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Abstract

Generally, the decoder-only large language001
models (LLMs) are adapted to context-aware002
neural machine translation (NMT) in a con-003
catenating way, where LLMs take the con-004
catenation of the source sentence (i.e., intra-005
sentence context) and the inter-sentence con-006
text as the input, and then to generate the tar-007
get tokens sequentially. This adaptation strat-008
egy, i.e., concatenation mode, considers intra-009
sentence and inter-sentence contexts with the010
same priority, despite an apparent difference011
between the two kinds of contexts. In this012
paper, we propose an alternative adaptation013
approach, named Decoding-enhanced Multi-014
phase Prompt Tuning (DeMPT), to make015
LLMs discriminately model and utilize the016
inter- and intra-sentence context and more ef-017
fectively adapt LLMs to context-aware NMT.018
First, DeMPT divides the context-aware NMT019
process into three separate phases. During each020
phase, different continuous prompts are intro-021
duced to make LLMs discriminately model var-022
ious information. Second, DeMPT employs023
a heuristic way to further discriminately en-024
hance the utilization of the source-side inter-025
and intra-sentence information at the final de-026
coding phase. Experiments show that our ap-027
proach significantly outperforms the concate-028
nation method, and further improves the per-029
formance of LLMs in discourse modeling. We030
will release our code and datasets on GitHub.031

1 Introduction032

Context-aware neural machine translation (NMT)033

goes beyond sentence-level NMT by incorporating034

inter-sentence context at the document level (Zhang035

et al., 2018; Miculicich et al., 2018; Voita et al.,036

2018, 2019b,a; Bao et al., 2021; Sun et al., 2022),037

aiming to address discourse-related challenges such038

as zero pronoun translation (Wang et al., 2019), lex-039

ical translation consistency (Lyu et al., 2021, 2022),040

and discourse structure (Hu and Wan, 2023). A re-041

cent paradigm shift has been witnessed in context-042

aware NMT with the emergence of the decoder- 043

only large language models (LLMs) (BigScience, 044

2022; Google, 2022; MetaAI, 2023b,a; OpenAI, 045

2023). These generative language models, trained 046

on massive data, have gained significant attention 047

in the natural language processing (NLP) commu- 048

nity. In adapting LLMs to context-aware NMT, 049

a common strategy involves concatenating multi- 050

ple source sentences as a prefix and generating 051

translations token-by-token, relying on the prefix 052

and previously predicted target tokens, as shown 053

in Figure 1 (a). However, a critical observation 054

of this strategy reveals a potential drawback – the 055

equal prioritization of the inter- and intra-sentence 056

contexts during token generation. Importantly, the 057

intra-sentence context inherently contains richer 058

parallel semantic information with the target sen- 059

tence and should be given a higher priority than the 060

inter-sentence context. Consequently, we propose 061

that separately modeling and utilizing the inter- and 062

intra-sentence contexts should explicitly inform 063

LLMs of the document-level context and the cur- 064

rent sentence itself, thus being able to prevent the 065

misallocation of attention weights to source-side to- 066

kens (Bao et al., 2021; Li et al., 2023). Inspired by 067

the success of prompt tuning (Li and Liang, 2021; 068

Liu et al., 2022; Tan et al., 2022), our alternative 069

approach, named Decoding-Enhanced Multi-phase 070

Prompt Tuning (DeMPT), aims to enhance LLMs’ 071

adaptability to context-aware NMT, as shown in 072

Figure 1 (b).1 073

Specifically, we divide the whole procedure 074

of context-aware NMT into three phases: inter- 075

sentence context encoding, intra-sentence context 076

encoding, and decoding. Following Li and Liang 077

(2021); Liu et al. (2022), we sequentially and dif- 078

1Following the findings of Bao et al. (2021), which indi-
cate that source-side context is relatively more important for
document-level MT compared to target-side context, we focus
exclusively on source-side context in this paper. Nonetheless,
we provide an additional discussion on integrating target-side
context in Appendix M.
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Figure 1: Comparison of different strategies for adapting LLMs to context-aware NMT. The concatenation strategy
(left) treats inter-sentence and intra-sentence (referred to as the "source sentence" context in the figure) with equal
importance. In contrast, our approach (right) divides context-aware NMT into three distinct phases, enabling LLMs
to selectively model and leverage both inter- and intra-sentence contexts.

ferentially adapt LLMs for each phase, utilizing079

phase-specific trainable prompts. This phased tun-080

ing method enables LLMs to independently capture081

and model both inter- and intra-sentence contexts,082

facilitating a better understanding of their differ-083

ences. Our approach splits the input into three parts084

without significantly increasing computational load,085

thus maintaining inference speed comparable to086

concatenation, as detailed in Appendix D.087

Furthermore, during the decoding phase, we pro-088

pose a heuristic method to emphasize the differ-089

ence between inter- and intra-sentence contexts,090

and avoid long-distance issue when utilizing inter-091

sentence context. Specifically, at each decoding092

step, we use LLMs to predict the next token three093

times. The decoding states used for each predic-094

tion directly concatenate with the representations095

of two contexts in a discriminative manner. Fi-096

nally, we combine three probability distributions097

to search for the next token as the output from the098

target vocabulary. This method enables LLMs to099

learn not only to properly capture inter-sentence100

context in addressing discourse-related issues but101

also to recognize a difference between inter- and102

intra-sentence contexts, allowing for effective uti-103

lization of both types of contexts.104

Our contributions can be summarized as follows:105

• We introduce a multi-phase prompt tuning ap-106

proach that divides context-aware NMT into107

three phases, enabling LLMs to distinguish108

between inter- and intra-sentence contexts.109

• We introduce a enhanced decoding method110

that discriminately utilize both context types.111

This allows LLMs not only properly capture112

inter-sentence context in addressing discourse-113

related issues, but also be aware of the impor-114

tance of the intra-sentence context.115

• We validate our approach using llama-2-7b 116

and bloomz-7b1-mt as foundation models, 117

demonstrating its effectiveness across five 118

translation directions. Extensive analyses fur- 119

ther highlight the substantial enhancement in 120

LLMs’ ability for context-aware MT. 121

2 Methodology 122

In this section, we describe our decoding-enhanced 123

multi-phase approach for adapting LLMs to 124

context-aware NMT in details. Specifically, we 125

break down the whole procedure of context-aware 126

NMT into three phases (Section 2.1), i.e., inter- 127

sentence context encoding, intra-sentence encod- 128

ing, and decoding. Additionally, we discrimina- 129

tively enhance the utilization of inter- and intra- 130

sentence contexts during the decoding phase (Sec- 131

tion 2.2). Finally, we describe our phase-aware 132

prompts and training objective in Section 2.3 and 133

Section 2.4, respectively. 134

For a given document pair (S, T ) with K sen- 135

tences, we will construct K training instances. 136

Each training instance is denoted as a tuple (C, S, T ). 137

Here S = x||S|
k represents k-th current source sen- 138

tence with |S| tokens, i.e., intra-sentence context, 139

and T = y||T |
k is the k-th target sentence with |T | 140

tokens. C denotes the z previous sentences of S, 141

i.e., the inter-sentence context of S. We denote the 142

hidden size of the LLM as d, and L as the number 143

of transformer layers within it. 144

2.1 Multi-phase Encoding and Decoding 145

We implement our approach based on deep prompt 146

tuning (Li and Liang, 2021; Liu et al., 2022). Next, 147

we use training instance (C, S, T ) as an example to 148

describe the multi-phase approach. Figure 2 illus- 149

trates the procedure of multi-phase prompt tuning. 150
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Figure 2: Illustration of pipeline of multi-phase prompt
tuning LLM for context-aware NMT. Red lines illustrate
the procedure of enhanced decoding phase.

