
EFFICIENT COMPUTATION OF THE PRIVACY LOSS DISTRIBUTION FOR RANDOM ALLOCATION

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 We consider the privacy amplification properties of a sampling scheme in which a
012 user's data is used in k steps chosen randomly and uniformly from a sequence (or
013 set) of t steps. This sampling scheme has been recently applied in the context of
014 differentially private optimization (Chua et al., 2024a; Choquette-Choo et al.) and
015 communication-efficient high-dimensional private aggregation (Asi et al., 2025)
016 as well as studied theoretically in (Feldman & Shenfeld, 2025; Dong et al.). Ex-
017 isting analysis techniques lead to several ways to numerically approximate the
018 privacy parameters of random allocation yet they all suffer from two drawbacks.
019 First, the resulting privacy parameters are not tight due the approximation steps in
020 the analysis. Second, the computed parameters are either the hockey stick diver-
021 gence or Renyi DP both of which introduce overheads when additional compo-
022 sition and/or subsampling are needed (such as in multi-epoch optimization algo-
023 rithms). In this work, we demonstrate that the privacy loss distribution (PLD) of
024 random allocation applied to any differentially private algorithm can be computed
025 efficiently. In particular, our PLD computation enables essentially lossless sub-
026 sampling and composition. When applied to the Gaussian mechanism, our results
027 demonstrate that random allocation can be used in place of Poisson subsampling
028 with no degradation in resulting privacy guarantees.

1 INTRODUCTION

032 Privacy amplification by data sampling is one of the central techniques in the analysis of differen-
033 tially private (DP) algorithms. In this technique a differentially private (DP) algorithm (or a sequence
034 of DP algorithms) is executed on a randomly chosen set of data elements without revealing which
035 of the elements were used. As first demonstrated Kasiviswanathan et al. (2011) this additional ran-
036 domness can significantly improve the privacy guarantees of the resulting algorithm, that is, privacy
037 amplification.

038 Privacy amplification by sampling has found numerous applications, most notably in the analysis
039 of the differentially private stochastic gradient descent (DP-SGD) algorithm (Bassily et al., 2014)
040 for training neural networks with differential privacy. In DP-SGD the gradients are computed on
041 randomly chosen batches of data points and then privatized through Gaussian noise addition. Privacy
042 analysis of this algorithm is based on the so-called Poisson sampling: elements in each batch and
043 across batches are chosen randomly and independently of each other. The absence of dependence
044 implies that the algorithm can be analyzed relatively easily as an independent composition of single
045 step amplification results. This simplicity is also the key to accurate numerical analysis of the privacy
046 parameters of DP-SGD that are necessary for the practical applications.

047 The downside of the simplicity of Poisson sampling is that independently resampling every batch
048 is less efficient and harder to implement within the standard ML pipelines. As a result, in practice
049 typically some form of data shuffling is used to define the batches in DP-SGD even though the
050 privacy analysis relies on Poisson sampling (e.g. (McKenna et al., 2025)). Data shuffling in which
051 the elements are randomly permuted before being assigned to steps of the algorithm is also known
052 to lead to privacy amplification. However, the analysis of this sampling scheme is more involved
053 and nearly tight numerical results are known only for relatively simple pure DP ($\delta = 0$) algorithms
(Erlingsson et al., 2019; Feldman et al., 2021; 2023; Grgis et al., 2021a;b). In particular, for the case

054 of Gaussian noise addition there is no practically useful method of computing the privacy parameters
055 of DP-SGD with shuffling.
056

057 The discrepancy between the implementations of DP-SGD and their analysis has been explored
058 in several recent works demonstrating that shuffling can be less private than Poisson subsampling
059 (Chua et al., 2024b;c; Annamalai et al., 2024). Motivated by these findings, Chua et al. (2024a) study
060 training of neural networks via DP-SGD with batches sampled via *balls-and-bins sampling*. In this
061 sampling scheme, each data element is assigned randomly and independently (of other elements)
062 to exactly one out of t possible batches. Their main results show that from the point of view of
063 utility (namely, accuracy of the final model) such sampling is essentially identical to shuffling and is
064 noticeably better than Poisson sampling. Concurrently, Choquette-Choo et al. considered the same
065 sampling scheme for the matrix mechanism in the context of DP-FTRL. The privacy analysis in
066 these two works reduces the problem to analyzing the divergence of a specific pair of distributions
067 on \mathbb{R}^t . They then used Monte Carlo simulations to estimate the privacy parameters of this pair.
068 These simulations suggest that privacy guarantees of balls-and-bins sampling for Gaussian noise are
069 similar to those of the Poisson sampling with rate $1/t$. While very encouraging, such simulations
070 do not establish formal guarantees. In addition, achieving high-confidence estimates for small δ and
supporting composition appear to be computationally impractical.

071 Another important application of privacy amplification is for reducing communication in private
072 federated learning (Chen et al., 2024; Asi et al., 2025). In this application, each user subsamples the
073 coordinates of the vector it holds (typically representing a model update) and then communicates
074 the selected coordinates. Secure aggregation protocols are used to ensure that the server does not
075 learn which coordinates were sampled by which user, thereby achieving privacy amplification. In
076 this setting, it is also typically necessary to limit the maximum number of coordinates a user sends
077 due to computational or communication constraints on the protocol. Poisson subsampling results
078 in a random (binomial) number of coordinates to communicate and thus does not allow to fully
079 exploit the available limit. Thus in (Asi et al., 2025), a natural alternative is the sampling scheme
080 in which each user contributes a random k out of the total t times (but with users still doing this
081 independently). For $k = 1$ this sampling scheme is a special case of the balls-and-bins sampling
(Chua et al., 2024a).

082 Motivated by the applications above, Feldman & Shenfeld (2025) propose and analyze a general
083 sampling scheme where each element participates in exactly k randomly chosen steps out of the
084 total t , independently of other elements, referred to as *k -out-of- t random allocation*. They show
085 a reduction of the general k scheme to $k = 1$ and describe several ways to analyze the 1-out-of- t
086 sampling scheme for general differentially private algorithms. Dong et al., independently derived an
087 additional analysis of the privacy of k -out-of- t random allocation for the Gaussian noise addition.

088 The analyses in (Feldman & Shenfeld, 2025; Dong et al.) and the numerical methods they entail
089 demonstrate that in most practical settings the privacy amplification achieved by random allocation
090 is comparable to that of Poisson sampling with the best results being typically within 20% increase
091 in ϵ . While reasonably close, these bounds are worse than the bounds estimated via Monte Carlo
092 simulations (Chua et al., 2024a; Choquette-Choo et al.) and bounds that can be computed exactly
093 in some special cases (Feldman & Shenfeld, 2025). Further, these analyses bound either the (ϵ, δ)
094 parameters (Feldman & Shenfeld, 2025) or the Rényi DP parameters (Feldman & Shenfeld, 2025;
095 Dong et al.) of the resulting algorithm. Both of these bounds have important limitations when
096 used with additional processing steps. For example, the algorithm used in (Asi et al., 2025) relies
097 on random allocation to reduce communication for each user but on top of it uses DP-SGD to
098 sample batches of users using Poisson sampling and composition (for batches and epochs). In such
099 an application, using an (ϵ, δ) -bound for random allocation would require performing composition
100 for general (ϵ, δ) algorithms which is known to be suboptimal. On the other hand, the general
101 subsampling bounds based on Rényi DP are typically loose. Further, conversion from Rényi DP to
final (ϵ, δ) guarantees also typically introduces overheads.

102
103

1.1 OUR CONTRIBUTION

104 We demonstrate how to overcome both shortcomings of the existing numerical methods for
105 computing the privacy parameters of random allocation. Specifically, we show a method that, given a
106 privacy loss distribution (PLD) of some t -step differentially private algorithm, computes an upper

108 bound on the PLD of the 1-out-of- t random allocation applied to that algorithm. PLD is now the
109 standard representation of privacy loss used in privacy accounting libraries (e.g (Google, 2022; Mi-
110 crosoft, 2021; Meta, 2021)) that can be losslessly composed and converted to other notions of DP
111 such as (ε, δ) -DP and Rényi DP.

112 Our algorithm is efficient in that its running time is $O(\log^3(t) \cdot \log(t/\beta)/\alpha^2)$, where α is the approx-
113 imation parameter of loss (roughly corresponding to the error in ε) and β an additional probability
114 of unbounded loss (translating to an increase in δ). For comparison, the complexity of the standard
115 algorithm for Poisson subsampling and t -wise composition via FFT is $O(t \cdot \sqrt{\log(t/\beta)} \cdot \log(t/\alpha)/\alpha)$
116 (Koskela et al., 2020; 2021; Gopi et al., 2021). Combining this with the reduction from the general
117 k to $k = 1$ from (Feldman & Shenfeld, 2025) we also obtain an algorithm for computing the PLD
118 of the k -out-of- t random allocation.

119 **Technical overview:** We now briefly outline our approach. As in the prior work, the starting point to
120 our result is a relatively simple fact that a dominating pair of distributions¹ for a 1-out-of- t random
121 allocation applied to a t -step algorithm M is the pair of distributions $\bar{Q}_t = Q^t$ and

$$123 \bar{P}_t = \frac{1}{t} \sum_{i \in [t]} Q^{i-1} \times P \times Q^{t-i},$$

124

125 where Q and P is a dominating pair of distributions for M . Equivalently, we can reduce the analysis
126 of a potentially very complicated algorithm like DP-SGD where steps can depend on the outputs of
127 previous steps to the analysis of random allocation applied to a fixed randomizer (specifically, one
128 that samples from a distribution P when its input is the user’s data and samples from distribution Q
129 otherwise).

