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ABSTRACT

We consider the privacy amplification properties of a sampling scheme in which a
user’s data is used in k steps chosen randomly and uniformly from a sequence (or
set) of t steps. This sampling scheme has been recently applied in the context of
differentially private optimization (Chua et al., 2024a; Choquette-Choo et al.) and
communication-efficient high-dimensional private aggregation (Asi et al., 2025)
as well as studied theoretically in (Feldman & Shenfeld, 2025; Dong et al.). Ex-
isting analysis techniques lead to several ways to numerically approximate the
privacy parameters of random allocation yet they all suffer from two drawbacks.
First, the resulting privacy parameters are not tight due the approximation steps in
the analysis. Second, the computed parameters are either the hockey stick diver-
gence or Renyi DP both of which introduce overheads when additional compo-
sition and/or subsampling are needed (such as in multi-epoch optimization algo-
rithms). In this work, we demonstrate that the privacy loss distribution (PLD) of
random allocation applied to any differentially private algorithm can be computed
efficiently. In particular, our PLD computation enables essentially lossless sub-
sampling and composition. When applied to the Gaussian mechanism, our results
demonstrate that random allocation can be used in place of Poisson subsampling
with no degradation in resulting privacy guarantees.

1 INTRODUCTION

Privacy amplification by data sampling is one of the central techniques in the analysis of differen-
tially private (DP) algorithms. In this technique a differentially private (DP) algorithm (or a sequence
of DP algorithms) is executed on a randomly chosen set of data elements without revealing which
of the elements were used. As first demonstrated Kasiviswanathan et al. (2011) this additional ran-
domness can significantly improve the privacy guarantees of the resulting algorithm, that is, privacy
amplification.

Privacy amplification by sampling has found numerous applications, most notably in the analysis
of the differentially private stochastic gradient descent (DP-SGD) algorithm (Bassily et al., 2014)
for training neural networks with differential privacy. In DP-SGD the gradients are computed on
randomly chosen batches of data points and then privatized through Gaussian noise addition. Privacy
analysis of this algorithm is based on the so-called Poisson sampling: elements in each batch and
across batches are chosen randomly and independently of each other. The absence of dependence
implies that the algorithm can be analyzed relatively easily as an independent composition of single
step amplification results. This simplicity is also the key to accurate numerical analysis of the privacy
parameters of DP-SGD that are necessary for the practical applications.

The downside of the simplicity of Poisson sampling is that independently resampling every batch
is less efficient and harder to implement within the standard ML pipelines. As a result, in practice
typically some form of data shuffling is used to define the batches in DP-SGD even though the
privacy analysis relies on Poisson sampling (e.g. (McKenna et al., 2025)). Data shuffling in which
the elements are randomly permuted before being assigned to steps of the algorithm is also known
to lead to privacy amplification. However, the analysis of this sampling scheme is more involved
and nearly tight numerical results are known only for relatively simple pure DP (δ = 0) algorithms
(Erlingsson et al., 2019; Feldman et al., 2021; 2023; Girgis et al., 2021a;b). In particular, for the case
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of Gaussian noise addition there is no practically useful method of computing the privacy parameters
of DP-SGD with shuffling.

The discrepancy between the implementations of DP-SGD and their analysis has been explored
in several recent works demonstrating that shuffling can be less private than Poisson subsampling
(Chua et al., 2024b;c; Annamalai et al., 2024). Motivated by these findings, Chua et al. (2024a) study
training of neural networks via DP-SGD with batches sampled via balls-and-bins sampling. In this
sampling scheme, each data element is assigned randomly and independently (of other elements)
to exactly one out of t possible batches. Their main results show that from the point of view of
utility (namely, accuracy of the final model) such sampling is essentially identical to shuffling and is
noticeably better than Poisson sampling. Concurrently, Choquette-Choo et al. considered the same
sampling scheme for the matrix mechanism in the context of DP-FTRL. The privacy analysis in
these two works reduces the problem to analyzing the divergence of a specific pair of distributions
on Rt. They then used Monte Carlo simulations to estimate the privacy parameters of this pair.
These simulations suggest that privacy guarantees of balls-and-bins sampling for Gaussian noise are
similar to those of the Poisson sampling with rate 1/t. While very encouraging, such simulations
do not establish formal guarantees. In addition, achieving high-confidence estimates for small δ and
supporting composition appear to be computationally impractical.

Another important application of privacy amplification is for reducing communication in private
federated learning (Chen et al., 2024; Asi et al., 2025). In this application, each user subsamples the
coordinates of the vector it holds (typically representing a model update) and then communicates
the selected coordinates. Secure aggregation protocols are used to ensure that the server does not
learn which coordinates were sampled by which user, thereby achieving privacy amplification. In
this setting, it is also typically necessary to limit the maximum number of coordinates a user sends
due to computational or communication constraints on the protocol. Poisson subsampling results
in a random (binomial) number of coordinates to communicate and thus does not allow to fully
exploit the available limit. Thus in (Asi et al., 2025), a natural alternative is the sampling scheme
in which each user contributes a random k out of the total t times (but with users still doing this
independently). For k = 1 this sampling scheme is a special case of the balls-and-bins sampling
(Chua et al., 2024a).

Motivated by the applications above, Feldman & Shenfeld (2025) propose and analyze a general
sampling scheme where each element participates in exactly k randomly chosen steps out of the
total t, independently of other elements, referred to as k-out-of-t random allocation. They show
a reduction of the general k scheme to k = 1 and describe several ways to analyze the 1-out-of-t
sampling scheme for general differentially private algorithms. Dong et al., independently derived an
additional analysis of the privacy of k-out-of-t random allocation for the Gaussian noise addition.

The analyses in (Feldman & Shenfeld, 2025; Dong et al.) and the numerical methods they entail
demonstrate that in most practical settings the privacy amplification achieved by random allocation
is comparable to that of Poisson sampling with the best results being typically within 20% increase
in ϵ. While reasonably close, these bounds are worse than the bounds estimated via Monte Carlo
simulations (Chua et al., 2024a; Choquette-Choo et al.) and bounds that can be computed exactly
in some special cases (Feldman & Shenfeld, 2025). Further, these analyses bound either the (ε, δ)
parameters (Feldman & Shenfeld, 2025) or the Rényi DP parameters (Feldman & Shenfeld, 2025;
Dong et al.) of the resulting algorithm. Both of these bounds have important limitations when
used with additional processing steps. For example, the algorithm used in (Asi et al., 2025) relies
on random allocation to reduce communication for each user but on top of it uses DP-SGD to
sample batches of users using Poisson sampling and composition (for batches and epochs). In such
an application, using an (ε, δ)-bound for random allocation would require performing composition
for general (ε, δ) algorithms which is known to be suboptimal. On the other hand, the general
subsampling bounds based on Rényi DP are typically loose. Further, conversion from Rényi DP to
final (ε, δ) guarantees also typically introduces overheads.