Inter-sentence Context Encoding Phase. In the151

inter-sentence context encoding phase (Phase 1 in152

Figure 2), we first concatenate all sentences in C153

into a sequence, and then utilize the LLM to encode154

C by incorporating the trainable prompt:155

H1:L
C = LLM(C,PC), (1)156

where H1:L
C ∈ RL×|C|×d is the sequence of activa-157

tions for C, PC ∈ RL×2q×d is the current-phase train-158

able prompt, and q is a hyper-parameter for the159

length of the prompt. PC aims to adapt the LLM for160

better modeling the inter-sentence context. Same161

as basic deep prompting, at the l-th transformer162

block, we inject corresponding prompt in PC into163

encoding procedure of C as follows:164

Hl
C = FFN (Multi-Attn (KC ,VC ,QC)) , (2)165

166
QC = Hl−1

C , (3)167
168

KC = [PC [l, : q, :];H
l−1
C ], (4)169

170
VC = [PC [l, q :, :];Hl−1

C ], (5)171

where Hl
C ∈ R|C|×d is the output of the l-th trans-172

former block. FFN and Multi-Attn are the feed-173

forward network and multi-head self-attention sub-174

layers, respectively.2 [·; ·] and [· : ·] are the concate-175

nating and slicing operations, respectively.176

Intra-sentence Context Encoding Phase. In the177

intra-sentence context encoding phase (Phase 2 in178

Figure 2), the LLM encodes the intra-sentence con-179

text S by conditioning on the past activations of the180

inter-sentence context H1:L
C and trainable prompt:181

H1:L
S = LLM(S,H1:L

C ,PS), (6)182

where H1:L
S ∈ RL×|S|×d is the sequence of activa-183

tions for S, and PS ∈ RL×2q×d denotes current-184

phase prompt. Similarly, at the l-th transformer185

2For simplicity, we omit the normalization and residual
operations in this paper.

block, we incorporate HC and PS into the encoding 186

procedure of S as follows: 187

Hl
S = FFN (Multi-Attn (KS ,VS ,QS)) , (7) 188

189
QS = Hl−1

S , (8) 190
191

KS = [PS [l, : q, :];H
l−1
C ;Hl−1

S ], (9) 192
193

VS = [PS [l, q :, :];Hl−1
C ;Hl−1

S ], (10) 194

where Hl
S is output of the l-th transformer block, 195

which fuses Hl−1
C , the l − 1 layer output of the 196

inter-sentence context encoding. 197

Decoding Phase. In the decoding phase (Phase 198

3 in Figure 2), given the past activations HS and 199

trainable prompt, we call the LLM again to gener- 200

ate the hidden state for predicting the probability 201

of the target sentence: 202

H1:L
T = LLM(T,H1:L

S ,PT ), (11) 203

where H1:L
T ∈ RL×|T |×d is the sequence of activa- 204

tions for T , and PT ∈ RL×2q×d is current-phase 205

prompt. Similarly, we inject S and PT into the 206

decoding procedure of T as follows: 207

Hl
T = FFN (Multi-Attn (KT ,VT ,QT )) , (12) 208

209
QT = Hl−1

T , (13) 210
211

KT = [PT [l, : q, :];H
l−1
S ;Hl−1

T ], (14) 212
213

VT = [PT [l, q :, :];Hl−1
S ;Hl−1

T ], (15) 214

where Hl
T ∈ R|T |×d is the decoding state of the l- 215

th transformer block. Finally, we refer the t-th 216

decoding state as hLt (i.e., HL
T = hL

t |
|T |+1
t=1 ) which is 217

used to predict the next token yt: 218

p (yt|S, C, y<t) = Softmax
(
hL
t W

)
, (16) 219

where W ∈ Rd×|V| is parameter of LLM-Head layer 220

and |V| is the vocabulary size. 221

2.2 Enhanced Decoding Phase 222

As shown in Figure 2, both the inter-sentence con- 223

text representation H1:L
C and the intra-sentence con- 224

text representation H1:L
S are used as keys and val- 225

ues when generating hidden states of next phase. 226

Meanwhile, hidden states of decoding phase, i.e., 227

hL
i |

|T |
i=1 are used to predict next tokens. On the one 228

hand, while the decoding hidden states incorpo- 229

rate both inter- and intra-sentence contexts, there 230

is no explicit differentiation between the two when 231

predicting next tokens. On the other hand, the inter- 232

sentence context representation H1:L
C and decoding 233

hidden states H1:L
T are mediated by hidden states 234
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Figure 3: Illustration of the procedure of our proposed
decoding-enhanced approach at the t-th decoding step.

of phases 2, i.e., H1:L
S . This may result in a long-235

distance issue such that the inter-sentence context236

are not properly aligned by target-side tokens.237

Therefore, to address above two issues, we pro-238

pose an enhanced decoding phase with an aim to239

more effectively utilize both the inter- and intra-240

sentence contexts. Inspired by Kuang et al. (2018),241

we move both the two types of inter- and intra-242

sentence contexts closer to target words to achieve243

a tight interaction between them. Specifically, we244

concatenate the decoding states with the two types245

of representations to predict the next target words.246

As shown in Figure 3, the enhanced next word pre-247

diction pe is a combination of three distributions:248

pe (yt|S, C, y<t) =λ1 × p̂ (yt|S, C, y<t)

+ λ2 × p̄ (yt|S, C, y<t)

+ (1− λ1 − λ2)× p (yt|S, C, y<t) ,
(17)

249

where λ1 and λ2 control the contribution of p̂ (yt|·)250

and p̄ (yt|·), respectively, which can be further for-251

mulated as:252

p̂ (yt|S, C, y<t) = Softmax
(
ĥL
t W

)
, (18)253

254
p̄ (yt|S, C, y<t) = Softmax

(
h̄L
t W

)
, (19)255

256
ĥL
t = FFN

(
[H̃L

C ; H̃
L
S ;h

L
t ]
)
, (20)257

258
h̄L
t = FFN

(
[H̃L

S ;h
L
t ]
)
, (21)259

where W is same as in Eq. 16, H̃L
S ∈ Rd and H̃L

C ∈ Rd260

are the averaged HL
S and HL

C at token level, respec-261

tively.3 To further identify the effect of inter- and262

3Notably, the computation of p̂ and p̄ does not require a
full decoding forward pass. It involves solely an FFN layer
(two linear transformation layers and a ReLU activation layer),
an LLM-Head layer (a linear transformation layer), and a
softmax function layer.

