
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TAMING CURVATURE: ARCHITECTURE WARM-UP FOR
STABLE TRANSFORMER TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Training billion-parameter Transformers is often brittle, with transient loss spikes
and divergence that waste compute. Even though the recently developed Edge of
Stability (EoS) theory provides a powerful tool to understand and control the sta-
bility of optimization methods via the (preconditioned) curvature, these curvature-
controlling methods are not popular in large-scale Transformer training due to the
complexity of curvature estimation. To this end, we first introduce a fast online
estimator of the largest (preconditioned) Hessian eigenvalue (i.e., curvature) based
on a warm-started variant for power iteration with Hessian–vector products. We
show theoretically, and verify empirically, that the proposed method makes per-
iteration curvature tracking feasible at billion-parameter scale while being more
accurate. Using this tool, we find that training instabilities coincide with surges
in preconditioned curvature and that curvature grows with depth. Motivated by
these observations, we propose architecture warm-up: progressively growing net-
work depth to carefully control the preconditioned Hessian and stabilize training.
Experiments on large Transformers validate that our approach enables efficient
curvature tracking and reduces instabilities compared to existing state-of-the-art
stabilization techniques without slowing down convergence.

1 INTRODUCTION

Scaling up Transformers has driven remarkable progress across domains, from large language mod-
els that power conversational systems to diffusion-based models for image generation (Vaswani
et al., 2017; Kaplan et al., 2020; Brown et al., 2020; Ouyang et al., 2022; Ho et al., 2020; Rom-
bach et al., 2022). Yet, despite these gains, large models frequently exhibit training instabilities, i.e,
large loss spikes and even divergence, especially at scale (Chowdhery et al., 2022; Dehghani et al.,
2023; Zhang et al., 2022; Molybog et al., 2023; OLMo et al., 2024). As billion-parameter training
becomes the norm, improving training stability is paramount: transient instabilities, i.e., loss spikes,
gradient blow-ups, or full divergence, can consume vast compute budgets and wall-clock time. As
models and datasets scale, stabilizing optimization reduces monetary and environmental costs while
improving reproducibility and throughput, enabling dependable progress.

Stabilization at scale often relies on empirical controls for attention and optimization: soft-capping
the logits (Gemma Team, 2024), QK-normalization or QK-clip to bound dot-product magnitudes
of queries and keys (Henry et al., 2020; Dehghani et al., 2023; Team et al., 2025), and learning-rate
or batch warmup to temper early steps (Gilmer et al., 2021; Dubey et al., 2024). In parallel, the Edge
of Stability (EoS) literature shows that gradient methods gravitate toward regions where the product
of step size and curvature approaches the stability boundary from classical quadratic optimization
theory: for full-batch Gradient Descent (GD), training spends long phases with η λmax(H) ≈ 2
(Cohen et al., 2021; Wang et al., 2022)—where λmax(H) and η denotes the largest eigenvalue
of the Hessian H and the step size, respectively—while for preconditioned/adaptive methods the
relevant quantity is the preconditioned1 curvature (Cohen et al., 2022; Damian et al., 2023). Thus
the stability threshold is inversely proportional to the step size and directly governed by the largest
eigenvalue of the (preconditioned) Hessian. Although many of the previous works in stabilizing
Transformers can be interpreted as attempts to keep η λmax(H) below this boundary (Zhai et al.,

1Preconditioned Hessian should be considered for optimizers that use preconditioned updates, and adaptive
methods are shown to operate at optimizer dependent stability thresholds (Cohen et al., 2022).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

2023; Wortsman et al., 2023b; Gilmer et al., 2021; Shazeer & Stern, 2018), verifying such claims has
been difficult in practice, because estimating the curvature online for billion-parameter Transformers
remains memory and compute-intensive.

To this end, we first introduce an efficient method to estimate the curvature online using warm-
started power-iteration with Hessian-Vector Products (HVP) tailored for large models. Our key
insight is that the top eigenvector of the (preconditioned) Hessian is slow-moving and warm-starting
with the previous step’s eigenvector significantly 1) reduces the iteration count and 2) improves ac-
curacy. In particular, we require less than five HVPs per step (≲ 5), an order of magnitude lower than
existing methods (Granziol, 2025), while seamlessly extending to the time-varying preconditioned
matrix for adaptive methods. We provide theoretical bounds for the change in the eigenvector and the
resultant iteration saving. This makes online curvature tracking feasible for billion-parameter
Transformers. We then use this approach to confirm that loss spikes in large-scale Transformers
correlate with spikes in preconditioned curvature and show that the latter increases with the network
depth.

Combining these insights, we introduce an architecture warm-up strategy for stable training. The
idea is to ensure the (preconditioned) curvature follows the trend of the stability threshold such that
the stability criterion is satisfied throughout training. Precisely, we restrict the model to have small
curvature during the initial learning rate warm-up phase, and gradually relax this restriction (i.e.,
increase the curvature) when we start decaying the learning rate, noting that the stability threshold
is inversely proportional to the learning rate. To control the curvature, we adopt a holistic approach
of controlling the number of (effective) Transformer layers (i.e., depth), rather than making fine-
grained modifications to each layer. Specifically, we freeze some Transformer layers to identity at
initialization, and gradually unfreeze these layers as per a predefined schedule, ensuring a smooth in-
crease in curvature. This architecture warm-up approach can be readily integrated to existing training
recipes and standard architectures as it does not require dynamic computation graph surgery, outper-
forms existing stabilization techniques, and expands the range of stable learning rates without any
performance penalty. We provide extensive experiments demonstrating accurate curvature tracking
and consistent stability gains across large transformer settings compared to existing methods.

2 PRELIMINARIES

Below, we briefly review the literature on Edge of Stability (EoS) (Cohen et al., 2021; 2022), and
power iteration to compute the largest eigenvalue of the Hessian using Hessian-Vector Products
(HVP) (Martens, 2010), upon which we build our work. We refer the interested reader to the respec-
tive papers for more details.

