s−1)) has an exponential convergence 
rate:

E[L(wt)] ≤
(

1 − μsη∗(s)
n

)t

L(w0), (37)

for all t where L(wt) ≥ ε.
Hence there must exist a minimum T > 0 such that either L(wT ) < ε or E[L(wT )] < ε. Supposing 

E[L(wT )] < ε at time step T , we have ε ≤
(
1 − μsη∗(s)

n

)T

L(w0), therefore T = Ω(log(1/ε)).
And it’s easy to check that with probability 1 − δ, the optimization path w0, w1, ..., wT is covered by the 

ball B(w0, R) with R = 2n
√

2γ
√

L(w0)
μδ . �

While the global landscape of the loss function L(w) can be complex, the conditions above allow us to 
find solutions within a certain ball around the initialization point w0.

7. Concluding thoughts and comments

In this paper we propose a general framework for understanding generically non-convex landscapes and 
optimization of over-parameterized systems using the PL∗ condition. We argued that a PL∗ condition 
generally holds on much of, but not necessarily all of, the parameter space, and shown that this is sufficient 
for the existence of solutions and convergence of gradient-base methods to global minimizers. In contrast, 
it is not possible for loss landscapes of under-parameterized systems ‖F(w) −y‖2 to satisfy PL∗ for any y. 
We conclude with a number of comments and observations.

Linear and non-linear systems. A remarkable property of over-parameterized non-linear systems discussed in 
this work is their strong resemblance to linear systems with respect to optimization by (S)GD, even as their 
dynamics remain nonlinear. In particular, optimization by gradient-based methods and proximity to global 
minimizers is controlled by non-linear condition numbers, similarly to classical analyses of linear systems. 
The key difference is that while for linear systems the condition number is constant, in the non-linear case 
we need a uniform bound in a domain containing the optimization path. Furthermore, increasing the degree 
of over-parameterization generally improves conditioning just like it does for linear systems (cf. [9] and the 
discussion in [31]). In particular, this suggests that the effectiveness of optimization should improve, up to 
a certain limit, with increased over-parameterization.

We note that in contrast to over-parameterized systems, optimization properties of non-linear systems 
in the under-parameterized regime appear very different from those of linear systems.
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Transition over the interpolation threshold: from local convexity to essential non-convexity. Recognizing 
the power of over-parameterization has been a key insight stemming from the practice of deep learning. 
Transition to over-parameterized models with increasing number of parameters – over the interpolation 
threshold – leads to a qualitative change in a range of system properties. Statistically, over-parameterized 
systems enter a new interpolating regime, where increasing the number of parameters, even indefinitely to 
infinity, can improve generalization [5,34]. From the optimization point of view, over-parameterized system 
are generally easier to solve. There has been significant effort (continued in this work) toward understanding 
effectiveness of local methods in this setting [33,12,26,2,18,10,30].

In this paper we note another aspect of this transition, to the best of our knowledge not addressed in the 
existing literature: transition from local convexity to essential non-convexity (see Section 3 for a detailed 
discussion), where the loss function is generally not convex in any neighborhood of a global minimum. This 
observation has important consequences, pointing away from the standard machinery of convex analysis 
and toward PL∗ condition as we have argued in this work. Interestingly, our analyses suggest that this loss 
of local convexity is of little consequence for optimization, at least as far as gradient-based methods are 
concerned.

Transition from over-parameterization to under-parameterization along the optimization path. As discussed 
above, transition over the interpolation threshold occurs when the number of parameters in a variably 
parameterized system exceeds the number of constraints (corresponding to data points in typical ML sce-
narios). Over-parameterization does not refer to the number of parameters as such but to the difference 
between the number of parameters and the number of constraints. While some learning models are very 
large, with billions or even trillions parameters, they are often trained on equally large datasets and are 
thus not necessarily over-parameterized. Yet, it is still tempting to view these models through the lens of 
over-parameterization. While precise technical analysis is beyond the scope of this paper, we conjecture 
that transition between effective over-parameterization to under-parameterization happens along the op-
timization trajectory. Initially, the system behaves as over-parameterized but as the optimization process 
continues, it fails to reach zero. Mathematically it can be represented as our PL∗

ε condition. We speculate 
that for many realistic large models trained on big data the full optimization path lies within the PL∗

ε

domain and hence, functionally, the analyses in this paper apply.