1.1 OUR CONTRIBUTION

We demonstrate how to overcome both shortcomings of the existing numerical methods for com-
puting the privacy parameters of random allocation. Specifically, we show a method that, given a
privacy loss distribution (PLD) of some t-step differentially private algorithm, computes an upper
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bound on the PLD of the 1-out-of-t random allocation applied to that algorithm. PLD is now the
standard representation of privacy loss used in privacy accounting libraries (e.g (Google, 2022; Mi-
crosoft, 2021; Meta, 2021)) that can be losslessly composed and converted to other notions of DP
such as (ε, δ)-DP and Rényi DP.

Our algorithm is efficient in that its running time is O(log3(t) · log(t/β)/α2), where α is the approx-
imation parameter of loss (roughly corresponding to the error in ε) and β an additional probability
of unbounded loss (translating to an increase in δ). For comparison, the complexity of the standard
algorithm for Poisson subsampling and t-wise composition via FFT is O(t·

√
log(t/β)·log(t/α)/α)

(Koskela et al., 2020; 2021; Gopi et al., 2021). Combining this with the reduction from the general
k to k = 1 from (Feldman & Shenfeld, 2025) we also obtain an algorithm for computing the PLD
of the k-out-of-t random allocation.

Technical overview: We now briefly outline our approach. As in the prior work, the starting point to
our result is a relatively simple fact that a dominating pair of distributions1 for a 1-out-of-t random
allocation applied to a t-step algorithm M is the pair of distributions Q̄t = Qt and

P̄t =
1

t

∑
i∈[t]

Qi−1 × P ×Qt−i,

where Q and P is a dominating pair of distributions for M . Equivalently, we can reduce the analysis
of a potentially very complicated algorithm like DP-SGD where steps can depend on the outputs of
previous steps to the analysis of random allocation applied to a fixed randomizer (specifically, one
that samples from a distribution P when its input is the user’s data and samples from distribution Q
otherwise).

Now, our goal is to compute the PLD, or the distribution of ln(P̄t(x)/Q̄t(x)) for x ∼ P̄t. Somewhat
more formally, we need to produce sufficiently accurate upper and lower bounds on this random vari-
able to allow computation of the privacy parameters for both directions of the divergence. In general,
computing a PLD of a mixture of high-dimensional distributions is unlikely to be computationally
tractable. Our main observation is that for parallel mixtures, or mixtures in which each component
of the mixture has its own output dimension, such a computation is feasible (see Thm. 3.2 for a
formal statement). Specifically, for a pair of distributions P and Q we refer to the random variable
P (x)/Q(x) when x ∼ P as the privacy ratio distributions (PRD) of P,Q (or, exp of PLD). We
observe that the PRD of the parallel mixture is just the weighted sum of the independent copies of
the PRDs of the component distribution pairs. Thus the necessary computations can be performed
using convolutions of PRDs.

We then describe how to appropriately discretize the PRDs and compute the t-wise convolution
in time logarithmic in t and inverse quadratic in the desired accuracy. We note that upper and
lower bound discretizations and convolution computation need to be handled differently for both
directions to ensure correctness and avoid numerical stability issues. The dependence on accuracy is
quadratic since these convolutions do not lend themselves to fast computations via a FFT. FFT relies
on additive discretization whereas the privacy ratio has an extremely large dynamic range. Instead,
we use a multiplicative discretization (which is equivalent to the standard additive approximation
of the PLD). The logarithmic dependence on t is achieved by doubling the number of steps via a
convolution of PRD with itself and using the binary representation of t.

To compute an upper bound on the PLD for general k-out-of-t, we use the reduction in (Feldman
& Shenfeld, 2025), showing that k-out-of-t is at least as private as k-composition of 1-out-of-⌊t/k⌋
random allocation. While this reduction is lossy, in particular, when ⌊t/k⌋ is relatively small we
remark that the reduction is exact for Poisson sampling at the same rate. Namely, sampling indepen-
dently at the rate of k/t for t steps is equivalent to sampling at the rate of k/t for t/k steps (which
is the analog of 1-out-of-t/k random allocation) composed k times. Thus our empirical results
showing that in most practical regimes 1-out-of-t random allocation is no less private than 1/t-rate
Poisson subsampling imply that k-out-of-t random allocation is no less private than k/t-rate Poisson
subsampling.

Finally, to enable additional downstream applications of random allocation such as the PREAMBLE
algorithm in (Asi et al., 2025), we derive and implement Poisson subsampling applied directly to a

1Informally, a pair of distributions is dominating for M if it realizes all the worst case privacy parameters
of M (see Defn. 2.5).
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Figure 1: Upper and lower bounds on privacy parameter ε as a function of the noise parameter
σ for various values of t, all using the Gaussian mechanism with fixed δ = 10−6. We compare
our methods to upper bounds on Poisson and random allocation (Feldman & Shenfeld, 2025; Dong
et al.), and lower bound on random allocation Chua et al. (2024a), and to the Poisson scheme with
λ = 1/t.

(upper bound on a) PLD as we are not aware of any public description or implementation of this step.
Instead, existing libraries rely directly on an analytic expression for the PLD of a subsampled Gaus-
sian and Laplace noise addition (Google, 2022; Microsoft, 2021; Meta, 2021) See Appendix A.3 for
details.

Numerical evaluation:

We compare our approach to existing techniques as well as Poisson subsampling in a variety of
parameter settings. While our technique is general, we focus our evaluation on the Gaussian noise
addition since that’s the motivating application and the only case handled by most of the prior works.
We note that we do not provide explicit results on the utility of random allocation, as such results
can be found in prior work (Chua et al., 2024a; Choquette-Choo et al.; Feldman & Shenfeld, 2025;
Dong et al.; Asi et al., 2025). Our privacy bounds only require knowing the noise and sampling
parameters used there. Additional details on these numerical evaluations and additional evaluations
can be found in Appendix C.

