

RETHINKING CAUSAL MASK ATTENTION FOR VISION-LANGUAGE INFERENCE

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors
Paper under double-blind review

ABSTRACT

Causal attention has become a foundational mechanism in autoregressive Vision-Language models (VLMs), unifying textual and visual inputs under a single generative framework. However, existing causal mask-based strategies are inherited from large language models (LLMs) where they are tailored for text-only decoding, and their adaptation to vision tokens is insufficiently addressed in the prefill stage. Strictly masking future positions for vision queries introduces overly rigid constraints, which hinder the model’s ability to leverage future context that often contains essential semantic cues for accurate inference. In this work, we empirically investigate how different causal masking strategies affect vision-language inference and then propose a family of future-aware attentions tailored for this setting. We first empirically analyze the effect of previewing future tokens for vision queries and demonstrate that rigid masking undermines the model’s capacity to capture useful contextual semantic representations. Based on these findings, we propose a lightweight attention family that aggregates future visual context into past representations via pooling, effectively preserving the autoregressive structure while enhancing cross-token dependencies. We evaluate a range of causal masks across diverse vision-language inference settings and show that selectively compressing future semantic context into past representations benefits the inference.

1 INTRODUCTION

In recent years, autoregressive large language models (LLMs) have achieved remarkable breakthroughs in linguistic understanding by enforcing causal attention mechanisms that restrict each token to attend only to its preceding context Achiam et al. (2023); Anil et al. (2023); Bai et al. (2023); Li et al. (2025); Radford et al. (2019). This left-to-right causal masking effectively prevents information leakage from future tokens, aligning model predictions with the natural sequential structure of language. For instance, in the sentence “She is very smart”, predicting the token “very” based on the token “smart” would violate causality, as the model could also generate “not smart” given the same prefix. By restricting attention to past tokens, causal masking ensures consistent and contextually appropriate predictions.

Vision-language models (VLMs) Liu et al. (2023; 2024a); Bai et al. (2025); Chen et al. (2024b); Li et al. (2025); Chu et al. (2023), which extend LLMs to multi-modal settings, adopt a similar autoregressive framework by aligning and concatenating visual tokens with textual tokens. However, unlike text, visual information is inherently non-sequential, with regions processed holistically rather than strictly in order. Consequently, enforcing strict causal masking on visual tokens may unnecessarily restrict the model’s capacity to leverage contextual cues from future tokens. Recent studies Yin et al. (2024) suggest that future semantic attention scores, typically masked in causal settings, can be exploited without violating causal logic. Furthermore, Qi et al. (2025) indicates that visual tokens may not benefit as significantly from positional interactions, highlighting a potential misalignment between the causal structure designed for text and the optimal structure for visual processing.

As a result, a critical question arises: *Is causal attention truly a feasible mechanism for vision-language understanding?* In this paper, we systematically explore the impacts of causal attention on textual and visual tokens and reveal a surprising finding: while breaking the causal masks between

054 textual tokens significantly disrupts model predictions, relaxing the causal constraints on visual
 055 tokens unexpectedly improves performance, even though the model is trained causally (see Figure 1).
 056

057 To comprehensively investigate this phenomenon, we conduct
 058 an in-depth analysis of how relaxing future attention for visual
 059 tokens affects model behavior across diverse vision-language
 060 tasks, particularly those involving long contexts and multi-
 061 image reasoning. We propose three future-aware causal mask-
 062 ing strategies, each targeting distinct regions in the multi-modal
 063 attention matrix. By examining their task-specific advantages
 064 and limitations, we uncover a variety of intriguing insights re-
 065 garding the role of future visual context in enhancing inference
 066 accuracy. Our study aims to address the following key ques-
 067 tions: (1.) *Does the causal attention in LLM fits the visual*
 068 *tokens in the popular VLMs like LLaVA?* (2.) *How should the*
 069 *causal attentions be revised to fit the multi-modal situation?*
 070 (3.) *What tokens should the vision tokens be allowed to access in the causal mask?* (4.) *How does*
 071 *pre-seen visual semantic information impact tasks that heavily rely on visual reasoning? How about*
 072 *text-dependent tasks?*

073 Based on our findings, we conclude that allowing visual tokens to access future context significantly
 074 enhances VLM performance. However, directly breaking the causal masks between visual tokens
 075 substantially increases computational cost. To effectively incorporate future information while
 076 maintaining computational efficiency, we propose a kernel pooling method that merges future
 077 semantic attention into past regions. Additionally, we uncover several intriguing insights, such as the
 078 pronounced impact of merging future attention into attention sink regions, merging future into past
 079 even outperforms direct future access in some tasks, which notably alters VLM inference behavior.

080 As a result, this paper revisits the overlooked role of causal attention for visual tokens in VLMs and
 081 systematically investigates its limitations and alternatives. By proposing and evaluating a family
 082 of future-aware masks along with lightweight merging techniques, it offers both empirical gains
 083 and conceptual insights that challenge the default fundamental autoregressive design inherited from
 084 text-only LLMs.

085 2 PRELIMINARY

086 2.1 CAUSAL ATTENTION MECHANISM.

087 For vision-language models (VLMs), the input consists of m visual tokens $X^v \in \mathbb{R}^{B \times m \times H \times D}$
 088 and n textual tokens $X^t \in \mathbb{R}^{B \times n \times H \times D}$, which are concatenated into a unified sequence $X =$
 089 $X^v \oplus X^t \in \mathbb{R}^{B \times L \times H \times D}$, $L = m + n$. The input X is then projected into queries, keys, values:
 090 $Q, K, V \in \mathbb{R}^{B \times L \times H \times D}$. During the prefill stage, causal attention is computed as:

$$091 A = \text{Softmax} \left(\frac{QK^\top}{\sqrt{d}} + M^c \right) V, \quad M_{i,j}^c = \begin{cases} 0, & \text{if } j \leq i \\ -\infty, & \text{otherwise,} \end{cases} \quad (1)$$

092 where $A \in \mathbb{R}^{B \times H \times L \times D}$, $L = m + n$, with m and n being the number of visual and text tokens
 093 respectively. The mask $M \in \mathbb{R}^{L \times L}$ enforces autoregressive constraints across the entire sequence.
 094 For each query token i , the causal masked row M_i will be initialized as

$$095 M_i^c = [\underbrace{M_{i1}, M_{i2}, \dots, M_{ii}}_{i \text{ (past)}}, \underbrace{-\infty, \dots, -\infty}_{L-i \text{ (future)}], \quad (2)$$

102 2.2 VISION LANGUAGE MODEL

103 Vision Language Models (VLMs) like LLaVA Liu et al. (2023) transfer the image input X^v into
 104 vision tokens $\mathbf{x}^v \in \mathbb{R}^{1, m}$ via a pretrained vision encoder $g(X)$, where m is the number of vision
 105 tokens. The vision tokens are projected into text feature spaces, but contain the information from the
 106 images as

$$107 (x_1^v, x_2^v, \dots, x_m^v) = \mathbf{x}^v = g(X^v). \quad (3)$$

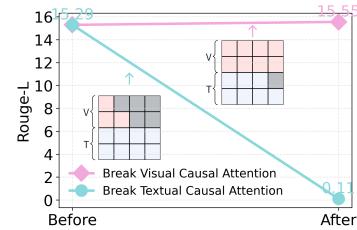


Figure 1: Breaking the causal masks of LLaVA-7b on the ALFRED benchmark Shridhar et al. (2020).

108 In VLM, after the vision encoder, the image tokens are treated as if they were text tokens. Both image
 109 tokens x^v and text tokens x^t are input into an LLM f_ϕ in sequence. Denote token i in the token
 110 sequence by x_i , when there are m vision tokens and n text tokens, VLMs can be generally defined as,
 111

$$x_o = f_\phi(x_1^v, x_2^v, \dots, x_m^v; x_1^t, x_2^t, \dots, x_n^t) \quad (4)$$

113 where x_o is the feature of the output token. In the LLM, the input tokens are sent into the causal
 114 attention layers, where the context feature between the tokens will significantly affect the prediction
 115 Yang et al. (2021); Pei et al. (2024). To be more precise, we denote the image and text token
 116 separately. Let Q^v, Q^t, K^v , and K^t denote the queries and keys for the x^v and x^t , respectively, we
 117 define $B(x^v, x^t) = \frac{(Q^v \oplus Q^t) \cdot (K^v \oplus K^t)^\top}{\sqrt{d}}$, where \oplus is the concatenate function. Follow 1, in VLM, the
 118 softmax attention can be defined as,
 119

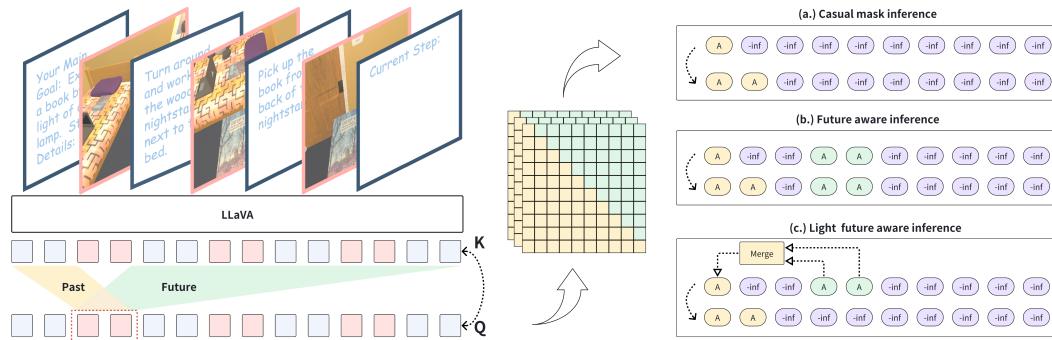
$$h_\theta(\mathbf{x}^v, \mathbf{x}^t; M^c) = \text{Softmax}(B(\mathbf{x}^v, \mathbf{x}^t) + M^c). \quad (5)$$

120 Then the attention output can be redefined as $A = h_\theta(\mathbf{x}^v, \mathbf{x}^t, M^c) \cdot V$. The distribution of the
 121 prediction with causal attention in VLM can be formulated as

$$p_\theta(x_o = x | \mathbf{x}_{1:m}^v, \mathbf{x}_{1:n}^t) = \frac{\exp(e(x)^\top h_\theta(\mathbf{x}_{1:m}^v, \mathbf{x}_{1:n}^t; M^c))}{\sum_{x'} \exp(e(x')^\top h_\theta(\mathbf{x}_{1:m}^v, \mathbf{x}_{1:n}^t; M^c))}, \quad (6)$$

122 where x is the entire output vocabulary, $e(\cdot)$ is the vector in attention. Eq. 6 shows that the context
 123 information in visual semantics is learned between vision tokens. However, Eq. 3 shows that the
 124 context information of vision semantics is fixed into the vision tokens \mathbf{x}^v by the pre-trained vision
 125 encoder $g(X)$. This means that the causal attention conflicts with the vision encoder in context
 126 information comprehension. Intuitively, we believe that in VLM, the image tokens have huge potential
 127 unrevealed by not applying the causal attention mechanism on the image tokens.