Condition numbers and optimization methods. In this work we concentrate on optimization by gradient 
descent and SGD. Yet, for linear systems of equations and in many other settings, the importance of 
conditioning extends far beyond one specific optimization technique [7]. We expect this to be case in the over-
parameterized non-linear setting as well. To give just one example, we expect that accelerated methods, such 
as the Nesterov’s method [27] and its stochastic gradient extensions in the over-parameterized case [23,35]
to have faster convergence rates for non-linear systems in terms of the condition numbers defined in this 
work.

Equations on manifolds. In this paper we consider systems of equations F(w) = y defined on Euclidean 
spaces and with Euclidean output. A more general setting is to look for solutions of arbitrary systems of 
equations defined by a map between two Riemannian manifolds F : M → N . In that case the loss function 
L needs to be defined on N . The over-parameterization corresponds to the case when dimension dim(M) >
dim(N ). While analyzing gradient descent requires some care on a manifold, most of the mathematical 
machinery, including the definitions of the PL∗ condition and the condition number associated to F , is still 
applicable without significant change. In particular, as we discussed above (see Remark 5 in Section 4.1), 
the condition number is preserved under “well-behaved” coordinate transformations. In contrast, this is 
not the case for the Hessian and thus manifold optimization analyses based on geodesic convexity require 
knowledge about specific coordinate charts, such as those given by the exponential map.

We note that manifold and structural assumptions on the weight vector w is a natural setting for 
addressing many problems in inference. In particular, the important class of convolutional neural networks 
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is an example of such a structural assumption on w, which is made invariant to certain parallel transforms. 
Furthermore, there are many settings, e.g., robot motion planning, where the output of a predictor, y, also 
belongs to a certain manifold.
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Appendix A. Wide neural networks have no isolated local/global minima

In this section, we show that, for feedforward neural networks, if the network width is sufficiently large, 
there is no isolated local/global minima in the loss landscape.

Consider the following feedforward neural networks:

f(W;x) := W (L+1)φL(W (L) · · ·φ1(W (1)x)). (38)

Here, x ∈ Rd is the input, L is the number of hidden layers of the network. Let ml be the width of l-
th layer, l ∈ [L], and m0 = d and mL+1 = c where c is the dimension of the network output. W :=
{W (1), W (2), · · · , W (L), W (L+1)}, with W (l) ∈ Rml−1×ml , is the collection of parameters, and φl is the 
activation function at each hidden layer. The minimal width of hidden layers, i.e., width of the network, is 
denoted as m := min{m1, · · · , mL}. The parameter space is denoted as M. Here, we further assume the 
loss function L(W) is of the form:

L(W) =
n∑

i=1
l(f(W;xi),yi), (39)

where loss l(·, ·) is convex in the first argument, and (xi, yi) ∈ Rd ×Rc is one of the n training samples.

Proposition 7 (No isolated minima). Consider the feedforward neural network in Eq. (38). If the network 
width m ≥ 2c(n + 1)L, given a local (global) minimum W∗ of the loss function Eq. (39), there are always 
other local (global) minima in any neighborhood of W∗.

The main idea of this proposition is based on some of the intermediate-level results of the work [20]. 
Before starting the proof, let’s review some of the important concepts and results therein. To be consistent 
with the notation in this paper, we modify some of their notations.

Definition 6 (Path constant). Consider two parameters W, V ∈ M. If there is a continuous function hW,V :
[0, 1] → M that satisfies hW,V(0) = W, hW,V(1) = V and t �→ L(hW,V(t)) is constant, we say that W
and V are path constant and write W ↔ V.