We start with a basic comparison with existing analysis methods for k = 1 and a range of t and σ
(Figure 1). As can be seen from the plots, our results improve on all prior bounds and are never worse
than the bounds for Poisson subsampling. We remark that the privacy bounds for these sampling
techniques are incomparable in general (see Figure 6).

Figure 2: Comparison of the privacy profile of the Poisson scheme and various bounds for the
random allocation scheme; the combined methods by Feldman & Shenfeld (2025), the high proba-
bility and the average estimations using Monte Carlo simulation and the lower bound by Chua et al.
(2024a), and our numerical method, following the setting in Chua et al. (2024a) (detailed description
can be found in Appendix C).
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In Figure 2 we show that our results match those obtained via Monte Carlo simulations in the regimes
where the latter produce reliable results. These experiments are in the regime of parameters studied
(Chua et al., 2024a).

We additionally show the results for more general k = 10 (Appendix C). We note that for our method
and results in (Feldman & Shenfeld, 2025) this setting is equivalent to testing k-wise composition for
k, 1-out-t/k rounds or random allocation. The RDP-based bounds in (Dong et al.) handle general k
directly.

Finally, we include a plot demonstrating the runtime efficiency of our algorithm in Fig. 3. It also
demonstrates that the runtime scaling in t and α agrees with our theoretical claims.

Figure 3: Runtime as a function of accuracy α and steps t on Apple MacBook Pro M1. The left
panel was computed for Gaussian noise with σ = 2.0 and the right one for σ = 5.0.

1.2 RELATED WORK

Our work is most closely related to a long line of research on privacy amplification by subsampling
and composition. This combination of tools was first defined and theoretically analyzed in the setting
of convex optimization (Bassily et al., 2014). The resulting DP-SGD algorithm has found numer-
ous applications in both theoretical and practical work and is currently the state-of-the-art method
for training LLMs with provable privacy guarantees (VaultGemma Team, 2025). Applications of
DP-SGD in machine learning were spearheaded by the landmark work of Abadi et al. (2016) who
significantly improved the privacy analysis via the moments accounting technique formalized via
Rényi DP (Mironov, 2017). This work has also motivated the development of more advanced tech-
niques for analysis of sampling and composition. A more detailed technical and historical overview
of subsampling and composition for DP can be found in the survey by Steinke (2022).

One of the important tools that emerged for the analysis of DP-SGD is privacy accounting via nu-
merical tracking of the privacy loss random variable. This was first proposed by Koskela et al.
(2020; 2021) who also demonstrated that privacy parameters of composition correspond to the con-
volution of PLDs and can be (approximately) computed via FFT applied to a discretization of the
PLD. This approach to composition improved on the moments accountant technique since it avoids
the somewhat lossy conversion from RDP parameters to (ε, δ) and is now the standard approach for
the analysis of DP-SGD supported by several libraries (Google, 2022; Microsoft, 2021; Meta, 2021).
We first note that while our computation also involves convolutions, we are adding privacy ratios
and not their logarithms while at the same time ensuring the same kind of approximation guarantees.
As a result, our algorithm is substantially different. At the same time, our algorithmic results, which
we intend to publish as a Python library, fit naturally with the rest of the PLD toolkit and expand it
to random allocation and general subsampling.

The shuffle model was first proposed by Bittau et al. (2017). The formal analysis of the privacy
guarantees in this model was initiated in (Erlingsson et al., 2019; Cheu et al., 2019). Erlingsson
et al. (2019) defined the sequential shuffling scheme that we discuss here and proved the first general
privacy amplification results for this scheme, albeit only for pure DP algorithms. Improved analyses
and extensions to approximate DP were given in (Balle et al., 2019; 2020; Feldman et al., 2021;
2023; Girgis et al., 2021a;b; Koskela et al., 2022). The privacy amplification guarantees of shuffling
also apply to 1-out-of-t random allocation. Indeed, random 1-out-of-t allocation is a special case of
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the random check-in model of defining batches for DP-SGD in (Balle et al., 2020). Their analysis of
this variant relies on the amplification properties of shuffling and thus does not lead to better privacy
guarantees for random allocation than those that are known for shuffling.

Two recent works give formal analyses of k-out-of-t random allocation (Feldman & Shenfeld, 2025;
Dong et al.). Feldman & Shenfeld (2025) describe three approximation approaches that are incom-
parable and also analyze the asymptotic behavior of random allocation. In the first analysis, they
show that the approximate DP (ε, δ) privacy parameters of random allocation are upper bounded by
those of the Poisson scheme with sampling probability ≈ k/t up to lower order terms which are
asymptotically vanishing in t/k. This analysis does not lead to tight bounds when t/k is small and
can at best match the bounds for the Poisson sampling. In the second analysis, Feldman & Shenfeld
(2025) show that ε of random allocation with k = 1 is at most a constant (≈ 1.6) factor times larger
than ε of the Poisson sampling with rate 1/t for the same δ. This analysis gives better bounds for
small t, but is typically worse by the said factor than Poisson sampling.

Feldman & Shenfeld (2025) also describe a direct analysis of the divergence for the dominating pair
of distributions. In the remove direction, they derive a closed form expression and relatively efficient
algorithm for computing the integer α ≥ 2 order RDP parameters of random aloocation in terms
of the RDP parameters of the original algorithm. For the add direction, they give an approximate
upper bound directly on the (ε, δ) parameters. While this bound is approximate, the divergence for
the add direction is typically significantly lower than the one for the remove direction and therefore
even reasonably loose approximation of the add direction tends to not harm the overall bound. A
similar approach to the analysis of random allocation was independently proposed in (Dong et al.).
They provide upper bounds on the RDP parameters of the dominating pair of distributions in the
Gaussian case for both add and remove directions. Their efficiently computable bound is exact for
α = 2 for the add direction and general k and is approximate otherwise.

Methods based on RDP parameters are particularly well-suited for subsequent composition (which
simply adds up the RDP parameters) . The primary disadvantage of this technique is that the conver-
sion from RDP bounds to the regular (ε, δ) bounds is known to be somewhat lossy (typically within
10-20% range in multi-epoch settings). The bounds in (Feldman & Shenfeld, 2025; Dong et al.) are
also harmed by the restriction α ≥ 2 since lower order α lead to the best (ε, δ) parameters in some
cases. As mentioned above, subsampling of the RDP bounds typically incurs overheads making this
approach less viable in the complex settings such as (Asi et al., 2025).