3 UNDERSTANDING OF CAUSAL ATTENTION



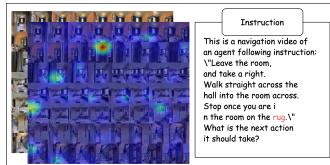
149 Figure 2: An overview of our investigation into causal attention in vision-language inference. **(a.)**
 150 **Casual mask inference:** enforces strict autoregressive decoding by blocking all future attention.
 151 **(b.) Future-aware inference:** enables visual tokens to preview future tokens in the upper-triangular
 152 region. **(c.) Light future-aware inference:** compresses future attentions into past visual positions.

153 We aim to investigate and release the potential of future context in causal attention for vision-language
 154 models (VLMs). We begin by conducting an empirical study that examines how visual tokens interact
 155 with future tokens under various causal masking strategies. This analysis reveals that letting visual
 156 tokens open access to future context has the potential to improve reasoning performance. Motivated
 157 by these findings, we further propose a lightweight mechanism that enables the model to benefit from
 158 future visual signals without breaking the autoregressive structure. Figure 2 presents an overview
 159 of our investigation. The future-aware causal mask allows vision tokens to preview attention scores
 160 from future tokens and selectively compresses valid future attention into past positions to enhance
 161 efficiency while preserving autoregressive constraints.

162
163

3.1 FUTURE AWARE CAUSAL MASKS

164 The mainstream VLM backbone consists of a vision encoder to project the visual patches to
 165 visual tokens, and afterwards concatenate them with text tokens. Given a set of visual tokens
 166 $\mathbf{x}^v = \{x_1^v, x_2^v, \dots, x_m^v\}$ and text tokens $\mathbf{x}^t = \{x_1^t, x_2^t, \dots, x_n^t\}$, a flattened input sequence can be
 167 constructed as $\mathbf{X} = \mathbf{x}^v \oplus \mathbf{x}^t$. In this paper we focus on the case where vision tokens are entered
 168 before text tokens. The subscripts related to x^v is $\mathbb{Z} \cap [1, m]$, and to x^t is $\mathbb{Z} \cap [m+1, m+n]$, where
 169 \mathbb{Z} is the set of integers. For simplicity, we denote $\mathbb{Z} \cap [1, m]$ by \mathcal{V} , and $\mathbb{Z} \cap [m+1, m+n]$ by \mathcal{T} .



170
171
172
173
174
175
176
177
178
Figure 3: An Example of Temporal Multi-Images Task,
Visual Navigation

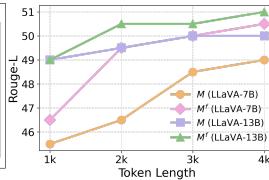


Table 1: AP: Action Prediction Wu et al. (2024), VN: Visual Navigation Krantz et al. (2020), SC: State Change

Mask	Temporal Multi-Image Tasks		
	AP	VN	SC
M	39.8	31	30
M^f	39.9(↑)	32(↑)	31.5(↑)

179 This decomposition enables us to design future-aware variants of causal attention that selectively relax
 180 constraints for vision tokens while preserving strict autoregressive decoding for text. The standard
 181 design of causal attention prevents each token from attending to future positions and this constraint
 182 originally designed for text decoding, can be overly restrictive for visual tokens. To examine this, we
 183 propose a set of causal masking strategies that make the visual attention access the future semantic
 184 attention scores. As the future region of causal mask contains visual to visual ($v2v$) and visual
 185 to text ($v2t$), we define three future-aware variants mask strategy: Future-Aware Full Mask M^f ,
 186 Future-Aware Visual-to-Visual Mask M^{v2v} and Future-Aware Visual-to-Textual Mask M^{v2t} .

187 **Definition 3.1** (Future-Aware Full Mask). *For any query position $i \in \mathcal{V}$ (i.e., visual token), the
 188 future-aware full mask $M_i^f \in \mathbb{R}^L$ retains attention to all positions j , including future tokens in both
 189 visual and textual modalities:*

$$M_{i,j}^f = \begin{cases} 0, & \text{if } j \leq i \vee (j > i \wedge i \in \mathcal{V}) \\ -\infty, & \text{otherwise} \end{cases} \quad (7)$$

190
191
192
193 Then the following holds:

- Full upper-triangle is visible for visual queries.
- Past causal structure is preserved: $M_{i,j} = 0$ for $j \leq i$.
- When $i \in \mathcal{T}$, standard causal mask is used.

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215 **Observation of M^f :** Accessing full future attention scores for visual query could be beneficial to
 temporal multi-image tasks. Allowing visual tokens to attend to the entire future context enhances
 tasks that rely on global temporal reasoning, as it enables each visual query to incorporate upcoming
 visual attentions that are crucial for accurate inference and decision-making.

Analysis. Figure 3 and Table 1 demonstrate that applying the full future-aware mask M^f consistently
 improves performance across all temporal multi-image tasks. Specifically, on Visual Navigation (VN) and State Change (SC) tasks, which require long-horizon reasoning over temporally ordered
 image sequences, M^f yields significant score gains over the standard causal mask. These tasks (e.g.
 Egocentric Navigation, Action Sequence Prediction, and Scene Transition) demand the model to
 interpret actions or spatial arrangements over time. The full future mask allows each visual query to
 access all subsequent visual and textual context during the prefill stage. This enables the model to
 aggregate temporally rich semantics that are not yet locally visible but are crucial for understanding
 object motion trajectories, navigation goals, or state shifts. Such unrestricted future attention is
 particularly helpful in settings where key visual cues for inference (e.g., an agent reaching a door
 or an object changing color) appear later in the image sequence. **It reveals that the utility of full
 future-aware attention varies with task structure: it brings minimal benefit to static or single-image
 inputs but becomes indispensable for robust temporal modeling in multi-image, temporally structured
 settings.**

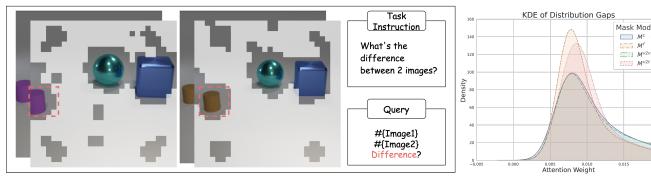
216
217 **Definition 3.2** (Future-Aware Visual-to-Visual Mask). *For any query $i \in \mathcal{V}$, the visual-to-visual
218 future mask M_i^{v2v} permits attending to future visual tokens but masks future text tokens:*

219
220
$$M_{i,j}^{v2v} = \begin{cases} 0, & \text{if } j \leq i \vee (j > i \wedge i, j \in \mathcal{V}) \\ -\infty, & \text{otherwise} \end{cases} \quad (8)$$

221
222 *Then the following holds:*

223
224
225
226
227

- Only future visual tokens are accessible to visual queries.
- Future text tokens are masked with $-\infty$.
- When $i \in \mathcal{T}$, reverts to standard causal masking.



235 Figure 4: Example of a visual-relational task. The model must
236 reason over relationships among visual tokens rather than isolated
237 appearances.

Table 2: VCC: Visual Change Caption Jhamtani & Berg-Kirkpatrick (2018). VRE: Visual Relation Expression Hosseinzadeh & Wang (2021).

Mask	Visual Relation Tasks	
	VCC	VRE
M	16.2	16.6
M^{v2v}	16.7(\uparrow)	18.1(\uparrow)

238
239 **Observation of M^{v2v} :** *Allowing access to future visual tokens can benefit Visual Relation Inference
240 tasks (e.g., Visual Change Captioning, Visual Relationship Expression), as it enables visual queries
241 to capture interactions with future visual content—an essential component of reasoning about visual
242 relationships.*

243 **Analysis.** Figure 4 and Table 2 show that applying the visual-to-visual future-aware mask M^{v2v} leads
244 to noticeable improvements on visual relation tasks such as Visual Change Captioning (VCC) and
245 Visual Relation Expression (VRE). These tasks involve identifying subtle differences or relationships
246 between two related images, where the visual context is rich but the textual signal is limited. By
247 allowing visual queries to access future visual tokens during the prefill stage, M^{v2v} enables the
248 model to better compare visual patches across frames and capture object interactions or appearance
249 changes. As illustrated in the distribution gap, the attention distribution under M^{v2v} closely aligns
250 with the original softmax distribution, indicating that this selective relaxation of the mask preserves
251 natural attention behavior. **The empirical results show that visual relational reasoning relies mainly
252 on intra-modal alignment rather than cross-modal fusion. It benefits from accessing future visual
253 tokens while textual tokens remain strictly causal.**

254 **Definition 3.3** (Future-Aware Visual-to-Textual Mask). *For any query $i \in \mathcal{V}$, the visual-to-textual
255 future mask M_i^{v2t} allows access to future text tokens while masking future visual tokens:*

256
257
258
$$M_{i,j}^{v2t} = \begin{cases} 0, & \text{if } j \leq i \vee (j > i \wedge i \in \mathcal{V}, j \in \mathcal{T}) \\ -\infty, & \text{otherwise} \end{cases} \quad (9)$$

259 *Then the following holds:*

260
261
262
263
264

- Visual queries could preview future textual attention scores.
- Future visual context is strictly masked.
- When $i \in \mathcal{T}$, attention follows standard left-to-right causality.

