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Abstract

In this study, we use Ising machines to help train machine learning models by
employing a suitably tailored version of opto-electronic oscillator-based coherent
Ising machines with clipped transfer functions to perform trust region-based opti-
misation with box constraints. To achieve this, we modify such Ising machines by
including non-symmetric coupling and linear terms, modulating the noise, and in-
troducing compatibility with convex-projections. The convergence of this method,
dubbed iTrust has also been established analytically. We validate our theoretical
result by using iTrust to optimise the parameters in a quantum machine learning
model in a binary classification task. The proposed approach achieves similar per-
formance to other second-order trust-region based methods while having a lower
computational complexity. Our work serves as a novel application of Ising ma-
chines and allows for a unconstrained optimisation problems to be performed on
energy-efficient computers with non von Neumann architectures.

1 Introduction

Traditionally, the utility of Ising machines has been limited to solving combinatorial optimisation
problems [1, 2, 3] with polynomial resources by mapping them onto ground-state search problems of
the Ising model [4, 5], using them as machine learning models [6, 7, 8, 9], or modelling optical neural
networks [10]. While a variety of approaches for realizing this model of artificial spins network has
been demonstrated in literature [11, 12, 13], the approach of employing opto-electronic-oscillators
(OEOs) for building a coherent Ising machine (CIM) [14] has been lately gaining a lot of attention
because of its cost-effective implementation, ambient operation, and scope for miniaturization [15].

In this work, we present a novel application of OEO-CIMs to unconstrained optimisation, and pro-
vide analytical proof of convergence of Ising machines to perform trust region-based optimization
[16, 17, 18]. We refer to this technique as iTrust (Ising machines for trust-region optimisation).
Along with the other aforementioned benefits of OEO-CIMs, the main advantage of iTrust stems
from avoiding matrix-inversion and Cholesky decomposition of the Hessian. This opens up a new
avenue of applications where the Ising machines may be used to optimise any parameterised, un-
constrained objective function f : Rn → R. We denote the parameters of the objective function
f(·) with the vector θ ∈ Rn. Particularly, using iTrust, we aim to find the optimal point θ∗ that
minimises the objective function:
Problem 1.

f(θ∗) := min
θ∈Rn

f(θ), (1)

where θ∗ satisfies second-order optimality conditions [16], under the following assumption [16]:
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Assumption 1. If θ(0) is the starting point of an iterative algorithm, then the function f(·) is
bounded below on the level set S = {θ | f(θ) ≤ f(θ(0))} by some value f∗, such that f∗ ≤
f(θ) ∀ θ ∈ S. Further, f is twice continuously differentiable on S.

This allows us to use iTrust as an optimisation procedure for training models in traditional machine
learning (ML) [19, 20, 21], quantum ML (QML) [22, 23, 24], quantum-inspired ML (QiML) [25],
and variational quantum algorithmic (VQA) [26] models. Such optimisation problems are con-
ventionally tackled by digital computers based on von Neumann architecture, leading to substan-
tial memory and energy consumption, also known as ‘von Neumann bottleneck’ [27]. In contrast,
since iTrust is based on Ising machines, it may potentially lead to more energy-efficient proto-
cols [28, 29, 1] with an increased clock-speed [30]. This paper (along with a contemporary studies
in [31] and [32] - which use analog thermodynamic computers to perform natural gradient descent,
and quantum linear solvers [33, 34, 35] to calculate the Newton-update, respectively) hopes to open
up new avenues of research where benefits of new-compute paradigms are reaped not only by using
them as ML models, but also by employing them to aid in the training of models.

The remainder of this extended abstract is organised as follows: we propose essential modifications
to a specific type of CIMs to make them compatible for trust-region optimisation in Section 2, and
analytically examine its performance on convex objective functions with bounded gradients, and on
smooth, locally-Polyak-Łojasiewicz (PŁ) [36] functions in Section 2.1. We describe the proposed
algorithm iTrust in Section 3, before showing its convergence to second-order optimal solutions of
Problem 1 in Theorem 3. We then proceed to demonstrate its efficacy through numerical experiments
in Section 4 Conclusions and future outlook are in Section 5.