2 PRELIMINARIES

In this work we consider t-step algorithms defined using a randomized algorithm M : X ∗×Y∗ → Y ,
which given a dataset s ∈ X ∗ of elements in the input space and a view v ∈ Y∗ consisting of
output values, produces a new output. It first uses some scheme to define t subsets s1, . . . , st ⊆ s,
then sequentially computes yi = M

(
si,vi−1

)
, where vi := (y1, . . . , yi) are the intermediate views

consisting of the outputs produced so far, and v0 = ∅. Such algorithms include DP-SGD, where each
step consists of a call to the Gaussian mechanism (A.2), with gradient vectors adaptively defined as
a function of previous outputs.

The assignment of the elements in s to the various subsets can be done in a deterministic manner
(e.g., s1 = . . . = st = s), or randomly using a sampling scheme. We consider two sampling
schemes.

1. Poisson scheme parametrized by sampling probability λ ∈ [0, 1], where each element is
added to each subset si with probability λ independent of the other elements and other
subsets,

2. Random allocation scheme parametrized by a number of selected steps k ∈ [t], which
uniformly samples k indices i = (i1, . . . , ik) ⊆ [t] for each element and adds it to the
corresponding subsets si1 , . . . , sik .

For a t-step algorithm defined by M , we denote by Pt,λ (M) : X ∗ → Yt an algorithm using M
with the Poisson sampling scheme and At,k (M) : X ∗ → Yt when M is used with the random
allocation scheme. When k = 1 we omit it from the notation for clarity.
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Differential privacy and Privacy loss distribution: We start by defining the abstract notion of
privacy loss distribution (PLD).
Definition 2.1 (PLD (Dwork & Rothblum, 2016)). Given two distributions P,Q over some domain
Ω, the privacy loss random variable LP,Q is defined by ℓ (ω;P,Q) := ln

(
P (ω)
Q(ω)

)
where ω ∼ P .

We refer to its distribution as the privacy loss distribution (PLD) and denote its CDF by F ℓ
P,Q.

We use the PLD to define a the standard hockey stick divergence between distributions.
Definition 2.2 (Hockey-stick divergence Barthe et al. (2012)). Given κ ∈ [0,∞], the κ-hockey-stick

divergence between two distributions P,Q is defined as Hκ (P ∥ Q ) := E
[[
1− κ · e−LP,Q

]
+

]
,

where [x]+ := max{0, x}.

We note that this definition extends to any random variable L defining its κ-hockey-stick functional
as Hκ (L) := E

[[
1− κ · e−L

]
+

]
.

For adjacency we consider the standard add/remove notion in which datasets s, s′ ∈ X ∗ are adjacent
if s can be obtained from s′ via adding or removing a single element. To appropriately define
sampling schemes that operate over a fixed number of elements we augment the domain with a
“null” element ⊥, that is, we define X ′ := X ∪ {⊥}. When a t-step algorithm assigns ⊥ to M we
treat it as an empty set, that is, for any s ∈ X ∗, v ∈ Y∗ we have M(s,v) = M((s,⊥),v). We say
that two datasets s, s′ ∈ Xn are adjacent and denote it by s ≃ s′, if one of the two can be created
by replacing a single element in the other dataset by ⊥.

Using this notion we define the privacy profile of a mechanism, and use it to define differential
privacy.
Definition 2.3 (Privacy profile (Balle et al., 2018)). Given an algorithm M : X ∗ × Y∗ → Y , the
privacy profile δM : R → [0, 1] is defined to be the maximal hockey-stick divergence between the
distributions induced by any adjacent datasets and past view. Formally,

δM (ε) := sup
s≃s′∈X∗,v∈Y∗

(Heε (M(s,v) ∥M(s′,v) )) .

Since the hockey-stick divergence is asymmetric in the general case, we use δ⃗M to denote the remove
direction where ⊥ ∈ s′ and ⃗δM to denote the add direction when ⊥ ∈ s. Consequently, δM (ε) =

max{δ⃗M (ε), ⃗δM (ε)}.

We can now formally define the standard notion of DP.
Definition 2.4 (Differential privacy (Dwork et al., 2006)). Given ε > 0; δ ∈ [0, 1], an algorithm M
will be called (ε, δ)-differentially private (DP), if δM (ε) ≤ δ.

Dominating pairs: A key concept for characterizing the privacy guarantees of an algorithm is that
of a dominating pair of distributions (Zhu et al., 2022).
Definition 2.5 (Dominating pair (Zhu et al., 2022)). Given distributions P,Q over some domain
Ω, and P ′, Q′ over Ω′, we say (P ′, Q′) dominate (P,Q) if for all κ ≥ 0 we have Hκ (P ∥ Q ) ≤
Hκ (P

′ ∥ Q′ ). If δ⃗M (ε) ≤ Heε (P ∥ Q ) for all ε ∈ R, we say (P,Q) is a dominating pair of
distributions for M in the remove direction, and replacing δ⃗M by ⃗δM this hold for the add direction.

If the inequality can be replaced by an equality for all ε, we say it is a tightly dominating pair. If
there exist some s ≃ s′ ∈ X ∗ such that P = M(s), Q = M(s′) we say (s, s′) are the dominating
pair of datasets for M . By definition, a dominating pair of input datasets is tightly dominating.

Zhu et al. (2022) provide several useful properties of dominating pairs; A tightly dominating pair
(P,Q) always exists (Proposition 8), if (P,Q) dominate δ⃗M , then (Q,P ) dominate ⃗δM (Lemma
28), and domination is preserved under composition (Theorem 10) and sampling (Theorem 11).

Using the PLD definition introduces another natural domination notion.
Definition 2.6 (Approximate Stochastic Domination). A random variable X (first order) stochasti-
cally dominates another random variable X ′ if the complementary cumulative distribution function
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(CCDF) of X upper bounds the CCDF of X ′, that is, for any value x ∈ R we have F̄X′(x) ≤ F̄X(x),
where F̄X = 1 − FX . Further, given α ≥ 0; β ∈ [0, 1], we say this domination is (α, β)-
approximate if X ′ + α stochastically dominates X up to a gap of β in probability. Formally,
∀x ∈ R : F̄X(x) ≤ F̄X′(x− α) + β.

Like hockey-stick domination, stochastic domination is preserved under composition (Claim A.1)
and subsampling (Appendix A.3) as well . The next claim shows how these two domination notions
are related to each other. A proof can be found in Appendix A.