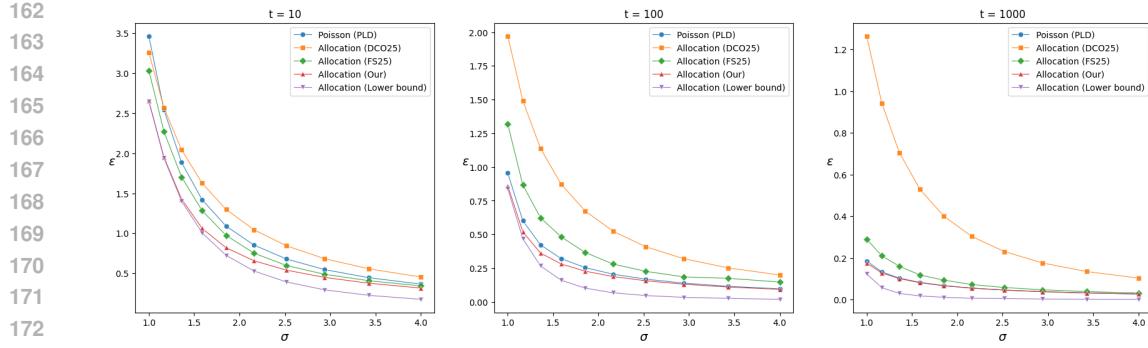
130 Now, our goal is to compute the PLD, or the distribution of $\ln(\bar{P}_t(x)/\bar{Q}_t(x))$ for $x \sim \bar{P}_t$. Somewhat
131 more formally, we need to produce sufficiently accurate upper and lower bounds on this random vari-
132 able to allow computation of the privacy parameters for both directions of the divergence. In general,
133 computing a PLD of a mixture of high-dimensional distributions is unlikely to be computationally
134 tractable. Our main observation is that for *parallel mixtures*, or mixtures in which each component
135 of the mixture has its own output dimension, such a computation is feasible (see Thm. 3.2 for a
136 formal statement). Specifically, for a pair of distributions \bar{P} and \bar{Q} we refer to the random variable
137 $P(x)/Q(x)$ when $x \sim P$ as the privacy ratio distributions (PRD) of P, Q (or, exp of PLD). We
138 observe that the PRD of the parallel mixture is just the weighted sum of the independent copies of
139 the PRDs of the component distribution pairs. Thus the necessary computations can be performed
140 using convolutions of PRDs.

141 We then describe how to appropriately discretize the PRDs and compute the t -wise convolution
142 in time logarithmic in t and inverse quadratic in the desired accuracy. We note that upper and
143 lower bound discretizations and convolution computation need to be handled differently for both
144 directions to ensure correctness and avoid numerical stability issues. The dependence on accuracy is
145 quadratic since these convolutions do not lend themselves to fast computations via a FFT. FFT relies
146 on additive discretization whereas the privacy ratio has an extremely large dynamic range. Instead,
147 we use a multiplicative discretization (which is equivalent to the standard additive approximation
148 of the PLD). The logarithmic dependence on t is achieved by doubling the number of steps via a
149 convolution of PRD with itself and using the binary representation of t .

150 To compute an upper bound on the PLD for general k -out-of- t , we use the reduction in (Feldman
151 & Shenfeld, 2025), showing that k -out-of- t is at least as private as k -composition of 1-out-of- $\lfloor t/k \rfloor$
152 random allocation. While this reduction is lossy, in particular, when $\lfloor t/k \rfloor$ is relatively small we
153 remark that the reduction is exact for Poisson sampling at the same rate. Namely, sampling indepen-
154 dently at the rate of k/t for t steps is equivalent to sampling at the rate of k/t for t/k steps (which
155 is the analog of 1-out-of- t/k random allocation) composed k times. Thus our empirical results
156 showing that in most practical regimes 1-out-of- t random allocation is no less private than $1/t$ -rate
157 Poisson subsampling imply that k -out-of- t random allocation is no less private than k/t -rate Poisson
158 subsampling.

159 Finally, to enable additional downstream applications of random allocation such as the PREAMBLE
160 algorithm in (Asi et al., 2025), we derive and implement Poisson subsampling applied directly to a

161 ¹Informally, a pair of distributions is dominating for M if it realizes all the worst case privacy parameters
of M (see Defn. 2.5).



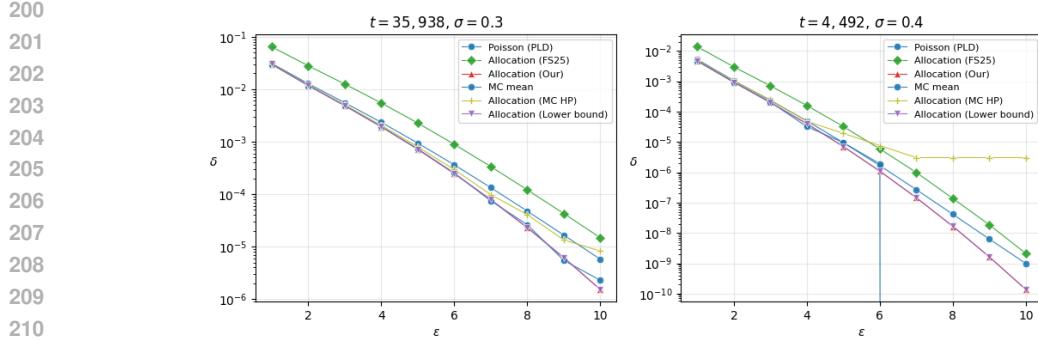
175 Figure 1: Upper and lower bounds on privacy parameter ε as a function of the noise parameter
 176 σ for various values of t , all using the Gaussian mechanism with fixed $\delta = 10^{-6}$. We compare
 177 our methods to upper bounds on Poisson and random allocation (Feldman & Shenfeld, 2025; Dong
 178 et al.), and lower bound on random allocation Chua et al. (2024a), and to the Poisson scheme with
 179 $\lambda = 1/t$.

(upper bound on a) PLD as we are not aware of any public description or implementation of this step. Instead, existing libraries rely directly on an analytic expression for the PLD of a subsampled Gaussian and Laplace noise addition (Google, 2022; Microsoft, 2021; Meta, 2021) See Appendix A.3 for details.

186 Numerical evaluation:

We compare our approach to existing techniques as well as Poisson subsampling in a variety of parameter settings. While our technique is general, we focus our evaluation on the Gaussian noise addition since that's the motivating application and the only case handled by most of the prior works. We note that we do not provide explicit results on the utility of random allocation, as such results can be found in prior work (Chua et al., 2024a; Choquette-Choo et al.; Feldman & Shenfeld, 2025; Dong et al.; Asi et al., 2025). Our privacy bounds only require knowing the noise and sampling parameters used there. Additional details on these numerical evaluations and additional evaluations can be found in Appendix C.

195 We start with a basic comparison with existing analysis methods for $k = 1$ and a range of t and σ
 196 (Figure 1). As can be seen from the plots, our results improve on all prior bounds and are never worse
 197 than the bounds for Poisson subsampling. We remark that the privacy bounds for these sampling
 198 techniques are incomparable in general (see Figure 6).



212 Figure 2: Comparison of the privacy profile of the Poisson scheme and various bounds for the
 213 random allocation scheme; the combined methods by Feldman & Shenfeld (2025), the high proba-
 214 bility and the average estimations using Monte Carlo simulation and the lower bound by Chua et al.
 215 (2024a), and our numerical method, following the setting in Chua et al. (2024a) (detailed description
 can be found in Appendix C).

In Figure 2 we show that our results match those obtained via Monte Carlo simulations in the regimes where the latter produce reliable results. These experiments are in the regime of parameters studied (Chua et al., 2024a).

We additionally show the results for more general $k = 10$ (Appendix C). We note that for our method and results in (Feldman & Shenfeld, 2025) this setting is equivalent to testing k -wise composition for k , 1-out- t/k rounds or random allocation. The RDP-based bounds in (Dong et al.) handle general k directly.

Finally, we include a plot demonstrating the runtime efficiency of our algorithm in Fig. 3. It also demonstrates that the runtime scaling in t and α agrees with our theoretical claims.



Figure 3: Runtime as a function of accuracy α and steps t on Apple MacBook Pro M1. The left panel was computed for Gaussian noise with $\sigma = 2.0$ and the right one for $\sigma = 5.0$.

1.2 RELATED WORK

Our work is most closely related to a long line of research on privacy amplification by subsampling and composition. This combination of tools was first defined and theoretically analyzed in the setting of convex optimization (Bassily et al., 2014). The resulting DP-SGD algorithm has found numerous applications in both theoretical and practical work and is currently the state-of-the-art method for training LLMs with provable privacy guarantees (VaultGemma Team, 2025). Applications of DP-SGD in machine learning were spearheaded by the landmark work of Abadi et al. (2016) who significantly improved the privacy analysis via the moments accounting technique formalized via Rényi DP (Mironov, 2017). This work has also motivated the development of more advanced techniques for analysis of sampling and composition. A more detailed technical and historical overview of subsampling and composition for DP can be found in the survey by Steinke (2022).

One of the important tools that emerged for the analysis of DP-SGD is privacy accounting via numerical tracking of the privacy loss random variable. This was first proposed by Koskela et al. (2020; 2021) who also demonstrated that privacy parameters of composition correspond to the convolution of PLDs and can be (approximately) computed via FFT applied to a discretization of the PLD. This approach to composition improved on the moments accountant technique since it avoids the somewhat lossy conversion from RDP parameters to (ε, δ) and is now the standard approach for the analysis of DP-SGD supported by several libraries (Google, 2022; Microsoft, 2021; Meta, 2021). We first note that while our computation also involves convolutions, we are adding privacy ratios and not their logarithms while at the same time ensuring the same kind of approximation guarantees. As a result, our algorithm is substantially different. At the same time, our algorithmic results, which we intend to publish as a Python library, fit naturally with the rest of the PLD toolkit and expand it to random allocation and general subsampling.

The shuffle model was first proposed by Bittau et al. (2017). The formal analysis of the privacy guarantees in this model was initiated in (Erlingsson et al., 2019; Cheu et al., 2019). Erlingsson et al. (2019) defined the sequential shuffling scheme that we discuss here and proved the first general privacy amplification results for this scheme, albeit only for pure DP algorithms. Improved analyses and extensions to approximate DP were given in (Balle et al., 2019; 2020; Feldman et al., 2021; 2023; Girgis et al., 2021a;b; Koskela et al., 2022). The privacy amplification guarantees of shuffling also apply to 1-out-of- t random allocation. Indeed, random 1-out-of- t allocation is a special case of

270 the *random check-in* model of defining batches for DP-SGD in (Balle et al., 2020). Their analysis of
271 this variant relies on the amplification properties of shuffling and thus does not lead to better privacy
272 guarantees for random allocation than those that are known for shuffling.

273 Two recent works give formal analyses of k -out-of- t random allocation (Feldman & Shenfeld, 2025;
274 Dong et al.). Feldman & Shenfeld (2025) describe three approximation approaches that are incom-
275 parable and also analyze the asymptotic behavior of random allocation. In the first analysis, they
276 show that the approximate DP (ε, δ) privacy parameters of random allocation are upper bounded by
277 those of the Poisson scheme with sampling probability $\approx k/t$ up to lower order terms which are
278 asymptotically vanishing in t/k . This analysis does not lead to tight bounds when t/k is small and
279 can at best match the bounds for the Poisson sampling. In the second analysis, Feldman & Shenfeld
280 (2025) show that ε of random allocation with $k = 1$ is at most a constant (≈ 1.6) factor times larger
281 than ε of the Poisson sampling with rate $1/t$ for the same δ . This analysis gives better bounds for
282 small t , but is typically worse by the said factor than Poisson sampling.