intra-sentence context in this strategy, we provide 263

an ablation study about p̂ and p̄ in Appendix J. 264

2.3 Phase-aware Prompts 265

We emphasize the LLM needs to play various 266

roles across three phases, and maintaining similar 267

prompts across different phases may not be rea- 268

sonable. Thus, we empower LLM to distinguish 269

different phases by introducing a type embedding 270

and a transfer layer4 for these prompts: 271

Pr = (tanh (OrW1))W2 + TypeEmb (r) , (22) 272

where Or ∈ RL×2q×d is randomly initialized prompt, 273

W1,W2 ∈ Rd×d are the trainable parameters, and 274

TypeEmb(·) is type embeddings layer of the 275

prompts. r ∈ {C, S, T} represents either phase 1, 276

phase 2, or phase 3. 277

2.4 Training Objective 278

We employ the cross-entropy loss as the training 279

objective of our model. Given a training instance 280

(C, S, T ), its training loss is defined as: 281

L (C, S, T ) = − 1

|T |

|T |∑
t=1

log pe (yt|S, C, y<t) . (23) 282

Notably, the parameters in LLM, including W in 283

Eq. 16, 18, 19, are frozen during training. 284

3 Experimentation 285

We build our approach upon two open-source 286

LLMs, i.e., llama-2-7b5 and bloomz-7b1-mt6. 287

We verify the effectiveness of our proposed ap- 288

proach on five translation tasks, including {Chinese 289

(ZH), French (FR), German (DE), Spanish (ES), 290

Russian (RU)}→English (EN). 291

3.1 Experimental Settings 292

Datasets and Preprocessing. The corpus 293

of all translation tasks is extracted from 294

News-Commentary-v18. For LLM-based models, 295

We use the tokenizer of foundation models to 296

process the input data and no other preprocessing 297

is performed. See Appendix A for more details on 298

4Unlike the multi-layer perceptrons (MLPs) used for repa-
rameterization, our transfer layer shares parameters across all
prompts, reducing the number of trainable parameters. Table 3
compares the trainable parameters of various tuning methods,
and Appendix J analyzes the effect of the transfer layer.

5https://huggingface.co/meta-llama/
Llama-2-7b-hf

6https://huggingface.co/bigscience/
bloomz-7b1-mt

4
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Model
ZH→EN FR→EN DE→EN ES→EN RU→EN Average

BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET
⊘Trans. 29.86 0.8406 38.53 0.8545 41.44 0.8682 48.74 0.8783 32.25 0.8169 38.16 0.8517

Traditional context-aware NMT models
⊙MR-Trans. 30.61 0.8413 38.72 0.8533 42.11 0.8693 49.69 0.8812 33.27 0.8211 38.88 0.8532

+ mBART 32.69 0.8601 42.01 0.8759 44.61 0.8840 51.67 0.8831 36.39 0.8459 41.39 0.8698
⊙G-Trans. 30.99 0.8411 38.96 0.8524 42.46 0.8658 49.68 0.8794 33.59 0.8201 39.14 0.8518

+ mBART 32.99 0.8597 42.02 0.8764 44.81 0.8836 52.07 0.8911 36.83 0.8461 41.74 0.8714

llama-2-7b as foundation model
⊘MT-LoRA 27.43 0.8511 38.18 0.8647 40.96 0.8712 47.52 0.8733 33.00 0.8311 37.42 0.8583
⊘MT-PT 31.32 0.8565 41.92 0.8675 43.56 0.8752 51.32 0.8819 35.46 0.8333 40.72 0.8629
⊙CMT-PT 31.13 0.8387 42.01 0.8699 43.11 0.8762 51.66 0.8823 35.91 0.8396 40.76 0.8613
⊙MPT *33.21 0.8645 †43.11 0.8744 *43.88 0.8824 †52.01 0.8913 †36.49 0.8456 41.74 0.8716
⊙DeMPT *33.89 0.8658 †43.71 0.8816 *44.69 0.8899 †53.10 0.8979 †36.55 0.8438 42.39 0.8758

bloomz-7b1-mt as foundation model
⊘MT-LoRA 25.79 0.8466 35.67 0.8601 35.17 0.8522 46.32 0.8644 28.01 0.8012 34.21 0.8449
⊘MT-PT 30.99 0.8520 40.49 0.8661 37.76 0.8579 50.68 0.8823 30.27 0.8106 38.04 0.8539
⊙CMT-PT 30.82 0.8504 40.31 0.8639 38.01 0.8601 50.26 0.8832 29.80 0.8108 37.84 0.8537
⊙MPT *31.81 0.8601 *41.11 0.8766 †38.99 0.8669 *51.33 0.8910 *30.99 0.8201 38.85 0.8629
⊙DeMPT *32.46 0.8649 *41.92 0.8790 †40.06 0.8703 *52.25 0.8990 *31.79 0.8253 39.70 0.8677

Table 1: Results of different systems on sacreBLEU and COMET metrics. DeMPT/MPT is our proposed Multi-
phase Prompt Tuning approach with/without Decoding-enhanced strategy (in Sec. 2.2). Scores with bold indicate
the best performance. * (or †) indicates the gains are statistically significant over MT-PT (or CMT-PT) with
p<0.01 (Koehn, 2004). ⊘ and ⊙ indicate the model is context-agnostic and context-aware, respectively.

splitting, preprocessing and statistics of datasets.299

Besides, we provide a discussion for scales of the300

training set in Appendix I .301

Baselines. In addition to traditional context-302

agnostic (Trans.) and context-aware (G-Trans (Bao303

et al., 2021) and MR-Trans (Sun et al., 2022) with304

or without pre-training setting, i.e., + mBART (Liu305

et al., 2020)) NMT models with encoder-decoder306

architecture ,7 our primary comparison focuses on307

the following three LLM-based alternatives: 1)308

MT-LoRA: It is a tuned LLM adapted to NMT309

task via the tuning method of Low-Rank Adap-310

tation (Hu et al., 2022), which makes large-scale311

pre-training models adapt to a new task by inject-312

ing a trainable rank decomposition matrice into313

each layer of the Transformer architecture; 2) MT-314

PT: It is a tuned LLM adapted to NMT task via315

the deep prompt tuning with MLPs reparameteriza-316

tion,8 which only tunes continuous prompts with a317

frozen language model; 3) CMT-PT: It indiscrim-318

inately utilizes inter- and intra-sentence context319

via the concatenation strategy, as depicted in Fig-320

ure 1 (a). Similar to MT-PT, it is also a tuned LLM321

7Please refer to Appendix C for more introduction about
the G-Trans and MR-Trans.

