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Abstract
While Direct Preference Optimization (DPO) rev-
olutionized language model alignment by elim-
inating the need for explicit reward models and
reinforcement learning, scenarios with access to
high-quality reward models (RMs) trained on ex-
tensive preference datasets still benefit from lever-
aging these resources. Reward model distillation
techniques such as REBEL have emerged as part
of a class of approaches that do not require the
added complexity of reinforcement learning. In
this paper, we show that REBEL can be derived as
a ratio-matching objective with respect to DPO’s
optimal policy. In addition, we generalize ratio
matching into distribution matching, formulating
a new, principled alignment objective in the multi-
completion setting where Group Relative Policy
Optimization (GRPO) is commonly used.

1. Introduction
Direct Preference Optimization (DPO) (Rafailov et al.,
2024) and its extensions have proven highly effective for
aligning models using a preference dataset. In scenarios
where there exists a pretrained policy πθ and direct access
to a reward model r(x, y), Reinforcement Learning from
Human Feedback (RLHF) (Christiano et al., 2017; Ouyang
et al., 2022) remains the de facto standard. While DPO’s
key benefit lies in removing the need to train an explicit
reward model, it can be useful to leverage reward models
trained on many preference datasets to enhance alignment.

Reward model distillation techniques like the recently-
proposed REBEL method (Gao et al., 2024) offer a middle
ground by directly regressing policy likelihood ratios against
reward differences, avoiding explicit reinforcement learning
(RL) while still leveraging a learned reward signal. De-
spite their empirical promise, the connections among DPO,
REBEL, and other distillation methods remain an underex-
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plored area of research. Furthermore, in multi-completion
settings where access to the reward scores of many com-
pletions is leveraged, the added complexity of RL is still
required to an extent even in Group Relative Policy Op-
timization (GRPO) where the value function is bypassed
(Zhihong Shao, 2024) but clipping and other stabilizations
of Proximal Policy Optimization (Schulman et al., 2017)
remain employed.

In this paper, we provide an alternative derivation of the
REBEL objective, illustrating how it naturally arises from
a ratio-matching formulation against DPO’s optimal policy
when the activation function is chosen to be logarithmic.
In the multi-completion setting, where reward scores are
computed for multiple model completions, we propose a
principled extension that aligns the distribution of winning
responses based on computed rewards with the distribu-
tion based on the model’s implicit preferences, using KL
divergence for distribution matching.

2. Related Work
The first dominant paradigm for aligning large language
models (LLMs) with human preferences was Reinforce-
ment Learning from Human Feedback (RLHF) (Christiano
et al., 2017; Ouyang et al., 2022). The process consists
of two stages: first, learning a reward model from human
preference data, and second, fine-tuning the LLM policy
using reinforcement learning algorithms, such as Proximal
Policy Optimization (PPO) (Schulman et al., 2017), to max-
imize the learned reward. Although effective, RLHF can be
unstable to train and computationally intensive because a
separate reward model must be trained.

Reward-free Preference Optimization. DPO (Rafailov
et al., 2024) is an offline supervised learning method that
sidesteps the need for explicit reward model training by
directly optimizing the policy using preference data. The
key insight of DPO involves reparameterizing the Bradley-
Terry preference model (Bradley & Terry, 1952) in terms of
the policy being optimized and a reference policy, effectively
showing that the language model itself implicitly defines a
reward function. However, the Bradley-Terry assumption
causes DPO to assign implicit rewards that tend towards
infinite magnitude (Fisch et al., 2025) which can to lead
to learning a degenerate policy. IPO (Azar et al., 2023)
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was proposed as a more stable alternative to DPO when
preference labels become (near-) deterministic. Rather than
applying an unbounded log-odds transform to empirical
preferences, IPO uses the raw preference scores directly and
keeps them bounded. Consequently, IPO balances fitting the
observed preferences and staying close the reference policy.

Using Explicit Reward Models in Offline Preference Op-
timization. REBEL (Reinforcement Learning via Regress-
ing Relative Rewards) (Gao et al., 2024) was proposed as a
simpler and more effective alternative to PPO, and can be
viewed as a generalization of mirror descent and Natural
Policy Gradient (Kakade, 2001). In REBEL, each policy
update is simply a squared-error regression between the dif-
ference in log-likelihood-ratios of two candidate outputs to
their reward difference as scored by an explicit, pretrained
reward model. Although REBEL can utilize offline data,
it can be run as an online RL algorithm as well. A similar
method (Fisch et al., 2025) proposes an offline method that
substitutes the DPO loss with a distillation loss that tries to
match the reward differences between chosen and rejected
outputs across the explicit, pretrained model and the im-
plicit policy reward. In fact, REBEL (Gao et al., 2024) also
arrives at the same loss function via a different perspective.