Claim 2.7. Stochastic domination implies domination in the hockey-stick sense. Formally, given
α ≥ 0; β ∈ [0, 1], if a random variable X stochastically dominates X ′ and this domination is
(α, β)-approximate, then Heε(X

′) ≤Heε(X) ≤Heε−α(X ′) + δ.

We use the notion of dominating pair to define a dominating randomizer, which captures the privacy
guarantees of the algorithm independently of its algorithmic adaptive properties.

Definition 2.8 (Dominating randomizer). Given an algorithm M : X ∗ × Y∗ → Y , we say that
R : {∗,⊥} → Y is a dominating randomizer for M and set R(∗) = P and R(⊥) = Q, where
(P,Q) is the dominating pair of M in the remove direction.

Lemma 2.9 (Allocation reduction to randomizer (Feldman & Shenfeld, 2025)). Given t ∈ N; k ∈
[t] and an algorithm M dominated by a randomizer R, we have δAt,k(M)(ε) ≤ δAt,k(R)(ε)

For the general case of multiple allocations we rely on the following reduction.

Lemma 2.10 (Reduction to a single allocation (Feldman & Shenfeld, 2025)). For any k ∈ N, ε > 0
we have δAt,k(R)(ε) ≤ δ⊗k

A⌊t/k⌋(R)(ε), where ⊗k denotes the composition of k runs of the algorithm
or scheme which in our case is A⌊t/k⌋ (R).

3 PRIVACY OF RANDOM ALLOCATION VIA PRD CONVOLUTION

We start by introducing a new privacy random variable complementary to the PLD, which proves
more useful for our next claims.

Definition 3.1 (Privacy ratio distribution). Given two distributions P,Q over some domain Ω, the
privacy ratio random variable RP,Q is defined byR (ω;P,Q) := eℓ(ω;P,Q) where ω ∼ P . We refer
to its distribution as the privacy ratio distribution (PRD) and denote its CDF by FR

P,Q.

Since LP,Q = ln(RP,Q), stochastic domination of PLDs and PRDs are equivalent.

We can now state our first result.

Theorem 3.2 (Parallel mixing). Given λ ∈ [0, 1], two distributions P,Q over some domain Ω, and
P ′, Q′ over Ω′, denote by Q̄ := Q×Q′ the base product distribution, and by P̄λ := λP ×Q′+(1−
λ)Q × P ′ the mixture distribution which either replaces Q with P or Q′ by P ′ w.p. λ and 1 − λ
respectively.

For any ω ∈ Ω, ω′ ∈ Ω′ we have R
(
(ω,ω

′); P̄λ, Q̄
)
= λ · R (ω;P,Q) + (1 − λ) · R (ω;P ′, Q′)

which implies

RP̄λ,Q̄
:= λ2RP,Q +

λ(1− λ)

RQ′,P ′
+

λ(1− λ)

RQ,P
+ (1− λ)2RP ′,Q′ and RQ̄,P̄λ

:=
1

λ
RQ,P

+ 1−λ
RQ′,P ′

.

The advantage of this representation is that it decomposes the PRD of the mixture into (the inverse
of) a sum of independent random variables corresponding to the PRDs of the components (or their
inverses). Notice that the mixture P̄λ affects both R

(
(ω, ω′); P̄λ, Q̄

)
and the sampling of (ω, ω′)

as well in the case of RP̄λ,Q̄. This lemma can be generalized to an arbitrary number of distribution
pairs recursively.

A direct application of this lemma is the PRD of random allocation.

Corollary 3.3. Given two distributions P,Q and an integer t denote the uniform distribution over t
steps, P̄t :=

1
t

∑
i∈[t] Q

i−1 × P ×Qt−i.

8
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For any v = (ω1, . . . , ωt) ∈ Ωt we haveR
(
v; P̄t, Q

t
)
= 1

t

∑
i∈[t]R (ωi;P,Q), which implies

RP̄t,Qt =
1

t

RP,Q +
∑

i∈[t−1]

1

RQ,P

 and RQt,P̄t
=

t∑
i∈[t]

1
RQ,P

.

We can now state our main result that relies on Cor. 3.3.

Theorem 3.4. Given α ≥ 0; β ∈ [0, 1]; t ∈ N, and a t-step algorithm M tightly dominated by
a pair of distributions P,Q, there exists an algorithm that given α, β, t and access to F ℓ

P,Q returns
two discrete random variables L⃗, ⃗L, such that: (1) Validity: L⃗ ( ⃗L) dominates M in the remove (add)
direction, (2) Tightness: this domination is (α, β)-approximate, and (3) Computation complexity:
The runtime of the algorithm is O

(
∆2 · ln3(t)/α2

)
, where ∆ is the width of interval between the

β/(2t) and 1− β/(2t) quantiles of LQ,P .

In the case of the Gaussian mechanism with sensitivity 1, ∆ = O(
√
ln(t/β)/σ) so the runtime of

the algorithm is O
(
ln3(t) ln(t/β)/(σ2α2)

)
. A detailed version of the algorithm can be found in

Appendix B. We provide here its outline.

We start by creating discrete random variables that stochastically dominate RP,Q and 1/RQ,P for the
remove direction (dominated by RQ,P for the add direction). In the case of the Gaussian mechanism,
these are simply lognormal random variables. The range is chosen such that O(β) probability mass
is discarded at each side, and the grid points are geometrically spaced so that conversion of PRD to
PLD by taking the log will result in an additive error of O(α).

To avoid exponential growth of the range, a new grid is computed at each convolution step by
truncating O(β) probability from each end and selecting new geometrically spaced points (Alg. 1).
The convolution is computed directly and the probabilities are allocated to bins by upper / lower
bounding the random variable, according to the required domination direction (Alg 2).

The computation is carried out only O(log(t)) times, leveraging the fact that the t-step convolution
of a random variable with itself can be computed recursively by representing t as a sum of powers
of 2 (e.g., if t = 10, we can compute the 2, 4, and 8-fold convolutions, then convolve the 8th and
the 2nd, Alg 3).

In practice, numerical stability affects probabilities close to machine accuracy (10−15 for float64),
which can be mitigated by using float128, or double-double arithmetic, both at the cost of additional
computation. Since these inaccuracies grow with the number of compositions, it requires careful
care whenever δ ≤ 10−15+log(t).

Combining this theorem with Claim 2.7 implies the privacy profile computed using this algorithm is
valid and tight as well.