Path constantness means the two parameters W and V are connected by a continuous path of parameters 
that is contained in a level set of the loss function L.

Lemma 1 (Transitivity). W ↔ V and V ↔ U ⇒ W ↔ U.
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Definition 7 (Block parameters). Consider a number s ∈ {0, 1, · · · } and a parameter W ∈ M. If

1. W (1)
ji = 0 for all j > s;

2. W (l)
ij = 0 for all l ∈ [L] and i > s, and for all l ∈ [L] and j > s;

3. W (L+1)
ij = 0 for all j > s,

we call W an s-upper-block parameter of depth L.
Similarly, if

1. W (1)
ji = 0 for all j ≤ m1 − s;

2. W (l)
ij = 0 for all l ∈ [L] and i ≤ ml − s, and for all l ∈ [L] and j ≤ ml−1 − s;

3. W (L+1)
ij = 0 for all j ≤ mL − s,

we call W an s-lower-block parameter of depth L. We denote the sets of the s-upper-block and s-lower-block 
parameters of depth L by Us,L and Vs,L, respectively.

The key result that we use in this paper is that every parameter is path constant to a block parameter, 
or more formally:

Proposition 8 (Path connections to block parameters [20]). For every parameter W ∈ M and s := c(n +1)L
(n is the number of training samples), there are W, W ∈ M with W ∈ Us,L and W ∈ Vs,L such that 
W ↔ W and W ↔ W.

The above proposition says that, if the network width m is large enough, every parameter is path 
connected to both an upper-block parameter and a lower-block parameter, by continuous paths contained 
in a level set of the loss function.

Now, let’s present the proof of Proposition 7.

Proof of Proposition 7. Let W∗ ∈ M be an arbitrary local/global minimum of the loss function L(W). 
According to Proposition 8, there exists an upper-block parameter W ∈ Us,L ⊂ M and W ∈ Vs,L ⊂ M
such that W ↔ W and W ↔ W. Note that W and W are distinct, because Us,L and Vs,L do not intersect 
except at zero due to m ≥ 2s. This means there must be parameters distinct from W∗ that are connected 
to W∗ via a continuous path contained in a level set of the loss function. Note that all the points (i.e., 
parameters) along this path have the same loss value as L(W∗), hence are local/global minima. Therefore, 
W∗ is not isolated (i.e., there are other local/global minima in any neighborhood of W∗). �
Appendix B. Proof of Proposition 3

Proof. The Hessian matrix of a general loss function L(F(w)) takes the form

HL(w) = DF(w)T ∂2L
∂F2 (w)DF(w) +

n∑
i=1

∂L
∂Fi

(w)HFi
(w).

Recall that HFi
(w) is the Hessian matrix of i-th output of F with respect to w.

We consider the Hessian matrices of L around a global minimizer w∗ of the loss function, i.e., solution 
of the system of equations. Specifically, consider the following two points w∗ + δ and w∗ − δ, which are 
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in a sufficiently small neighborhood of the minimizer w∗. Then the respective Hessian at these two points 
obey

HL(w∗ + δ) = DF(w∗ + δ)T ∂2L
∂F2 (w∗ + δ)DF(w∗ + δ)︸ ︷︷ ︸

A(w∗+δ)

+
n∑

i=1

(
d

dw

(
∂L
∂F (w∗)

)
δ

)
i

HFi
(w∗ + δ) + o(‖δ‖),

HL(w∗ − δ) = DF(w∗ − δ)T ∂2L
∂F2 (w∗ − δ)DF(w∗ − δ)︸ ︷︷ ︸

A(w∗−δ)

−
n∑

i=1

(
d

dw

(
∂L
∂F (w∗)

)
δ

)
i

HFi
(w∗ + δ) + o(‖δ‖).

Note that both the terms A(w∗ + δ) and A(w∗ − δ) are matrices with rank at most n, since DF is of the 
size n ×m.