283 Feldman & Shenfeld (2025) also describe a direct analysis of the divergence for the dominating pair
284 of distributions. In the remove direction, they derive a closed form expression and relatively efficient
285 algorithm for computing the integer $\alpha \geq 2$ order RDP parameters of random allocation in terms
286 of the RDP parameters of the original algorithm. For the add direction, they give an approximate
287 upper bound directly on the (ε, δ) parameters. While this bound is approximate, the divergence for
288 the add direction is typically significantly lower than the one for the remove direction and therefore
289 even reasonably loose approximation of the add direction tends to not harm the overall bound. A
290 similar approach to the analysis of random allocation was independently proposed in (Dong et al.).
291 They provide upper bounds on the RDP parameters of the dominating pair of distributions in the
292 Gaussian case for both add and remove directions. Their efficiently computable bound is exact for
293 $\alpha = 2$ for the add direction and general k and is approximate otherwise.

294 Methods based on RDP parameters are particularly well-suited for subsequent composition (which
295 simply adds up the RDP parameters). The primary disadvantage of this technique is that the conver-
296 sion from RDP bounds to the regular (ε, δ) bounds is known to be somewhat lossy (typically within
297 10-20% range in multi-epoch settings). The bounds in (Feldman & Shenfeld, 2025; Dong et al.) are
298 also harmed by the restriction $\alpha \geq 2$ since lower order α lead to the best (ε, δ) parameters in some
299 cases. As mentioned above, subsampling of the RDP bounds typically incurs overheads making this
300 approach less viable in the complex settings such as (Asi et al., 2025).

301 2 PRELIMINARIES

304 In this work we consider *t-step algorithms* defined using a randomized algorithm $M : \mathcal{X}^* \times \mathcal{Y}^* \rightarrow \mathcal{Y}$,
305 which given a *dataset* $s \in \mathcal{X}^*$ of *elements* in the input space and a *view* $v \in \mathcal{Y}^*$ consisting of
306 output values, produces a new output. It first uses some scheme to define t subsets $s^1, \dots, s^t \subseteq s$,
307 then sequentially computes $y_i = M(s^i, v^{i-1})$, where $v^i := (y_1, \dots, y_i)$ are the intermediate views
308 consisting of the outputs produced so far, and $v^0 = \emptyset$. Such algorithms include DP-SGD, where each
309 step consists of a call to the Gaussian mechanism (A.2), with gradient vectors adaptively defined as
310 a function of previous outputs.

311 The assignment of the elements in s to the various subsets can be done in a deterministic manner
312 (e.g., $s^1 = \dots = s^t = s$), or randomly using a *sampling scheme*. We consider two sampling
313 schemes.

- 315 1. *Poisson scheme* parametrized by sampling probability $\lambda \in [0, 1]$, where each element is
316 added to each subset s^i with probability λ independent of the other elements and other
317 subsets,
- 318 2. *Random allocation scheme* parametrized by a number of selected steps $k \in [t]$, which
319 uniformly samples k indices $i = (i_1, \dots, i_k) \subseteq [t]$ for each element and adds it to the
320 corresponding subsets s^{i_1}, \dots, s^{i_k} .

322 For a *t-step* algorithm defined by M , we denote by $\mathcal{P}_{t,\lambda}(M) : \mathcal{X}^* \rightarrow \mathcal{Y}^t$ an algorithm using M
323 with the Poisson sampling scheme and $\mathcal{A}_{t,k}(M) : \mathcal{X}^* \rightarrow \mathcal{Y}^t$ when M is used with the random
allocation scheme. When $k = 1$ we omit it from the notation for clarity.

324 **Differential privacy and Privacy loss distribution:** We start by defining the abstract notion of
 325 privacy loss distribution (PLD).

326 **Definition 2.1** (PLD (Dwork & Rothblum, 2016)). Given two distributions P, Q over some domain
 327 Ω , the *privacy loss random variable* $L_{P,Q}$ is defined by $\ell(\omega; P, Q) := \ln\left(\frac{P(\omega)}{Q(\omega)}\right)$ where $\omega \sim P$.
 328 We refer to its distribution as the *privacy loss distribution (PLD)* and denote its CDF by $F_{P,Q}^\ell$.
 329

330 We use the PLD to define a the standard hockey stick divergence between distributions.

331 **Definition 2.2** (Hockey-stick divergence Barthe et al. (2012)). Given $\kappa \in [0, \infty]$, the κ -hockey-stick
 332 *divergence* between two distributions P, Q is defined as $\mathbf{H}_\kappa(P \parallel Q) := \mathbb{E}\left[\left[1 - \kappa \cdot e^{-L_{P,Q}}\right]_+\right]$,
 333 where $[x]_+ := \max\{0, x\}$.
 334

335 We note that this definition extends to any random variable L defining its κ -hockey-stick *functional*
 336 as $\mathbf{H}_\kappa(L) := \mathbb{E}\left[\left[1 - \kappa \cdot e^{-L}\right]_+\right]$.
 337

338 For adjacency we consider the standard add/remove notion in which datasets $s, s' \in \mathcal{X}^*$ are adjacent
 339 if s can be obtained from s' via adding or removing a single element. To appropriately define
 340 sampling schemes that operate over a fixed number of elements we augment the domain with a
 341 “null” element \perp , that is, we define $\mathcal{X}' := \mathcal{X} \cup \{\perp\}$. When a t -step algorithm assigns \perp to M we
 342 treat it as an empty set, that is, for any $s \in \mathcal{X}^*$, $v \in \mathcal{Y}^*$ we have $M(s, v) = M((s, \perp), v)$. We say
 343 that two datasets $s, s' \in \mathcal{X}^n$ are *adjacent* and denote it by $s \simeq s'$, if one of the two can be created
 344 by replacing a single element in the other dataset by \perp .
 345

346 Using this notion we define the privacy profile of a mechanism, and use it to define differential
 347 privacy.

348 **Definition 2.3** (Privacy profile (Balle et al., 2018)). Given an algorithm $M : \mathcal{X}^* \times \mathcal{Y}^* \rightarrow \mathcal{Y}$, the
 349 privacy profile $\delta_M : \mathbb{R} \rightarrow [0, 1]$ is defined to be the maximal hockey-stick divergence between the
 350 distributions induced by any adjacent datasets and past view. Formally,

$$\delta_M(\varepsilon) := \sup_{s \simeq s' \in \mathcal{X}^*, v \in \mathcal{Y}^*} (\mathbf{H}_{e^\varepsilon}(M(s, v) \parallel M(s', v))).$$

351 Since the hockey-stick divergence is asymmetric in the general case, we use $\vec{\delta}_M$ to denote the *remove*
 352 direction where $\perp \in s'$ and $\vec{\delta}_M$ to denote the *add* direction when $\perp \in s$. Consequently, $\delta_M(\varepsilon) =$
 353 $\max\{\vec{\delta}_M(\varepsilon), \vec{\delta}_M(\varepsilon)\}$.
 354

355 We can now formally define the standard notion of DP.

356 **Definition 2.4** (Differential privacy (Dwork et al., 2006)). Given $\varepsilon > 0$; $\delta \in [0, 1]$, an algorithm M
 357 will be called (ε, δ) -differentially private (DP), if $\delta_M(\varepsilon) \leq \delta$.
 358

359 **Dominating pairs:** A key concept for characterizing the privacy guarantees of an algorithm is that
 360 of a *dominating pair* of distributions (Zhu et al., 2022).

361 **Definition 2.5** (Dominating pair (Zhu et al., 2022)). Given distributions P, Q over some domain
 362 Ω , and P', Q' over Ω' , we say (P', Q') dominate (P, Q) if for all $\kappa \geq 0$ we have $\mathbf{H}_\kappa(P \parallel Q) \leq$
 363 $\mathbf{H}_\kappa(P' \parallel Q')$. If $\vec{\delta}_M(\varepsilon) \leq \mathbf{H}_{e^\varepsilon}(P \parallel Q)$ for all $\varepsilon \in \mathbb{R}$, we say (P, Q) is a *dominating pair* of
 364 distributions for M in the remove direction, and replacing $\vec{\delta}_M$ by $\vec{\delta}_M$ this hold for the add direction.
 365

366 If the inequality can be replaced by an equality for all ε , we say it is a *tightly dominating pair*. If
 367 there exist some $s \simeq s' \in \mathcal{X}^*$ such that $P = M(s)$, $Q = M(s')$ we say (s, s') are the dominating
 368 pair of datasets for M . By definition, a dominating pair of input datasets is tightly dominating.
 369

370 Zhu et al. (2022) provide several useful properties of dominating pairs; A tightly dominating pair
 371 (P, Q) always exists (Proposition 8), if (P, Q) dominate $\vec{\delta}_M$, then (Q, P) dominate $\vec{\delta}_M$ (Lemma
 372 28), and domination is preserved under composition (Theorem 10) and sampling (Theorem 11).
 373

374 Using the PLD definition introduces another natural domination notion.

375 **Definition 2.6** (Approximate Stochastic Domination). A random variable X (first order) *stochasti-*
 376 *cally dominates* another random variable X' if the complementary cumulative distribution function

(CCDF) of X upper bounds the CCDF of X' , that is, for any value $x \in \mathbb{R}$ we have $\bar{F}_{X'}(x) \leq \bar{F}_X(x)$, where $\bar{F}_X = 1 - F_X$. Further, given $\alpha \geq 0$; $\beta \in [0, 1]$, we say this domination is (α, β) -approximate if $X' + \alpha$ stochastically dominates X up to a gap of β in probability. Formally, $\forall x \in \mathbb{R} : \bar{F}_X(x) \leq \bar{F}_{X'}(x - \alpha) + \beta$.

Like hockey-stick domination, stochastic domination is preserved under composition (Claim A.1) and subsampling (Appendix A.3) as well. The next claim shows how these two domination notions are related to each other. A proof can be found in Appendix A.

Claim 2.7. *Stochastic domination implies domination in the hockey-stick sense. Formally, given $\alpha \geq 0$; $\beta \in [0, 1]$, if a random variable X stochastically dominates X' and this domination is (α, β) -approximate, then $\mathbf{H}_{e^\varepsilon}(X') \leq \mathbf{H}_{e^\varepsilon}(X) \leq \mathbf{H}_{e^{\varepsilon-\alpha}}(X') + \delta$.*

We use the notion of dominating pair to define a dominating randomizer, which captures the privacy guarantees of the algorithm independently of its algorithmic adaptive properties.