8We attempt to remove reparameterization but experience
a significant decline in performance.

via the deep prompt tuning with MLPs reparame- 322

terization. Among them, MT-LoRA and MT-PT 323

are context-agnostic systems while CMT-PT is a 324

context-aware system. For a fair comparison, we 325

ensure that all context-aware models built upon 326

LLM, including CMT-PT, MPT, and DeMPT, in- 327

corporate identical inter-sentence context. We pro- 328

vide more discussion in utilization of various inter- 329

sentence contexts in Appendix L and M. 330

Model Setting and Training. For all encoder- 331

decoder Transformer models, including Trans- 332

former (Trans.), MR-Trans and G-Trans9, we im- 333

plement them upon Fairseq (Ott et al., 2019). For 334

MT-LoRA models, we set the rank of trainable ma- 335

trices as 16 which performs best in our preliminary 336

experiment. For all MT-PT models, CMT-PT mod- 337

els, and our models, we set the prompt length q 338

as 64.10 For the incorporation of inter-sentence 339

context in CMT-PT and our models, we consider a 340

dynamic z, in which the total tokens are no more 341

than 256. In enhanced decoding, we consider the 342

three next word predictions to be equally important 343

9For G-Trans, we use their official implementation upon
Fairseq. Code: https://github.com/baoguangsheng/
g-transformer.

10we provide more discussion in Appendix E about the
prompt length.

5
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Model ZH→ FR→ DE→ ES→ RU→ Avg.
⊘Trans. 47.63 54.41 58.29 62.52 48.79 54.33

Traditional context-aware NMT model
⊙MR-Trans. 48.51 55.55 59.02 63.51 49.88 55.29
+ mBART 50.66 58.01 61.99 66.01 54.11 58.15

⊙G-Trans. 48.99 55.31 59.23 63.99 50.09 55.52
+ mBART 50.98 57.88 61.97 66.21 54.33 58.27

llama-2-7b as foundation model
⊘MT-LoRA 44.83 54.52 57.72 62.18 49.06 53.66
⊘MT-PT 49.49 57.87 60.89 65.02 52.59 57.17
⊙CMT-PT 49.53 58.27 61.23 65.89 53.34 57.65
⊙MPT 51.56 59.56 62.15 67.14 54.18 58.92
⊙DeMPT 52.68 60.33 63.11 67.95 54.94 59.80

bloomz-7b1-mt as foundation model
⊘MT-LoRA 43.23 51.82 51.12 61.77 43.29 50.25
⊘MT-PT 49.48 56.81 55.40 64.71 46.14 54.51
⊙CMT-PT 49.61 57.05 55.81 65.12 46.09 54.74
⊙MPT 50.22 57.93 56.69 66.25 47.29 55.68
⊙DeMPT 50.62 58.30 57.34 67.12 48.00 56.28

Table 2: Results of different systems on BlonDe metric.

by setting both λ1 and λ2 to 1/3. We provide an344

analysis of λ and more training details in Appendix345

K and B, respectively.346

Evaluation. We use sacreBLEU (accuracy-347

related metric)11 (Post, 2018), COMET (semantics-348

related metric) with the wmt22-comet-da model12349

(Rei et al., 2020), and BlonDe (discourse-related350

metric) (Jiang et al., 2022) as evaluation metrics.13351

3.2 Experimental Results352

The main experimental results are presented in Ta-353

bles 1 and 2. Additionally, a comparison of the354

number of trainable parameters is presented in355

Table 3 across different tuning methods. When356

examining llama-2-7b and focusing on context-357

agnostic models, we find that the Transformer358

models (Trans.) generally outperform LLMs with359

LoRA tuning (MT-LoRA) in most translation di-360

rections based on BLEU score. However, the MT-361

LoRA models surpass Trans. in COMET, indicat-362

ing that translations from LLMs may better align363

with human preferences. Additionally, the MT-PT364

models exhibit superior performance compared to365

the MT-LoRA models across BLEU, COMET, and366

BlonDe metrics. This improvement could be at-367

tributed to the more trainable parameters in the368

11Signature: nrefs:1|case:mixed|eff:no|tok:13a|
smooth:exp|version:2.3.1

12https://github.com/Unbabel/COMET
13We provide more discourse-related evaluation in Ap-

pendix F.

MT-LoRA MT-PT/CMT-PT MPT/DeMPT
Trainable Para. 0.12% 13.87% 3.11%

Table 3: Proportion of trainable parameters against total
parameters for different tuning methods.

MT-PT models (13.87% vs. 0.12%). 369

Importantly, by comparing MT-PT and CMT- 370

PT, we observe that CMT-PT which indiscrimi- 371

nately leverages the inter- and intra-sentence con- 372

text with the concatenation way, even hurts per- 373

formance for certain translation tasks. For ex- 374

ample, the CMT-PT models, despite excelling 375

in discourse-related BlonDe scores (averaging 376

57.65 vs. 57.17), underperforms in BLEU and 377

COMET compared to the MT-PT models. In 378

contrast, our context-aware MPT and DeMPT 379

models outperform all LLM baselines across all 380

translation tasks in three metrics. For exam- 381

ple, our MPT models achieve an average gain of 382

0.98/0.0103/1.27 in BLEU/COMET/BlonDe com- 383

pared to the CMT-PT models. Our decoding- 384

enhance strategy further enhances the capacity of 385

LLMs, with DeMPT outperforming MPT with an 386

average gain of 0.65/0.0042/0.88. Compared to 387

G-Trans. (+mBART) or MR-Trans (+mBART), 388

DeMPT also demonstrates either superior or com- 389

parable performance across all language pairs. 390

Finally, we observe a similar performance trend 391

among MT models built upon bloomz-7b1-mt. It 392

also indicates that models built upon llama-2-7b 393

outperform those utilizing bloomz-7b1-mt, sug- 394

gesting that llama-2-7b serves as a more robust 395

foundation model for translation tasks. 396

4 Discussion 397

In this section, we use bloomz-7b1-mt as the foun- 398

dation model to discuss our approach.14 See Ap- 399

pendix D∼M for further discussions. 400

4.1 Effect of Length of Inter-sentence Context 401

For efficient training, we define the inter-sentence 402

context in Section 2 as previous sentences with a 403

total tokens not exceeding 256. We are curious 404

about the potential impact of inter-sentence length 405

on the performance of our approach. Consequently, 406

we extend the inter-sentence context length from 407

256 to 1024 and assess the performance of our 408

approach in the ZH→EN task. Figure 4 shows 409

14Considering page limitation and the consumption of
GPUs resources and training time, we use the ZH→EN task
as a representative to report the BLEU and BlonDe scores.
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Figure 4: Performance of CMT-PT and our DeMPT on
ZH→EN test set when using different inter-sentence
context lengths.

the performance trend of the CMT-PT model and410

our DeMPT model. As the length of the inter-411

sentence context increases, both models exhibit412

a slight enhancement in both BLEU and BlonDe413

scores. Interestingly, our model with a 256-token414

inter-sentence context outperforms the CMT-PT415

model with a 1024-token inter-sentence context416

in both BLEU and BlonDe scores. This further417

suggests the effectiveness of our approach in har-418

nessing the capabilities of LLMs for context-aware419

NMT compared to the concatenation strategy.420

4.2 Effect of Multi-phase Strategy421

Our multi-phase strategy divides the whole transla-422

tion into three phases: phase 1 for encoding inter-423

sentence, phase 2 for encoding intra-sentence, and424

phase 3 for decoding current sentence. To assess425

the effect of multi-phase strategy, we compare its426

performance with two contrasting strategies: merg-427

ing the first two phases into one (i.e., Merging428

1&2) and and merging all phases into a single one429

(i.e., Merging 1&2&3).15 Note that in both the430

two contrasting strategies, we replace the enhanced431

next word prediction pe (yt|·) (Eq. 17) in decoding432

phase with p (yt|·). Table 4 presents the perfor-433

mance of different phrasing strategies. Comparing434

Merging 1&2 and Merging 1&2&3, it shows that435

separating the decoding phrase from the encod-436

ing marginally improves the performance in both437

BLEU and BlonDe. Importantly, the comparison438

of MPT and Merging 1&2 tells that separating the439

encoding of inter- and intra sentence achieves more440

gains across all metrics.441

Meanwhile, we conjecture that another benefit442

of multi-phasing strategy lies in the robustness to443

the noise contained in document-level context. To444

test the conjecture, we replace the original inter-445

15When merging them all into one, it equals CMT-PT, i.e.,
the concatenate strategy.