2 Economical Coherent Ising Machine

For iTrust, we consider the poor man’s CIM introduced in [14] with clipped nonlinearity [37], and
refer to it as the Economical CIM (ECIM). It is then modified to find ε-suboptimal solutions of the
following problem with J as the coupling-matrix, and h as the external field:

Problem 2.

min
s∈[−∆,∆]n

(
E(s)

∆
=

1

2
⟨s,Js⟩+ ⟨h, s⟩

)
(2)

Inspired by an earlier work [38], our modifications include setting α = 1 and viewing β as the step-
size in equation 8 of [37]. The variance of the injected noise is modulated, and varying step-sizes
βk are considered to facilitate better convergence. Provisions for accommodating non-symmetric
coupling and linear terms are also made without relying on ancillary spins [39, 15]. The clipping
voltage is set to ±∆, and finally, the ECIM is made compatible with the definition of projection to
the convex box C = [−∆,∆]n. As a result, the iterative update equation of the modified ECIM is
given by:

s(k+1) = ΠC

(
s(k) − βk

(
∇E(s(k))− ζ(k)

))
, (3)

where ζ(k) ∼ N (0, σ2I), and ΠC(·) is the projection operator to C.

2.1 Convergence of ECIM

In this section, we present the convergence-results of the modified ECIM for convex or locally-
Polyak-Łojasiewicz (PŁ) E(·). While PŁ may not be as popular a condition as convexity, it is
definitely more general. For instance, PŁ (or PŁ∗) functions have been shown to include neural
networks with ReLU activations and quadratic losses where convexity cannot be assumed [40, 41,
42]. Further, [36] argues and proves that among Lipschitz-smooth functions such as strongly convex,
essentially strongly convex, weakly strongly convex, and functions obeying the restricted secant
inequality, PŁ functions entail the weakest assumptions. A more detailed exposition on the relations
and implications between function-classes may be found in Theorem 2 of [36]. Furthermore, it is
known that PŁ functions obey the Polyak-Łojasiewicz inequality. We, however, require the objective
function to be PŁ locally on the constraint set C, i.e., for some µ > 0 and for all s ∈ C,

||∇E(s)||22 ≥ 2µ(E(s)− E∗). (4)
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We now state the convergence results through the following informal Theorems. Their formal state-
ments and proofs have not been included in adherence to the page-limits.

Theorem 1 (Informal). For convex E(·) with bounded gradients, the ECIM in equation (3) finds an
ε-suboptimal solution to Problem 2 in C with fixed step-sizes inO(1/ε2) iterations. With diminishing
step-sizes such that

∑∞
k=0 βk = ∞ and

∑∞
k=0 β

2
k < ∞, limk→∞(E(s(k)) − E∗) = 0, where

E∗ = mins∈C E(s).

Theorem 2 (Informal). For smooth E(·) that obeys the PŁ inequality locally, the ECIM in equation
(3) finds an ε-suboptimal solution to Problem 2 in C with fixed step-sizes in O (ln (1/ε)) iterations.

If s is the output of the ECIM, then the above results may be unified into the following equation for
some constant c ∈ (0, 1], as suggested in [18]:

−E(s) ≥ c|E(s∗)|. (5)

3 iTrust

Very briefly, the update p∗
(t) to θ(t) at the iteration t of a Newton-like trust-region method is found

from the minimiser of:

Problem 3.
min

||p||2≤δt

(
mt(p)