2.1 EDGE OF STABILITY

For a quadratic objective L(θ) = 1
2θ

⊤Aθ+ b⊤θ+ c, gradient descent with step size η is stable only
if η < 2/λmax(A). Locally, neural network training admits the quadratic approximation:

L(θ +∆) ≈ L(θ) +∇L(θ)⊤∆+ 1
2∆

⊤H(θ)∆ , (1)

so the Hessian H(θ) plays the role of A, and λmax(H(θ)) determines the maximum stable step
size: violating η ≤ 2/λmax(H) causes oscillation or divergence along the sharpest direction. Em-
pirically, full-batch GD often operates near the Edge of Stability (EoS) where η λmax(H) ≈ 2
(Cohen et al., 2021). Adaptive methods (e.g., Adam (Kingma & Ba, 2014)) show an analo-
gous behavior with the time-varying preconditioned curvature λmax(P

−1/2
t HP

−1/2
t) (Cohen et al.,

2022), where P−1
t denotes the update preconditioning. For Adam, the preconditioner takes the

form: Pt = diag(
√
vt + ε) where vt+1 = β2vt + (1 − β2)g

2
t . Note that the stability crite-

rion is optimizer-dependent and for Adam with β1 = 0.9, adaptive EoS is determined to be
η λmax(P

−1/2
t HP

−1/2
t) ≈ 38.

This enables a powerful tool to understand and control the stability of optimization methods by
controlling the learning rate and the preconditioned curvature. However, this theory has only been
verified on small-scale models (≲25M parameters), mainly due to the memory complexity of com-
puting the Hessian, or the time complexity associated with estimating an iterative approximation.
Below, we first discuss a well-established power-iteration method to compute the curvature without

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

materializing the Hessian explicitly, and later introduce our approach that reduces its iteration com-
plexity by an order of magnitude, making online curvature tracking feasible and more accurate at
billion-parameter scale.

2.2 COMPUTING THE LARGEST HESSIAN EIGENVALUE VIA HVP-BASED POWER ITERATION

Given θ ∈ Rd and the loss f : Rd → R, we can estimate the top eigenpair
{λmax(H(θ)), vmax(H(θ)}, where H(θ) := ∇2f(θ) without explicitly forming H(θ). For any
vector v,

H(θ)v = ∇θ

(
g(θ)⊤v

)
=

d

dϵ
g(θ + ϵv)

∣∣∣∣
ϵ=0

. (2)

Thus, H(θ)v, i.e., the Hessian-Vector-product (HVP), is a directional derivative of the gradient
(which quantifies how much the curvature would change in the direction of v) and can be obtained
without materializing full H (Martens, 2010). This costs roughly two backprop passes and uses
O(1) extra memory beyond the retained graph. The efficient computation of HVP allows us to
compute the λmax(H(θ)) and vmax(H(θ)) with power iteration. Let H(θ) be symmetric. Suppose
its eigenvalues satisfy: λ1 ≥ λ2 ≥ · · · ≥ λd, ρ := λ2

λ1
∈ [0, 1) . Starting from a unit vector

y(0), define the normalized power iteration:

z(t+1) ← Hy(t) , y(t+1) ← z(t+1)

∥z(t+1)∥2
, λ̂(t+1) ← ⟨y(t+1), Hy(t+1)⟩ . (3)

With above iterations, z(t) → vmax and λ̂(t) → λmax as t → ∞. The only primitive is u 7→
Hu, i.e., an HVP. This in practice is expensive for large H , since power iteration requires multiple
steps to converge from a random initialization, each requiring two backward passes. This is more
prominent in high dimensions where the initial alignment with the leading eigenvector is O(1/

√
d)

in expectation, where d is the dimension of the parameter vector.

3 METHODOLOGY

In this section, we first elaborate on our key insight that the (preconditioned) curvature of the Hessian
is slow-moving with theoretical and empirical justifications, enabling us to develop a warm-started
power iteration variant to compute the curvature efficiently with less than five HVP steps. This
allows us to verify that the loss spikes in large-scale transformers are also a result of spikes in
curvature, verifying the EoS theory at scale. Based on this, we later develop our architecture warm-
up strategy that restricts the curvature of the model at the early learning rate warm-up phase and
increases the curvature as the learning rate starts to decay, ensuring the stability criterion of adaptive
EoS is satisfied throughout training.

3.1 ONLINE CURVATURE TRACKING WITH WARM-STARTED POWER ITERATION

We show that under practical assumptions, the largest eigenvalue of the Hessian of neural networks
evolves slowly. Specifically, under Lipchitz continuity of the Hessian and a nonvanishing spectral
gap γ, we can precisely bound the change in the leading eigenvector between successive steps:

sin∠
(
v1,k+1, v1,k

)
≤ LH

γ
∥θk+1 − θk∥ , (4)

Thus, when step sizes and gradients shrink during training, v1,k is an increasingly accurate initializer
for v1,k+1. This result is formally presented below.
Theorem 1. Let {θk}k≥0 be a parameter sequence and Hk := H(θk). Assume that there exists
LH <∞ with ∥H(θ)−H(θ′)∥ ≤ LH∥θ − θ′∥ for all θ, θ′. Equivalently, ∥∇3f(θ)∥op ≤ LH and
Along the parameter path considered, γ(θ) := λ1(H)− λ2(H) ≥ γ > 0. Then, with v1,k a unit top
eigenvector of Hk and εk := ∠(v1,k+1, v1,k), we have

sin εk ≤
∥Hk+1 −Hk∥

γ
≤ LH

γ
∥θk+1 − θk∥ . (5)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Further, with stochastic gradient descent with step size ηk such that θk+1 = θk − ηkgk with
E[gk | θk] = ∇f(θk) and E∥gk∥2 ≤ G2, we have

E
[
sin εk | θk

]
≤ (LH/γ) ηk E∥gk∥ ≤ (LH/γ) ηkG . (6)

Leveraging the above result, we propose a simple yet novel modification: warm-starting power
iteration across training steps. At iteration k, suppose we have obtained an estimate of the top
eigenvector v1,k of the Hessian Hk = ∇2f(θk). At the next training iteration, instead of reinitializ-
ing power iteration from a random vector, we initialize from v1,k and run power iteration on Hk+1.
Below, we quantify the gain in iteration count due to warm-start.