Figure 4: Privacy bounds using the same setting as in Figure 1with δ = 10−8 and k = 10 allocations.
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A MISSING DETAILS

A.1 MISSING PROOFS

Claim A.1. Given random variables X,X ′, Y, Y ′ denote Z = X + Y , Z ′ = X ′ + Y ′. If X
stochastically dominates X ′ and Y stochastically dominates Y ′, then Z stochastically dominates
Z ′.

Proof. For any z ∈ R we have

F̄Z′(z) = F̄X′+Y ′(z) =

∫ ∞

−∞
F̄X′(x)F̄Y ′(z−x)dx ≤=

∫ ∞

−∞
F̄X(x)F̄Y (z−x)dx = F̄X+Y (z) = F̄Z(z).

Proof of Claim 2.7. We prove that stochastic domination implies domination in the hockey-stick
sense, which implies both inequalities.

Hα (X ′) = E
[[
1− αe−X′

]
+

]
=

∫ 1

0

P
([

1− αe−X
]
+
> t
)
dt

=

∫ 1

0

F̄X′

(
ln

(
α

1− t

))
dt

≤
∫ 1

0

F̄X

(
ln

(
α

1− t

))
dt

=

∫ 1

0

P
([

1− αe−X
]
+
> t
)
dt

= E
[[
1− αe−X

]
+

]
= Hα (X)

Proof of Theorem 3.2. From the definition,

R
(
(ω, ω′); P̄λ, Q̄

)
=

P̄λ(ω, ω
′)

Q̄(ω, ω′)

= λ
P (ω)

Q(ω)
+ (1− λ)

P ′(ω′)

Q′(ω′)

= λ · R (ω;P,Q) + (1− λ) · R (ω′;P ′, Q′)

SinceR (ω;P,Q) = 1
R(ω;Q,P ) for any ω, P,Q, we have

R
(
(ω, ω′); Q̄, P̄λ

)
=

1

λ · R (ω1;P,Q) + (1− λ) · R (ω2;P ′, Q′)
=

1
λ

R(ω1;Q,P ) +
1−λ

R(ω2;Q′,P ′)

,

which implies, RQ̄,P̄λ
:= 1

λ
RQ,P

+ 1−λ
R

Q′,P ′
.

Changing the distribution affects the sampling of (ω, ω′) as well so RP̄λ,Q̄ becomes a mixture of
two distributions. Using the fact that,

R
(
(ω, ω′); P̄λ, Q̄

)
= λ

1

R (ω1;Q,P )
+(1−λ)·R (ω2;P

′, Q′) = λ·R (ω1;P,Q)+(1−λ) 1

R (ω2;Q′, P ′)
,
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and combining the two,

R
(
(ω, ω′); P̄λ, Q̄

)
= λ

(
λ · R (ω1;P,Q) + (1− λ)

1

R (ω2;Q′, P ′)

)
+ (1− λ)

(
λ

1

R (ω1;Q,P )
+ (1− λ) · R (ω2;P

′, Q′)

)
= λ2R (ω1;P,Q) +

λ(1− λ)

R (ω2;Q′, P ′)
+

λ(1− λ)

R (ω1;Q,P )
+ (1− λ)2R (ω2;P

′, Q′)

we get

RP̄λ,Q̄
:= λ2RP,Q +

λ(1− λ)

RQ′,P ′
+

λ(1− λ)

RQ,P
+ (1− λ)2RP ′,Q′ .

Proof of Corollary 3.3. This is a direct result of Theorem 3.2 using the recursive relation P̄t =
1
t · P ×Qt−1 +

(
1− 1

t

)
·Q× P̄t−1.

In the base case t = 2 we have,

RP̄2,Q2 =
1

2

(
RP,Q +

1

RQ,P

)
and RQ2,P̄2

=
t

1
RQ,P

+ 1
RQ,P

,

and for any t > 2 we have

R
(
v; P̄t, Q

t
)
=

1

t
· R (ω1;P,Q) +

(
1− 1

t

)
· R
(
v2:t; P̄t−1, Q

t−1
)
.

Proof of Theorem 3.4. We state the analysis in terms of the remove direction. The analysis for the
add directions is identical, except for the direction of the domination, since the last step consists of
the monotonically decreasing transformation − ln.

Validity: From Claim A.1, it suffices to show that every step of the algorithm maintains stochas-
tic domination, to prove its output stochastically dominates the true PLD as well. The first step
consists of lower bounding the underlying PLD’s CDF which results in a stochastically dominating
random variable. The left tail is treated as 0 and the right tail is treated as some probability mass at
infinity. At each step of the convolution, the output random variable is defined by lower bounding
the product random variable’s CDF (moving some additional probability mass to infinity as needed),
which results in a stochastically dominating random variable. Since ln is a monotonically increasing
function, domination is maintained for the PLD.

Tightness: From Claim A.1, if X (Y ) stochastically dominates X ′ (Y ′), and these dominations are
(α, β)-approximate, then X + Y dominates X ′ + Y ′ and this domination is (2α, 2β)-approximate.
We analyze the two slackness components separately. The β terms are accumulated additively.
Since there are t convolution steps, each one contributing at most β′ = β/(2t) to the probability
loss from truncation, the overall loss from this part is β/2. Additionally, the initial PLD discards
β/2 probability mass, leading to a combined loss of β. The α part results from the choice of the
bins. Since they are geometrically spaced, the resulting error from rounding into bins is relative
rather than additive, so the convolution over t steps results only in log(t) blowup in error.

Computational complexity: Since we do not use evenly spaced bins, we cannot rely on FFT, so
the convolution must be carried out in O(n2) time, where n is the number of bins. This number is
the ratio of the range ∆ to the desired resolution α′. ∆ is determined by the dropped probability
mass β, and since α′ = α/ log(t), the first convolution requires O(∆2 log2(t)/α2)) steps. Using
Algorithm 1 we maintain the same number of bins, and using Algorithm 3 requires only O(log(t))
convolution steps, which completes the proof.
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A.2 GAUSSIAN MECHANISM

One of the most common algorithms is the Gaussian mechanism Nσ , which simply reports the sum
of (some function of) the elements in the dataset with the addition of Gaussian noise of scale σ. One
of its main advantages is that we have closed form expressions of its privacy
Lemma A.2 (Gaussian mechanism DP guarantees, (Balle & Wang, 2018)). Given d ∈ N; σ > 0,
let X = Y := Rd. The Gaussian mechanism Nσ is defined as Nσ(s) := N (

∑
x∈s x, σ

2Id).