By the assumption, at least one component HFk
of the Hessian of F satisfies that the rank of HFk

(w∗)
is greater than 2n. By the continuity of the Hessian, we have that, if magnitude of δ is sufficiently small, 
then the ranks of HFk

(w∗ + δ) and HFk
(w∗ − δ) are also greater than 2n.

Hence, we can always find a unit length vector v ∈ Rm s.t.

vTA(w∗ + δ)v = vTA(w∗ − δ)v = 0, (40)

but

vTHFk
(w∗ + δ)v �= 0, vTHFk

(w∗ − δ)v �= 0. (41)

Consequently the vector 〈vTHF1(w∗ + δ)v, . . . , vTHFn
(w∗ + δ)v〉 �= 0 and 〈vTHF1(w∗ − δ)v, . . . ,

vTHFn
(w∗ − δ)v〉 �= 0.

With the same v, we have

vTHL(w∗ + δ)v =
n∑

i=1

(
d

dw

(
∂L
∂F (w∗)

)
δ

)
i

vTHFi
(w∗ + δ)v + o(‖δ‖), (42)

vTHL(w∗ − δ)v = −
n∑

i=1

(
d

dw

(
∂L
∂F (w∗)

)
δ

)
i

vTHFi
(w∗ − δ)v + o(‖δ‖). (43)

In the following, we show that, for sufficiently small δ, vTHL(w∗ + δ)v and vTHL(w∗ − δ)v can not be 
non-negative simultaneously, which immediately implies that HL is not positive semi-definite everywhere 
in the close neighborhood of w∗, hence L is not locally convex at w∗.

Specifically, with the condition d
dw

(
∂L
∂F (w∗)

)
�= 0, for Eq. (42) and Eq. (43) we have the following cases:

Case 1 : If 
∑n

i=1
(

d
dw

(
∂L
∂F (w∗)

)
δ
)
i
vTHFi

(w∗ + δ)v < 0, then directly vTHL(w∗ + δ)v < 0 if δ is small 
enough which completes the proof.

Case 2 : Otherwise if 
∑n

i=1
(

d
dw

(
∂L
∂F (w∗)

)
δ
)
i
vTHFi

(w∗+δ)v > 0, by the continuity of each HFi
(·), we have

−
n∑

i=1

(
d

dw

(
∂L
∂F (w∗)

)
δ

)
i

vTHFi
(w∗ − δ)v

= −
n∑

i=1

(
d

dw

(
∂L
∂F (w∗)

)
δ

)
i

vTHFi
(w∗ + δ)v

+
n∑(

d

dw

(
∂L
∂F (w∗)

)
δ

)
vT (HFi

(w∗ + δ) −HFi
(w∗ − δ))v
i=1 i
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= −
n∑

i=1

(
d

dw

(
∂L
∂F (w∗)

)
δ

)
i

vTHFi
(w∗ + δ)v + O(ε)

< 0,

when δ is small enough.

Note. If 
∑n

i=1
(

d
dw

(
dL
dF (w∗)

)
δ
)
i
vTHFi

(w∗ + δ)v = 0, we can always adjust δ a little so that it turns to 
case 1 or 2.

In conclusion, with certain δ which is arbitrarily small, either vTHL(w∗ + δ)v or vTHL(w∗ − δ)v has 
to be negative which means L(w) is not convex, at some point in the neighborhood of w∗. �
Appendix C. Small Hessian is a feature of certain large models

Here we show that the conditions we have placed on the Hessian spectral norm are not restrictive. In 
fact, they are mathematical freebies as long as the model has certain structure and is large enough. For 
example, if a neural network has a linear output layer and is wide enough, its Hessian spectral norm can be 
arbitrarily small, see [24].

In the following, let’s consider an illustrative example. Let the model f be a linear combination of m
independent sub-models,

f(w;x) = 1
s(m)

m∑
i=1

viαi(wi;x), (44)

where wi is the trainable parameters of the sub-model αi, i ∈ [m], and 1
s(m) is a scaling factor that 

depends on m. The sub-model weights vi are independently randomly chosen from {−1, 1} and not trainable. 
The parameters of the model f are the concatenation of sub-model parameters: w := (w1, · · · , wm) with 
wi ∈ Rp. We make the following mild assumptions.