Theorem 2. Let Hk = H(θk) have eigenvalues λ1,k ≥ λ2,k ≥ · · · and unit eigenvectors vi,k. Set
ρk+1 := λ2,k+1/λ1,k+1 ∈ [0, 1). Define the successive misalignment εk := ∠(v1,k+1, v1,k). Run
normalized power iteration on Hk+1:

y(t+1) =
Hk+1y

(t)

∥Hk+1y(t)∥
, y(0) = v1,k , (7)

and let αt := ∠(y(t), v1,k+1). Then:

0 ≤ λ1,k+1 − y(t)⊤Hk+1y
(t) ≤

(
λ1,k+1 − λ2,k+1

)
sin2 αt ≤ (1− ρk+1)λ1,k+1 ρ

2t
k+1 tan

2 εk.
(8)

Also, let t and trand be the number of iterations needed for warm start and random initialization to
achieve convergence, respectively. Then, with a high probability, we have,

trand − t ≈
1
2 log d− log

(
LH

γ ∥θk+1 − θk∥
)

log(1/ρk+1)
. (9)

Hence warm-starting is strictly advantageous whenever LH

γ ∥θk+1 − θk∥ ≪ d1/2.

3.1.1 EXTENSION TO THE PRECONDITIONED HESSIAN

When the optimization algorithm incorporates momentum and adaptive learning-rate scaling (i.e,
preconditioning), stability depends on the preconditioned curvature. Let us consider the Adam
update: θt+1 = θt − η P−1

t mt+1 , where mt is the momentum, updated as an exponential moving
average mt+1 = β1 mt + (1 − β2) gt with gt = ∇L(θt) and the preconditioner is the square-root
of the second moment of the gradients. The effective curvature, therefore, is the spectrum of

Gt := P
−1/2
t H(θt)P

−1/2
t , (10)

not of H(θt) itself. Because the preconditioner Pt changes slowly when β2 ≈ 1 and H(θt) is
Lipschitz smooth, Gt evolves smoothly along the training trajectory. As a result, our warm-starting
extends verbatim to the preconditioned Hessian. That is, the previous warm-start analysis for H(θ)
carries over by replacing H with Gt. Define the top eigenvector u1,t of Gt and the eigengap γeff

t =
λ1(Gt)− λ2(Gt). From Theorem 1 we can directly obtain:

sin∠
(
u1,t+1, u1,t

)
≤ ∥Gt+1 −Gt∥2

γeff
t

. (11)

So under a Lipschitz Hessian (∥H(θt+1)−H(θt)∥ ≤ LH∥θt+1 − θt∥) and slowly varying Pt (e.g.,
∥P−1/2

t+1 − P
−1/2
t ∥ ≤ LP ∥θt+1 − θt∥ with LP ∝ (1 − β2), the top eigendirection of Gt is slow-

moving. Consequently, power iteration on Gt+1 warm-started from u1,t enjoys the same benefits as
in the non-preconditioned case. This allows us to compute HVP for Gt without new primitives.

Warm-started tracking of the preconditioned Hessian. At step t, we form the diagonal pre-
conditioner Pt = diag(

√
vt + ε) from the optimizer state. We estimate the top eigenpair of

Gt := P
−1/2
t H(θt)P

−1/2
t by power iteration with a warm start from the previous step. Concretely:

(i) initialize y(0) with the transported eigenvector y(0) = normalize
(
P

1/2
t P

−1/2
t−1 u1,t−1

)
(or simply

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

y(0) =u1,t−1 if transport is omitted); (ii) for τ = 0, 1, . . . perform one preconditioned HVP power
step

u = P
−1/2
t y(τ) , v = H(θt)u (HVP) , z = P

−1/2
t v , y(τ+1) = z/∥z∥2 ; (12)

(iii) compute the Rayleigh estimate λ̂t = (y(τ))⊤Gty
(τ) = u⊤v and stop when the change in

λ̂t falls below a tolerance. The output (λ̂t, u1,t = y(τ
⋆)) is reused at step t+1. Each iteration

costs a single HVP plus cheap elementwise scalings by P
±1/2
t ; with warm starts, τ⋆ is typically

< 5, enabling efficient, step-by-step tracking of the effective curvature that governs stability under
momentum/Adam (e.g., see Fig. 3).

3.2 ARCHITECTURE WARM-UP

Now, we are ready to introduce our approach to control the curvature. Specifically, we first review
that deeper networks have the potential to increase the curvature, and provide an approach to seam-
lessly increase the number of trainable layers without introducing any function or gradient disconti-
nuities. Recall that, at the EoS, the learning rate and curvature are inversely proportional; therefore,
we keep the network shallow in the early learning rate warm-up phase, and gradually increase (ef-
fective) depth when we start decaying the learning rate, ensuring the stability criterion is satisfied
throughout training. The proposed method can be readily integrated into existing training recipes
and assumes a standard transformer architecture without requiring hardware-level operations.

3.2.1 DEEPER NETWORKS INCREASE CURVATURE AND SHRINK STABILITY THRESHOLD

Let gθ = ΦL ◦ · · · ◦Φ1 be an L-block residual Transformer with Φℓ(x) = x+Bℓ(x). For the input
Jacobian,

∥Jxgθ(x)∥ ≤
L∏

ℓ=1

∥I + ∂Bℓ(xℓ−1)∥ ≤ exp
(L∑

ℓ=1

∥∂Bℓ(xℓ−1)∥
)
. (13)

For losses L(θ) = E(x,y)[ℓ(gθ(x), y)] with λmax(∇2
zℓ) ≤ Lℓ, the Gauss–Newton bound yields

λmax

(
∇2

θL(θ)
)
≤ Lℓ

(
sup
x
∥Jθgθ(x)∥

)2
, (14)

and Jθgθ inherits the multiplicative growth in Eq. 13 through backprop. Hence λmax(H) (and,
under a Positive Semi-Definite (PSD) diagonal preconditioner Pt, λmax(Gt)) increases with depth
L, shrinking the first-order stability margin. See App. B for more formal results and discussions.