Model BLEU COMET BlonDe
MPT 31.81 0.8601 50.22
DeMPT 32.46 0.8649 50.62

Merging 1&2&3 30.82 0.8504 49.61
Merging 1&2 31.01 0.8503 49.91

Table 4: Comparison of performances when using dif-
ferent phrasing strategies on ZH→EN test set.

Model BLEU COMET BlonDe
Merging 1&2&3 30.82 0.8504 49.61
w/ rnd. CTX 28.63 0.8402 48.01

DeMPT 32.46 0.8649 50.62
w/ rnd. CTX 31.56 0.8581 49.71

Table 5: Comparison of performance when using gold
or random inter-sentence context on ZH→EN test set.

sentence context with a random inter-sentence con- 446

text, meaning we randomly select some sentences 447

from other documents to serve as the inter-sentence 448

context. As shown in Table 5, the performance of 449

both the Merging 1&2&3 and DeMPT models con- 450

sistently deteriorates when exposed to random con- 451

text (w/ rnd. CTX). However, the decline is more 452

pronounced for Merging 1&2&3 than for DeMPT 453

(-2.19/0.0102/1.60 vs -0.90/0.0068/0.91). This sug- 454

gests that DeMPT, owing to its multi-phase strategy, 455

exhibits more robustness in utilizing inter-sentence 456

context in contrast to Merging 1&2&3. 457

4.3 Human Evaluation 458

We use the Direct Assessment (DA) method (Gra- 459

ham et al., 2017) to manually assess the quality 460

of translations generated by DeMPT and CMT-PT. 461

In this assessment, human evaluators compare the 462

meaning of the MT output with a human-produced 463

reference translation, working within the same lan- 464

guage. Specifically, we randomly select 5 docu- 465

ments with a total of 200 groups of sentences from 466

the ZH→EN test set. To avoid potential bias in 467

evaluation, we recruit 6 professional translators and 468

ensure each translation from DeMPT or CMT-PT is 469

scored twice by two translators. Table 6 shows the 470

DA scores for CMT-PT and DeMPT. Our DeMPT 471

outperforms CMT-PT by 7.14 DA score, provid- 472

ing strong evidence for the effectiveness of our 473

approach. Further details and results regarding the 474

DA can be found in Appendix H. 475
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Model Score_1 Score_2 Average
CMT-PT 79.00 80.17 79.59
DeMPT 86.17 (+7.17) 87.30 (+7.13) 86.73 (+7.14)

Table 6: Human DA scores for CMT-PT and DeMPT
on ZH→EN translation task.

5 Related Work476

Due to limited space, we omit the discussion on477

conventional context-aware MT, focusing instead478

on LLM-based context-aware MT and prompt tun-479

ing for LLMs. Besides, considering our DeMPT’s480

inspiration from MSP (Tan et al., 2019), we offer481

further discussion on their differences.482

LLM-based Context-aware Machine Transla-483

tion. While traditional context-aware neural ma-484

chine translation (NMT) has seen considerable485

progress in recent years (Jean et al., 2017; Wang486

et al., 2017; Voita et al., 2018; Maruf et al., 2019;487

Kang et al., 2020; Bao et al., 2021; Sun et al., 2022;488

Bao et al., 2023), the effective integration of large489

language models (LLMs) to model inter-sentence490

context and enhance context-aware translation re-491

mains an area of limited exploration. Existing stud-492

ies mainly focus on the assessment of LLMs’ abil-493

ity in discourse modeling. For example, Wang494

et al. (2023) approach context-aware NMT as a495

task involving long sequence generation, employ-496

ing a concatenation strategy, and conduct compre-497

hensive evaluations of LLMs such as ChatGPT498

and GPT-4. Their focus includes the impact of499

context-aware prompts, comparisons with transla-500

tion models, and an in-depth analysis of discourse501

modeling ability. Similarly, Karpinska and Iyyer502

(2023) engage professional translators to evaluate503

LLMs’ capacity in context-aware NMT. In con-504

trast, Wu et al. (2024) compare the effectiveness of505

various parameter-efficient fine-tuning methods on506

moderately-sized LLMs for context-aware NMT.507

Besides, Wu and Hu (2023) explore the prompt en-508

gineering with GPT language models specifically509

for document-level (context-aware) MT while Li510

et al. (2024) experiment with combining sentence-511

level and document-level translation instructions of512

varying lengths to fine-tune LLMs. Differently,513

Koneru et al. (2023) propose a post-editing ap-514

proach to enhance LLMs’ capacity in utilization of515

inter-sentence context in document-level MT.516

Prompt Tuning for Large Language Model.517

Liu et al. (2021) and Li and Liang (2021) propose to518

make LLMs adapt to various tasks by adding train- 519

able prompts (also called continuous prompts) to 520

the original input sequences. In this paradigm, only 521

the continuous prompts are updated during training. 522

Liu et al. (2022) further introduces deep prompt 523

tuning, extending the idea by inserting trainable 524

prompts into all layers of LLMs, rather than just 525

the embedding layer. While these approaches pro- 526

vide a general framework, we focus on enhancing 527

LLM performance specifically for inter-sentence 528

context modeling in context-aware NMT. 529

Discussion with MSP. Tan et al. (2022) propose 530

a multi-phase tuning approach (MSP) to enhance 531

the sentence-level translation performance of a mul- 532

tilingual GPT. Our DeMPT mainly differs from 533

MSP in the following aspects: 1) DeMPT adopts 534

a phase-aware prompt to enable distinctive mod- 535

eling for different inputs, namely inter-sentence 536

contexts, intra-sentence contexts, and the target 537

sentence, a feature not present in MSP; 2) DeMPT 538

incorporates a decoding-enhanced strategy to fur- 539

ther improve the effectiveness of utilizing different 540

context information, a capability not available in 541

MSP; 3) DeMPT is designed to alleviate discourse 542

problems in context-aware LLM-based machine 543

translation tasks, rather than addressing sentence- 544

level machine translation tasks as in the case of 545

MSP; 4) DeMPT is designed to adapt LLMs rather 546

than smaller pre-trained model used in MSP. 547

6 Conclusion 548

In this paper, we have examined the hypothesis that 549

it is crucial to differentially model and leverage 550

inter-sentence context and intra-sentence context 551

when adapting LLMs to context-aware NMT. This 552

stems from our observation that intra-sentence con- 553

text exhibits a stronger correlation with the target 554

sentence compared to inter-sentence context, owing 555

to its richer parallel semantic information. To this 556

end, we have proposed a novel decoding-enhanced 557

multi-phase prompt tuning (DeMPT) approach to 558

make LLMs aware of the differences between inter- 559

and intra-sentence contexts, and further improve 560

LLMs’ capacity in discourse modeling. We have 561

evaluated our approach using two foundation mod- 562

els and present experimental results across five 563

translation directions. Experimental results and dis- 564

cussions have demonstrated a significant enhance- 565

ment in the performance of LLMs in context-aware 566

NMT, manifesting as improved translation accu- 567

racy and a reduction in discourse-related issues. 568
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Limitations569