Definition 2.8 (Dominating randomizer). Given an algorithm $M : \mathcal{X}^* \times \mathcal{Y}^* \rightarrow \mathcal{Y}$, we say that $R : \{\ast, \perp\} \rightarrow \mathcal{Y}$ is a *dominating randomizer* for M and set $R(\ast) = P$ and $R(\perp) = Q$, where (P, Q) is the dominating pair of M in the remove direction.

Lemma 2.9 (Allocation reduction to randomizer (Feldman & Shenfeld, 2025)). *Given $t \in \mathbb{N}$; $k \in [t]$ and an algorithm M dominated by a randomizer R , we have $\delta_{\mathcal{A}_{t,k}(M)}(\varepsilon) \leq \delta_{\mathcal{A}_{t,k}(R)}(\varepsilon)$*

For the general case of multiple allocations we rely on the following reduction.

Lemma 2.10 (Reduction to a single allocation (Feldman & Shenfeld, 2025)). *For any $k \in \mathbb{N}$, $\varepsilon > 0$ we have $\delta_{\mathcal{A}_{t,k}(R)}(\varepsilon) \leq \delta_{\mathcal{A}_{\lfloor t/k \rfloor}(R)}^{\otimes k}(\varepsilon)$, where $\otimes k$ denotes the composition of k runs of the algorithm or scheme which in our case is $\mathcal{A}_{\lfloor t/k \rfloor}(R)$.*

3 PRIVACY OF RANDOM ALLOCATION VIA PRD CONVOLUTION

We start by introducing a new privacy random variable complementary to the PLD, which proves more useful for our next claims.

Definition 3.1 (Privacy ratio distribution). Given two distributions P, Q over some domain Ω , the *privacy ratio random variable* $R_{P,Q}$ is defined by $\mathcal{R}(\omega; P, Q) := e^{\ell(\omega; P, Q)}$ where $\omega \sim P$. We refer to its distribution as the *privacy ratio distribution (PRD)* and denote its CDF by $F_{P,Q}^{\mathcal{R}}$.

Since $L_{P,Q} = \ln(R_{P,Q})$, stochastic domination of PLDs and PRDs are equivalent.

We can now state our first result.

Theorem 3.2 (Parallel mixing). *Given $\lambda \in [0, 1]$, two distributions P, Q over some domain Ω , and P', Q' over Ω' , denote by $\bar{Q} := Q \times Q'$ the base product distribution, and by $\bar{P}_\lambda := \lambda P \times Q' + (1 - \lambda)Q \times P'$ the mixture distribution which either replaces Q with P or Q' by P' w.p. λ and $1 - \lambda$ respectively.*

For any $\omega \in \Omega$, $\omega' \in \Omega'$ we have $\mathcal{R}((\omega, \omega'); \bar{P}_\lambda, \bar{Q}) = \lambda \cdot \mathcal{R}(\omega; P, Q) + (1 - \lambda) \cdot \mathcal{R}(\omega; P', Q')$ which implies

$$R_{\bar{P}_\lambda, \bar{Q}} := \lambda^2 R_{P,Q} + \frac{\lambda(1 - \lambda)}{R_{Q', P'}} + \frac{\lambda(1 - \lambda)}{R_{Q, P}} + (1 - \lambda)^2 R_{P', Q'} \quad \text{and} \quad R_{\bar{Q}, \bar{P}_\lambda} := \frac{1}{\frac{\lambda}{R_{Q, P}} + \frac{1 - \lambda}{R_{Q', P'}}}.$$

The advantage of this representation is that it decomposes the PRD of the mixture into (the inverse of) a sum of independent random variables corresponding to the PRDs of the components (or their inverses). Notice that the mixture \bar{P}_λ affects both $\mathcal{R}((\omega, \omega'); \bar{P}_\lambda, \bar{Q})$ and the sampling of (ω, ω') as well in the case of $R_{\bar{P}_\lambda, \bar{Q}}$. This lemma can be generalized to an arbitrary number of distribution pairs recursively.

A direct application of this lemma is the PRD of random allocation.

Corollary 3.3. *Given two distributions P, Q and an integer t denote the uniform distribution over t steps, $P_t := \frac{1}{t} \sum_{i \in [t]} Q^{i-1} \times P \times Q^{t-i}$.*

432 For any $v = (\omega_1, \dots, \omega_t) \in \Omega^t$ we have $\mathcal{R}(v; \bar{P}_t, Q^t) = \frac{1}{t} \sum_{i \in [t]} \mathcal{R}(\omega_i; P, Q)$, which implies
433

434
435
$$R_{\bar{P}_t, Q^t} = \frac{1}{t} \left(R_{P, Q} + \sum_{i \in [t-1]} \frac{1}{R_{Q, P}} \right) \quad \text{and} \quad R_{Q^t, \bar{P}_t} = \frac{t}{\sum_{i \in [t]} \frac{1}{R_{Q, P}}}.$$

436
437

438 We can now state our main result that relies on Cor. 3.3.
439

440 **Theorem 3.4.** Given $\alpha \geq 0$; $\beta \in [0, 1]$; $t \in \mathbb{N}$, and a t -step algorithm M tightly dominated by
441 a pair of distributions P, Q , there exists an algorithm that given α, β, t and access to $F_{P, Q}^\ell$ returns
442 two discrete random variables \tilde{L}, \tilde{L} , such that: (1) **Validity:** $\tilde{L} (\tilde{L})$ dominates M in the remove (add)
443 direction, (2) **Tightness:** this domination is (α, β) -approximate, and (3) **Computation complexity:**
444 The runtime of the algorithm is $O(\Delta^2 \cdot \ln^3(t)/\alpha^2)$, where Δ is the width of interval between the
445 $\beta/(2t)$ and $1 - \beta/(2t)$ quantiles of $L_{Q, P}$.
446

447 In the case of the Gaussian mechanism with sensitivity 1, $\Delta = O(\sqrt{\ln(t/\beta)/\sigma})$ so the runtime of
448 the algorithm is $O(\ln^3(t) \ln(t/\beta)/(\sigma^2 \alpha^2))$. A detailed version of the algorithm can be found in
449 Appendix B. We provide here its outline.
450

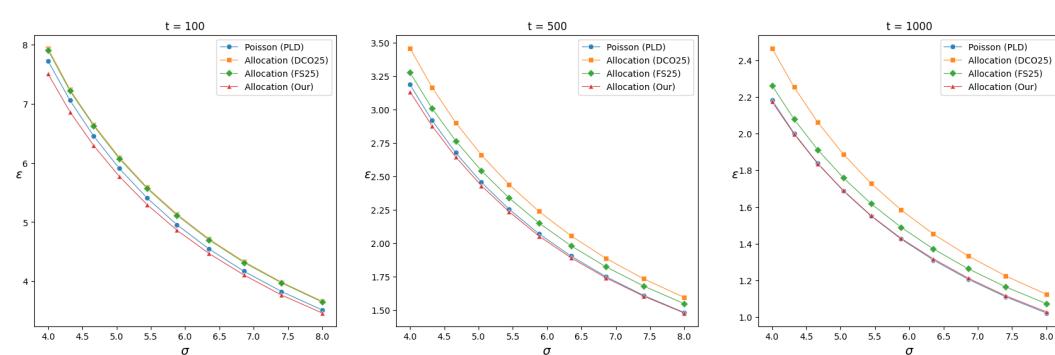
451 We start by creating discrete random variables that stochastically dominate $R_{P, Q}$ and $1/R_{Q, P}$ for the
452 remove direction (dominated by $R_{Q, P}$ for the add direction). In the case of the Gaussian mechanism,
453 these are simply lognormal random variables. The range is chosen such that $O(\beta)$ probability mass
454 is discarded at each side, and the grid points are geometrically spaced so that conversion of PRD to
455 PLD by taking the log will result in an additive error of $O(\alpha)$.
456

457 To avoid exponential growth of the range, a new grid is computed at each convolution step by
458 truncating $O(\beta)$ probability from each end and selecting new geometrically spaced points (Alg. 1).
459 The convolution is computed directly and the probabilities are allocated to bins by upper / lower
460 bounding the random variable, according to the required domination direction (Alg 2).
461

462 The computation is carried out only $O(\log(t))$ times, leveraging the fact that the t -step convolution
463 of a random variable with itself can be computed recursively by representing t as a sum of powers
464 of 2 (e.g., if $t = 10$, we can compute the 2, 4, and 8-fold convolutions, then convolve the 8th and
465 the 2nd, Alg 3).
466

467 In practice, numerical stability affects probabilities close to machine accuracy (10^{-15} for float64),
468 which can be mitigated by using float128, or double-double arithmetic, both at the cost of additional
469 computation. Since these inaccuracies grow with the number of compositions, it requires careful
470 care whenever $\delta \leq 10^{-15+\log(t)}$.
471

472 Combining this theorem with Claim 2.7 implies the privacy profile computed using this algorithm is
473 valid and tight as well.
474



485 Figure 4: Privacy bounds using the same setting as in Figure 1 with $\delta = 10^{-8}$ and $k = 10$ allocations.
486

486 REFERENCES

487

488 Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
489 Li Zhang. Deep learning with differential privacy. In *Proceedings of the 2016 ACM SIGSAC*
490 *conference on computer and communications security*, pp. 308–318, 2016.

491 Meenatchi Sundaram Muthu Selva Annamalai, Borja Balle, Emilio De Cristofaro, and Jamie
492 Hayes. To shuffle or not to shuffle: Auditing dp-sgd with shuffling. *arXiv preprint*
493 *arXiv:2411.10614*, 2024.

494 Hilal Asi, Vitaly Feldman, Hannah Keller, Guy N. Rothblum, and Kunal Talwar. PREAMBLE:
495 Private and efficient aggregation of block sparse vectors and applications. *Cryptology ePrint*
496 Archive, Paper 2025/490, 2025. URL <https://eprint.iacr.org/2025/490>.

498 Borja Balle and Yu-Xiang Wang. Improving the gaussian mechanism for differential privacy: Ana-
499 lytical calibration and optimal denoising. In *International Conference on Machine Learning*, pp.
500 394–403. PMLR, 2018.

501 Borja Balle, Gilles Barthe, and Marco Gaboardi. Privacy amplification by subsampling: Tight
502 analyses via couplings and divergences. *Advances in neural information processing systems*, 31,
503 2018.