∆
= ⟨∇f(θ(t)),p⟩+ 1

2
⟨p,H(θ(t))p⟩

)
, (6)

where ∇f(θ(t)) and H(θ(t)) are the gradient and Hessian of f at θ(t), respectively. If the radius
of the trust-region at iteration t is δt, then the feasible set, which is a ball1, is represented with
Bt = {z ∈ Rn | ||z − θ(t)||2 ≤ δt}.
A major disadvantage of using the method proposed in Algorithm 3.2 stated in [18] to find p∗

(t) is
the repeated requirement for Cholesky decomposition and inversion of the Hessian, both of which
are in O(n3). This becomes prohibitively expensive for problems where n is large, for instance
machine learning models with millions of parameters. We aim to alleviate this problem by using
the enhanced ECIM to find p∗

(t). We achieve this by exploiting the structural similarity Problems 2

and 3. Specifically, at each iteration t, J is set to H(θ(t)), h to ∇f(θ(t)), and ∆ to δt. Here, the
importance of the inclusion of linear terms in the Ising machine becomes clear, without which the
gradient ∇E(s(k)) could not have been provided to the ECIM without additional overheads in the
form of ancillary spins [38, 39].

Remark 1. It is interesting to note that if the coupling matrix J (t) is positive semidefinite at the iter-
ation t, then as per the definition of convexity, the objective function of the trust-region subproblem
is convex. Additionally, since the coupling matrix is equal to the Hessian H(θ(t)), this also implies
that the objective function f is convex in the region around θ(t). Thus, in a convex region of the
original problem, the result in Theorem 1 becomes applicable for the ECIM.

Further, we distinguish between the minimisers of Et(s) and mt(p) on the sets Ct and Bt by
denoting them with s∗(t) and p∗

(t), respectively.

Remark 2. We would like to emphasize that the box Ct and the ball Bt share a common centre θ(t),
and by design, the side-length of the box is set equal to the diameter of the ball at each iteration.
Thus, the ball is contained completely within the box: Bt ⊂ Ct

2. Now, since the objective function

1To avoid situations where the optimisation Problem 1 has a poor scaling with respect to the decision
variables θ, elliptical trust regions may be employed by replacing the constraint of Problem 3 with:

||Dp||2 ≤ δ, (7)

where D = diag(d1, . . . , dn) with di ≥ 0. The elements di are adjusted according to the sensitivity of f(·) to
θi: if f(·) varies highly with a small change in θi, then a large value of di is used; and vice versa [16].

2Differential scaling with respect to different components of the decision variables may be handled by
setting individual ∆i for each coordinate θi such that the elliptical trust-region from equation (7) lies within
the box defined by the ∆is.
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of the Problems 3 and 2 are identical, and the constraint set of the former is contained in that of the
latter, we have:

Et(s
∗
(t)) ≤ mt(p

∗
(t)). (8)

This means that if the ECIM and the Algorithm 3.14 in [18] can both reach near-optimal solutions of
their respective optimisation problems, then the objective value obtained by the ECIM is guaranteed
to be better. This results in a higher reduction in the value of f(θ) at each iteration.

We name this technique of using the ECIM for trust-region optimisation as iTrust. The workflow
for iTrust has been portrayed in Algorithm 1, which draws inspiration from, and is an amalgamation
of, Algorithms 4.1 and 4.2 of [16] and [18], respectively.

Algorithm 1: iTrust

input: initial point θ(0) ∈ Rn; maximum trust-region radius δmax > 0; initial radius
δ0 ∈ (0, δmax]; thresholds on ρt: 0 < µ < η < 1; radius-updation parameters γ1 < 1 and
γ2 > 1; noise variance σ2; sequence of step-sizes (βk); and number of iterations T and
K

1 begin
2 for t ∈ [T ] do
3 evaluate∇f(θ(t)) and H(θ(t));
4 J (t) ←H(θ(t));
5 h(t) ← ∇f(θ(t));
6 ∆t ← δt;
7 initialise s(0) randomly in Ct = [−∆t,∆t]

n;
8 for k ∈ [K] do
9 sample ζ(k) ∼ N (0, σ2I);