Remarks. Although we can derive an upperbound as in Eq. 14 it is not sufficient to conclude
that curvature must strictly increase with depth. Empirically, the curvature might be lower than the
bound due to architecture components such as residual connections, and normalization (Sagun et al.,
2016; Li et al., 2018; Ghorbani et al., 2019; Yao et al., 2020), or due to the specific parameterization
of the model (Dinh et al., 2017). Furthermore, since the preconditioned geometry is the relevant
one for adaptive optimizers, efficient online tracking of (curvature) top eigenvalues, especially the
preconditioned analogue λmax(Gt), is more informative than pointwise analyses at initialization or
at local optima (Yao et al., 2020; Sagun et al., 2016; Ghorbani et al., 2019). Our method enables
such tracking up to multi-billion-parameter Transformers, where we observe (in Sec. 4.3) that (i)
preconditioned curvature spikes predominantly during learning-rate warm-up and (ii) increases with
depth.

3.2.2 PROGRESSIVE DEPTH VIA CONSTRAINING BLOCK WEIGHTS TO ZERO

Recall that at the stability threshold, the (preconditioned) curvature λmax(Gt) scales inversely with
the learning rate η: larger η, the smaller the admissible λmax(Gt) must be to remain stable. Con-
sequently, while η ramps up during warmup (tightening the threshold), we keep the network’s ef-
fective depth low to limit λmax(Gt). As training proceeds—after the peak learning rate or during
learning-rate decay, when the stability threshold relaxes—we progressively enable additional depth,
activating the full model only once the stability margin permits it. To this end, we wish to add depth
keeping controlling curvature and avoiding function discontinuities. Note that the transformer block
function can be expanded as follows: Let the input to the lth layer be Xl ∈ Rb×n×d, where b, n, and

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

d are the batch size, sequence length, and embedding dimension, respectively. Then the function
admits a recursive structure as

Xl+1 = Xl
hiddenW

l
p2

+Xl
concatW

l
p1

+Xl , (15)

where hidden and concat are the hidden layer of the feedforward network and the concatinated output
of the attention heads, respectively. Wl

p1
and Wl

p2
are linear projection weights. A natural idea is to

hold only the projection matrices at zero (i.e., Wl
p1

= Wl
p2

= 0) so the block computes the identity
with Xl+1 = Xl, and can later be “unlocked.” However, this can still induce a discontinuous jump in
the network’s Lipschitz constant at unlock: even a small change in Wl

p1
or Wl

p2
immediately injects

the pre-existing (randomly initialized) attention/FFN paths into the residual stream. Formally, the
input–output Jacobian of the l-th block satisfies the first-order bound

∥JXlΦl − I∥ ≤ ∥Wl
p1
∥ ∥JXlXl

concat∥ + ∥Wl
p2
∥ ∥JXlXhidden∥. (16)

If all other weights retain their (nonzero) random initialization while the projections are zeroed, then
∥JXlXl

concat∥ and ∥JXlXhidden∥ can already be large at the moment of unlock; consequently, even
tiny updates to Wl

p1
or Wl

p2
can abruptly raise ∥JXlΦl∥, inflating supx ∥Jθgθ(x)∥ of the bound

Eq. 14, and thus increasing the curvature. This sudden elevation can push the model over the stability
threshold, often manifesting as loss spikes or instabilities.

To remedy this, and to guarantee continuity of both the function and its first derivative at un-
lock, we set all the weights (except RMSNorm weights)2 and exclude these parameters from the
optimizer while the block is locked. Under this constraint, Xl

concat = 0 and Xhidden = 0, so
Xl+1 = Xl and JXlΦl = I , i.e., the block is an exact identity with no increase in the Jacobian.
When the block is unlocked, all paths start from zero, and the Jacobian perturbation grows smoothly
as the newly trainable weights move away from zero. This prevents the instantaneous jump in effec-
tive Jacobian and thus avoids the associated curvature spike. In practice, we keep all block weights
at zero and frozen within the optimizer until a curvature criterion is met; then we start training them
with zero initialization. This architecture warm-up keeps the product η λmax(Gt) within the stability
envelope while depth increases, yielding smoother loss and more reliable training.

Does architecture warm up compromise representation capacity? We provide intuitions from
two perspectives; (i) Spectral bias / F-principle: deep nets fit low-frequency structure first, with
higher frequencies learned later (Rahaman et al., 2019; Xu et al., 2019); a shallow stack suf-
fices early, so temporarily limiting depth does not bottleneck what the model actually learns. (ii)
Function-space/NTK view: early training operates in a near-linear, low-curvature regime where
learning aligns with dominant, low-complexity components (Jacot et al., 2018); additional layers
can be enabled later to increase expressivity without restricting the attainable solution class. Our
convergence results, and prior work on progressive, function-preserving growth, corroborate that
deferred depth does not harm final performance (Chen et al., 2016; Wei et al., 2016; Gong et al.,
2019; Chen et al., 2020).

4 EXPERIMENTS

We evaluate decoder-only Transformers (Llama 3–style (Dubey et al., 2024)) on three large-scale
corpora: Fineweb (Penedo et al., 2024), DCLM (Li et al., 2024) and Olmo-Mix (Allen Institute
for AI, 2024). We reserve a held-out set for validation. Unless otherwise noted, we train with
context length 1024, embedding dimension 2048, 32 heads, global batch size 1024, weight decay
0.01, AdamW optimizer with standard parameters, and a linear warmup over 2000 steps followed
by linear decay. Tokenization is GPT-2 (vocabulary size 50,000). We use five power iterations
with warm-start for online curvature tracking. Our experiments include models scaling up to 3-
billion parameters. Architecture warm-up schedule: Unless noted otherwise, we keep the model
at half depth until learning-rate warmup completes, then unlock the remaining layers in four groups,
spaced by 500 training iterations, to reach full depth. Although we use this schedule, we observed
that performance is not tightly coupled to this spacing (see App. E).