504 Borja Balle, James Bell, Adrià Gascón, and Kobbi Nissim. The privacy blanket of the shuffle model.
505 In *Advances in Cryptology–CRYPTO 2019: 39th Annual International Cryptology Conference,*
506 *Santa Barbara, CA, USA, August 18–22, 2019, Proceedings, Part II* 39, pp. 638–667. Springer,
507 2019.

509 Borja Balle, Peter Kairouz, Brendan McMahan, Om Thakkar, and Abhradeep Guha Thakurta. Pri-
510 vacy amplification via random check-ins. *Advances in Neural Information Processing Systems*,
511 33:4623–4634, 2020.

512 Gilles Barthe, Boris Köpf, Federico Olmedo, and Santiago Zanella Beguelin. Probabilistic relational
513 reasoning for differential privacy. In *Proceedings of the 39th annual ACM SIGPLAN-SIGACT*
514 *symposium on Principles of programming languages*, pp. 97–110, 2012.

515 Raef Bassily, Adam Smith, and Abhradeep Thakurta. Private empirical risk minimization: Efficient
516 algorithms and tight error bounds. In *2014 IEEE 55th annual symposium on foundations of*
517 *computer science*, pp. 464–473. IEEE, 2014.

519 Andrea Bittau, Úlfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth Raghunathan, David Lie,
520 Mitch Rudominer, Ushasree Kode, Julien Tinnes, and Bernhard Seefeld. Prochlo: Strong privacy
521 for analytics in the crowd. In *Proceedings of the 26th symposium on operating systems principles*,
522 pp. 441–459, 2017.

523 Wei-Ning Chen, Dan Song, Ayfer Ozgur, and Peter Kairouz. Privacy amplification via compression:
524 Achieving the optimal privacy-accuracy-communication trade-off in distributed mean estimation.
525 *Advances in Neural Information Processing Systems*, 36, 2024.

527 Albert Cheu, Adam Smith, Jonathan Ullman, David Zeber, and Maxim Zhilyaev. Distributed dif-
528 ferential privacy via shuffling. In *Advances in Cryptology–EUROCRYPT 2019: 38th Annual In-*
529 *ternational Conference on the Theory and Applications of Cryptographic Techniques, Darmstadt,*
530 *Germany, May 19–23, 2019, Proceedings, Part I* 38, pp. 375–403. Springer, 2019.

531 Christopher A Choquette-Choo, Arun Ganesh, Saminul Haque, Thomas Steinke, and
532 Abhradeep Guha Thakurta. Near-exact privacy amplification for matrix mechanisms. In *The*
533 *Thirteenth International Conference on Learning Representations*.

534 Lynn Chua, Badih Ghazi, Charlie Harrison, Pritish Kamath, Ravi Kumar, Ethan Jacob Leeman,
535 Pasin Manurangsi, Amer Sinha, and Chiyuan Zhang. Balls-and-bins sampling for dp-sgd. In *The*
536 *28th International Conference on Artificial Intelligence and Statistics*, 2024a.

538 Lynn Chua, Badih Ghazi, Pritish Kamath, Ravi Kumar, Pasin Manurangsi, Amer Sinha, and Chiyuan
539 Zhang. How private are dp-sgd implementations? In *Forty-first International Conference on*
Machine Learning, 2024b.

540 Lynn Chua, Badih Ghazi, Pritish Kamath, Ravi Kumar, Pasin Manurangsi, Amer Sinha, and Chiyuan
541 Zhang. Scalable dp-sgd: Shuffling vs. poisson subsampling. *Advances in Neural Information
542 Processing Systems*, 37:70026–70047, 2024c.

543 Andy Dong, Wei-Ning Chen, and Ayfer Ozgur. Leveraging randomness in model and data partition-
544 ing for privacy amplification. In *Forty-second International Conference on Machine Learning*.

545 Cynthia Dwork and Guy N Rothblum. Concentrated differential privacy. *arXiv preprint
546 arXiv:1603.01887*, 2016.

547 Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor. Our data,
548 ourselves: Privacy via distributed noise generation. In *Advances in Cryptology-EUROCRYPT
549 2006: 24th Annual International Conference on the Theory and Applications of Cryptographic
550 Techniques, St. Petersburg, Russia, May 28-June 1, 2006. Proceedings 25*, pp. 486–503. Springer,
551 2006.

552 Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan, Kunal Talwar, and
553 Abhradeep Thakurta. Amplification by shuffling: From local to central differential privacy via
554 anonymity. In *Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algo-
555 rithms*, pp. 2468–2479. SIAM, 2019.

556 Vitaly Feldman and Moshe Shenfeld. Privacy amplification by random allocation. *arXiv preprint
557 arXiv:2502.08202*, 2025.

558 Vitaly Feldman, Audra McMillan, and Kunal Talwar. Hiding among the clones: A simple and nearly
559 optimal analysis of privacy amplification by shuffling. In *2021 IEEE 62nd Annual Symposium on
560 Foundations of Computer Science (FOCS)*, pp. 954–964. IEEE, 2021.

561 Vitaly Feldman, Audra McMillan, and Kunal Talwar. Stronger privacy amplification by shuffling
562 for rényi and approximate differential privacy. In *Proceedings of the 2023 Annual ACM-SIAM
563 Symposium on Discrete Algorithms (SODA)*, pp. 4966–4981. SIAM, 2023.

564 Antonious M. Girgis, Deepesh Data, Suhas Diggavi, Peter Kairouz, and Ananda Theertha Suresh.
565 Shuffled model of federated learning: Privacy, accuracy and communication trade-offs. *IEEE
566 Journal on Selected Areas in Information Theory*, 2(1):464–478, 2021a.

567 Antonious M Girgis, Deepesh Data, Suhas Diggavi, Ananda Theertha Suresh, and Peter Kairouz.
568 On the renyi differential privacy of the shuffle model. In *Proceedings of the 2021 ACM SIGSAC
569 Conference on Computer and Communications Security*, pp. 2321–2341, 2021b.

570 Google. dp-accounting. [https://github.com/google/differential-privacy/
571 tree/main/python/dp_accounting](https://github.com/google/differential-privacy/tree/main/python/dp_accounting), 2022.

572 Sivakanth Gopi, Yin Tat Lee, and Lukas Wutschitz. Numerical composition of differential privacy.
573 *Advances in Neural Information Processing Systems*, 34:11631–11642, 2021.

574 Shiva Prasad Kasiviswanathan, Homin K Lee, Kobbi Nissim, Sofya Raskhodnikova, and Adam
575 Smith. What can we learn privately? *SIAM Journal on Computing*, 40(3):793–826, 2011.

576 Antti Koskela, Joonas Jälkö, and Antti Honkela. Computing tight differential privacy guarantees
577 using fft. In *International Conference on Artificial Intelligence and Statistics*, pp. 2560–2569.
578 PMLR, 2020.

579 Antti Koskela, Joonas Jälkö, Lukas Prediger, and Antti Honkela. Tight differential privacy for
580 discrete-valued mechanisms and for the subsampled gaussian mechanism using fft. In *Inter-
581 national Conference on Artificial Intelligence and Statistics*, pp. 3358–3366. PMLR, 2021.

582 Antti Koskela, Mikko A Heikkilä, and Antti Honkela. Numerical accounting in the shuffle model of
583 differential privacy. *Transactions on Machine Learning Research*, 2022.

584 Ryan McKenna, Yangsibo Huang, Amer Sinha, Borja Balle, Zachary Charles, Christopher A
585 Choquette-Choo, Badih Ghazi, George Kaassis, Ravi Kumar, Ruibo Liu, et al. Scaling laws for
586 differentially private language models. *arXiv preprint arXiv:2501.18914*, 2025.

594 Meta. Opacus: Differential privacy library for pytorch. <https://github.com/pytorch/opacus>, 2021.
595
596

597 Microsoft. PRV accountant. https://github.com/microsoft/prv_accountant,
598 2021.

599 Ilya Mironov. Rényi differential privacy. In *2017 IEEE 30th computer security foundations symposium (CSF)*, pp. 263–275. IEEE, 2017.
600
601

602 Thomas Steinke. Composition of differential privacy & privacy amplification by subsampling. *arXiv preprint arXiv:2210.00597*, 2022.
603

604 VaultGemma Team. VaultGemma: A differentially private Gemma model. Technical report, Google,
605 2025. URL https://services.google.com/fh/files/blogs/vaultgemma_tech_report.pdf.
606
607

608 Yuqing Zhu, Jinshuo Dong, and Yu-Xiang Wang. Optimal accounting of differential privacy via
609 characteristic function. In *International Conference on Artificial Intelligence and Statistics*, pp.
610 4782–4817. PMLR, 2022.
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

648 A MISSING DETAILS

649 A.1 MISSING PROOFS

650 **Claim A.1.** *Given random variables X, X', Y, Y' denote $Z = X + Y$, $Z' = X' + Y'$. If X 651 stochastically dominates X' and Y stochastically dominates Y' , then Z stochastically dominates 652 Z' .*

653 *Proof.* For any $z \in \mathbb{R}$ we have

$$654 \bar{F}_{Z'}(z) = \bar{F}_{X'+Y'}(z) = \int_{-\infty}^{\infty} \bar{F}_{X'}(x) \bar{F}_{Y'}(z-x) dx \leq \int_{-\infty}^{\infty} \bar{F}_X(x) \bar{F}_Y(z-x) dx = \bar{F}_{X+Y}(z) = \bar{F}_Z(z).$$

655 \square

656 *Proof of Claim 2.7.* We prove that stochastic domination implies domination in the hockey-stick 657 sense, which implies both inequalities.

$$\begin{aligned} 658 \mathbf{H}_\alpha(X') &= \mathbb{E} \left[\left[1 - \alpha e^{-X'} \right]_+ \right] \\ 659 &= \int_0^1 \mathbb{P} \left(\left[1 - \alpha e^{-X'} \right]_+ > t \right) dt \\ 660 &= \int_0^1 \bar{F}_{X'} \left(\ln \left(\frac{\alpha}{1-t} \right) \right) dt \\ 661 &\leq \int_0^1 \bar{F}_X \left(\ln \left(\frac{\alpha}{1-t} \right) \right) dt \\ 662 &= \int_0^1 \mathbb{P} \left(\left[1 - \alpha e^{-X} \right]_+ > t \right) dt \\ 663 &= \mathbb{E} \left[\left[1 - \alpha e^{-X} \right]_+ \right] \\ 664 &= \mathbf{H}_\alpha(X) \end{aligned}$$