Assumption 1. For simplicity, we assume that the sub-models αi(wi, x) have the same structure but different 
initial parameters wi,0 due to random initialization. We further assume each sub-model has a Θ(1) output, 
and is second-order differentiable and β-smooth.

Due to the randomness of the sub-model weights vi, the scaling factor 1
s(m) = o(1) w.r.t. the size m of 

the model f (e.g, 1
s(m) = 1√

m
for neural networks [17,24]).

The following theorem states that, as long as the model size m is sufficiently large, the Hessian spectral 
norm of the model f is arbitrarily small.

Theorem 11. Consider the model f defined in Eq. (44). Under Assumption 1, the spectral norm of the 
Hessian of model f satisfies:

‖Hf‖ ≤ β

s(m) . (45)

Proof. An entry (Hf )jk, j, k ∈ Rm×p, of the model Hessian matrix is

(Hf )jk = 1
s(m)

m∑
i=1

vi
∂2αi

∂wj∂wk
=: 1

s(m)

m∑
i=1

vi(Hαi
)jk, (46)

with Hαi
being the Hessian matrix of the sub-model αi. Because the parameters of f are the concatenation 

of sub-model parameters and the sub-models share no common parameters, in the summation of Eq. (46), 
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there must be at most one non-zero term (non-zero only when wj and wk belong to the same model αi. 
Thus, the Hessian spectral norm can be bounded by

‖Hf‖ ≤ 1
s(m) max

i∈[m]
|vi| · ‖Hαi

‖ ≤ 1
s(m) · β. � (47)

Appendix D. An illustrative example of composition models

Consider the model h = g ◦ f as a composition of 2 random Fourier feature models f : R → R and 
g : R → R with:

f(u;x) = 1√
m

m∑
k=1

(uk cos(ωkx) + uk+m sin(ωkx)) , (48)

g(a; z) = 1√
m

m∑
k=1

(ak cos(νkz) + ak+m sin(νkz)) . (49)

Here we set the frequencies ωk ∼ N (0, 1) and νk ∼ N (0, n2), for all k ∈ [m], to be fixed. The trainable 
parameters of the model are (u, a) ∈ R2m × R2m. It’s not hard to see that the model h(x) = g ◦ f(x) can 
be viewed as a 4-layer “bottleneck” neural network where the second hidden layer has only one neuron, i.e. 
the output of f .

For simplicity, we let the input x be 1-dimensional, and denote the training data as x1, ..., xn ∈ R. We 
consider the case of both sub-models, f and g, are large, especially m → ∞.

By Proposition 5, the tangent kernel matrix of h, i.e. Kh, can be decomposed into the sum of two positive 
semi-definite matrices, and the uniform conditioning of Kh can be guaranteed if one of them is uniformly 
conditioned, as demonstrated in Eq. (18). In the following, we show Kg is uniformly conditioned by making 
f well separated.

We assume the training data are not degenerate and the parameters u are randomly initialized. This 
makes sure the initial outputs of f , which are the initial inputs of g, are not degenerate, with overwhelming 
probability. For example, let mini�=j |xi − xj | ≥

√
2 and initialize u by N (0, 100R2) with a given number 

R > 0. Then, we have

f(u0;xi) − f(u0;xj) ∼ N
(

0, 200R2 − 200R2e
−|xi−xj |2

2

)
, ∀i, j ∈ [n].

Since mini�=j |xi − xj | ≥
√

2, the variance V ar := 200R2 − 200R2e
−|xi−xj |2

2 > 100R2. For this Gaussian 
distribution, we have, with probability at least 0.96, that

min
i�=j

|f(u0;xi) − f(u0;xj)| > 2R. (50)

For this model, the partial tangent kernel Kg is the Gaussian kernel in the limit of m → ∞, with the 
following entries:

Kg,ij(u) = exp
(
−n2|f(u;xi) − f(u;xj)|2

2

)
.