2Excluding RMSNorm weights is critical since they show inferior convergence from zero initialization.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.1 SLOWLY MOVING TOP EIGENVECTORS

Figure 1: Leading eigenvector is
slow-moving. For a 4-layer Trans-
former, we compute the exact top Hes-
sian eigenvector at each train step and
plot the principal angle to the next step.
Consistent with Theorem 1, angles are
typically < 0.1 radians, with only rare
outliers.

Theorem 1 predicts that the leading Hessian eigendirection
moves slowly along the optimization path. To verify this em-
pirically (without any estimator bias), we compute the exact
Hessian for a 4-layer Transformer and measure the princi-
pal angle between successive top eigenvectors across training
steps. We choose a shallow network as computing the exact
Hessian of a large model is computationally prohibitive. Fig. 1
shows that these angles are typically < 0.1 rad (≈ 5.7◦) (ex-
cept for a few spikes), confirming the “slow drift” property.

4.2 EFFECTIVENESS
OF WARM-START POWER ITERATION

We compare our warm-started estimator to a cold-start (ran-
dom) power method on a 4-layer model, using the relative error
|λ̂−λexact| as the metric. Figure 2 reports error versus iteration
count. We ran each experiment five times and report the error
bars. Warm start achieves high-accuracy estimates even with
≈ 5 iterations, while the cold start error is higher with even ≥20 iterations. Further, the variance of
the cold-start error is constantly high across the number of iterations. As shown in Fig. 2 this is due
to the occasional large errors at certain steps (sensitivity to the initializer) even with a high iteration
count. This confirms that reusing the previous step’s top direction substantially reduces the HVP
budget and stabilizes power convergence.

4.3 DEPTH, EFFECTIVE CURVATURE, AND STABILITY

0 100 200 300 400 500 600 700 800

Training step

0

2

4

6

m
ax

max (cold)
max (warm)

(a) 5 HVP iterations.

0 100 200 300 400 500 600 700 800

Training step

0

2

4

6
m

ax

max (cold)
max (warm)

(b) 20 HVP iterations.

6 8 10 12 14 16 18 20
HVP Iterations

0.25

0.00

0.25

0.50

0.75

1.00

Er
ro

r

cold
warm

(c) Error across different # HVP iterations.

Figure 2: Effectiveness of warm-start HVP. (a,b)
Online tracking error (vs. exact curvature) using 5 and
20 power-iteration steps, respectively, over the course
of training. (c) Error vs. number of power-iteration
steps with error bars over 5 random seeds (both model
init and HVP probes). The warm-started estimator con-
verges faster (even with 5 HVPs) and attains lower error
and variance than cold-start baselines.

We examine the impact of depth on curvature
and stability by training 8, 16, and 32-layer
models on the FineWeb dataset with peak learn-
ing rate 8 × 10−3. Figure 3 plots λmax(H)
and λmax(Gt) over training. The 8-layer net-
work maintains low, stable curvature and a
smooth loss trajectory. As depth increases, both
λmax(H) and λmax(Gt) exhibit higher levels
and variability, and the training loss becomes
prone to spikes and divergence. These re-
sults support the hypothesis that deeper stacks
go beyond the stability margin with increased
curvature. This observation motivates our ar-
chitecture warm-up: start shallow (low curva-
ture), when during the learning rate warm-up
(where the stability threshold increasingly be-
comes lower) and progressively unlock addi-
tional layers when the stability margin is higher.

4.4 STABILITY
OF ARCHITECTURE WARM-UP

As discussed in Sec. 3.1.1, under the stability
threshold, λmax(Gt) scales as O(1/λmax(Gt))
against η in first-order methods. Thus, larger η
demands smaller effective curvature. We show
that architecture warm-up, which suppresses
curvature early and lets it grow in a controlled
manner, substantially widens the range of stable learning rates: across peak-η sweeps, models
trained with architecture warm-up maintain bounded λmax(Gt) and avoid loss spikes, whereas

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 1000 2000 3000 4000 5000 6000

Training step

4

6

8

10

Lo
ss

32 layers
16 layers
8 layers

(a) Training loss

0 1000 2000 3000 4000 5000 6000

Training step

0.0

0.2

0.4

0.6

0.8

1.0

m
ax

(H
)

32 layers
16 layers
8 layers

(b) λmax(H)

0 1000 2000 3000 4000 5000 6000

Training step

0.0

0.2

0.4

0.6

0.8

1.0

m
ax

(G
t)

32 layers
16 layers
8 layers

(c) λmax(Gt)

Figure 3: Curvature vs. depth. We train transformers of increasing depth/size—8 layers (640M), 16 layers
(1B), and 32 layers (3B)—with a learning rate 8 × 10−3 and track training loss, λmax(H), and λmax(Gt).
Consistent with Sec. 3.2.1, curvature rises with depth: the 16 and 32-layer models exhibit pronounced spikes
in λmax(H) and λmax(Gt) during learning-rate warmup, crossing the stability boundary and diverging. By
contrast, the 8-layer model maintains lower curvature and converges stably (λmax(H) and λmax(Gt) are nor-
malized).

vanilla networks (no architecture warm-up) exhibit rapid curvature escalation and unstable con-
vergence under the same settings (Fig. 4).

(a) η = 3 × 10−3 (b) η = 6 × 10−3 (c) η = 8 × 10−3 (d) λmax(Gt)@η = 8 × 10−3

Figure 4: Convergence under varying stability thresholds. As the stability boundary scales as O(1/η)
for fixed curvature, we sweep the peak learning rate η (i.e., tightening/relaxing the threshold) and compare
architecture warm-up to an unaltered baseline. As η increases (smaller 1/η margin), the baseline becomes
increasingly unstable, whereas architecture warm-up maintains stable convergence across the range. Models
are trained on FineWeb.