Ratio & Score Matching. Ratio matching (Hyvärinen,
2007; Sun et al., 2023) provides a method to learn unnormal-
ized likelihood ratios directly from samples. Unlike standard
maximum likelihood, ratio matching avoids directly model-
ing the full distribution and instead leverages a more flexible
objective based on relative comparisons of unnormalized
probabilities – making it well-suited to preference and dis-
tillation settings. Similarly, score matching methods (Meng
et al., 2023) aim to estimate gradients of log-probabilities
(scores) via methods like Fisher-divergence minimization
without ever evaluating or normalizing probabilities.

In essence, this paper situates reward distillation techniques
(like REBEL) within the landscape of preference optimiza-
tion methods, highlighting its close relationship to DPO’s
theoretical underpinnings and IPO’s objective structure. We
unify the motivations behind REBEL (Gao et al., 2024) and
reward model distillation (Fisch et al., 2025) by providing a
novel ratio matching derivation for the REBEL loss, we of-
fer an alternative theoretical justification for its effectiveness
and clarify how it implicitly targets policy ratios consistent
with an underlying reward model.

3. Preliminaries
3.1. DPO

Consider the original RLHF objective:

max
π

Ex∼D,y∼π(·|x)[r(x, y)− βKL(π(· | x)||πref(x))] (1)

The analytical solution for the optimal policy is the Boltz-
mann policy:

π∗(y | x) = 1

Z(x)
πref(y | x) exp

(
r(x, y)

β

)
. (2)

where

Z(x) =
∑
y

πref(y | x) exp
(r(x, y)

β

)
is the (intractable) partition function and β is a regulariza-
tion hyperparameter. Using this, we can write the reward
function as:

r(x, y) = β log
πθ(y | x)
πref(y | x)

+ β logZ(x), (3)

The main insight behind DPO is that Equation (2) and Equa-
tion (3) allow us to reparameterize the Bradley-Terry like-
lihood such that the intractable Z(x) term is eliminated
and the reward function does not need to be materialized
explicitly:

p∗(y1 ≻ y2 | x) =

[
1 + exp

(
β log

π∗(y2 | x)
πref(y2 | x)

− β log
π∗(y1 | x)
πref(y1 | x)

)]−1

(4)

This means we can optimize πθ directly. Given a dataset of
human preferences D = {(x, yw, yℓ)}, DPO minimizes the
loss

LDPO(πθ; πref) = −E(x,yw,yℓ)∼D

[
log σ

(
β log

πθ(yw |x)
πref(yw |x)

− β log
πθ(yℓ |x)
πref(yℓ |x)

)]
,

(5)

where σ(z) = 1/(1 + e−z).

3.2. IPO

While DPO uses a Bradley–Terry (log-odds) transform of
empirical preferences, this transform becomes unbounded
as preferences become (near-)determinisitc, causing DPO
to collapse. To avoid this, IPO (Azar et al., 2023) simply
regresses the policy’s log-likelihood-ratio gap to a constant
target.

Define the likelihood gap as

hπ(x, yw, yℓ) = log
πθ(yw | x)πref(yℓ | x)
πθ(yℓ | x)πref(yw | x)

. (6)
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IPO minimizes

LIPO(θ) = E(x,yw,yℓ)∼D

[(
hπ(x, yw, yℓ) − 1

2β

)2]
. (7)

By capping hπ in this way, IPO ensures that even when em-
pirical preferences are extreme, the preference term remains
bounded and the KL regularizer βKL(πθ∥πref) stays effec-
tive – preventing over-fitting and policy collapse. Note that
the objective IPO optimizes for is entirely different from
DPO.

3.3. REBEL

REBEL (Gao et al., 2024) starts from the mirror-descent
update under a KL constraint:

πt+1(y | x) ∝ πt(y | x) exp
(
η r(x, y)

)
, (8)

where πt is the current policy at iteration t, r(x, y) is a
fixed, pretrained reward model, and η > 0 is a step-size.
We can eliminate the partition function Zt(x) by comparing
two samples (y, y′) drawn from πt. One can then fit a new
parametric policy πθ via a simple regression:

LREBEL(θ) = E(x,y,y′)∼Dt

[(
1

η

(
log πθ(y|x)

πθt (y|x)
− log πθ(y

′|x)
πθt (y

′|x)
)

−
(
r(x, y)− r(x, y′)

))2]
.