If the domain of Nσ is the unit ball in Rd, we have δNσ
(ε) = Φ

(
1
2σ − εσ

)
− eεΦ

(
− 1

2σ − εσ
)
,

where Φ is the CDF of the standard Normal distribution.

The dominating pair of the Gaussian mechanism Nσ is simply N (1, σ2) and N (0, σ2) (Zhu et al.,
2022), which implies Nσ is dominated by the random variable 1

σN (0, 1) + 1
2σ2 .

We note that in the case of the Gaussian mechanism, the PRD is simply the log-normal random
variable, and the PRD of the random allocation is simply the sum of T such random variables.
Formally, stating Corollary 3.3 for the Gaussian case yields the following expression, which is used
in our experiments.
Corollary A.3. Given t ∈ N; σ > 0, the random allocation scheme over the Gaussian mechanism
Nσ is dominated by Lµ̄t,Qt = ln

(
e

1
σN (0,1)+ 1

σ2 +
∑

i∈[t−1] e
1
σN (0,1)

)
− ln(t)− 1

2σ2 in the remove

direction, and LQt,µ̄t
= ln(t) + 1

2σ2 − ln
(∑

i∈[t] e
1
σN (0,1)

)
in the add direction.

A.3 SUBSAMPLING

An additional advantage of providing a privacy bound in the form of a PLD, is that it can be used to
further subsample and compose it. This is done using the following lemma which is stated in terms
of PRD but naturally extends to PLD.
Lemma A.4 (PRD amplification by subsampling). Given two distributions P,Q denoting P ′ :=
(1− λ)Q+ λP and Q′ := (1− λ)P + λQ we have for any ω,

R (ω;P ′, Q) = 1− λ+ λR (ω;P,Q) and R (ω;P,Q′) =
1

1− λ+ λR (ω;Q,P )
,

which implies that for any r ∈ R,

1. FR
P ′,Q(r) = (1− λ)(1− FR

Q,P (1/r
′)) + λFR

P,Q(r
′) where r′ := 1 + r−1

λ .

2. FR
P,Q′(r) = FR

P,Q(r
′) where r′ := λr

1−r(1−λ) .

Proof. We first provide an explicit relation of the privacy ratio.

R (ω;P ′, Q) =
P ′(ω)

Q(ω)
=

(1− λ)Q(ω) + λP (ω)

Q(ω)
= (1− λ) + λ

P (ω)

Q(ω)
= (1− λ) + λR (ω;P,Q)

R (ω;P,Q′) =
P (ω)

Q′(ω)
=

P (ω)

(1− λ)P (ω) + λQ(ω)
=

1

(1− λ) + λQ(ω)
P (ω)

=
1

(1− λ) + λ
R(ω;P,Q)

Next we use in to provide a similar relation for the PRD.
FR
P ′,Q(r) = P

ω∼P ′
(R (ω;P ′, Q) ≤ r)

= P
ω∼P ′

((1− λ) + λR (ω;P,Q) ≤ r)

= P
ω∼P ′

(R (ω;P,Q) ≤ 1 + (r − 1)/λ+ λ)

= P
ω∼P ′

(R (ω;P,Q) ≤ r′)

= (1− λ) P
ω∼Q

(R (ω;P,Q) ≤ r′) + λ P
ω∼P

(R (ω;P,Q) ≤ r′)

= (1− λ) P
ω∼Q

(R (ω;Q,P ) ≥ 1/r′) + λ P
ω∼P

(R (ω;P,Q) ≤ r′)

= (1− λ)(1− FR
Q,P (1/r

′)) + λFR
P,Q(r

′)
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Similarly,

FR
P,Q′(r) = P

ω∼P
(R (ω;P,Q′) ≤ r)

= P
ω∼P

(
1

(1− λ) + λ
R(ω;P,Q)

≤ r

)

= P
ω∼P

(
R (ω;P,Q) ≤ rλ

1− r(1− λ)

)
= P

ω∼P
(R (ω;P,Q) ≤ r′)

= FR
P,Q(r

′)

While this lemma is stated in terms of a PRD (PLD), it holds for for any random variable that
stochastically dominates a PRD (PLD). Notice that FR

P ′,Q depends not only on FR
P,Q but on FR

Q,P
as well. When using stochastically dominating random variables this requires either maintaining a
random variable lower bounding FQ,P or using the fact that

FR
Q,P (r) =

∫ r

−∞
fR
Q,P (x)dx =

∫ r

−∞

fP,Q(x)

x
dx,

so FR
Q,P can be numerically computed using only access to FR

P,Q or its upper bound.

Implementing this amplification in practice requires maintaining simultaneous bounds on
FR
Q,P (1/r

′) and FR
Q,P (1/r

′)
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B FULL IMPLEMENTATION DETAILS

In this section we provide detailed description of the implementation.

We start by describing the range normalization building block (Algorithm 1). This function is used
to set the range of the convolved random variable, such that it looses at most β probability mass.

Algorithm 1 Range renormalization: Renorm(x̄1, p̄1, x̄2, p̄2, β)

Require: x̄1, p̄1, x̄2, p̄2, β
n← |x̄1| ▷ Assume |x̄1| = |p̄1| = |x̄2| = |p̄2|
imin
1 ← argmax

i∈[n]

(∑i
j=1 p̄1[j] ≤

√
β/2

)
, imax

1 ← argmin
i∈[n]

(∑n
j=i p̄1[j] ≤

√
β/2

)
imin
2 ← argmax

i∈[n]

(∑i
j=1 p̄2[j] ≤

√
β/2

)
, imax

2 ← argmin
i∈[n]

(∑n
j=i p̄2[j] ≤

√
β/2

)
(xmin, xmax)←

(
x̄1[i

min
1 ] + x̄2[i

min
2 ], x̄1[i

max
1 ] + x̄1[i

max
2 ]

)
(ymin, ymax)← (ln(xmin), ln(xmax))
∆← (ymax − ymin)/(n− 1)
ȳ ← [ymin + (i− 1)∆]

n
i=1

x̄out ← [eyi ]
n
i=1

return x̄out

Next we describe the convolution step (Algorithm 2). Since the product grid is not identical to the
new chosen grid, the probability is assigned such that the resulting random variable stochastically
dominates the convolution.