4.5 COMPARISON AGAINST OTHER STABILIZATION METHODS

We compare architecture warmup to three state-of-the-art stabilization baselines, QK-Norm (Henry
et al., 2020), QK-Clip (Team et al., 2025), and Softcap (Gemma Team, 2024), and an unmodified
baseline (Fig. 5) with a peak LR of 8 × 10−3. To this end, we use 16-layer, 1B parameter models.
Note that we intentionally use a higher learning rate to observe the performance of methods under
a smaller stability threshold. Architecture Warmup consistently reduces spike frequency and mag-
nitude, avoids divergence, and exhibit faster convergence where other methods destabilize, yielding
more reliable training across datasets. Interestingly, we found QK-CLIP to be quite unstable, of-
ten diverging to NaN values mid training. Table 1 shows validation perplexities. As QK-norm
was performing best on FineWeb, we compare against it on a longer training run, up to Chinchilla
(Hoffmann et al., 2022) compute optimal (see App. D)

0k 1k 2k 3k 4k 5k

Training step

4

6

8

10

Lo
ss

Arch-warmup (ours)
Qk-Norm
Softcap
Qk-Clip
Baseline

(a) FineWeb

0k 1k 2k 3k 4k 5k

Training step

4

6

8

10

Lo
ss

Arch-warmup (ours)
Qk-Norm
Softcap
Qk-Clip
Baseline

(b) DCLM

0k 1k 2k 3k 4k 5k

Training step

4

6

8

10

Lo
ss

Arch-warmup (ours)
Qk-Norm
Softcap
Qk-Clip
Baseline

(c) Olmo-Mix

Figure 5: Comparison against existing stabilization techniques. Across datasets, competing methods con-
verge more slowly and exhibit frequent loss spikes, sometimes leading to divergence, whereas our method
remains stable and consistently faster to train.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 1: Perplexity (↓) across three datasets and five methods. ∗ indicates the diverged runs.

Dataset Baseline QK-Norm QK-Clip Softcap Arch-Warmup

FineWeb ∗ 49.88±0.003 ∗ 51.41±0.002 25.02 ± 0.001
DCLM 165.62 ±0.04 61.57±0.012 ∗ 43.38±0.03 22.64 ± 0.002
OLMo-Mix ∗ ∗ ∗ ∗ 18.54 ± 0.001

4.6 CAN LEARNING-RATE WARMUP BE REPLACED BY ARCHITECTURE WARM-UP?

0 1k 2k 3k 4k 5k

Training step

4

6

8

10

12

Lo
ss

Baseline (w/o LR wu)
Arch-warmup (w/o LR wu)
Baseline (w/ LR wu)

Figure 6: Replacing LR warmup with
Arch-warmup. A 16-layer (1B) Trans-
former trained on FineWeb using architec-
ture warm-up without learning-rate warmup
attains on-par convergence while exhibiting
more stable training.

Learning-rate warmup stabilizes early training by enlarg-
ing the stability margin (∝ O(1/η)) when curvature is
high; as η increases, this margin tightens. Architecture
warm-up plays the complementary role by directly con-
trolling curvature: keep depth (and thus λmax(Gt)) low
initially, then increase depth as training progresses. We
therefore ask whether LR warmup is necessary if curva-
ture is gated by architecture. As shown in Fig. 6, models
equipped with architecture warmup, achieves on par con-
vergence while exceeding the stability of LR warmup.

Here, the baseline is trained with a standard, well-tuned
learning-rate schedule with warm-up. Concretely, we use
commonly adopted hyperparameters for LLaMA-style
models: peak learning rate 4 × 10−4, weight decay 0.1,
2000 warm-up steps, and a cosine decay schedule.

The architecture-warm-up–only variant is obtained by
taking this baseline configuration and removing only the LR warm-up: we set the number of warm-
up steps to zero, keep the peak learning rate and decay schedule unchanged, keep all optimizer
hyperparameters (including weight decay) fixed, and then enable architecture warm-up.

This suggests architecture warm-up has the potential to replace LR warmup in practice, or be com-
bined with it for an even wider stable operating range.

5 RELATED WORKS

Transformer training stability. Stabilization strategies for transformers span attention- and
optimizer-level interventions. On the attention side, soft-capping limits logit magnitudes to avoid
softmax saturation (Gemma Team, 2024), and QK-normalization bounds dot-product scales (Henry
et al., 2020). On the optimization side, methods adjust or regularize updates (e.g., Adafactor and
related stabilizers) (Shazeer & Stern, 2018; Wortsman et al., 2023a). These techniques target proxi-
mate causes of loss spikes and are complementary to curvature-based diagnostics that we focus on.
Edge of Stability. The Edge of Stability (EoS) describes the regime where training hovers near the
stability boundary, with η λmax(H)≈ 2 for full-batch GD (Cohen et al., 2021; Wang et al., 2022).
Follow-ups generalized the phenomenon to preconditioned/adaptive methods, replacing H by the
preconditioned Hessian Gt = P

−1/2
t HP

−1/2
t , and analyzed implicit self-stabilization dynamics

(Cohen et al., 2022; Damian et al., 2023; Chen & Bruna, 2023). Collectively, these works suggest
that practical training often operates close to the spectral stability limit, motivating online control of
the (preconditioned) top curvature rather than relying solely on fixed hypertuning. Our work aligns
with this direction, but extend the analysis from previously explored small scale models to billion
parameter transformers proposing an efficient HVP estimation mechanism. Progressive growing
of Transformers. Prior work increases Transformer capacity during training to cut cost while pre-
serving accuracy: Progressively Stacking adds layers stagewise in BERT (Gong et al., 2019; Chen
et al., 2020); function-preserving expansions (Net2Net, Network Morphism) enlarge depth/width
without changing the realized function (Chen et al., 2016; Wei et al., 2016); and LiGO learns growth
operators to expand pretrained Transformers with minimal regression (Li et al., 2023). Our focus is
stability: we keep the full graph present from initialization and and ensure that depth unlocking pre-
serves curvature. This ties growth to an explicit stability criterion, rather than fixed stage schedules
or efficiency alone, and further avoids computational graph surgery.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 CONCLUSION
We introduce a scalable framework for curvature-aware training of large Transformers. First, we
propose an online estimator for the top eigenvalue of the (preconditioned) Hessian that reuses the
previous step’s eigenvector as a warm start. Under standard smoothness and eigengap assumptions,
we prove that the leading eigendirection is slow-moving, which yields rapid geometric convergence
of warm-started power iteration. Then, we propose architecture warm-up: a function-preserving
mechanism that progressively increases the effective depth according to a curvature budget, thereby
controlling the growth of effective curvature. Empirically, this combination broadens the range of
stable learning rates, reduces loss spikes, and improves training reliability.