265
266 **Observation of M^{v2t} :** *Enabling future access from visual tokens to textual tokens benefits Text-Rich
267 Image QA tasks, as it allows visual queries to anticipate and integrate critical textual cues embedded
268 in images—often the key to accurate reasoning and answer generation.*

269 **Analysis.** Figure 5 and Table 3 show that the visual-to-textual future-aware mask M^{v2t} yields
notable improvements in Text-Rich Image QA tasks such as OCR-VQA Mishra et al. (2019) and

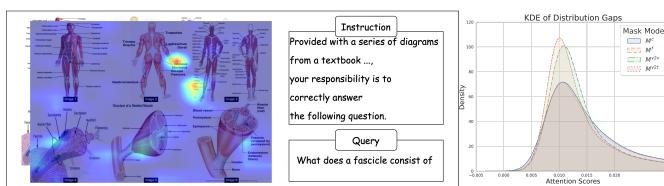


Figure 5: An Example of Text-Rich VQA Tasks

Table 3: Text-Rich Image QA Tasks: OCR-VQA Mishra et al. (2019) and TextVQA Kembhavi et al. (2017).

Mask	Text-Rich Image QA Tasks	
	OCR-VQA	TextVQA
M	22.5	32.0
M^{v2t}	23.0(↑)	38.5(↑)

TextVQA Kembhavi et al. (2017). These benchmarks require extracting fine-grained textual information embedded in complex visual layouts—such as textbook diagrams or document images—where visual cues often need to resolve or align with distant text regions. By allowing visual queries to attend to future textual tokens, M^{v2t} enables earlier visual patches to preemptively integrate relevant linguistic content during prefill, improving semantic alignment and grounding. Specifically, this attention mode avoids exposing future visual context, maintaining temporal consistency. The KDE distribution gap further indicates that the attention distribution under M^{v2t} is better aligned with the natural softmax pattern than other variants, supporting the hypothesis that selective cross-modal future access can improve answer accuracy in scenarios dominated by image-embedded text.

Based on our definition in Def. 3.1, 3.2, and 3.3, the distribution of x_o in Eq. 6 can be revised as

$$p_\theta(X_a = x | \mathbf{x}_{1:m}^v, \mathbf{x}_{1:n}^t) = \frac{\exp(e(x)^\top h_\theta(\mathbf{x}_{1:m}^v, \mathbf{x}_{1:n}^t; \mu))}{\sum_{x'} \exp(e(x')^\top h_\theta(\mathbf{x}_{1:m}^v, \mathbf{x}_{1:n}^t; \mu))}, \quad (10)$$

where μ is the modified mask strategies and $\mu \in \{M^{v2v}, M^{v2t}, M^f\}$ are selected manually and fixed.

4 LIGHT FUTURE AWARE ATTENTION FAMILY

While granting visual tokens access to future context holds great potential for improving multimodal understanding, such full visibility comes at the cost of increased inference latency—particularly during the autoregressive decoding phase. Fortunately, the recent trend of separating prefill and decoding stages in VLMs allows us to shift this overhead entirely into the prefill phase. Leveraging this separation, we propose a lightweight attention mechanism that compresses future visual information into past positions during prefill, enabling the model to benefit from future-aware context while preserving the original causal mask structure during decoding.

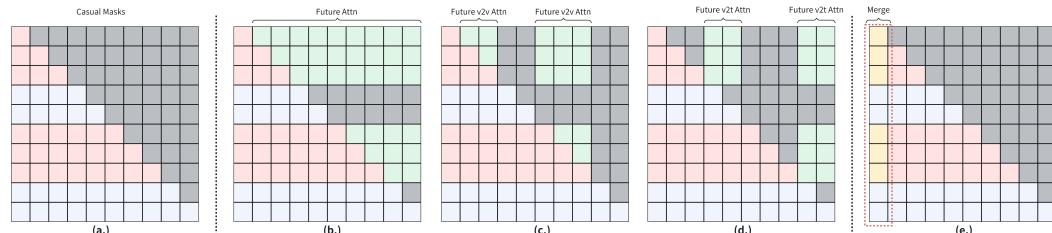


Figure 6: An overview of attention design for vision language inference. (a.) Casual Mask Attention. (b.) Future-Aware Full Attention. (c.) Future-Aware Visual-to-Visual Attention. (d.) Future-Aware Visual-to-Textual Attention. (e.) Light Future Aware Attention.

Motivated by the attention sink phenomenon observed in autoregressive models Gu et al. (2024); Xiao et al. (2024); Yang et al. (2024) and its effectiveness in recent inference optimization studies Ge et al. (2023); Liu et al. (2024b), we merge the compressed future information into the initial vertical past positions to enhance semantic propagation during prefill. We apply 1D kernel pooling over the attention weights using a kernel size k to aggregate visual semantics, and merge the resulting summary score back into the past region $j \leq i$ of the same row A_i as:

$$M_{i,j}^p(\mu) = \begin{cases} 0, & \text{if } j \leq i \text{ or } \mu_{i,j} = -\infty \\ 1, & \text{otherwise,} \end{cases} \quad (11)$$

324
 325 Table 4: Performance comparison across vision-language tasks using different future-aware causal
 326 masking strategies for visual queries. We evaluate the baseline causal mask (M^c), three future-relaxed
 327 variants (M^{v2v} , M^{v2t} , M^f), and their lightweight merge variants (prefix size = 1).

Method	ActionL	ActionP	ActionS	CLEVR	Order	DocVQA	Nav	Moving	OCRQQA	Object	SpotDiff	State	TQA
LLaVA-7b													
M^c	0.230	0.515	0.445	0.166	0.245	0.450	0.310	0.490	0.225	0.485	0.162	0.300	0.320
M^{v2t}	0.250	0.495	0.435	0.181	0.250	0.445	0.320	0.490	0.230	0.495	0.165	0.305	0.385
M^{v2v}	0.255	0.515	0.440	0.177	0.250	0.430	0.325	0.515	0.220	0.500	0.167	0.325	0.385
M^f	0.250	0.500	0.450	0.187	0.255	0.430	0.320	0.505	0.225	0.505	0.171	0.315	0.400
M^{v2v} +merge	0.225	0.51	0.435	0.175	0.27	0.445	0.320	0.490	0.205	0.510	0.167	0.305	0.385
M^{v2t} +merge	0.245	0.495	0.435	0.180	0.250	0.445	0.320	0.490	0.230	0.495	0.164	0.305	0.375
M^f +merge	0.245	0.500	0.450	0.188	0.265	0.420	0.320	0.505	0.225	0.490	0.173	0.320	0.375
LLaVA-13b													
M^c	0.230	0.450	0.450	0.157	0.435	0.455	0.260	0.500	0.455	0.470	0.158	0.360	0.495
M^{v2t}	0.245	0.455	0.495	0.156	0.445	0.460	0.270	0.500	0.415	0.475	0.120	0.360	0.515
M^{v2v}	0.225	0.455	0.500	0.157	0.435	0.465	0.265	0.500	0.415	0.475	0.143	0.360	0.525
M^f	0.245	0.460	0.495	0.156	0.440	0.460	0.260	0.510	0.415	0.475	0.155	0.370	0.510
M^{v2v} +merge	0.245	0.455	0.495	0.155	0.445	0.46	0.270	0.500	0.415	0.475	0.141	0.36	0.515
M^{v2t} +merge	0.245	0.455	0.495	0.155	0.445	0.46	0.270	0.500	0.415	0.475	0.119	0.360	0.510
M^f +merge	0.255	0.450	0.495	0.158	0.445	0.465	0.260	0.505	0.415	0.480	0.115	0.355	0.525

$$C(B, \mu) = \begin{cases} \sum_{s=1}^{T-k+1} \max_{t=0}^{k-1} (B \odot M^p(\mu))_{i, i+s+t}, & \text{where } j \leq i \text{ and } j = 1 \\ 0, & \text{otherwise} \end{cases} \quad (12)$$

347 where $A_i \in \mathbb{R}^L$ denotes the attention distribution for query Q_i , A_i^f represents its masked future
 348 segment, k is the kernel size, $T = L - i - 1$ defines the maximum pooling range, A^p is the
 349 aggregated semantic score via kernel pooling, and $C(B, \mu)$ is the attention row after merging. Then,
 350 the autoregressive generation process refines the token distribution from both the compressed future
 351 and the original past attention, producing predictions conditioned on enriched context representations:

$$h'_\theta(\mathbf{x}^v, \mathbf{x}^t; \mu) = (B(\mathbf{x}^v, \mathbf{x}^t) + C(B, \mu) + M^c) \quad (13)$$

353 Based on our definition in Def. 3.1, 3.2, and 3.3, the distribution of x_o in Eq. 6 can be revised as
 354

$$p_\theta(X_a = x \mid \mathbf{x}_{1:m}^v, \mathbf{x}_{1:n}^t) = \frac{\exp(e(x)^\top h'_\theta(\mathbf{x}_{1:m}^v, \mathbf{x}_{1:n}^t; \mu))}{\sum_{x'} \exp(e(x')^\top h'_\theta(\mathbf{x}_{1:m}^v, \mathbf{x}_{1:n}^t; \mu))}, \quad (14)$$

358 where $\mu \in \{M^{v2v}, M^{v2t}, M^f\}$ is selected manually and fixed, and $h'_\theta(\mathbf{x}_{1:m}^v, \mathbf{x}_{1:n}^t; \mu)$ is the modified
 359 mask attention family equipped with merged semantic future attentions.