Algorithm 2 Distribution convolution: Conv(x̄1, p̄1, x̄2, p̄2, β)

Require: x̄1, p̄1, x̄2, p̄2, β, dir
x̄new ← Renorm(x̄, p̄, x̄′, p̄′, β)
if dir = ’lower’ then

P̄new ← {0} ∪

[ ∑
x̄1[j]+x̄2[k]≤x̄new[i]

p̄1[j] · p̄2[k]

]n
i=1

p̄new ←
[
P̄new[i]− P̄new[i− 1]

]n
i=1

else

P̄new ←

[ ∑
x̄1[j]+x̄2[k]≤x̄new[i]

p̄1[j] · p̄2[k]

]n
i=1

∪ {1}

p̄new ←
[
P̄new[i+ 1]− P̄new[i]

]n
i=1

end if
return x̄new, p̄new

Next, we use this function to create a self-convolution function, which given a distribution and
number of convolutions t computes the convolution of the distribution with itself t times (Algorithm
3). This is done in log(t) steps by computing the self convolution for all powers of 2 that are ≤ t,
and using them to compose t times.

Using the convolution and self convolution functions, we can define the full algorithm (Algorithm 4
for the remove direction and 5 for add). Both algorithms start by computing a discrete random vari-
able upper (lower) bounding the true PRD over a geometrically spaced grid (see proof of Theorem
3.4) then self compose it t times (in the case of the remove direction, one of the t random variables is
sampled w.r.t. the first distribution following Corollary 3.3). Finally, the PRD is converted to a PLD
by taking the ln (− ln in the add direction). We note that the remove direction requires maintaining
an upper bound at each step, while the add direction requires a lower bound.
Remark B.1. Replacing lower bounds by upper bounds and vice versa, the same algorithm can be
used to provide tight numerical lower bounds on the PLD. All results of Theorem 3.4 extend to this
direction as well.
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Algorithm 3 multi-conv(x̄, p̄, t, β, dir)
Require: x̄, p̄, t, β, dir
(x̄base, p̄base)← (x̄, p̄)
init← False
while t > 0 do

if t is odd then
if init then

(x̄acc, p̄acc)← Conv(x̄base, p̄base, x̄acc, p̄acc, β, dir)
else

(x̄acc, p̄acc)← (x̄base, p̄base)
end if

end if
(x̄base, p̄base)← Conv(x̄base, p̄base, x̄base, p̄base, β, dir)
t← ⌊t/2⌋

end while
return x̄acc, p̄acc

Algorithm 4 Random allocation numerical accounting (remove)
Require: P , Q, t, α, β

β′ ← β/(2t), α′ ← α/(2 · ln(t))
(lmin, lmax)←

(
−(F ℓ

Q,P )
−1(1− β/2),−(F ℓ

Q,P )
−1(β/2)

)
n← ⌈(lmax − lmin)/α

′⌉+ 1

r̄ ←
[
elmin+(i−1)·α′

]n
i=1

▷ Quantization to bins of constant relative width

Q̄← {0} ∪
[
FR
Q,P (1/ri)

]n
i=1

q̄ ←
[
Q̄[i]− Q̄[i− 1]

]n
i=1

▷ (α′, β′)-accurate privacy ratio bound of RP,Q

(r̄conv, q̄conv)← multi-conv(r̄, q̄, t− 1, β′, ’upper’) ▷ Privacy ratio bound of the t− 1-self
convolution
P̄ ← {0} ∪

[
FR
P,Q(ri)

]n
i=1

p̄←
[
P̄ [i]− P̄ [i− 1]

]n
i=1

▷ (α′, β′)-accurate privacy ratio bound of 1/RQ,P

(r̄final, p̄final)← conv(r̄, p̄, r̄conv, q̄conv, β
′, ’upper’) ▷ Privacy ratio bound of its convolution with

the previous
l̄final ← [ln(r̄final[i])]

n
i=1 ▷ Privacy ratio to privacy loss

return l̄final, p̄final

Algorithm 5 Random allocation numerical accounting (add)
Require: P , Q, t, α, β

β′ ← β/(2t), α′ ← α/(2 · ln(t))
(lmin, lmax)←

(
−(F ℓ

Q,P )
−1(1− β/2),−(F ℓ

Q,P )
−1(β/2)

)
n← ⌈(lmax − lmin)/α

′⌉+ 1

r̄ ←
[
elmin+(i−1)·α′

]n
i=1

▷ Quantization to bins of constant relative width

Q̄← {0} ∪
[
FR
Q,P (1/ri)

]n
i=1

q̄ ←
[
Q̄[i]− Q̄[i− 1]

]n
i=1

▷ (α′, β′)-accurate privacy ratio bound of RP,Q

(r̄conv, q̄conv)← multi-conv(r̄, q̄, t, β′) ▷ Privacy ratio bound of the t− 1-self convolution
(r̄final, p̄final)← conv(r̄, p̄, r̄conv, q̄conv, β

′, ’lower’) ▷ Privacy ratio bound of its convolution with
the previous
l̄final ← [− ln(r̄final[i])]

n
i=1 ▷ Privacy ratio to privacy loss

return l̄final, p̄final
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C EXPERIMENTAL RESULTS

In this section we provide several additional results. Figure 5 is an extended version of Figure 2.
It follows the setting used by Chua et al. (2024a) to showcase their results. The number of steps is
derived from the size of the training set and choice of batch size in their experimental results.

Figure 5: Comparison of the privacy profile of the Poisson scheme and various bounds for the
random allocation scheme; the combined methods by Feldman & Shenfeld (2025), the high proba-
bility and the average estimations using Monte Carlo simulation and the lower bound by Chua et al.
(2024a), and our numerical method, following the setting in Chua et al. (2024a) (detailed description
can be found in Appendix C).

The Monte Carlo results were computed using importance sampling with 106 samples and 95% con-
fidence. We note that the computation for the results derived by Chua et al. (2024a) was performed
in parallel on a cluster of 60 CPU machines.

While all numerical examples in this work show superior privacy guarantees for random allocation
relative to Poisson sampling, the Poisson scheme does not dominate random allocation for the same
parameters. This was first proven theoretically by Chua et al. (2024a) for the limit of ε → 0 and
ε→∞. Figure 6 provides a clear demonstration of this fact.
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Figure 6: Privacy profile of the Poisson and random allocation schemes for σ = 1.0, t = 2, clearly
demonstrating they do not dominate each other.
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