Owing to resource limitations, our work is re-570

stricted to moderate-scale LLMs, specifically those571

with 7 billion parameters, and a confined window572

size of inter-sentence context. It is imperative to573

acknowledge that the results of our research may574

differ when employing larger models and extended575

window sizes for inter-sentence contexts. Consid-576

ering that English text forms the main body of the577

training data for LLMs, this paper only focuses on578

the English-centric translation tasks. The results of579

non-English-centric translation tasks may vary. We580

acknowledge these limitations and consider them581

as avenues for future exploration. Besides, follow-582

ing the finding of Bao et al. (2021), we focus solely583

on the source-side inter-sentence context in this584

work. We will explore more about the integration585

of target-side inter-sentence context in the future.586
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A Datasets778

Splitting, Preprocessing and Statistics of779

Datasets. For all translation tasks, we randomly780

select 80% document pairs from the corpus as781

the training set. Both the test set and validation782

set include 150 document pairs each, randomly783

sampled from the remaining 20% of document784

pairs in the corpus. Regarding sentence prepro-785

cessing across all datasets for LLM-based mod-786

els, we segment the sentences with the tokenizer787

from the respective foundation model. No ad-788

ditional preprocessing steps are performed. For789

encoder-decoder Transformer models, we segment790

the source and target sentences into sub-words by791

a BPE model with 30K merged operations (Sen-792

nrich et al., 2016). We provide the detailed statistic793

in Table 7. Datasets are downloaded from https:794

//data.statmt.org/news-commentary/v18.795

B Training Details796

For all encoder-decoder Transformer NMT models,797

we use the transformer-base setting as in Vaswani798

et al. (2017), where the learning rate is set to 1e−4799

with an inverse-square schedule and warmup steps800

of 4000, and use Adam optimizer with β1 = 0.9801

and β2 = 0.98. For the other special training set-802

tings in G-Trans and MR-Trans, we keep consistent803

with that provided in their paper. All Transformer804

NMT models are trained on 4× NVIDIA V100805

32GB GPUs with a batch size of 4096. For the806

models with prompt tuning in Section 3, including807

MT-PT, CMT-PT, MPT and DeMPT models, the808

length of the trainable prompt is set as 64. Dur-809

ing both training and inference, the model gener-810

ates only the current target sentence, operating in a811

many-to-one translation mode. For all fine-tuning812

models in this paper, we set the training epoch to 4,813

and the warm-up rate to 0.1. We use the log learn-814

ing rate decay strategy with a maximum learning815

rate of 5e-5. We collate a mini-batch by counting816

the total tokens inside the batch and set the batch817

size as 4096. All fine-tuning models are trained on818

4 × NVIDIA A800 GPUs with Deespeed Zero 2819

offload setting (Rajbhandari et al., 2020).16820

C Traditional Context-aware Models821

In this paper, we implement G-Transformer (G-822

Trans) (Bao et al., 2021) and Multi-Resolution823

Transformer (MR-Trans) (Sun et al., 2022) as rep-824

16https://github.com/microsoft/DeepSpeed

resentatives of traditional context-aware models for 825

comparison. For ease of understanding, we pro- 826

vide a brief introduction to these two models in this 827

section. 828

G-Transformer. The transformer model equips 829

a group attention on the lower encoder/decoder 830

layer and a combined attention on the top en- 831

coder/decoder layer. For a sentence being trans- 832

lated with its inter-sentence context, the group at- 833

tention helps maintain locality bias by focusing 834

on intra-sentence context. Meanwhile, the com- 835

bined attention effectively integrates boundary in- 836

formation, enhancing the translation process with 837

inter-sentence context. 838

Multi-Resolution Transformer. The Trans- 839

former model does not include any additional 840

modules specifically for modeling inter-sentence 841

context. Instead, it only uses a mixed training 842

set that comprises both sentence-level and 843

document-level instances with varying numbers of 844

sentences. Training on this mixed set allows the 845

Transformer model to handle both sentence-level 846

and document-level translation tasks. In this paper, 847

we implement its Document-to-Sentence variant, 848

which uses all preceding contexts as the source 849

and the current sentence as the target. 850

D Comparison of Inference Speed 851

Table 8 compares the inference speed of different 852

models on ZH→EN translation task. Our MPT and 853

DeMPT models, dividing the context-aware NMT 854

process into three separate phases, demonstrates 855

comparable inference speed to the single-phase MT- 856

PT and CMT-PT models, with only a marginal drop 857

of 0.02 seconds per sentence in decoding. This 858

illustrates the efficiency of our approach without 859

introducing significant computational overhead. 860

E Effect of Prompt Length 861

As our approach is implemented based on deep 862

prompt tuning, next we compare the impact of 863

the trainable prompt length for MT-PT, CMT-PT, 864

and our DeMPT. Figure 7 shows the performance 865

curves when increasing the prompt length from 32 866

to 128. We observe that increased prompt length 867

tends to enhance performance for both BLEU and 868

BlonDe, yet the gains exhibit diminishing returns. 869

This finding is consistent with that in Li and Liang 870

(2021); Lester et al. (2021); Tan et al. (2022). We 871

also observe that DeMPT with a prompt length of 872
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Dataset
ZH→EN FR→EN DE→EN ES→EN RU→EN

#Doc #Sent #Doc #Sent #Doc #Sent #Doc #Sent #Doc #Sent
Training 8,622 342,495 7,915 310,489 8,417 333,201 9,677 378,281 7,255 272,100
Validation 150 6,061 150 5,890 150 5,866 150 5,782 150 5,691
Test 150 5,747 150 5,795 150 5,967 150 5,819 150 5,619

Table 7: Statistics of training, validation, and test sets for five translation tasks. #Doc and #Sent denote the numbers
of Document and Sentence, respectively.

Score

0-20

21-40

41-60

61-80

81-100

The translation is completely incorrect and unclear, with only a few words or phrases
being correct. It is totally unreadable and difficult to understand.

The translation has very little semantic similarity to the source sentence, with key
information missing or incorrect. It has numerous unnatural and unfluent expressions
and grammatical errors.

The translation can express part of the key semantics but has many non-key semantic
errors. It lacks fluency and idiomaticity.

The translation can express the key semantics but has some non-key information errors
and significant grammatical errors. It lacks idiomaticity.

The translation can express the semantics of the source sentence with only a few non-
key information errors and minor grammatical errors. It is fluent and idiomatic.