360 The compressed method ensures that the final attention pattern remains strictly causal (lower-
 361 triangular) while still benefiting from future visual semantics aggregated during prefill.

363 **Analysis of Lightweight Attention Results.** Table 4 shows that the proposed lightweight attention
 364 strategy, which merges compressed future scores into a fixed prefix token, achieves competitive
 365 performance while preserving the standard causal structure. Across both 7B and 13B models, future-
 366 aware masks with prefix merging (such as M^f +merge and M^{v2v} +merge) perform on par with or
 367 better than their unmerged counterparts on tasks involving temporal reasoning, visual relations, and
 368 text-rich understanding. This indicates that full access to future tokens is not always necessary during
 369 decoding. Instead, summarizing future information into a small prefix, even a single token, provides
 370 sufficient global context for accurate generation.

5 DISCUSSION

373 In this section, we address the questions posed in Section 1 through empirical analysis and experi-
 374 mental results. We further provide insights into these issues and explain how future-aware semantic
 375 design can support the development of vision-language models (VLMs).

377 **1. Causal attention from LLMs may not align well with vision tokens in VLMs and limits
 their contextual capacity.** Table 5 shows that relaxing the standard causal mask with future-aware

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
Table 5: Effectiveness of different future-aware masking strategies . \checkmark : Consistent performance improvement across all benchmarks for the task. \times : Performance degradation across all benchmarks. “-”: Mixed results, some benchmarks improve while others degrade.

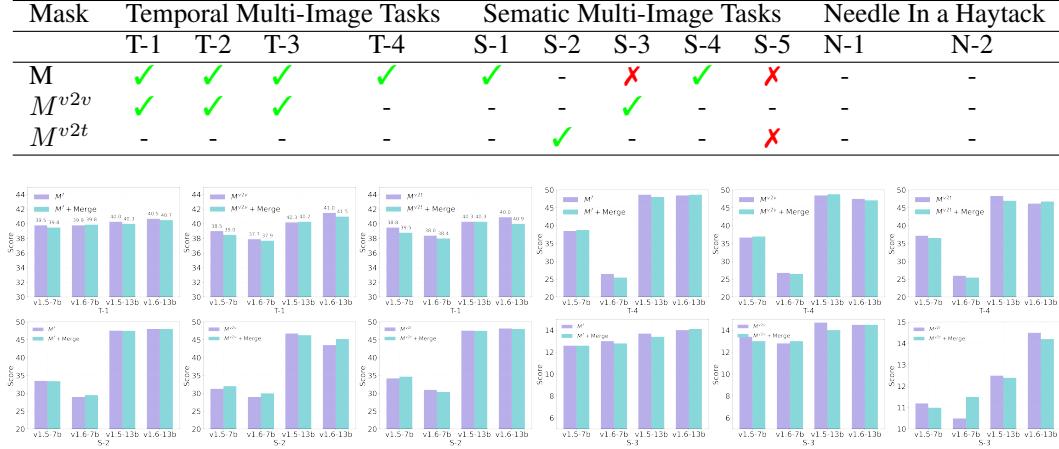


Figure 7: Performance comparison of three causal masks (M^f , M^{v2v} , M^{v2t}) and their lightweight merged variants across different model architectures (v1.5-Vicuna, v1.6-Mistral) and sizes (7b, 13b).

strategies (Definitions 3.1, 3.2, 3.3) yields selective improvements across benchmarks, rather than uniform gains. Temporal multi-image tasks (T-1 to T-4) consistently benefit from M^f and M^{v2v} , likely because they require modeling event sequences, spatial localization, and counterfactual changes over time. In these tasks, allowing visual queries to access future visual cues helps encode scene dynamics and long-term dependencies. Similarly, visual-relation tasks like S-2 and S-3 show gains under M^{v2v} and M^{v2t} , suggesting that self-attention among visual tokens (e.g., for spotting subtle differences) or previewing embedded text (e.g., for reading labels in diagrams) enhances fine-grained reasoning. However, on text-dominant tasks (S-5, IR), these relaxed masks often degrade performance, confirming that strict autoregressive masking remains essential for textual alignment and matching.

2. Causal attention could be revised by selectively relaxing future masking for vision tokens. Definitions 3.1, 3.2, 3.3 introduce new masking strategies that modify the upper-triangular part of the causal mask. Instead of blocking all future tokens, these strategies allow visual queries to access selected future tokens: M^f keeps all future tokens visible, M^{v2v} keeps only future visual tokens, and M^{v2t} keeps only future text tokens. As shown in Table 5, these changes improve performance in tasks that involve visual reasoning or temporal understanding. The results suggest that strict causal masking, designed for text, may be too limiting for vision. Allowing future attention in a controlled way helps vision tokens gather important context early, and better aligns the attention pattern with how visual information is structured.

3. Vision tokens could attend to either or both visual and textual tokens based on task needs. The three masking strategies defined in Definitions 3.1, 3.2, and 3.3 specify which types of future tokens visual queries may attend to. The experimental results in Table 4 and Figure 7 reveal that the optimal access pattern depends on the nature of the task. For visual relation inference (e.g., visual change caption, visual relation expression), M^{v2v} performs best, as reasoning relies on capturing spatial or temporal relationships between future visual observations. In contrast, text-centric tasks like OCR-VQA and TextVQA benefit more from M^{v2t} , where visual tokens preview future textual content to interpret embedded text. Meanwhile, M^f enables broad access to both modalities and helps in temporally grounded multi-image tasks. These findings suggest that causal masking could be flexibly adapted: vision tokens could be granted selective access to future visual or textual information based on the modality relevance of the downstream task.

4. Pre-seen visual semantics show task-dependent benefits. Allowing visual tokens to preview future content helps in tasks that rely heavily on intra-visual reasoning (e.g., Visual Change Captioning and Visual Relation Expression), while future text access proves more beneficial for text-dominant tasks (e.g., OCR-VQA, TextVQA). As shown in Table 2 and Figure 4, relaxing visual-to-visual constraints using M^{v2v} leads to notable gains in visual relation benchmarks, where understanding visual relationships across multiple frames or regions is essential. Conversely, Table 3 and Figure 5

432 Table 6: Comparison of future-aware attention strategies with and without merging. Prefill Valid
 433 Attentions counts non-masked attention scores. L : The length of the prefill attention. m/n : the
 434 number of visual/textual tokens.

436	Attention Type	Prefill Valid Attentions	Decoding Latency
437	M^f	$L(L+1)/2 + mL - m(m+1)/2$	83.1783 ms/token
438	$M^f + \text{merge}$	$L(L+1)/2$	26.5362 ms/token
439	M^{v2v}	$L(L+1)/2 + m(m-1)/2$	64.1266 ms/token
440	$M^{v2v} + \text{merge}$	$L(L+1)/2$	26.4037 ms/token
441	M^{v2t}	$L(L+1)/2 + m \cdot n$	43.0362 ms/token
442	$M^{v2t} + \text{merge}$	$L(L+1)/2$	26.1051 ms/token

445 demonstrate that M^{v2t} significantly boosts performance in text-rich visual QA tasks by letting visual
 446 tokens access future text cues early in the decoding process.

447 Building on the findings from future-aware masking strategies, we further provide some insights on
 448 the method of merging future attention into the past region.

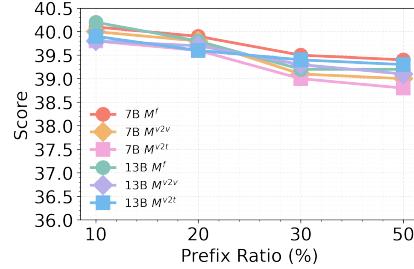
449 **1. Merging future attention in the prefill stage could enjoy a trade-off of performance and**
 450 **latency in the latter decoding stage.** Figure 7 shows that merging pooled future attention into early
 451 prefix tokens retains most of the performance benefits offered by future-aware masks. Meanwhile,
 452 Table 6 quantitatively demonstrates that merging significantly reduces decoding latency (As *breaking*
 453 *the structure precludes computing attention scores via concatenation over past keys/values, we evaluate*
 454 *performance without KV cache for the no-merge variant.*). Compared to the unmerged versions,
 455 applying merge leads to a reduction from 83.18 ms/token (M^f) to 26.53 ms/token ($M^f + \text{merge}$),
 456 from 64.13 ms/token (M^{v2v}) to 26.40 ms/token ($M^{v2v} + \text{merge}$), and from 43.04 ms/token (M^{v2t})
 457 to 26.10 ms/token ($M^{v2t} + \text{merge}$). The 2-3× speedup stems from the fact that merged models rely
 458 solely on standard causal decoding, avoiding the overhead of computing extra future attention.

459 **2. Future semantics can be utilized by merging them**

460 **into attention sink regions in the past.** To evaluate this,
 461 we define the *prefix ratio* as *prefix size*/ L , where L is the
 462 total attention length, and the *prefix size* refers to the num-
 463 ber of past tokens into which the pooled future attention
 464 scores are merged. Figure 8 shows that as the prefix ratio
 465 increases, attention to future tokens decreases, indicating
 466 that future information can be compressed into earlier to-
 467 kens through pooling. This preserves the autoregressive
 468 structure while enabling the model to access future seman-
 469 tics indirectly. The prefix acts as an attention sink that
 470 gathers and retains useful signals for subsequent genera-
 471 tion. Interestingly, we find that merging the pooled future
 472 scores into just the first token already leads to strong
 473 results, suggesting that a single well-positioned sink token
 474 is often sufficient to absorb and
 475 propagate future context effectively.