(9)

The REBEL loss equation shows that each REBEL update
simply fits the change in log-likelihood ratios to the reward
difference via squared-error regression. In other words,
REBEL is regressing DPO’s implicit reward gap against the
true reward gap r(x, y)− r(x, y′).

3.4. GRPO

Group Relative Policy Optimization (GRPO) (Zhi-
hong Shao, 2024) is an actor-only variant of PPO for multi-
completion RLHF. For each prompt x, GRPO samples
a group of G outputs from the current policy πθ, scores
each with a RM to obtain {ri}, and computes the group-
advantage:

Ai =
ri − 1

G

∑G
j=1 rj

std({rj})
.

It then maximizes the clipped objective averaged over the
group:

JGRPO(θ) = E
[

1
G

G∑
i=1

|yi|∑
t=1

min
(
ρi,t Âi,

clip(ρi,t, 1− ϵ, 1 + ϵ) Âi

)]
− βKL

(
πθ∥πref

)
. (10)

where ρi,t =
πθ(yi,t|x,yi,<t)
πold(yi,t|x,yi,<t)

By using the group mean as a baseline, GRPO avoids the
need for a separate value network, reducing memory and
compute requirements while effectively aligning the policy
across multiple candidate completions.

4. Ratio Matching Framework
We focus on the RLHF setting where we have full access to a
reward model r(x, y) as in REBEL. Our goal is to align our
policy πθ with the optimal policy π∗ which can be written
in terms of r in Equation (2). A direct KL-divergence min-
imization is intractable due to the partition function Z(x).
However, we can use a general ratio matching framework
to bypass this issue.

4.1. Proposed Objective

We propose to match the ratios of policy probabilities under
our model πθ to the ratios under the optimal policy π∗ as
well as their reciprocals. To do this, we can define a loss
L(θ) that minimizes the difference between these ratios after
applying a monotonic activation function f(·). A natural
choice for this loss is the mean squared error over pairs of
completions (y1, y2) for a given prompt x:

E(x,y1,y2)∼D′

[(
f

(
π∗(y1|x)
π∗(y2|x)

)
− f

(
πθ(y1|x)
πθ(y2|x)

))2

+

(
f

(
π∗(y2|x)
π∗(y1|x)

)
− f

(
πθ(y2|x)
πθ(y1|x)

))2
]
(11)

where D′ is a dataset of prompts and pairs of completions.
The loss can be further simplified by substituting the defini-
tion of π∗ from Equation (2) to get:

π∗(y1|x)
π∗(y2|x)

=
πref(y1|x)
πref(y2|x)

exp

(
r(x, y1)− r(x, y2)

β

)
(12)

The function f can be any suitable monotone function to
transform the ratios and determines the final form of the
alignment objective.
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4.2. Deriving REBEL

A particularly natural and convenient choice for the
activation function is f(z) = log(z). By setting f to be
the logarithm, our general loss in Equation 11 becomes:

L(θ) = E

[(
log

(
π∗(y1|x)
π∗(y2|x)

)
− log

(
πθ(y1|x)
πθ(y2|x)

))2
]

= E

[(
log

(
πref(y1|x)
πref(y2|x)

e
r(x,y1)−r(x,y2)

β

)
− log

(
πθ(y1|x)
πθ(y2|x)

))2
]

= E

[(
log

πref(y1|x)
πref(y2|x)

+
r(x, y1)− r(x, y2)

β
− log

πθ(y1|x)
πθ(y2|x)

)2
]

= E

[(
r(x, y1)− r(x, y2)

β
−
(
log

πθ(y1|x)
πθ(y2|x)

− log
πref(y1|x)
πref(y2|x)

))2
]

where the reciprocals term in Equation (11) can be absorbed
since log(x−1) = − log(x). The derived loss from our gen-
eral ratio matching framework is equivalent to the REBEL
loss objective in Equation (9) up to a constant factor.

4.3. Connection to IPO

Notice that the REBEL loss from Section 4.2 can be simpli-
fied as

E

[(
r(x, y1)− r(x, y2)

β
− hπ(y1, y2, x)

)2
]

(13)

where hπ(y1, y2, x) is the log-likelihood ratio gap used in
IPO:

hπ(y1, y2, x) = log

(
πθ(y1|x)
πθ(y2|x)

)
− log

(
πref(y1|x)
πref(y2|x)

)
.