665 \square

666 *Proof of Theorem 3.2.* From the definition,

$$\begin{aligned} 667 \mathcal{R}((\omega, \omega'); \bar{P}_\lambda, \bar{Q}) &= \frac{\bar{P}_\lambda(\omega, \omega')}{\bar{Q}(\omega, \omega')} \\ 668 &= \lambda \frac{P(\omega)}{Q(\omega)} + (1-\lambda) \frac{P'(\omega')}{Q'(\omega')} \\ 669 &= \lambda \cdot \mathcal{R}(\omega; P, Q) + (1-\lambda) \cdot \mathcal{R}(\omega'; P', Q') \end{aligned}$$

670 Since $\mathcal{R}(\omega; P, Q) = \frac{1}{\mathcal{R}(\omega; Q, P)}$ for any ω, P, Q , we have

$$671 \mathcal{R}((\omega, \omega'); \bar{Q}, \bar{P}_\lambda) = \frac{1}{\lambda \cdot \mathcal{R}(\omega_1; P, Q) + (1-\lambda) \cdot \mathcal{R}(\omega_2; P', Q')} = \frac{1}{\frac{\lambda}{\mathcal{R}(\omega_1; Q, P)} + \frac{1-\lambda}{\mathcal{R}(\omega_2; Q', P')}},$$

672 which implies, $R_{\bar{Q}, \bar{P}_\lambda} := \frac{1}{\frac{\lambda}{\mathcal{R}(\omega_1; Q, P)} + \frac{1-\lambda}{\mathcal{R}(\omega_2; Q', P')}}$.

673 Changing the distribution affects the sampling of (ω, ω') as well so $R_{\bar{P}_\lambda, \bar{Q}}$ becomes a mixture of 674 two distributions. Using the fact that,

$$675 \mathcal{R}((\omega, \omega'); \bar{P}_\lambda, \bar{Q}) = \lambda \frac{1}{\mathcal{R}(\omega_1; Q, P)} + (1-\lambda) \cdot \mathcal{R}(\omega_2; P', Q') = \lambda \cdot \mathcal{R}(\omega_1; P, Q) + (1-\lambda) \frac{1}{\mathcal{R}(\omega_2; Q', P')},$$

702 and combining the two,
703

$$\begin{aligned}
704 \quad \mathcal{R}((\omega, \omega'); \bar{P}_\lambda, \bar{Q}) &= \lambda \left(\lambda \cdot \mathcal{R}(\omega_1; P, Q) + (1 - \lambda) \frac{1}{\mathcal{R}(\omega_2; Q', P')} \right) \\
705 \\
706 \quad &\quad + (1 - \lambda) \left(\lambda \frac{1}{\mathcal{R}(\omega_1; Q, P)} + (1 - \lambda) \cdot \mathcal{R}(\omega_2; P', Q') \right) \\
707 \\
708 \quad &= \lambda^2 \mathcal{R}(\omega_1; P, Q) + \frac{\lambda(1 - \lambda)}{\mathcal{R}(\omega_2; Q', P')} + \frac{\lambda(1 - \lambda)}{\mathcal{R}(\omega_1; Q, P)} + (1 - \lambda)^2 \mathcal{R}(\omega_2; P', Q')
\end{aligned}$$

711 we get
712

$$713 \quad R_{\bar{P}_\lambda, \bar{Q}} := \lambda^2 R_{P, Q} + \frac{\lambda(1 - \lambda)}{R_{Q', P'}} + \frac{\lambda(1 - \lambda)}{R_{Q, P}} + (1 - \lambda)^2 R_{P', Q'}. \quad \square$$

718 *Proof of Corollary 3.3.* This is a direct result of Theorem 3.2 using the recursive relation $\bar{P}_t =$
719 $\frac{1}{t} \cdot P \times Q^{t-1} + (1 - \frac{1}{t}) \cdot Q \times \bar{P}_{t-1}$.

720 In the base case $t = 2$ we have,
721

$$722 \quad R_{\bar{P}_2, Q^2} = \frac{1}{2} \left(R_{P, Q} + \frac{1}{R_{Q, P}} \right) \quad \text{and} \quad R_{Q^2, \bar{P}_2} = \frac{t}{\frac{1}{R_{Q, P}} + \frac{1}{R_{Q, P}}},$$

725 and for any $t > 2$ we have
726

$$727 \quad \mathcal{R}(v; \bar{P}_t, Q^t) = \frac{1}{t} \cdot \mathcal{R}(\omega_1; P, Q) + \left(1 - \frac{1}{t} \right) \cdot \mathcal{R}(v_{2:t}; \bar{P}_{t-1}, Q^{t-1}). \quad \square$$

732 *Proof of Theorem 3.4.* We state the analysis in terms of the remove direction. The analysis for the
733 add directions is identical, except for the direction of the domination, since the last step consists of
734 the monotonically decreasing transformation $-\ln$.

735 **Validity:** From Claim A.1, it suffices to show that every step of the algorithm maintains stochastic
736 domination, to prove its output stochastically dominates the true PLD as well. The first step
737 consists of lower bounding the underlying PLD's CDF which results in a stochastically dominating
738 random variable. The left tail is treated as 0 and the right tail is treated as some probability mass at
739 infinity. At each step of the convolution, the output random variable is defined by lower bounding
740 the product random variable's CDF (moving some additional probability mass to infinity as needed),
741 which results in a stochastically dominating random variable. Since \ln is a monotonically increasing
742 function, domination is maintained for the PLD.

743 **Tightness:** From Claim A.1, if X (Y) stochastically dominates X' (Y'), and these dominations are
744 (α, β) -approximate, then $X + Y$ dominates $X' + Y'$ and this domination is $(2\alpha, 2\beta)$ -approximate.
745 We analyze the two slackness components separately. The β terms are accumulated additively.
746 Since there are t convolution steps, each one contributing at most $\beta' = \beta/(2t)$ to the probability
747 loss from truncation, the overall loss from this part is $\beta/2$. Additionally, the initial PLD discards
748 $\beta/2$ probability mass, leading to a combined loss of β . The α part results from the choice of the
749 bins. Since they are geometrically spaced, the resulting error from rounding into bins is *relative*
750 rather than additive, so the convolution over t steps results only in $\log(t)$ blowup in error.

751 **Computational complexity:** Since we do not use evenly spaced bins, we cannot rely on FFT, so
752 the convolution must be carried out in $O(n^2)$ time, where n is the number of bins. This number is
753 the ratio of the range Δ to the desired resolution α' . Δ is determined by the dropped probability
754 mass β , and since $\alpha' = \alpha/\log(t)$, the first convolution requires $O(\Delta^2 \log^2(t)/\alpha^2)$ steps. Using
755 Algorithm 1 we maintain the same number of bins, and using Algorithm 3 requires only $O(\log(t))$
convolution steps, which completes the proof. \square

756 A.2 GAUSSIAN MECHANISM
 757

758 One of the most common algorithms is the Gaussian mechanism N_σ , which simply reports the sum
 759 of (some function of) the elements in the dataset with the addition of Gaussian noise of scale σ . One
 760 of its main advantages is that we have closed form expressions of its privacy

761 **Lemma A.2** (Gaussian mechanism DP guarantees, (Balle & Wang, 2018)). *Given $d \in \mathbb{N}; \sigma > 0$,
 762 let $\mathcal{X} = \mathcal{Y} := \mathbb{R}^d$. The Gaussian mechanism N_σ is defined as $N_\sigma(\mathbf{s}) := \mathcal{N}(\sum_{x \in \mathbf{s}} x, \sigma^2 I_d)$.*

763 *If the domain of N_σ is the unit ball in \mathbb{R}^d , we have $\delta_{N_\sigma}(\varepsilon) = \Phi\left(\frac{1}{2\sigma} - \varepsilon\sigma\right) - e^\varepsilon \Phi\left(-\frac{1}{2\sigma} - \varepsilon\sigma\right)$,
 764 where Φ is the CDF of the standard Normal distribution.*

766 The dominating pair of the Gaussian mechanism N_σ is simply $\mathcal{N}(1, \sigma^2)$ and $\mathcal{N}(0, \sigma^2)$ (Zhu et al.,
 767 2022), which implies N_σ is dominated by the random variable $\frac{1}{\sigma} \mathcal{N}(0, 1) + \frac{1}{2\sigma^2}$.

768 We note that in the case of the Gaussian mechanism, the PRD is simply the log-normal random
 769 variable, and the PRD of the random allocation is simply the sum of T such random variables.
 770 Formally, stating Corollary 3.3 for the Gaussian case yields the following expression, which is used
 771 in our experiments.

772 **Corollary A.3.** *Given $t \in \mathbb{N}; \sigma > 0$, the random allocation scheme over the Gaussian mechanism
 773 N_σ is dominated by $L_{\bar{\mu}_t, Q^t} = \ln\left(e^{\frac{1}{\sigma}\mathcal{N}(0,1)} + \frac{1}{\sigma^2} + \sum_{i \in [t-1]} e^{\frac{1}{\sigma}\mathcal{N}(0,1)}\right) - \ln(t) - \frac{1}{2\sigma^2}$ in the remove
 774 direction, and $L_{Q^t, \bar{\mu}_t} = \ln(t) + \frac{1}{2\sigma^2} - \ln\left(\sum_{i \in [t]} e^{\frac{1}{\sigma}\mathcal{N}(0,1)}\right)$ in the add direction.*

777 A.3 SUBSAMPLING
 778

779 An additional advantage of providing a privacy bound in the form of a PLD, is that it can be used to
 780 further subsample and compose it. This is done using the following lemma which is stated in terms
 781 of PRD but naturally extends to PLD.

782 **Lemma A.4** (PRD amplification by subsampling). *Given two distributions P, Q denoting $P' :=$
 783 $(1 - \lambda)Q + \lambda P$ and $Q' := (1 - \lambda)P + \lambda Q$ we have for any ω ,*

$$784 \quad \mathcal{R}(\omega; P', Q) = 1 - \lambda + \lambda \mathcal{R}(\omega; P, Q) \quad \text{and} \quad \mathcal{R}(\omega; P, Q') = \frac{1}{1 - \lambda + \lambda \mathcal{R}(\omega; Q, P)},$$

786 *which implies that for any $r \in \mathbb{R}$,*

- 788 1. $F_{P', Q}^{\mathcal{R}}(r) = (1 - \lambda)(1 - F_{Q, P}^{\mathcal{R}}(1/r')) + \lambda F_{P, Q}^{\mathcal{R}}(r')$ where $r' := 1 + \frac{r-1}{\lambda}$.
- 789 2. $F_{P, Q'}^{\mathcal{R}}(r) = F_{P, Q}^{\mathcal{R}}(r')$ where $r' := \frac{\lambda r}{1 - r(1 - \lambda)}$.