By the Gershgorin circle theorem, its smallest eigenvalue is lower bounded by:

inf λmin(Kg(u)) ≥ 1 − (n− 1) exp
(
−n2ρ(S)2

)
,

u∈S 2
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where ρ(S) := infu∈S mini�=j |f(u; xi) − f(u; xj)| is the minimum separation between the outputs of f , i.e., 
inputs of g in S. If ρ(S) ≥

√
2ln(2n− 2)/n, then we have infu∈S λmin(Kg(u)) ≥ 1/2. Therefore, we see that 

the uniform conditioning of Kg, hence that of Kh, is controlled by the separation between the inputs of g, 
i.e., outputs of f .

Within the ball B((u0, a0), R) := {(u, a) : ‖u− u0‖2 + ‖a− a0‖2 ≤ R2} with an arbitrary radius R > 0, 
the outputs of f are always well separated, given that the initial outputs of f are separated by 2R as already 
discussed above. This is because

|f(u;x) − f(u0;x)| = 1√
m

∣∣∣∣∣
m∑

k=1

((uk − u0,k) cos(ωkx) + (uk+m − u0,k+m) sin(ωkx))

∣∣∣∣∣ ≤ ‖u − u0‖ ≤ R,

which leads to ρ(B((u0, a0), R)) > R by Eq. (50). By choosing R appropriately, to be specific, R ≥√
2ln(2n− 2)/n, the uniform conditioning of Kg is satisfied.
Hence, we see that composing large non-linear models may make the tangent kernel no longer constant, 

but the uniform conditioning of the tangent kernel can remain.

Appendix E. Wide CNN and ResNet satisfy PL∗ condition

In this section, we will show that wide Convolutional Neural Networks (CNN) and Residual Neural 
Networks (ResNet) also satisfy the PL∗ condition.

The CNN is defined as follows:

α(0) = x,

α(l) = σl

(
1

√
ml−1

W (l) ∗ α(l−1)
)
, ∀l = 1, 2, . . . , L,

f(W;x) = 1√
mL

〈W (L+1), α(L+1)〉, (51)

where ∗ is the convolution operator (see the definition below) and 〈·, ·〉 is the standard matrix inner product.
Compared to the definition of fully-connected neural networks in Eq. (19), the l-th hidden neurons 

α(l) ∈ Rml×Q is a matrix where ml is the number of channels and Q is the number of pixels, and W (l) ∈
RK×ml×ml−1 is an order 3 tensor where K is the filter size except that W (L+1) ∈ RmL×Q.

For the simplicity of the notation, we give the definition of convolution operation for 1-D CNN in the 
following. We note that it’s not hard to extend to higher dimensional CNNs and one will find that our 
analysis still applies.

(
W (l) ∗ α(l−1)

)
i,q

=
K∑

k=1

ml−1∑
j=1

W
(l)
k,i,jα

(l−1)
j,q+k−K+1

2
, i ∈ [ml], q ∈ [Q]. (52)

The ResNet is similarly defined as follows:

α(0) = x,

α(l) = σl

(
1

√
ml−1

W (l)α(l−1)
)

+ α(l−1), ∀l = 1, 2, · · · , L + 1,

f(W;x) = α(L+1). (53)

We see that the ResNet is the same as a fully connected neural network, Eq. (19), except that the 
activations α(l) has an extra additive term α(l−1) from the previous layer, interpreted as skip connection.
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Remark 11. This definition of ResNet differs from the standard ResNet architecture in [16] that the skip 
connections are at every layer, instead of every two layers. One will find that the same analysis can be easily 
generalized to cases where skip connections are at every two or more layers. The same definition, up to a 
scaling factor, was also studied theoretically in [13].

By the following theorem, we have an upper bound for the Hessian spectrum norm of the CNN and 
ResNet, similar to Theorem 5 for fully-connected neural networks.