6 CONCLUSION

476 In this work, we revisit causal attention in vision-language models (VLMs) and show that the standard
 477 left-to-right masking used in language models often misaligns with the characteristics of visual inputs.
 478 We conduct a detailed empirical study across 15 multimodal tasks and propose three future-aware
 479 causal masking strategies that selectively expose future tokens to visual queries. These strategies
 480 lead to clear improvements on tasks requiring temporal, relational, or text-based reasoning. We
 481 also introduce a lightweight attention mechanism that compresses future attention into prefix tokens
 482 during prefill, preserving decoding efficiency while enhancing context modeling. We further analyze
 483 the root cause of the misalignment and provide insights that improve the understanding and design of
 484 modality-aware causal attention in vision-language models.



477 Figure 8: Effect of prefix ratio of Light
 478 future aware attentions.

486 ETHICS STATEMENT
487488 This work studies inference-time causal masking for decoder-only vision–language models. The
489 research does not involve human subjects, annotation efforts, or newly collected data. All tasks
490 used in our evaluation come directly from *MILEBench*, a publicly available long-context multimodal
491 benchmark suite. The benchmark aggregates existing datasets, including VQAv2, GQA, TextVQA,
492 OCRBench, and Spot-the-Diff, under unified evaluation protocols. We use these datasets strictly
493 under their respective licenses, and to our knowledge, none contain sensitive personal information.
494 Our method modifies only the inference-time attention mask of open-source pretrained models
495 without introducing new training or supervision. We encourage responsible and privacy-aware usage
496 of this work and discourage applications that violate safety, fairness, or ethical norms.
497498 REPRODUCIBILITY STATEMENT
499500 We aim to make this study fully reproducible. The proposed masking mechanisms, including M^f ,
501 M^{v2v} , M^{v2t} , merge-based variants, and baseline causal masks, are defined in the main text and
502 appendix. All experiments rely on public *MILEBench* tasks, which provide standardized long-context
503 and multimodal evaluation settings consolidated from VQAv2, GQA, TextVQA, OCRBench, and
504 Spot-the-Diff. Dataset preprocessing, multimodal tokenization, prompt formats, and evaluation
505 metrics are specified in the main paper.506 All models are evaluated using the Hugging Face `transformers` library version 4.34.7, which is
507 compatible with CUDA 12.4 and avoids conflicts with `FlashAttention` kernels. We use publicly
508 released checkpoints of LLaVA-7B and LLaVA-13B without any additional training. Hyperparameters
509 such as decoding settings, maximum context length, and mask-application rules remain fixed
510 across all experiments and are reported in the appendix. Since our method is inference-only and
511 preserves the original architecture, all results can be reproduced by applying our mask implementation
512 to the released checkpoints. We will release our full implementation, configuration files, and scripts
513 upon publication to support independent verification.514 REFERENCES
515516 Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen Bach,
517 Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, et al. Phi-3 technical report: A highly
518 capable language model locally on your phone. *arXiv preprint arXiv:2404.14219*, 2024.
519
520 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
521 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
522 *arXiv preprint arXiv:2303.08774*, 2023.
523
524 Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
525 Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report. *arXiv*
526 *preprint arXiv:2305.10403*, 2023.
527
528 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
529 Yu Han, Fei Huang, et al. Qwen technical report. *arXiv preprint arXiv:2309.16609*, 2023.
530
531 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
532 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
533 2025.
534
535 Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liang, Qiang Xu, Anush
536 Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for
537 autonomous driving. In *Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition*, pp. 11621–11631, 2020.
538
539 Lucy Chai, Michael Gharbi, Eli Shechtman, Phillip Isola, and Richard Zhang. Any-resolution training
for high-resolution image synthesis. In *European conference on computer vision*, pp. 170–188.
Springer, 2022.

540 Yingshan Chang, Mridu Narang, Hisami Suzuki, Guihong Cao, Jianfeng Gao, and Yonatan Bisk.
 541 Webqa: Multihop and multimodal qa. In *Proceedings of the IEEE/CVF conference on computer*
 542 *vision and pattern recognition*, pp. 16495–16504, 2022.

543

544 Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye, Zhangwei Gao, Erfei Cui, Wenwen Tong, Kongzhi
 545 Hu, Jiapeng Luo, Zheng Ma, et al. How far are we to gpt-4v? closing the gap to commercial
 546 multimodal models with open-source suites. *Science China Information Sciences*, 67(12):220101,
 547 2024a.

548 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
 549 Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
 550 for generic visual-linguistic tasks. In *Proceedings of the IEEE/CVF conference on computer vision*
 551 *and pattern recognition*, pp. 24185–24198, 2024b.

552

553 Xiangxiang Chu, Limeng Qiao, Xinyang Lin, Shuang Xu, Yang Yang, Yiming Hu, Fei Wei, Xinyu
 554 Zhang, Bo Zhang, Xiaolin Wei, et al. Mobilevlm: A fast, strong and open vision language assistant
 555 for mobile devices. *arXiv preprint arXiv:2312.16886*, 2023.

556 Jiyang Gao, Chen Sun, Zhenheng Yang, and Ram Nevatia. Tall: Temporal activity localization via
 557 language query. In *Proceedings of the IEEE international conference on computer vision*, pp.
 558 5267–5275, 2017.

559

560 Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells you
 561 what to discard: Adaptive kv cache compression for llms. *arXiv preprint arXiv:2310.01801*, 2023.

562

563 Xiangming Gu, Tianyu Pang, Chao Du, Qian Liu, Fengzhuo Zhang, Cunxiao Du, Ye Wang, and
 564 Min Lin. When attention sink emerges in language models: An empirical view. *arXiv preprint*
 565 *arXiv:2410.10781*, 2024.

566

567 Mehrdad Hosseinzadeh and Yang Wang. Image change captioning by learning from an auxiliary task.
 568 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 569 2725–2734, 2021.

570

571 Qingqiu Huang, Yu Xiong, Anyi Rao, Jiaze Wang, and Dahua Lin. Movienet: A holistic dataset for
 572 movie understanding. In *Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
 573 August 23–28, 2020, Proceedings, Part IV 16*, pp. 709–727. Springer, 2020.

574

575 Harsh Jhamtani and Taylor Berg-Kirkpatrick. Learning to describe differences between pairs of
 576 similar images. *arXiv preprint arXiv:1808.10584*, 2018.

577

578 Aniruddha Kembhavi, Minjoon Seo, Dustin Schwenk, Jonghyun Choi, Ali Farhadi, and Hannaneh
 579 Hajishirzi. Are you smarter than a sixth grader? textbook question answering for multimodal
 machine comprehension. In *Proceedings of the IEEE Conference on Computer Vision and Pattern
 recognition*, pp. 4999–5007, 2017.

580

581 Zhenglun Kong, Yize Li, Fanhu Zeng, Lei Xin, Shvat Messica, Xue Lin, Pu Zhao, Manolis Kellis, Hao
 582 Tang, and Marinka Zitnik. Token reduction should go beyond efficiency in generative models—from
 583 vision, language to multimodality. *arXiv preprint arXiv:2505.18227*, 2025.

584

585 Jacob Krantz, Erik Wijmans, Arjun Majumdar, Dhruv Batra, and Stefan Lee. Beyond the nav-graph:
 586 Vision-and-language navigation in continuous environments. In *Computer Vision–ECCV 2020:
 587 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXVIII 16*, pp.
 588 104–120. Springer, 2020.

589

590 Chia-Wen Kuo, Sijie Zhu, Fan Chen, Xiaohui Shen, and Longyin Wen. D-attn: Decomposed attention
 591 for large vision-and-language model. In *Proceedings of the IEEE/CVF International Conference
 592 on Computer Vision*, pp. 23935–23944, 2025.

593

Aonian Li, Bangwei Gong, Bo Yang, Boji Shan, Chang Liu, Cheng Zhu, Chunhao Zhang, Congchao
 Guo, Da Chen, Dong Li, et al. Minimax-01: Scaling foundation models with lightning attention.
arXiv preprint arXiv:2501.08313, 2025.

594 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
 595 pre-training with frozen image encoders and large language models. In *International conference*
 596 *on machine learning*, pp. 19730–19742. PMLR, 2023a.

597 Xingyuan Li, Yang Zou, Jinyuan Liu, Zhiying Jiang, Long Ma, Xin Fan, and Risheng Liu. From text
 598 to pixels: a context-aware semantic synergy solution for infrared and visible image fusion. *arXiv*
 599 *preprint arXiv:2401.00421*, 2023b.

600 Xingyuan Li, Jinyuan Liu, Zhixin Chen, Yang Zou, Long Ma, Xin Fan, and Risheng Liu. Contourlet
 601 residual for prompt learning enhanced infrared image super-resolution. In *European Conference*
 602 *on Computer Vision*, pp. 270–288. Springer, 2024.

603 Yongqi Li, Wenjie Li, and Liqiang Nie. Mmcqa: Conversational question answering over text, tables,
 604 and images. In *Proceedings of the 60th Annual Meeting of the Association for Computational*
 605 *Linguistics (Volume 1: Long Papers)*, pp. 4220–4231, 2022.

606 Ji Lin, Hongxu Yin, Wei Ping, Pavlo Molchanov, Mohammad Shoeybi, and Song Han. Vila: On
 607 pre-training for visual language models. In *Proceedings of the IEEE/CVF conference on computer*
 608 *vision and pattern recognition*, pp. 26689–26699, 2024.

609 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In *Proceedings*
 610 *of the 37th International Conference on Neural Information Processing Systems*, NIPS ’23, Red
 611 Hook, NY, USA, 2023. Curran Associates Inc.

612 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 613 tuning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 614 pp. 26296–26306, 2024a.

615 Ruikang Liu, Haoli Bai, Haokun Lin, Yuening Li, Han Gao, Zhengzhuo Xu, Lu Hou, Jun Yao, and
 616 Chun Yuan. Intactkv: Improving large language model quantization by keeping pivot tokens intact.
 617 *arXiv preprint arXiv:2403.01241*, 2024b.