Criterion

Figure 5: Scoring criterion for Direct Assessment. We group the score into five ranges, i.e., 0-20, 21-40, 41-60,
61-80, 81-100.

Model Speed BLEU
MT-PT 0.75 sec/sent. 30.99
CMT-PT 0.77 sec/sent. 30.82
MPT 0.78 sec/sent. 31.81
DeMPT 0.79 sec/sent. 32.46

Table 8: Comparison of inference speed on ZH→EN
translation task. Speed is measured on the test set using
4 GPUs. sec/sent. means seconds spent for decoding
each sentence. Note that the reparameterization is not
needed during inference (Li and Liang, 2021).

64 outperforms both MT-PT and CMT-PT with a873

prompt length of 128 on both metrics, suggesting874

the superiority of our approach over the concate-875

nation strategy in enhancing LLMs’ capacity for876

context-aware NMT.877

F Performance on Contrastive Test Set878

We evaluate the models’ ability to resolve discourse879

inconsistencies using the contrastive test set pro-880

posed by (Voita et al., 2019a), which focuses on881

four discourse phenomena such as deixis, lexicon882

consistency (lex.c), ellipsis inflection (ell.infl), and 883

verb phrase ellipsis (ell.VP) in English→Russian 884

translation. Within the test set, each instance com- 885

prises a positive translation and several negative 886

ones that vary by only one specific word. The pur- 887

pose of the contrastive test set is to assess whether a 888

model is more inclined to generate a correct transla- 889

tion as opposed to incorrect variations. Table 9 lists 890

the accuracy of translation prediction on the con- 891

trastive test set for MT-PT, CMT-PT and DeMPT. 892

Compared to the context-agnostic MT-PT model, 893

both context-aware CMT-PT and DeMPT models 894

show substantial improvements across the four dis- 895

course phenomena. Additionally, DeMPT demon- 896

strates the best performance, surpassing CMT-PT 897

by an average accuracy margin of 3.8. 898

G Effect of Various Contexts for 899

Decoding-enhanced Strategy 900

We conduct an ablation study on the ZH-EN trans- 901

lation direction using the bloomz-7b-mt model as 902

the foundation model to clarify the effect of the 903

three probabilities p in Equation 17, i.e., the ef- 904

fect of various contexts for the heuristic decoding- 905
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同时塔利 班已经公开宣称
美国 是它与俄 罗斯共同
的敌人，它将团结一切可
团结的力量将 美国人赶出
祖国。

Source

The Taliban, for its part, has
openly declared the US to
be its commons enemy with
Russia, and it will unite
whatever forces it can to
drive the Americans out of
the country.

DeMPT

At the same time, the Taliban
has openly declared the US
to be its enemy, along with
Russia, and will unite all
forces that can be united to
drive the Americans out of
the country.

DMT-PT

Reference

And the Taliban, which has
acknowledged that it shares
Russia's enmity with the US,
will take whatever help it can
get to expel the Americans.

Source DeMPT CMT-PT Reference

今天，俄罗斯利用同样的
逻辑来为与阿富汗塔利班
的合作寻找理由，它希望
塔利班势力继续打击由美
国支持的动荡的喀布尔政
府。

Today, Ruassia is using the
same logic to justify
cooperation with the Afghan
Taliban, which it hopes will
to attack the US-backed
government in Kabul.

Today, Ruassia is using the
same logic to justify its
cooperation with the
Taliban, which it hopes will
go on beat the-unstable
Kabul government, which
the America supports.

Today, Ruassia is using the
same logic to justify its
cooperation with the Afghan
Taliban, which it want to
keep fighting the unstable
US-backed government in
Kabul.

CMT-PT

First Sentence 

Second  Sentence 

Figure 6: A case study for the CMT-PT model and our DeMPT model on ZH→EN translation task.
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Figure 7: Performance of MT-PT, CMT-PT, and our
DeMPT on ZH→EN test set when using different
lengths of the trainable prompts.

enhanced strategy. From the Table 10, we observe906

that removing p̂, i.e., w/o p̂, leads to a significant907

degradation in the discourse-related metric, namely908

the BlonDe. This is because the integration en-909

hances the utilization of the inter-sentence context910

during the decoding phase. We are additionally, re-911

moving results in the most substantial degeneration912

in BLEU metric. This observation demonstrates913

that our heuristic decoding-enhanced strategy can914

distinctively improve the utilization of various con-915

texts during the decoding phase.916

H Details of Human Evaluation917

Criterion and Recruitment. Given a source sen-918

tence, its translation from MT (i.e., CMT-PT and919

Model deixis lex.c ell.infl ell.VP Avg.
MT-PT 50.0 45.7 53.0 28.6 44.3
CMT-PT 80.2 46.1 74.3 75.3 68.9

DeMPT 80.1 55.7 75.9 79.3 72.7

Table 9: Accuracy [%] of translation prediction for four
discourse phenomena on the English → Russian con-
trastive test set.

our DeMPT), and its human-produced reference 920

translation, the evaluators are asked to give a score 921

ranging from 0 to 100. Figure 5 presents the de- 922

tailed criterion of scoring. We recruit evaluators 923

from professional translators with at least five years 924

of experience in translation. 925

Statistics of Translation Errors. We manually 926

count the number of bad cases from our DeMPT 927

model. The bad cases fall into two categories: (1) 928

the DA score is 60 or lower; (2) the DA score is 929

lower than that of the translation from CMT-PT. 930

The main types of the bad cases are Mistransla- 931

tion (Mis.), Unnoticed Omission (UO), Inappro- 932

priate Expression (IE), and Grammatical Error 933

(GE). We present detailed statistics in Table 11. The 934

statistics indicate the bad cases mainly come from 935

Mistranslation and Unnoticed Omission. Mean- 936

while, our DeMPT model outperforms the CMT-PT 937
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Model BLEU COMET BlonDe
MT-PT 30.99 0.8520 49.48
CMT-PT 30.82 0.8504 49.61

DeMPT 32.46 0.8649 50.62
w/o p̂ 32.33 0.8629 50.29
w/o p̄ 32.11 0.8641 50.51

Table 10: Comparison of performances of the DeMPT
when removing different probabilities p in decoding-
enhanced strategy.

Group
Type of Bad Case

Mis. UO IE GE Total (Perc.)
1 6 3 1 2 12 (6.0%)
2 9 7 6 5 27 (13.5%)

Table 11: Statistics of bad cases from our DeMPT model
on ZH→EN translation task. Perc. denotes the percent-
age of bad cases against the total of DA cases.

model in 86.5% DA cases.938

Case Study. We present a case in Figure 6 to illus-939

trate how our DeMPT model outperforms the CMT-940

PT model. In this case, we compare the translations941

of two consecutive sentences from our model and942

the CMT-PT model. First, we notice that the CMT-943

PT model translates the source word美国 in the944

two sentences into US and America, respectively.945

However, our model consistently translates them946

into US. Second, our model uses for its part, a947

phase with more coherent preference, as the trans-948

lation of同时 , instead of At the same time adopted949

in the translation from the CMT-PT model. Both of950

them demonstrate the superiority of our proposed951

approach in discourse modeling.952

I Effect of Dataset Scales953

We conduct an experiment to analyze the impact of954

training dataset scales on the concatenating strat-955

egy (CMT-PT) and the multi-phased, decoding-956

enhanced strategy (DeMPT). To do this, we expand957

the ZH→EN training set with additional document-958

level data from the LDC.17 Specifically, we ran-959

domly selected 200K and 400K sentence pairs with960

their inter-sentence context from the LDC and com-961

bined them with the existing ZH→EN training set962

17The training data set consists of LDC2002T01,
LDC2004T07, LDC2005T06, LDC2005T10, LDC2009T02,
LDC2009T15, and LDC2010T03.