792 *Proof.* We first provide an explicit relation of the privacy ratio.

$$793 \quad \mathcal{R}(\omega; P', Q) = \frac{P'(\omega)}{Q(\omega)} = \frac{(1 - \lambda)Q(\omega) + \lambda P(\omega)}{Q(\omega)} = (1 - \lambda) + \lambda \frac{P(\omega)}{Q(\omega)} = (1 - \lambda) + \lambda \mathcal{R}(\omega; P, Q)$$

$$795 \quad \mathcal{R}(\omega; P, Q') = \frac{P(\omega)}{Q'(\omega)} = \frac{P(\omega)}{(1 - \lambda)P(\omega) + \lambda Q(\omega)} = \frac{1}{(1 - \lambda) + \lambda \frac{Q(\omega)}{P(\omega)}} = \frac{1}{(1 - \lambda) + \frac{\lambda}{\mathcal{R}(\omega; P, Q)}}$$

798 Next we use in to provide a similar relation for the PRD.

$$799 \quad F_{P', Q}^{\mathcal{R}}(r) = \mathbb{P}_{\omega \sim P'} (\mathcal{R}(\omega; P', Q) \leq r)$$

$$800 \quad = \mathbb{P}_{\omega \sim P'} ((1 - \lambda) + \lambda \mathcal{R}(\omega; P, Q) \leq r)$$

$$801 \quad = \mathbb{P}_{\omega \sim P'} (\mathcal{R}(\omega; P, Q) \leq 1 + (r - 1)/\lambda + \lambda)$$

$$802 \quad = \mathbb{P}_{\omega \sim P'} (\mathcal{R}(\omega; P, Q) \leq r')$$

$$803 \quad = (1 - \lambda) \mathbb{P}_{\omega \sim Q} (\mathcal{R}(\omega; P, Q) \leq r') + \lambda \mathbb{P}_{\omega \sim P} (\mathcal{R}(\omega; P, Q) \leq r')$$

$$804 \quad = (1 - \lambda) \mathbb{P}_{\omega \sim Q} (\mathcal{R}(\omega; Q, P) \geq 1/r') + \lambda \mathbb{P}_{\omega \sim P} (\mathcal{R}(\omega; P, Q) \leq r')$$

$$805 \quad = (1 - \lambda)(1 - F_{Q, P}^{\mathcal{R}}(1/r')) + \lambda F_{P, Q}^{\mathcal{R}}(r')$$

810 Similarly,
811

$$\begin{aligned} 812 \quad F_{P,Q'}^{\mathcal{R}}(r) &= \mathbb{P}_{\omega \sim P}(\mathcal{R}(\omega; P, Q') \leq r) \\ 813 \\ 814 \quad &= \mathbb{P}_{\omega \sim P}\left(\frac{1}{(1-\lambda) + \frac{\lambda}{\mathcal{R}(\omega; P, Q)}} \leq r\right) \\ 815 \\ 816 \quad &= \mathbb{P}_{\omega \sim P}\left(\mathcal{R}(\omega; P, Q) \leq \frac{r\lambda}{1-r(1-\lambda)}\right) \\ 817 \\ 818 \quad &= \mathbb{P}_{\omega \sim P}(\mathcal{R}(\omega; P, Q) \leq r') \\ 819 \\ 820 \quad &= F_{P,Q}^{\mathcal{R}}(r') \\ 821 \end{aligned}$$

□

822 While this lemma is stated in terms of a PRD (PLD), it holds for any random variable that
823 stochastically dominates a PRD (PLD). Notice that $F_{P',Q}^{\mathcal{R}}$ depends not only on $F_{P,Q}^{\mathcal{R}}$ but on $F_{Q,P}^{\mathcal{R}}$
824 as well. When using stochastically dominating random variables this requires either maintaining a
825 random variable lower bounding $F_{Q,P}$ or using the fact that
826

$$827 \quad F_{Q,P}^{\mathcal{R}}(r) = \int_{-\infty}^r f_{Q,P}^{\mathcal{R}}(x) dx = \int_{-\infty}^r \frac{f_{P,Q}(x)}{x} dx,$$

828 so $F_{Q,P}^{\mathcal{R}}$ can be numerically computed using only access to $F_{P,Q}^{\mathcal{R}}$ or its upper bound.
829 Implementing this amplification in practice requires maintaining simultaneous bounds on
830 $F_{Q,P}^{\mathcal{R}}(1/r')$ and $F_{Q,P}^{\mathcal{R}}(1/r')$

831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

864 **B FULL IMPLEMENTATION DETAILS**
865

866 In this section we provide detailed description of the implementation.
867

868 We start by describing the range normalization building block (Algorithm 1). This function is used
869 to set the range of the convolved random variable, such that it loses at most β probability mass.
870

871 **Algorithm 1** Range renormalization: $\text{Renorm}(\bar{x}_1, \bar{p}_1, \bar{x}_2, \bar{p}_2, \beta)$
872

Require: $\bar{x}_1, \bar{p}_1, \bar{x}_2, \bar{p}_2, \beta$
873 $n \leftarrow |\bar{x}_1|$ ▷ Assume $|\bar{x}_1| = |\bar{p}_1| = |\bar{x}_2| = |\bar{p}_2|$
874 $i_1^{\min} \leftarrow \arg \max_{i \in [n]} \left(\sum_{j=1}^i \bar{p}_1[j] \leq \sqrt{\beta/2} \right), \quad i_1^{\max} \leftarrow \arg \min_{i \in [n]} \left(\sum_{j=i}^n \bar{p}_1[j] \leq \sqrt{\beta/2} \right)$
875
876 $i_2^{\min} \leftarrow \arg \max_{i \in [n]} \left(\sum_{j=1}^i \bar{p}_2[j] \leq \sqrt{\beta/2} \right), \quad i_2^{\max} \leftarrow \arg \min_{i \in [n]} \left(\sum_{j=i}^n \bar{p}_2[j] \leq \sqrt{\beta/2} \right)$
877
878 $(x_{\min}, x_{\max}) \leftarrow (\bar{x}_1[i_1^{\min}] + \bar{x}_2[i_2^{\min}], \bar{x}_1[i_1^{\max}] + \bar{x}_2[i_2^{\max}])$
879 $(y_{\min}, y_{\max}) \leftarrow (\ln(x_{\min}), \ln(x_{\max}))$
880 $\Delta \leftarrow (y_{\max} - y_{\min}) / (n - 1)$
881 $\bar{y} \leftarrow [y_{\min} + (i - 1)\Delta]_{i=1}^n$
882 $\bar{x}_{\text{out}} \leftarrow [e^{\bar{y}_i}]_{i=1}^n$
883 **return** \bar{x}_{out}

884

885 Next we describe the convolution step (Algorithm 2). Since the product grid is not identical to the
886 new chosen grid, the probability is assigned such that the resulting random variable stochastically
887 dominates the convolution.
888

889 **Algorithm 2** Distribution convolution: $\text{Conv}(\bar{x}_1, \bar{p}_1, \bar{x}_2, \bar{p}_2, \beta)$
890

Require: $\bar{x}_1, \bar{p}_1, \bar{x}_2, \bar{p}_2, \beta, \text{dir}$
891 $\bar{x}_{\text{new}} \leftarrow \text{Renorm}(\bar{x}, \bar{p}, \bar{x}', \bar{p}', \beta)$
892 **if** $\text{dir} = \text{'lower'}$ **then**
893 $\bar{P}_{\text{new}} \leftarrow \{0\} \cup \left[\sum_{\bar{x}_1[j] + \bar{x}_2[k] \leq \bar{x}_{\text{new}}[i]} \bar{p}_1[j] \cdot \bar{p}_2[k] \right]_{i=1}^n$
894 $\bar{p}_{\text{new}} \leftarrow [\bar{P}_{\text{new}}[i] - \bar{P}_{\text{new}}[i-1]]_{i=1}^n$
895
896 **else**
897 $\bar{P}_{\text{new}} \leftarrow \left[\sum_{\bar{x}_1[j] + \bar{x}_2[k] \leq \bar{x}_{\text{new}}[i]} \bar{p}_1[j] \cdot \bar{p}_2[k] \right]_{i=1}^n \cup \{1\}$
898 $\bar{p}_{\text{new}} \leftarrow [\bar{P}_{\text{new}}[i+1] - \bar{P}_{\text{new}}[i]]_{i=1}^n$
899
900 **end if**
901 **return** $\bar{x}_{\text{new}}, \bar{p}_{\text{new}}$

902

903
904 Next, we use this function to create a self-convolution function, which given a distribution and
905 number of convolutions t computes the convolution of the distribution with itself t times (Algorithm
906 3). This is done in $\log(t)$ steps by computing the self convolution for all powers of 2 that are $\leq t$,
907 and using them to compose t times.
908

909 Using the convolution and self convolution functions, we can define the full algorithm (Algorithm 4
910 for the remove direction and 5 for add). Both algorithms start by computing a discrete random
911 variable upper (lower) bounding the true PRD over a geometrically spaced grid (see proof of Theorem
912 3.4) then self compose it t times (in the case of the remove direction, one of the t random variables is
913 sampled w.r.t. the first distribution following Corollary 3.3). Finally, the PRD is converted to a PLD
914 by taking the \ln ($-\ln$ in the add direction). We note that the remove direction requires maintaining
915 an upper bound at each step, while the add direction requires a lower bound.

916 **Remark B.1.** Replacing lower bounds by upper bounds and vice versa, the same algorithm can be
917 used to provide tight numerical lower bounds on the PLD. All results of Theorem 3.4 extend to this
918 direction as well.