10 s(k+1) = ΠCt

(
s(k) − βk

(
∇Et(s

(k))− ζ(k)
))

;

11 end
12 calculate ρt =

f(θ(t)+s(K))−f(θ(t))
Et(s(K))

;
13 if ρt < µ then
14 δt+1 = γ1δt;
15 continue;
16 else
17 if ρt > (1− µ) and ||s(K)||∞ = δt then
18 δt+1 = min(γ2δt, δmax);
19 else
20 δt+1 = δt;
21 end
22 end
23 if ρt > η then
24 θ(t+1) = θ(t) + s(K);
25 else
26 θ(t+1) = θ(t);
27 end
28 end
29 return θ(T )

30 end

We claim that this technique of employing ECIMs to solve the subproblem of trust-region methods
converges (or tends to converge to) second-order optimal solutions of Problem 1 in S. This claim is
formalised in the form of the following theorem [16, 18], the proof of which has been omitted for
brevity:

Theorem 3 (Convergence of iTrust). Let assumption 1 be true, and let (θ(t)) be the sequence of
iterates generated by Algorithm 1 such that equation (5) is satisfied at each iteration. Then we have
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that:
lim
t→∞
||∇f(θ(t))||2 = 0. (9)

Moreover, if S is compact, the either Algorithm 1 terminates at a point θ(T ) ∈ S where∇f(θ(T )) =

0 and H(θ(T )) ≽ 0; or (θ(t)) has a limit point θ∗ ∈ S such that ∇f(θ∗) = 0 and H(θ∗) ≽ 0.

4 Empirical Evaluation

In this section, we will demonstrate the efficacy fo the proposed method through numerical experi-
ments. Specifically, iTrust will be applied to optimise the parameters in a quantum machine learning
(QML) model that performs binary classification. QML is another instance where an alternate-
compute paradigm is used to enhance machine learning through the introduction of quantum models
as hypothesis functions that are non-trivial to simulate classically. QML models have been found
to provide advantages in laboratory setting in terms of the number of parameters [43], the volume
of training data required [44], and the number of iterations/epochs the models are trained for [45].
Nevertheless, in recent times, the use of variational models [26] for QML has garnered some criti-
cism that questions their advantage [46], especially due to the presence of barren plateaus [47, 48]
and classical simulablity [49, 50]. However, proving a quantum-advantage in ML is far from the
scope of this study, and neither does the iTrust algorithm alleviate the issues of barren plateaus or
classical simulability in QML.

Here, we aim to enhance the training of a small QML model to perform classification of the Iris
dataset [51]. Since our focus is only on facilitating the training of models and not on their general-
isability, only the training error at each iteration will be observed and reported as a measure of the
performance of iTrust. The Iris dataset consists of four floral-features that may be used to categorise
the flowers into three distinct classes, only the first two of which have been used here.

The details of the quantum classification model are as follows: the four features were encoded into
the states of four qubits using AngleEmbedding with a combination of Hadamard and RZ gates on
each of the qubits. The features were first scaled to lie in the range of [0, π] before being passed as
parameters into the RZ gates. Subsequently, three layers of the BasicEntanglingLayers ansatz
from Pennylane [52] were appended to the circuit. The gates in the ansatz contain learnable parame-
ters that were optimised. Finally, the expectation value of the Pauli-Z operator of the first qubit was
measured. To calculate the empirical risk, the label for each datapoint was expressed as {±1} and
the mean squared error was evaluated over the entire training set.