Model BLEU COMET BlonDe
CMT-PT 30.82 0.8504 49.61
+ 200K 31.21 0.8521 49.88
+ 400K 31.73 0.8555 50.11

DeMPT 32.46 0.8649 50.62
+ 200K 32.77 0.8663 50.99
+ 400K 33.56 0.8701 51.47

Table 12: Comparison of performances of CMT-PT and
DeMPT trained on the different scales of corpus for the
ZH→EN translation task.

to train the CMT-PT and DeMPT models. 963

Table 12 lists the performances of CMT-PT and 964

DeMPT when extending scales of the training set 965

into 500K (300K +200K) and 700K (300k + 400K). 966

We observe increasing the scale of the training set 967

consistently boosts the performance of DeMPT and 968

CMT-PT. However, our DeMPT significantly out- 969

performs CMT-PT across all three metrics. 970

J Effect of Transfer Layer and Type 971

Embedding 972

As in Eq. 22 within Section 2.3, we introduce two 973

sublayers: a non-linear transfer sublayer and a type 974

embedding sublayer for the trainable prompt in 975

each phase. This design enhances the awareness of 976

LLMs regarding the distinctions in inputs across 977

the three tuning phases, allowing them to adapt to 978

specific roles at each phase. We investigate the 979

effect of these two sublayers. 980

As shown in Table 15, our observations reveal 981

that the transfer sublayer holds greater importance 982

than the type embedding sublayer. Removing ei- 983

ther the non-linear transfer sublayer (w/o Transfer.) 984

or the type embedding sublayer (w/o Embed.) re- 985

sults in a performance drop of 0.84/0.0048/0.39 986

or 0.45/0.0036/0.007 in BLEU/COMET/BlonDe 987

metrics. 988

K Effect of Hyperparameter λ 989

Due to the limited computational resources, we 990

do not perform extensive experiments to find the 991

optimal combination of λ1 and λ2 for different 992

translation tasks, simply setting them to be equal. 993

For example, verifying each combination of λ1 and 994

λ2 requires 10 experiments (5 × 2 for the number 995

of translation directions and foundation models). 996
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Model BLEU COMET BlonDe
MT-PT 30.99 0.8520 49.48
CMT-PT 30.82 0.8504 49.61

DeMPT 32.46 0.8649 50.62
w/o Transfer. 31.62 0.8601 50.23
w/o Embed. 32.01 0.8613 50.55
w/o CTX. 31.98 0.8593 49.89

Table 13: Comparison of performances of the DeMPT
variants on ZH→EN test set. w/o Trans. or w/o Embed.
denotes the variant without the non-linear transfer sub-
layer or type embedding sublayer in Eq. 22. w/o CTX.
means the inter-sentence context is not available, i.e.,
context-agnostic DeMPT system.

Model (DeMPT) BLEU COMET BlonDe
λ1=1/3, λ2=1/3, ZH→EN 32.46 0.8649 50.62
λ1=1/4, λ2=1/3, ZH→EN 32.51 0.8653 50.31

λ1=1/3, λ2=1/3, FR→EN 41.92 0.8790 58.30
λ1=1/4, λ2=1/3, FR→EN 41.82 0.8785 57.92

Table 14: Comparison of performances of the DeMPT
with different combinations of λ1 and λ2 on ZH→EN
and FR→EN test sets.

Therefore, we carry out targeted experiments us-997

ing a combination of λ1 and λ2 on ZH→EN and998

FR→EN only here.999

The results are reported in Table 14. We use1000

a smaller value for λ1 here and observe that the1001

BlonDe scores are more sensitive to changes λ11002

compared to BLEU and COMET. For example, a1003

smaller λ1 results in -0.31 and -0.38 for ZH→EN1004

and FR→EN, respectively. This sensitivity may1005

be reasonable because λ1 is used for adjusting the1006

utilization of inter-sentence context.1007

L Effect of Inter-sentence Context1008

We implement the context-agnostic (sentence-level)1009

DeMPT system to analyze the effect of the inter-1010

sentence context and differences with MSP. More1011

specifically, we replace the input of LLMs in the1012

inter-sentence context encoding phase with the1013

intra-sentence context. In other words, we encode1014

the intra-sentence context twice to keep the multi-1015

phase tuning strategy in DeMPT while making the1016

inter-sentence context unavailable.1017

As shown in the last row of Table 15 (i.e., w/o1018

CTX), we find that the inter-sentence context is1019

crucial for the alleviation of discourse-related is-1020

Model d-BLEU d-COMET d-BlonDe
MT-PT (m2o) 34.19 0.8216 49.48
CMT-PT (m2o) 34.06 0.8211 54.68
DeMPT (m2o) 35.76 0.8316 55.97

CMT-PT (m2m) 34.13 0.8256 55.34

Table 15: Comparison of performances of the mod-
els with different translation modes, i.e., with/without
target-side inter-sentence context, on ZH→EN test set.

sues. The BlonDe score drops by 0.73 when the 1021

inter-sentence context is unavailable. Meanwhile, 1022

our DeMPT also significantly improves the per- 1023

formance of LLMs in context-agnostic MT, e.g., 1024

+ 0.99 BLEU score and + 0.0073 COMET score 1025

compared to the MT-PT model. 1026

M Effect of Target-side Inter-sentence 1027

Context 1028

To enable a fair comparison, we incorporate only 1029

the source-side inter-sentence context for the model 1030

with the concatenating strategy, i.e., the CMT-PT 1031

model in the many-to-one (m2o) translation mode, 1032

as shown in Tables 1 and 2. To further investigate 1033

the effect of target-side inter-sentence context for 1034

the concatenating strategy, we compare the CMT- 1035

PT model in the many-to-many (m2m) translation 1036

mode to the models in the many-to-one translation 1037

mode, for the ZH→EN translation task when using 1038

the bloomz-7b1-mt as the foundation model. 1039

Different from the results in Tables 1 and 2, 1040

we report the document-level BLEU, BlonDe, and 1041

COMET scores for all models here due to the un- 1042

availability of sentence-level alignment for many- 1043

to-many model. From the experimental results, 1044

we observe that the CMP-PT (m2m) model out- 1045

performs the CMP-PT (m2o) model (mostly sig- 1046

nificant in terms of the d-BlonDe metric), which 1047

demonstrates the effectiveness of the target context 1048

in addressing discourse issues. However, the CMP- 1049

PT (m2m) model still underperforms the DeMPT 1050

model across three metrics. 1051
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