(14)
Recall that the IPO loss is given by
E(yw,yl,x)∼D(hπ(yw, yl, x) − 1

2β )
2, where the objec-

tive is to make the log-likelihood ratio gap hπ match
a constant target. Hence, REBEL can be viewed as an
instance of IPO, but instead of regressing hπ to a fixed
target, the target is the regularized, reward-dependent
difference r(x,y1)−r(x,y2)

β . This provides a stronger learning
signal, as the model is encouraged to create a larger
separation in policy probabilities for pairs with a large
reward difference, and a smaller separation for pairs that
are close in desirability. We note that Fisch et al. (2025)
also highlight this connection between REBEL and IPO,
but we reiterated it here for completeness.

5. Multi-Completion Extension
This work has primarily examined the application of a ratio-
matching perspective given data with two completions y1
and y2 for prompt x. A natural generalization of this pair-
wise approach is to consider a setting with multiple com-
pletions for each prompt. That is, for each prompt x, G

completions y1, y2, · · · , yG along with their reward scores
r1, r2, · · · , rG will be available (which can be on-policy or
off-policy). Here, ri is shorthand for r(x, yi).

The multi-completion setting contains more reward scores
from the reward model (RM), giving richer signal of the
ideal response distribution to be targeted by the policy.
The core idea is to align the distribution of the winning
response over completions induced by the policy’s implicit
rewards with the distribution induced by the external re-
ward model. Here, the implicit rewards are defined by
r̂i = β log πθ(yi|x)

πref(yi|x) as stated in the DPO paper (Rafailov
et al., 2024).

In Bradley-Terry reward modeling, the winning response
is given by a softmax distribution over the rewards for re-
sponses of a fixed prompt. Hence, the ground-truth winning
response distribution will be softmax(r1, . . . , rG), and the
model’s belief of the winning response distribution will be
softmax(r̂1, . . . , r̂G) where the regularization parameter β
can be viewed as the temperature in the latter distribution.
Hence, a natural choice for a multi-completion loss function
to align the policy with the RM is to take the KL-divergence
between the two discrete probability distributions:

LMC = KL (softmax(r1, . . . , rG) ∥ softmax(r̂1, . . . , r̂G)) .

We summarize the multi-completion alignment procedure
in Algorithm 1.

Algorithm 1 Multi-completion Alignment
1: For a given prompt x, sample G completions:

{y1, y2, . . . , yG}.
2: Obtain implicit rewards for each completion:

{r̂1, r̂2, . . . , r̂G} using

r̂i = β log πθ(yi|x)
πref(yi|x)

3: Obtain RM rewards for each completion:
{r1, r2, . . . , rG}.

4: Calculate the loss L as the KL-divergence between the
softmax of the RM rewards and the softmax of the
implicit rewards:

LMC = KL (softmax(r1, . . . , rG) ∥ softmax(r̂1, . . . , r̂G))

We show that LMC is both well-defined and minimized by
the optimal policy π∗ given in Equation (2).

Proposition 5.1. LMC is well-defined.

Proof. The implicit rewards r̂i are only defined up to a
constant depending on x. However, the softmax distribution
is shift-invariant, making LMC well-defined.
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Proposition 5.2. LMC is minimized and equals 0 at the
optimal policy π∗.

Proof. KL-divergence is always non-negative, so it suffices
to show that LMC = 0 when πθ = π∗. We have

r̂i = β log
π∗(yi | x)
πref(yi | x)

= β log

1
Z(x)πref(yi | x) exp

(
r(x,yi)

β

)
πref(yi | x)

= β

(
r(x, yi)

β
− logZ(x)

)
= r(x, yi)− β logZ(x).

The β logZ(x) term is a constant depending only on x.
Hence, the softmax distribution of r̂i and the softmax distri-
bution of ri are the same, making the KL divergence equal
to 0.

Proposition 5.1 and Proposition 5.2 together justify why
LMC is a theoretically principled choice of loss function.
In our future work, we plan to include an experimental
evaluation of Algorithm 1 on LLM alignment tasks for math
and coding. Relevant baselines will include the currently
popular GRPO method (Zhihong Shao, 2024). In contrast
to Algorithm 1, GRPO requires additional hyperparameter
tuning due to its PPO-style procedure and does not have a
similar minimizer guarantee to Proposition 5.2.

6. Conclusion
Building on the foundations of DPO, we showed how
REBEL and other offline reward model distillation tech-
niques arise naturally from matching policy likelihood ra-
tios to target ratios from either a reward model or constant
preference gap. In addition, we have proposed an align-
ment objective serving as an extension to the ratio-matching
framework that leverages multi-completion data, which has
the potential to be more efficient, principled, and robust
compared to existing approaches such as GRPO. Looking
forward, we seek to explore alternative activation functions
in ratio matching and perform empirical validation of our
multi-completion extension.
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