The performance of iTrust was benchmarked against those of two other algorithms: gradient-descent
(GD) which only uses the first-order derivatives; and Algorithm 3.2 from [18] - henceforth refereed
to as More & Sorensen (MnS) - which like iTrust additionally requires the Hessian. Hence, GD
requires only n evaluations of the quantum circuit at each iteration to estimate the gradient using
the Parameter-Shift Rule [53], while the second-order methods need 2n2 + n circuit executions (2
for the gradients of each coordinate, 4 for each of the off-diagonal terms of the Hessian, and an
additional 1 for the diagonal terms [54]). Each of the algorithms was run for 100 iterations with the
same initial point; and the experiment was repeated 10 times with different starting points sampled
from a uniform distribution. A learning rate of 0.1 was used for GD. The hyperparameters for the
second-order methods were: δmax = δ0 = 0.5, η = 0.1, µ = η−0.001, γ1 = 0.75, and γ2 = 1.25.In
addition, for iTrust, β was set to 0.5, with K = 10.

4.1 Numerical Results

The results of the aforementioned experiments have been reported in Figure 1, where 1a shows the
training loss at each iteration of training. The bold lines denote the mean, while the shaded regions
indicate the standard deviation around the mean across the 10 experiments. It may be noted that the
second-order methods outperformed the first-order one, as expected. Between Mns and iTrust, the
former obtained a quicker reduction in loss at the initial iterations, with the latter catching up soon.
As the training progressed, iTrust converged to a marginally lower value of loss compared to MnS
and was found to be more stable, owing to its lower standard deviation.

However, as detailed earlier, the second-order methods come at an increased overhead of calculation
the Hessian for QML models. To check if this overhead eclipses the benefit of a reduced number
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(a) Training Loss vs Iterations (b) Training Loss vs Circuit Executions

Figure 1: Fig. (a) shows the training loss at each iteration of training; while Fig. (b) reports the
training loss against the number of circuits executed on a logarithmic scale.

of iterations, Figure 1b demonstrates the training loss against the total number of circuit-executions
on a logarithmic scale. It is apparent from the plot that the second-order methods perform better
towards the initial epochs and that the performance of MnS is slightly better than that of iTrust.
But, one may recall that MnS requires Cholesky decomposition of the Hessian, whose complexity
scales cubically with n. In comparison, iTrust forgoes this extra complexity while still retaining
comparable performance.

With the above results in mind, we propose a training schedule where iTrust is used in the initial
phase to get a quick reduction in the training loss, followed by the utilisation of GD until conver-
gence. This method is markedly distinct from the existing convention of starting with GD to reach
a Newton’s region, followed by the use of second-order Newton’s method. It must be noted at this
point that evaluating the performance against the number of circuit/function executions would be
unnecessary for models where the gradients and Hessians may be calculated (or estimated) with
similar complexity as the function execution. In such cases, the advantages of iTrust (and MnS)
become more pronounced.

5 Conclusions and Outlook

In this paper, we introduced iTrust, an algorithm that leverages Ising machines for trust-region based
optimisation. In doing so, we proposed necessary modifications to the Ising machine, and proved the
feasibility and convergence of iTrust. The use of Ising machines provides the potential for higher
clock-speeds and reduced energy-consumption compared to conventional approaches. We validated
our theoretical results by introducing the iTrust as an optimiser in a simple quantum machine learn-
ing model to perform binary classification, and compared its performance against other first and
second-order methods. We find that iTrust delivers similar performance to the other trust-region
based method, but has the advantage of avoiding Hessian inversion and Cholesky decomposition. In
this way, we extend the previously allowed class of optimisation problems using the Ising machines
and open up the possibility of training machine learning models with new compute paradigms.

Possible future directions may include generalising the ECIM for non-convex and non-PŁ objective
functions. Variants of iTrust can also be constructed that are compatible with natural gradient de-
scent [55, 56], by replacing the Hessian with the Fisher Information Matrix. iTrust may be further
augmented by zeroth order methods like SPSA [57] in scenarios where evaluation of the gradients,
Hessian, and Fisher information matrix is computationally expensive [58]. Lastly, the advantages
of the ECIM over noisy projected gradient descent for the subproblem minimisation in terms of
the clock-speed and energy-consumption can also be examined. We hope that this paper opens up
new avenues of research in the analytical and empirical exploration of new applications of Ising
machines.
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