918

919

920

Algorithm 3 multi-conv($\bar{x}, \bar{p}, t, \beta, \text{dir}$)

Require: $\bar{x}, \bar{p}, t, \beta, \text{dir}$

$(\bar{x}_{\text{base}}, \bar{p}_{\text{base}}) \leftarrow (\bar{x}, \bar{p})$

$\text{init} \leftarrow \text{False}$

while $t > 0$ **do**

if t is odd **then**

if init **then**

$(\bar{x}_{\text{acc}}, \bar{p}_{\text{acc}}) \leftarrow \text{Conv}(\bar{x}_{\text{base}}, \bar{p}_{\text{base}}, \bar{x}_{\text{acc}}, \bar{p}_{\text{acc}}, \beta, \text{dir})$

else

$(\bar{x}_{\text{acc}}, \bar{p}_{\text{acc}}) \leftarrow (\bar{x}_{\text{base}}, \bar{p}_{\text{base}})$

end if

end if

$(\bar{x}_{\text{base}}, \bar{p}_{\text{base}}) \leftarrow \text{Conv}(\bar{x}_{\text{base}}, \bar{p}_{\text{base}}, \bar{x}_{\text{base}}, \bar{p}_{\text{base}}, \beta, \text{dir})$

$t \leftarrow \lfloor t/2 \rfloor$

end while

return $\bar{x}_{\text{acc}}, \bar{p}_{\text{acc}}$

935

936

937

Algorithm 4 Random allocation numerical accounting (remove)

938

Require: P, Q, t, α, β

$\beta' \leftarrow \beta/(2t), \alpha' \leftarrow \alpha/(2 \cdot \ln(t))$

$(l_{\min}, l_{\max}) \leftarrow (-(F_{Q,P}^{\ell})^{-1}(1 - \beta/2), -(F_{Q,P}^{\ell})^{-1}(\beta/2))$

$n \leftarrow \lceil (l_{\max} - l_{\min})/\alpha' \rceil + 1$

$\bar{r} \leftarrow [e^{l_{\min} + (i-1) \cdot \alpha'}]_{i=1}^n$ \triangleright Quantization to bins of constant relative width

$\bar{Q} \leftarrow \{0\} \cup [F_{Q,P}^{\mathcal{R}}(1/r_i)]_{i=1}^n$

$\bar{q} \leftarrow [\bar{Q}[i] - \bar{Q}[i-1]]_{i=1}^n$ $\triangleright (\alpha', \beta')$ -accurate privacy ratio bound of $R_{P,Q}$

$(\bar{r}_{\text{conv}}, \bar{q}_{\text{conv}}) \leftarrow \text{multi-conv}(\bar{r}, \bar{q}, t-1, \beta', \text{'upper'})$ \triangleright Privacy ratio bound of the $t-1$ -self convolution

$\bar{P} \leftarrow \{0\} \cup [F_{P,Q}^{\mathcal{R}}(r_i)]_{i=1}^n$

$\bar{p} \leftarrow [\bar{P}[i] - \bar{P}[i-1]]_{i=1}^n$ $\triangleright (\alpha', \beta')$ -accurate privacy ratio bound of $1/R_{Q,P}$

$(\bar{r}_{\text{final}}, \bar{p}_{\text{final}}) \leftarrow \text{conv}(\bar{r}, \bar{p}, \bar{r}_{\text{conv}}, \bar{q}_{\text{conv}}, \beta', \text{'upper'})$ \triangleright Privacy ratio bound of its convolution with the previous

$\bar{l}_{\text{final}} \leftarrow [\ln(\bar{r}_{\text{final}}[i])]_{i=1}^n$ \triangleright Privacy ratio to privacy loss

return $\bar{l}_{\text{final}}, \bar{p}_{\text{final}}$

955

956

957

Algorithm 5 Random allocation numerical accounting (add)

958

Require: P, Q, t, α, β

$\beta' \leftarrow \beta/(2t), \alpha' \leftarrow \alpha/(2 \cdot \ln(t))$

$(l_{\min}, l_{\max}) \leftarrow (-(F_{Q,P}^{\ell})^{-1}(1 - \beta/2), -(F_{Q,P}^{\ell})^{-1}(\beta/2))$

$n \leftarrow \lceil (l_{\max} - l_{\min})/\alpha' \rceil + 1$

$\bar{r} \leftarrow [e^{l_{\min} + (i-1) \cdot \alpha'}]_{i=1}^n$ \triangleright Quantization to bins of constant relative width

$\bar{Q} \leftarrow \{0\} \cup [F_{Q,P}^{\mathcal{R}}(1/r_i)]_{i=1}^n$

$\bar{q} \leftarrow [\bar{Q}[i] - \bar{Q}[i-1]]_{i=1}^n$ $\triangleright (\alpha', \beta')$ -accurate privacy ratio bound of $R_{P,Q}$

$(\bar{r}_{\text{conv}}, \bar{q}_{\text{conv}}) \leftarrow \text{multi-conv}(\bar{r}, \bar{q}, t, \beta')$ \triangleright Privacy ratio bound of the $t-1$ -self convolution

$(\bar{r}_{\text{final}}, \bar{p}_{\text{final}}) \leftarrow \text{conv}(\bar{r}, \bar{p}, \bar{r}_{\text{conv}}, \bar{q}_{\text{conv}}, \beta', \text{'lower'})$ \triangleright Privacy ratio bound of its convolution with the previous

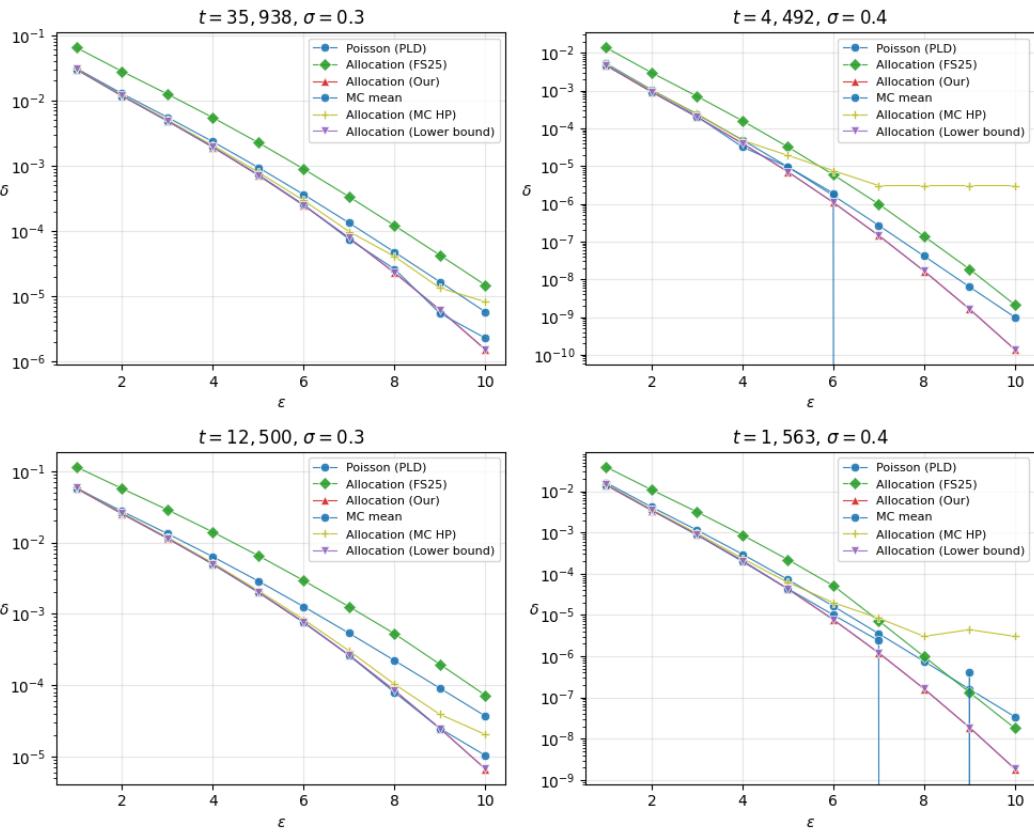
$\bar{l}_{\text{final}} \leftarrow [-\ln(\bar{r}_{\text{final}}[i])]_{i=1}^n$ \triangleright Privacy ratio to privacy loss

return $\bar{l}_{\text{final}}, \bar{p}_{\text{final}}$

971

972 C EXPERIMENTAL RESULTS

974 In this section we provide several additional results. Figure 5 is an extended version of Figure 2.
975 It follows the setting used by Chua et al. (2024a) to showcase their results. The number of steps is
976 derived from the size of the training set and choice of batch size in their experimental results.
977



1006 Figure 5: Comparison of the privacy profile of the Poisson scheme and various bounds for the
1007 random allocation scheme; the combined methods by Feldman & Shenfeld (2025), the high proba-
1008 bility and the average estimations using Monte Carlo simulation and the lower bound by Chua et al.
1009 (2024a), and our numerical method, following the setting in Chua et al. (2024a) (detailed description
1010 can be found in Appendix C).

1012 The Monte Carlo results were computed using importance sampling with 10^6 samples and 95% con-
1013 fidence. We note that the computation for the results derived by Chua et al. (2024a) was performed
1014 in parallel on a cluster of 60 CPU machines.

1015 While all numerical examples in this work show superior privacy guarantees for random allocation
1016 relative to Poisson sampling, the Poisson scheme does not dominate random allocation for the same
1017 parameters. This was first proven theoretically by Chua et al. (2024a) for the limit of $\varepsilon \rightarrow 0$ and
1018 $\varepsilon \rightarrow \infty$. Figure 6 provides a clear demonstration of this fact.

```
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
```

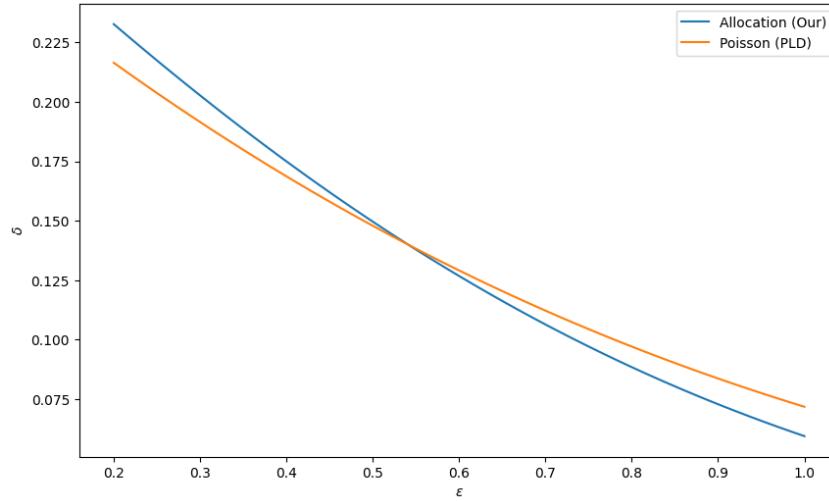


Figure 6: Privacy profile of the Poisson and random allocation schemes for $\sigma = 1.0$, $t = 2$, clearly demonstrating they do not dominate each other.