618 Minesh Mathew, Dimosthenis Karatzas, and CV Jawahar. Docvqa: A dataset for vqa on document
 619 images. In *Proceedings of the IEEE/CVF winter conference on applications of computer vision*,
 620 pp. 2200–2209, 2021.

621 Anand Mishra, Shashank Shekhar, Ajeet Kumar Singh, and Anirban Chakraborty. Ocr-vqa: Visual
 622 question answering by reading text in images. In *2019 international conference on document*
 623 *analysis and recognition (ICDAR)*, pp. 947–952. IEEE, 2019.

624 Viorica Patraucean, Lucas Smaira, Ankush Gupta, Adria Recasens, Larisa Markeeva, Dylan Banarse,
 625 Skanda Koppula, Mateusz Malinowski, Yi Yang, Carl Doersch, et al. Perception test: A diagnostic
 626 benchmark for multimodal video models. *Advances in Neural Information Processing Systems*, 36,
 627 2024.

628 Xiaohuan Pei, Tao Huang, and Chang Xu. Cross-self kv cache pruning for efficient vision-language
 629 inference. *arXiv preprint arXiv:2412.04652*, 2024.

630 Jianing Qi, Jiawei Liu, Hao Tang, and Zhigang Zhu. Beyond semantics: Rediscovering spatial
 631 awareness in vision-language models. *arXiv preprint arXiv:2503.17349*, 2025.

632 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 633 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.

634 Konstantin Schall, Kai Uwe Barthel, Nico Hezel, and Klaus Jung. Gpr1200: a benchmark for general-
 635 purpose content-based image retrieval. In *International Conference on Multimedia Modeling*, pp.
 636 205–216. Springer, 2022.

637 Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi,
 638 Luke Zettlemoyer, and Dieter Fox. Alfred: A benchmark for interpreting grounded instructions
 639 for everyday tasks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 640 *recognition*, pp. 10740–10749, 2020.

648 Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus
 649 Rohrbach, and Douwe Kiela. Flava: A foundational language and vision alignment model. In
 650 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 15638–
 651 15650, 2022.

652 Dingjie Song, Shunian Chen, Guiming Hardy Chen, Fei Yu, Xiang Wan, and Benyou Wang.
 653 Milebench: Benchmarking mllms in long context. *arXiv preprint arXiv:2404.18532*, 2024.

654 Alon Talmor, Ori Yoran, Amnon Catav, Dan Lahav, Yizhong Wang, Akari Asai, Gabriel Ilharco,
 655 Hannaneh Hajishirzi, and Jonathan Berant. Multimodalqa: Complex question answering over text,
 656 tables and images. *arXiv preprint arXiv:2104.06039*, 2021.

657 Ryota Tanaka, Kyosuke Nishida, Kosuke Nishida, Taku Hasegawa, Itsumi Saito, and Kuniko Saito.
 658 Slidevqa: A dataset for document visual question answering on multiple images. In *Proceedings
 659 of the AAAI Conference on Artificial Intelligence*, volume 37, pp. 13636–13645, 2023.

660 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 661 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 662 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

663 Feng Wang, Timing Yang, Yaodong Yu, Sucheng Ren, Guoyizhe Wei, Angtian Wang, Wei Shao,
 664 Yuyin Zhou, Alan Yuille, and Cihang Xie. Adventurer: Optimizing vision mamba architecture
 665 designs for efficiency. In *Proceedings of the Computer Vision and Pattern Recognition Conference*,
 666 pp. 30157–30166, 2025.

667 Bo Wu, Shoubin Yu, Zhenfang Chen, Joshua B Tenenbaum, and Chuang Gan. Star: A benchmark for
 668 situated reasoning in real-world videos. *arXiv preprint arXiv:2405.09711*, 2024.

669 Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
 670 language models with attention sinks, 2024. *URL https://arxiv.org/abs/2309.17453*, pp. 1, 2024.

671 Shuai Yang, Yuying Ge, Yang Li, Yukang Chen, Yixiao Ge, Ying Shan, and Yingcong Chen.
 672 Seed-story: Multimodal long story generation with large language model. *arXiv preprint
 673 arXiv:2407.08683*, 2024.

674 Xixuan Yang, Xin Huang, Chiming Duan, Tong Jia, Shandong Dong, Ying Li, and Gang Huang.
 675 Enhancing web service anomaly detection via fine-grained multi-modal association and frequency
 676 domain analysis. *arXiv preprint arXiv:2501.16875*, 2025.

677 Xu Yang, Hanwang Zhang, Guojun Qi, and Jianfei Cai. Causal attention for vision-language tasks. In
 678 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
 679 pp. 9847–9857, June 2021.

680 Lewei Yao, Runhui Huang, Lu Hou, Guansong Lu, Minzhe Niu, Hang Xu, Xiaodan Liang, Zhenguo
 681 Li, Xin Jiang, and Chunjing Xu. Filip: Fine-grained interactive language-image pre-training. *arXiv
 682 preprint arXiv:2111.07783*, 2021.

683 Kexin Yi, Chuang Gan, Yunzhu Li, Pushmeet Kohli, Jiajun Wu, Antonio Torralba, and Joshua B
 684 Tenenbaum. Clevrer: Collision events for video representation and reasoning. *arXiv preprint
 685 arXiv:1910.01442*, 2019.

686 Qingyu Yin, Xuzheng He, Xiang Zhuang, Yu Zhao, Jianhua Yao, Xiaoyu Shen, and Qiang Zhang. Sta-
 687 blemask: Refining causal masking in decoder-only transformer. *arXiv preprint arXiv:2402.04779*,
 688 2024.

689 Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank J Reddi, and Sanjiv Kumar.
 690 Are transformers universal approximators of sequence-to-sequence functions? *arXiv preprint
 691 arXiv:1912.10077*, 2019.

692 Qingqing Zhao, Yao Lu, Moo Jin Kim, Zipeng Fu, Zhuoyang Zhang, Yecheng Wu, Zhaoshuo
 693 Li, Qianli Ma, Song Han, Chelsea Finn, et al. Cot-vla: Visual chain-of-thought reasoning for
 694 vision-language-action models. In *Proceedings of the Computer Vision and Pattern Recognition
 695 Conference*, pp. 1702–1713, 2025.

702 Yang Zou, Zhixin Chen, Zhipeng Zhang, Xingyuan Li, Long Ma, Jinyuan Liu, Peng Wang, and Yan-
703 ning Zhang. Contourlet refinement gate framework for thermal spectrum distribution regularized
704 infrared image super-resolution. *arXiv preprint arXiv:2411.12530*, 2024.
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 **A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL**
757758 **A.1 EXPERIMENTAL SETUP**
759

760 All experiments were conducted on NVIDIA A100 GPUs using the official implementation of LLaVA
761 series Liu et al. (2024a), with FlashAttention-2.6.3¹ integrated for efficient attention computation.
762 The context length was set to 4096 tokens, and all generations were performed using greedy decoding
763 with a fixed temperature of 0 to ensure deterministic outputs. Task definitions and groupings follow the
764 standard taxonomy established by MILEBench Song et al. (2024), covering a diverse spectrum of 29
765 multimodal benchmarks. To accommodate the memory and sequence length variability across datasets,
766 batch sizes were dynamically adjusted: a batch size of 1 was used for long-context datasets such as
767 MMCoQA Li et al. (2022) and GPR1200 Schall et al. (2022), while a batch size of 24 was adopted
768 for the remaining tasks. For tasks with highly imbalanced attention patterns, we applied kernel-based
769 attention merging strategies with top-k region ratios calibrated per dataset. We further incorporated
770 minor task-specific biases—for example, a fixed bias of 0.5 in EgocentricNavigation Krantz et al.
771 (2020) and 1.5 in SlideVQA Tanaka et al. (2023)—while retaining default configurations elsewhere.
772 All preprocessing and evaluation followed the official MILEBench protocol to ensure fair and
773 reproducible comparisons.

774 **Table 7: Detailed Tasks inherited from MILEBench Song et al. (2024).**
775

Category	Task	Dataset	Data Source	Count	Metric
Temporal Multi-image	Action Understanding and Prediction (T-1)	Action Localization Action Prediction Action Sequence	STA Gao et al. (2017) STAR Wu et al. (2024) STAR Wu et al. (2024)	200	Accuracy
	Object and Scene Understanding (T-2)	Object Existence	CLEVRER Yi et al. (2019)	200	Accuracy
		Object Interaction	STAR Wu et al. (2024)		
		Moving Attribute	CLEVRER Yi et al. (2019)		
		Object Shuffle	Perception Test Patraucean et al. (2024)		
	Visual Navigation and Spatial Localization (T-3)	Egocentric Navigation	VLN-CE Krantz et al. (2020)	200	Accuracy
		Moving Direction	CLEVRER Yi et al. (2019)		
	Counterfactual Reasoning and State Change (T-4)	Counterfactual Inference	CLEVRER Yi et al. (2019)	200	Accuracy
		State Change	Perception Test Patraucean et al. (2024)		
		Character Order	Perception Test Patraucean et al. (2024)		
		Scene Transition	MovieNet Huang et al. (2020)		
Semantic Multi-image	Knowledge Grounded QA (S-1)	Webpage QA	WebQA Chang et al. (2022)	200	Accuracy
		Textbook QA	TQA Kembhavi et al. (2017)		
		Complex Multimodal QA	MultiModalQA Talmor et al. (2021)		
		Long Text with Images QA	WikiVQA		
	Text-Rich Images QA (S-2)	Slide QA	SlideVQA Tanaka et al. (2023)	200	Accuracy
		OCR QA	OCR-VQA Mishra et al. (2019)		
	Visual Relation Inference (S-3)	Document QA	DocVQA Mathew et al. (2021)	200	Accuracy
		Visual Change Captioning	Spot-the-Diff Jhanna & Berg-Kirkpatrick (2018)		
		Visual Relationship Expressing	CLEVR-Change HosseiniZadeh & Wang (2021)		
Diagnostic Evaluation	Dialogue (S-4)	Multimodal Dialogue	MMCoQA Li et al. (2022)	200	Accuracy
		Conversational Embodied Dialogue	ALFRED Shridhar et al. (2020)		
	Space Understanding (S-5)	nuScenes	nuScenes Caesar et al. (2020)	200	Accuracy
		Text Needed In A Haystack	TextNeedleInAHaystack		
	Needle In A Haystack (N-1)	Text Needed In A Haystack	TextNeedleInAHaystack	320	Accuracy
	Needle In A Haystack (N-2)	Image Needle In A Haystack	ImageNeedleInAHaystack	320	Accuracy
	Image Retrieval (I-1)	Image Retrieval	GPR1200 Schall et al. (2022)	600	Accuracy