Theorem 12 (Theorem 3.3 of [24]). Consider a neural network f(W; x) of the form Eq. (51) or Eq. (53). 
Let m be the minimum of the hidden layer widths, i.e., m = minl∈[L] ml. Given any fixed R > 0, and any 
W ∈ B(W0, R) := {W : ‖W−W0‖ ≤ R}, with high probability over the initialization, the Hessian spectral 
norm satisfies the following:

‖Hf (W)‖ = Õ
(
R3L/

√
m
)
. (54)

Using the same analysis in Section 4.2, we can get a similar result with Theorem 4 for CNN and ResNet 
to show they also satisfy PL∗ condition:

Theorem 13 (Wide CNN and ResNet satisfy PL∗ condition). Consider the neural network f(W; x) in 
Eq. (51) or Eq. (53), and a random parameter setting W0 such that each element of W (l)

0 for l ∈ [L + 1]
follows N (0, 1). Suppose that the last layer activation σL+1 satisfies |σ′

L+1(z)| ≥ ρ > 0 and that 
λ0 := λmin(K(W0)) > 0. For any μ ∈ (0, λ0ρ

2), if the width of the network

m = Ω̃
(

nR6L+2

(λ0 − μρ−2)2

)
, (55)

then the μ-PL∗ condition holds for square loss in the ball B(W0, R).

Appendix F. Proof for convergence under PL∗ condition

In Theorem 6, the convergence of gradient descent is established in the square loss case. In fact, similar 
results (with a bit modification) hold for general loss functions. In the following theorem, we provide the 
convergence under PL∗ condition for general loss functions. Then, we prove Theorem 6 and 14 together.

Theorem 14. Suppose the loss function L(w) (not necessarily the square loss) is β-smooth and satisfies the 

μ-PL∗ condition in the ball B(w0, R) := {w ∈ Rm : ‖w − w0‖ ≤ R} with R = 2
√

2βL(w0)
μ . Then we have 

the following:

(a) Existence of a solution: There exists a solution (global minimizer of L) w∗ ∈ B(w0, R), such that 
F(w∗) = y.

(b) Convergence of GD: Gradient descent with a step size η ≤ 1/ supw∈B(w0,R) ‖HL(w)‖2 converges to a 
global solution in B(w0, R), with an exponential (also known as linear) convergence rate:

L(wt) ≤
(
1 − κ−1

L,F (B(w0, R))
)t

L(w0), (56)

where the condition number κL,F(B(w0, R)) = 1
ημ .

Proof. Let’s start with Theorem 14. We prove this theorem by induction. The induction hypothesis is that, 
for all t ≥ 0, wt is within the ball B(w0, R) with R = 2

√
2βL(w0) , and
μ
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L(wt) ≤ (1 − ημ)t L(w0). (57)

In the base case, where t = 0, it is trivial that w0 ∈ B(w0, R) and that L(wt) ≤ (1 − ημ)0 L(w0).
Suppose that, for a given t ≥ 0, wt is in the ball B(w0, R) and Eq. (57) holds. As we show separately 

below (in Eq. (61) we have wt+1 ∈ B(w0, R). Hence we see that L is (supw∈B(w0,R) ‖HL(w)‖2)-smooth in 
B(w0, R). By definition of η = 1/ supw∈B(w0,R) ‖HL(w)‖2 and, consequently, L is 1/η-smooth. Using that 
we obtain the following:

L(wt+1) − L(wt) −∇L(wt)(wt+1 − wt) ≤
1
2 sup

w∈B(w0,R)
‖HL‖2‖wt+1 − wt‖2

= 1
2η ‖wt+1 − wt‖2. (58)

Taking wt+1 − wt = −η∇L(wt) and by μ-PL∗ condition at point wt, we have

L(wt+1) − L(wt) ≤ −η

2‖∇L(wt)‖2 ≤ −ημL(wt). (59)

Therefore,

L(wt+1) ≤ (1 − ημ)L(wt) ≤ (1 − ημ)t+1 L(w0). (60)