790 **A.2 RELATED WORK**
791

792 With the success of decoder-only large language models (LLMs) Achiam et al. (2023); Bai et al.
793 (2023); Li et al. (2025); Touvron et al. (2023); Abdin et al. (2024), recent advances have extended
794 their capabilities to the multimodal domain, giving rise to Vision-Language Models (VLMs). Early
795 frameworks such as LLaVA Liu et al. (2023), InternVL Chen et al. (2024b), and Qwen-VL Bai
796 et al. (2025) demonstrate that instruction tuning can be adapted to handle flattened textual and visual
797 inputs, enabling strong performance across tasks such as visual reasoning, captioning, and instruction
798 following. [Additionally, most multi-modality pre-trained work Lin et al. \(2024\); Bai et al. \(2025\);
799 Li et al. \(2023b; 2024\); Zou et al. \(2024\); Yang et al. \(2025\) also inherit the causal masking design
800 from LLMs, which, while crucial for token generation, may unnecessarily constrain specific modality
801 token \(e.g. In our paper it refers to visual tokens\).](#) These pre-trained models typically flatten visual
802 and textual tokens into a single sequence and feed them into an decoder-only, which may overlooking
803 modality-specific attention patterns. To mitigate these limitations, recent studies have explored
804 resolution-aware vision encoders Chai et al. (2022); Chen et al. (2024a), multi-modal alignment
805 modules Singh et al. (2022), and fine-grained token interaction strategies Yao et al. (2021), aiming
806 to better adapt LLM-based decoder-only architecture to the visual perception reasoning. And the
807 potential usage of the future tokens has been shown in LLMs architecture Yin et al. (2024). [Beyond
808 these lines of research, recent studies such as D-Attn Kuo et al. \(2025\), BLIP-2 Li et al. \(2023a\) and
809 Adventurer Wang et al. \(2025\) explore architectural or encoder-based mechanisms to relax modality](#)

810 ¹<https://github.com/Dao-AI-Lab/flash-attention>

810 interactions, whereas our approach differs by keeping the standard decoder-only backbone unchanged
 811 and introducing training-free, future-aware masking to systematically study how visual tokens should
 812 access future context during autoregressive inference. To accelerate inference, dynamic pruning has
 813 also been widely adopted in vision–language and multimodal large models, as discussed in recent
 814 surveys of token-reduction techniques Kong et al. (2025). In the robot Vision-Language-Action
 815 (VLA) domain, models such as Cot-VLA Zhao et al. (2025) further demonstrate that adjusting
 816 causal masks for action tokens can enhance long-horizon control, highlighting the broader importance
 817 of modality-specific causal relaxation. However, the impact of LLM-inherited causal masking on
 818 visual token processing remains underexplored and despite its potential misalignment with the non-
 819 sequential nature of many visual reasoning tasks, which motivating the core investigation in our
 820 work.

821 A.3 ABLATION UNDER INTERLEAVED IMAGE–TEXT TOKEN PATTERNS

824 Beyond the conventional image → text input pattern, some embodied benchmarks adopt interleaved
 825 token structures such as image → text → image → text. To examine whether our future-aware masks
 826 generalize to these settings, we evaluate several mask variants on the ALFRED Shridhar et al. (2020)
 827 benchmark, whose latent sequence composition exhibits such mixed ordering. In this configuration,
 828 visual tokens can still access their future textual or visual context through M^f , M^{v2v} , and M^{v2t} ,
 829 because our design only depends on each token’s modality identity and its causal location within the
 830 sequence. The results are summarized in Table 8. All future-aware variants outperform the original
 831 causal baseline, and the kernel-based future mask yields the largest improvement, suggesting that
 832 smooth future aggregation is beneficial for multi-step, temporally structured reasoning tasks.

833 Table 8: Future-aware masks under interleaved image–text sequences (Rouge-L F1 × 100).

835 Mask Type	836 Open Tokens for Vision	837 Rouge-L F1	838 Δ vs Original	839 Variants
Future-only M^f	vision + future text/vision	15.52	+0.23	improved grounding from future cues
Future V2T M^{v2t}	future text only	15.61	+0.32	strongest non-kernel variant
Kernel Future	kernel-smoothed future access	17.11	+1.82	best temporal aggregation

840 A.4 TUNING POTENTIAL OF FUTURE-AWARE MASKING

842 Our main objective is to analyze how causal masking influences visual tokens in decoder-only
 843 architectures. For this reason, most of our experiments focus on inference-only mechanisms, allowing
 844 us to isolate the effect of future visibility without altering optimization dynamics. Nevertheless,
 845 to examine whether the benefits also extend to the training stage, we additionally evaluate two
 846 lightweight tuning experiments that reflect the reviewer’s concern.

848
 849
 850 **Fine-tuning a Decoder-only VLA Model.** We fine-tune a decoder-only vision–language–action
 851 model (OpenVLA-OFT) on LIBERO-Spatial for 30k steps under both causal and future-aware
 852 masking. As shown in Table 9, the future-aware model achieves a higher success rate (85.1%
 853 vs. 84.7%), and its query–key correlations exhibit the same upper-triangular structure observed in
 854 our inference-only analyses. This demonstrates that the benefit of granting visual tokens controlled
 855 access to future information is not restricted to probing, but also manifests during training.

856 Table 9: Fine-tuning results on LIBERO-Spatial (success rate).

858 Method	859 SR (\uparrow)
Diffusion Policy (scratch)	$78.3 \pm 1.1\%$
Octo fine-tuned	$78.9 \pm 1.0\%$
OpenVLA + Causal	$84.7 \pm 0.9\%$
OpenVLA + Future-aware	$85.1 \pm 0.9\%$

864 **Learnable Mask Selection via an Adapter.** We further test a simple learnable controller that
 865 selects masking strategies using a lightweight MLP-based adapter. Although this introduces additional
 866 FLOPs, the adapter consistently improves performance across CLEVR, Nav, Object, and SpotDiff
 867 benchmarks (Table 10). These results indicate that future-aware masking can be integrated into
 868 differentiable routing modules and remains compatible with training-time adaptation.

869
870 Table 10: Learnable adapter for mask selection (accuracy).

Method	CLEVR	Nav	Object	SpotDiff
Original Mask	0.166	0.310	0.225	0.162
+ Adapter	0.188	0.320	0.240	0.173

875
876
877
878 **Discussion.** Together, these tuning experiments show that future-aware masking is not only effective
 879 as an inference mechanism but also benefits models when training is allowed. While our paper centers
 880 on analyzing causal behavior in existing LVLMs, these results highlight the potential of training-time
 881 designs as an exciting direction for future work.

882
883

A.5 DISTRIBUTION ANALYSIS FOR FUTURE-AWARE ATTENTION.

884 To better understand the limitations of causal masking in vision-language models (VLMs), we analyze
 885 the predictive uncertainty from an information-theoretic perspective, following the previous work Yin
 886 et al. (2024). In particular, we examine the mutual information between the model output and the
 887 observed context under different masking strategies. Let $\mathbf{x}^v = \{x_1^v, \dots, x_m^v\}$ and $\mathbf{x}^t = \{x_1^t, \dots, x_n^t\}$
 888 denote the visual and textual tokens respectively, and let $\mathbf{X} = \mathbf{x}^v \oplus \mathbf{x}^t$ be the unified input sequence
 889 of total length $L = m + n$. The autoregressive model predicts the output token x_o based on a
 890 masked prefix $\mathbf{X}_{\leq i}$. The mutual information between the output and its visible prefix context is
 891 $I(\mathbf{X}_{\leq i}; x_o) = H(x_o) - H(x_o | \mathbf{X}_{\leq i})$, where $H(\cdot)$ denotes the entropy. Depending on the specific
 892 causal mask, the prefix $\mathbf{X}_{\leq i}$ may include different subsets of visual and textual tokens. For example,

893
$$I(x_o; \mathbf{x}_{1:i}^v \cup \mathbf{x}_{1:j}^t) = H(x_o) - H(x_o | \mathbf{x}_{1:i}^v, \mathbf{x}_{1:j}^t), \quad (15)$$

894 which isolates the contributions of each modality. As shown in our empirical study in Section 3
 895 and 4, breaking the visual-based causal inference procedure by exposing future tokens leads to a
 896 distribution shift because of the rich semantic information in the masked future region.

897 **Theoretical Properties.** Based on the preceding information-theoretic derivations in Yin et al. (2024);
 898 Yun et al. (2019), and assuming the vision language models induce causally isotropic intermediate
 899 representations, we further derive the following properties of mutual information:

900 **Property A.1.** *For any $i \leq L$, the mutual information between the output token x_o and the l -th layer
 901 intermediate representation $\omega_{\leq i}^{(l)}$ is upper-bounded by the mutual information from the raw prefix
 902 input $\mathbf{X}_{\leq i}$:*

903
$$I(x_o; \omega_{\leq i}^{(l)}) \leq I(x_o; \mathbf{X}_{\leq i}).$$

904 *This follows from the data processing inequality and reflects that internal representations cannot
 905 increase information about the target beyond what is available from the input.*

906 **Property A.2.** *If the VLM decoder is contextual, then its intermediate representation preserves all
 907 information in the input:*

908
$$I(x_o; \omega_{\leq L}^{(l)}) = I(x_o; \mathbf{X}_{\leq L}).$$

909 *This implies that the decoder faithfully encodes the entire causal context without losing predictive
 910 power.*

911 **Property A.3.** *If the input distribution is causally isotropic and $\omega_{\leq i}^{(l)}$ is uniquely determined by $\mathbf{X}_{\leq i}$,
 912 then the representation retains no more information than the original prefix:*

913
$$I(x_o; \omega_{\leq i}^{(l)}) \leq I(x_o; \mathbf{X}_{\leq i}) \quad \text{for all } i \leq L.$$

914 *This reinforces that isotropic settings do not amplify mutual information through intermediate
 915 computation.*

918 **Property A.4.** *If both the decoder is contextual and the data distribution is causally isotropic, then
919 the mutual information is exactly preserved:*

$$920 \quad 921 \quad 922 \quad 923 \quad 924 \quad 925 \quad 926 \quad 927 \quad 928 \quad 929 \quad 930 \quad 931 \quad 932 \quad 933 \quad 934 \quad 935 \quad 936 \quad 937 \quad 938 \quad 939 \quad 940 \quad 941 \quad 942 \quad 943 \quad 944 \quad 945 \quad 946 \quad 947 \quad 948 \quad 949 \quad 950 \quad 951 \quad 952 \quad 953 \quad 954 \quad 955 \quad 956 \quad 957 \quad 958 \quad 959 \quad 960 \quad 961 \quad 962 \quad 963 \quad 964 \quad 965 \quad 966 \quad 967 \quad 968 \quad 969 \quad 970 \quad 971$$

$$I(x_o; \omega_{\leq L}^{(l)}) = I(x_o; \mathbf{X}_{\leq L}).$$

This guarantees no loss of information between the raw prefix and the intermediate representation.

Property A.5 (Upper-Triangular Future Visibility in Multimodal Masking). *For any visual query position $i \in \mathcal{V}$ and ground-truth output x_o , the ratio of mutual information satisfies:*

$$\frac{I(\mathbf{X}_{\leq i}; x_o)}{I(\mathbf{X}_{\leq L}; x_o)} = \frac{H(x_o) - H(x_o | \mathbf{X}_{\leq i})}{H(x_o) - H(x_o | \mathbf{X}_{\leq L})} \geq \frac{I(\Omega_{\leq i}^{(l)}; x_o)}{I(\Omega_{\leq L}^{(l)}; x_o)}, \quad (16)$$

where $\Omega_{\leq i}^{(l)}$ represents the intermediate representation at layer l computed from prefix $\mathbf{X}_{\leq i}$. This inequality quantifies how future-aware visual masking contributes to reducing uncertainty of the output, and suggests that semantically rich upper-triangle access allows earlier layers to preserve more predictive information.

Property A.5 establishes that, under a future-aware masking strategy, visual queries that access upper-triangular regions (i.e., future tokens) can retain a higher fraction of mutual information with the output token x_o compared to standard causal masking. This suggests that even partial access to semantically informative future tokens allows intermediate representations to encode more predictive context. The inequality further implies that the proportion of retained information in early layers is lower bounded by the proportion of information retained in their corresponding representations $\Omega^{(l)}$. In practice, this supports the design of selective future access in vision-language inference, where relaxing strict causality on visual queries can effectively enhance downstream prediction without fully compromising autoregressive generation.

A.6 FUTURE-AWARE FLASH-ATTENTION

To efficiently support our future-aware causal masking strategies defined in Section 3, we integrate them with the FlashAttention framework for scalable inference. As detailed in Algorithm 1, we implement our masking logic by applying the selected future-aware mask $\mu \in \{M^f, M^{v2v}, M^{v2t}\}$ directly into the attention score computation, replacing the standard causal mask. During runtime, both the queries and key-value pairs are processed in blocks to fit within on-chip memory, and attention scores are computed with fused softmax operations to ensure numerical stability and memory efficiency. The masked attention scores are exponentiated and normalized via a log-sum-exp trick, and aggregated token-wise to produce final outputs. This fusion enables our proposed vision-language attention design to retain the efficiency advantages of FlashAttention while supporting flexible, modality-aware causal constraints.

A.7 ROBUSTNESS OF THE KERNEL POOLING MERGING

We conduct further ablations to evaluate the robustness of the ID kernel pooling module. The results show that the module behaves consistently across a wide range of kernel sizes. As summarized below, kernel sizes of 1, 3, and 7 yield identical performance, while an extreme kernel size of 25 introduces only a minor fluctuation within ± 0.1 . This indicates that the method does not rely on shortcut patterns and preserves stable reasoning behavior.

Pool Size	OCR (LLaVA v1.5 / v1.6)		VRE (LLaVA v1.5 / v1.6)	
	v1.5	v1.6	v1.5	v1.6
1	23.0	21.5	17.9	15.5
3	23.0	21.5	17.9	15.5
7	23.0	21.5	17.9	15.5
25	23.0	21.4	17.9	15.4

We additionally compare mean pooling and max pooling under the same configuration. Both yield comparable results, with mean pooling showing only negligible differences (≤ 0.2) on LLaVA v1.6

972 **Algorithm 1** Future-Aware Mask equipped with FlashAttention
973
974 **Require:** Matrices $\mathbf{Q}, \mathbf{K}, \mathbf{V}, \mathbf{M} \in \mathbb{R}^{L \times d}$, future-aware mask $\mu \in \{M^f, M^{v2v}, M^{v2t}\}$, block sizes
975 B_r, B_c
976 1: Divide \mathbf{Q} into $T_r = \lceil \frac{L}{B_r} \rceil$ blocks $\mathbf{Q}_1, \dots, \mathbf{Q}_{T_r}$
977 2: Divide $\mathbf{K}, \mathbf{V}, \mu$ into $T_c = \lceil \frac{L}{B_c} \rceil$ blocks $\mathbf{K}_j, \mathbf{V}_j, \mu_j$ of size B_c each
978 3: Initialize output $\mathbf{O} \in \mathbb{R}^{L \times d}$ and $\mathbf{L} \in \mathbb{R}^L$
979 4: **for** $i = 1$ to T_r **do**
980 5: Load \mathbf{Q}_i into on-chip SRAM
981 6: Initialize $\mathbf{O}_i^{(0)} \leftarrow 0, \ell_i^{(0)} \leftarrow 0, \mathbf{m}_i^{(0)} \leftarrow -\infty$
982 7: **for** $j = 1$ to T_c **do**
983 8: Load $\mathbf{K}_j, \mathbf{V}_j, \mu_j$ into on-chip SRAM
984 9: Compute masked attention score:
985 10:
$$\mathbf{S}_i^{(j)} = \mathbf{Q}_i \mathbf{K}_j^\top / \sqrt{d} + \mu_{i,j}$$

986 11: Normalize: $\tilde{\mathbf{S}}_i^{(j)} = \exp(\mathbf{S}_i^{(j)} - \mathbf{m}_i^{(j)})$
987 12: Update max: $\mathbf{m}_i^{(j)} = \max(\mathbf{m}_i^{(j-1)}, \max(\mathbf{S}_i^{(j)}, \text{dim} = 1))$
988 13: Update sum: $\ell_i^{(j)} = \exp(\mathbf{m}_i^{(j-1)} - \mathbf{m}_i^{(j)}) \odot \ell_i^{(j-1)} + \sum \tilde{\mathbf{S}}_i^{(j)}$
989 14: Output partial result:
990 15:
$$\mathbf{O}_i^{(j)} = \exp(\mathbf{m}_i^{(j-1)} - \mathbf{m}_i^{(j)}) \cdot \mathbf{O}_i^{(j-1)} + \tilde{\mathbf{S}}_i^{(j)} \cdot \mathbf{V}_j$$

991 16: Store $\mathbf{O}_i, \mathbf{L}_i$ to global memory
992 17: **return** \mathbf{O}, \mathbf{L}

Method	OCR		VRE		SpotDiff	
	v1.5	v1.6	v1.5	v1.6	v1.5	v1.6
Max	23.0	21.5	17.9	15.0	16.5	15.3
Mean	22.8	21.4	17.9	15.0	16.5	15.2

1001
1002 variants. This further confirms that the ID kernel pooling module is insensitive to the choice of
1003 pooling strategy. These results demonstrate that the kernel pooling mechanism is both reproducible
1004 and robust across kernel sizes and pooling types. We adopt max pooling in the main paper due to its
1005 consistently stable performance.

1012 B THE USE OF LARGE LANGUAGE MODELS

1015 In preparing this manuscript, we employed a Large Language Model (LLM) as a writing assistant to
1016 refine the clarity and presentation of the text. Its use was strictly confined to linguistic enhancement
1017 rather than substantive content generation. Specifically, the LLM was used to:

1018 • Rephrase sentences and paragraphs for greater readability, conciseness, and academic
1019 formality.

1020 • Correct grammar, spelling, and punctuation errors.

1021 • Improve logical flow and transitions between sentences.

1024 **Limitation.** Our analysis primarily follows the image → text token ordering commonly adopted
1025 in decoder-only LVLMs. While this setting covers the majority of existing architectures, it does
1026 not explicitly evaluate alternative tokenization patterns such as pure text → image sequences. This

1026 mismatch may limit the generality of our observations in cases where visual tokens always appear
1027 after textual tokens. Nevertheless, the applicability of our future-aware masks is not tied to a fixed
1028 modality order. For mixed or interleaved patterns (*e.g.*, text–image), any visual token that is followed
1029 by subsequent tokens still benefits from the same visibility logic, since the mask operates solely on
1030 modality identity and causal position rather than on a specific interleaving template.

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079