To prove wt+1 ∈ B(w0, R), by the fact that L is β-smooth, we have

‖wt+1 − w0‖ = η‖
t∑

i=0
∇L(wi)‖

≤ η

t∑
i=0

‖∇L(wi)‖

≤ η
t∑

i=0

√
2β(L(wi) − L(wi+1))

≤ η
t∑

i=0

√
2βL(wi)

≤ η
√

2β
(

t∑
i=0

(1 − ημ)i/2
)√

L(w0)

≤ η
√

2β
√
L(w0)

1
1 −√

1 − ημ

≤ 2
√

2β
√
L(w0)

μ

= R. (61)

Thus, wt+1 resides in the ball B(w0, R).
By the principle of induction, the hypothesis is true.
Now, we prove Theorem 6, i.e., the particular case of square loss L(w) = 1

2‖F(w) − y‖2. In this case,

∇L(w) = (F(w) − y)TDF(w). (62)
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Hence, in Eq. (61), we have the following instead:

‖wt+1 − w0‖ ≤ η

t∑
i=0

‖∇L(wi)‖

≤ η

t∑
i=0

‖DF(wi)‖2‖F(wi) − y)‖

≤ ηLF

(
t∑

i=0
(1 − μ/βF )i/2

)
‖F(w0) − y)‖

≤ ηLF · 2
ημ

‖F(w0) − y)‖

= 2LF‖F(w0) − y)‖
μ

. (63)

Also note that, for all t > 0, ‖HL(wt)‖2 ≤ L2
F + βF · ‖F(w0) − y‖, since ‖F(wt) − y‖ ≤ ‖F(w0) − y‖. 

Hence, the step size η = 1/L2
F + βF · ‖F(w0) − y‖ is valid. �

Appendix G. Proof of Theorem 7

Proof. We first aggressively assume that the μ-PL∗ condition holds in the whole parameter space Rm. We 
will find that the condition can be relaxed to hold only in the ball B(w0, R).

Following a similar analysis to the proof of Theorem 1 in [4], by the μ-PL∗ condition, we can get that 
for any mini-bath size s, the mini-batch SGD with step size η∗(s) := nμ

nλ(n2λ+μ(s−1)) has an exponential 
convergence rate for all t > 0:

E[L(wt)] ≤
(

1 − μsη∗(s)
n

)t

L(w0). (64)

Moreover, the expected length of each step is bounded by

E [‖wt+1 − wt‖] = η∗E

⎡
⎣‖ s∑

j=1
∇�

i
(j)
t

(wt)‖

⎤
⎦

≤ η∗
s∑

j=1
E
[
‖∇�

i
(j)
t

(wt)‖
]

≤ η∗
s∑

j=1
E
[√

2λ�
i
(j)
t

]

≤ η∗sE
[√

2λL(wt)
]

≤ η∗s
√

2λE[L(wt)]

≤ η∗s
√

2λ
(

1 − μsη∗

n

)t/2 √
L(w0),

where we use {i(1)t , i(2)t , ..., i(s)t } to denote a random mini-batch of the dataset at step t.
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Then the expectation of the length of the whole optimization path is bounded by

E

[ ∞∑
i=0

‖wi+1 − wi‖
]

=
∞∑
i=0

E‖wi+1 − wi‖

=
∞∑
i=0

η∗s
√

2λ
(

1 − μsη∗

n

)t/2 √
L(w0) =

2n
√

2λ
√
L(w0)

μ
.

By Markov’s inequality, we have that, with probability at least 1 − δ, the length of the path is shorter than 
R, i.e.,

∞∑
i=0

‖wi+1 − wi‖ ≤ 2n
√

2λ
√
L(w0)

μδ
= R.

This means that, with probability at least 1 − δ, the whole path is covered by the ball B(w0, R), namely, 
for all t,

‖wt − w0‖ ≤
t−1∑
i=0

‖wi+1 − wi‖ ≤ R.

For those events when the whole path is covered by the ball, we can relax the satisfaction of the PL∗

condition from the whole space to the ball. �
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