REFERENCES

Allen Institute for AI. Olmo-mix-1124: Stage-1 pretraining mixture for olmo 2. https:
//huggingface.co/datasets/allenai/olmo-mix-1124, 2024. Dataset card (Hug-
ging Face).

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, et al. Language models are few-shot learners. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2020.

Lei Chen and Joan Bruna. Beyond the edge of stability via two-step gradient updates. In Proceedings
of the 40th International Conference on Machine Learning (ICML), volume 202 of Proceedings of
Machine Learning Research, pp. 2617–2665. PMLR, 2023. URL https://proceedings.
mlr.press/v202/chen23b.html.

Shuo Chen et al. Progressively stacking 2.0: A multi-stage layerwise training method for bert. arXiv
preprint arXiv:2011.13635, 2020. URL https://arxiv.org/abs/2011.13635.

Tianqi Chen, Ian Goodfellow, and Jonathon Shlens. Net2net: Accelerating learning via knowledge
transfer. arXiv preprint arXiv:1511.05641, 2016. URL https://arxiv.org/abs/1511.
05641.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022. URL
https://arxiv.org/abs/2204.02311.

Jeremy Cohen, Cameron Musco, and Christopher Musco. Gradient descent on neural networks
typically occurs at the edge of stability. In International Conference on Learning Representations
(ICLR), 2021.

Jeremy M Cohen, Behrooz Ghorbani, Shankar Krishnan, Naman Agarwal, Sourabh Medapati,
Michal Badura, Daniel Suo, David Cardoze, Zachary Nado, George E Dahl, et al. Adaptive
gradient methods at the edge of stability. arXiv preprint arXiv:2207.14484, 2022.

Alex Damian, Eshaan Nichani, and Jason D. Lee. Self-stabilization: The implicit bias of gradient
descent at the edge of stability. In International Conference on Learning Representations (ICLR),
2023. URL https://openreview.net/pdf?id=nhKHA59gXz.

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,
Andreas Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, Rodolphe Jenatton,
Lucas Beyer, Michael Tschannen, Anurag Arnab, Xiao Wang, Carlos Riquelme, Matthias Min-
derer, Joan Puigcerver, Utku Evci, Manoj Kumar, Sjoerd van Steenkiste, Gamaleldin F. Elsayed,
Aravindh Mahendran, Fisher Yu, Avital Oliver, Fantine Huot, Jasmijn Bastings, Mark Patrick Col-
lier, Alexey A. Gritsenko, Vighnesh Birodkar, Cristina Vasconcelos, Yi Tay, Thomas Mensink,
Alexander Kolesnikov, Filip Pavetic, Dustin Tran, Thomas Kipf, Mario Lučić, Xiaohua Zhai,
Daniel Keysers, Jeremiah Harmsen, and Neil Houlsby. Scaling vision transformers to 22 bil-
lion parameters. In Proceedings of the 40th International Conference on Machine Learn-
ing (ICML), volume 202 of Proceedings of Machine Learning Research. PMLR, 2023. URL
https://proceedings.mlr.press/v202/dehghani23a.html.

10

https://huggingface.co/datasets/allenai/olmo-mix-1124
https://huggingface.co/datasets/allenai/olmo-mix-1124
https://proceedings.mlr.press/v202/chen23b.html
https://proceedings.mlr.press/v202/chen23b.html
https://arxiv.org/abs/2011.13635
https://arxiv.org/abs/1511.05641
https://arxiv.org/abs/1511.05641
https://arxiv.org/abs/2204.02311
https://openreview.net/pdf?id=nhKHA59gXz
https://proceedings.mlr.press/v202/dehghani23a.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize
for deep nets. arXiv preprint arXiv:1703.04933, 2017. URL https://arxiv.org/abs/
1703.04933.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

Gemma Team. Gemma 2: Improving open language models at a practical size. arXiv preprint
arXiv:2408.00118, 2024. URL https://arxiv.org/abs/2408.00118. Includes atten-
tion logit soft-capping details.

Amir Ghorbani, Vivek Krishnan, and Ying Xiao. An investigation into neural net hessians. In
International Conference on Machine Learning (ICML), pp. 2232–2241. PMLR, 2019.

Justin Gilmer, Behrooz Ghorbani, Ankush Garg, Sneha Kudugunta, Behnam Neyshabur, David Car-
doze, George Dahl, Zachary Nado, and Orhan Firat. A loss curvature perspective on training
instability in deep learning. arXiv preprint arXiv:2110.04369, 2021.

Yichen Gong, Yelong He, Weizhu Li, et al. Efficient training of BERT by progressively stack-
ing. In International Conference on Machine Learning (ICML), 2019. URL https://
proceedings.mlr.press/v97/gong19a/gong19a.pdf.

Diego Granziol. Hessformer: Hessians at foundation scale. arXiv:2501.XXXX, 2025.

Alex Henry, Prudhvi Raj Dachapally, Shubham Pawar, and Yuxuan Chen. Query-key normalization
for transformers. In Findings of the Association for Computational Linguistics: EMNLP 2020,
pp. 4246–4253, 2020. URL https://aclanthology.org/2020.findings-emnlp.
379.pdf.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances
in Neural Information Processing Systems (NeurIPS), 2020.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Sally Henderson, Jacob Menick, Katie Millican, et al. Training
compute-optimal large language models. In Advances in Neural Information Processing Systems
(NeurIPS), 2022. URL https://arxiv.org/abs/2203.15556.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gener-
alization in neural networks. In Advances in Neural Information Processing Systems (NeurIPS),
volume 31, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, et al. Scaling laws for neural
language models. arXiv preprint arXiv:2001.08361, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss land-
scape of neural nets. In Advances in Neural Information Processing Systems (NeurIPS), 2018.
URL https://arxiv.org/abs/1712.09913.

Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Gadre, Hritik Bansal,
Etash Guha, Sedrick Keh, Kushal Arora, et al. Datacomp-lm: In search of the next generation
of training sets for language models. arXiv preprint arXiv:2406.11794, 2024. URL https:
//arxiv.org/abs/2406.11794.

Zhen Li, Xiuyu Chen, Ji Liu, and Zhangyang Wang. Learning to grow pretrained models for efficient
transformer training. In International Conference on Learning Representations (ICLR), 2023.
URL https://openreview.net/forum?id=LmD2gq2kWUY.

James Martens. Deep learning via hessian-free optimization. In ICML, 2010.

11

https://arxiv.org/abs/1703.04933
https://arxiv.org/abs/1703.04933
https://arxiv.org/abs/2408.00118
https://proceedings.mlr.press/v97/gong19a/gong19a.pdf
https://proceedings.mlr.press/v97/gong19a/gong19a.pdf
https://aclanthology.org/2020.findings-emnlp.379.pdf
https://aclanthology.org/2020.findings-emnlp.379.pdf
https://arxiv.org/abs/2203.15556
https://proceedings.neurips.cc/paper/2018/hash/5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html
https://arxiv.org/abs/1712.09913
https://arxiv.org/abs/2406.11794
https://arxiv.org/abs/2406.11794
https://openreview.net/forum?id=LmD2gq2kWUY

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Igor Molybog, Peter Albert, Moya Chen, Zachary DeVito, David Esiobu, Naman Goyal, Punit Singh
Koura, Diana Liskovich, Sharan Narang, Andrew Poulton, Ruan Silva, Binh Tang, Puxin Xu,
Yuchen Zhang, Melanie Kambadur, Stephen Roller, and Susan Zhang. A theory on adam
instability in large-scale machine learning. arXiv preprint arXiv:2304.09871, 2023. URL
https://arxiv.org/abs/2304.09871.

Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita
Bhagia, Yuling Gu, Shengyi Huang, Matt Jordan, et al. 2 olmo 2 furious. arXiv preprint
arXiv:2501.00656, 2024.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pam Mishkin, Chong Zhang,
et al. Training language models to follow instructions with human feedback. In Advances in
Neural Information Processing Systems (NeurIPS), 2022.

Guilherme Penedo, Hynek Kydlı́ček, Loubna Ben Allal, Anton Lozhkov, Margaret Mitchell,
Colin Raffel, Leandro von Werra, and Thomas Wolf. The fineweb datasets: De-
canting the web for the finest text data at scale. In NeurIPS Datasets and Bench-
marks Track, 2024. URL https://papers.nips.cc/paper/2024/file/
370df50ccfdf8bde18f8f9c2d9151bda-Paper-Datasets_and_Benchmarks_
Track.pdf. See also arXiv:2406.17557.

Nasim Rahaman, Devansh Arpit, Aristide Baratin, Felix Draxler, Min Lin, Fred A. Hamprecht,
Yoshua Bengio, and Aaron Courville. On the spectral bias of neural networks. In Proceedings
of the 36th International Conference on Machine Learning (ICML), volume 97 of Proceedings of
Machine Learning Research, pp. 5301–5310. PMLR, 2019. URL https://proceedings.
mlr.press/v97/rahaman19a.html.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2022.

Levent Sagun, Léon Bottou, and Yann LeCun. Eigenvalues of the hessian in deep learning: Sin-
gularity and beyond. arXiv preprint arXiv:1611.07476, 2016. URL https://arxiv.org/
abs/1611.07476.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning, pp. 4596–4604. PMLR, 2018.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
Yanru Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. arXiv
preprint arXiv:2507.20534, 2025.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2017.

Zixuan Wang, Zhouzi Li, and Jian Li. Analyzing sharpness along gd trajectory: Progressive sharp-
ening and edge of stability. Advances in Neural Information Processing Systems, 35:9983–9994,
2022.

Tao Wei, Changhu Wang, Yong Rui, and Changyou Chen. Network morphism. In ICML Workshop
on Principles of Machine Learning, 2016. URL https://www.microsoft.com/en-us/
research/publication/modularized-morphing-of-neural-networks/.

Mitchell Wortsman, Tim Dettmers, Luke Zettlemoyer, Ari Morcos, Ali Farhadi, and Ludwig
Schmidt. Stable and low-precision training for large-scale vision-language models. Advances
in Neural Information Processing Systems, 36:10271–10298, 2023a.

Mitchell Wortsman, Peter J Liu, Lechao Xiao, Katie Everett, Alex Alemi, Ben Adlam, John D Co-
Reyes, Izzeddin Gur, Abhishek Kumar, Roman Novak, et al. Small-scale proxies for large-scale
transformer training instabilities. arXiv preprint arXiv:2309.14322, 2023b.

12

https://arxiv.org/abs/2304.09871
https://papers.nips.cc/paper/2024/file/370df50ccfdf8bde18f8f9c2d9151bda-Paper-Datasets_and_Benchmarks_Track.pdf
https://papers.nips.cc/paper/2024/file/370df50ccfdf8bde18f8f9c2d9151bda-Paper-Datasets_and_Benchmarks_Track.pdf
https://papers.nips.cc/paper/2024/file/370df50ccfdf8bde18f8f9c2d9151bda-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.mlr.press/v97/rahaman19a.html
https://proceedings.mlr.press/v97/rahaman19a.html
https://arxiv.org/abs/1611.07476
https://arxiv.org/abs/1611.07476
https://www.microsoft.com/en-us/research/publication/modularized-morphing-of-neural-networks/
https://www.microsoft.com/en-us/research/publication/modularized-morphing-of-neural-networks/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zhi-Qin John Xu, Yaoyu Zhang, Tao Luo, Yanyang Xiao, and Zheng Ma. Frequency principle:
Fourier analysis sheds light on deep neural networks. arXiv preprint arXiv:1901.06523, 2019.
URL https://arxiv.org/abs/1901.06523.

Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W. Mahoney. PyHessian: Neural networks
through the lens of the hessian. In IEEE International Conference on Big Data, pp. 581–590.
IEEE, 2020.

Shuangfei Zhai, Tatiana Likhomanenko, Etai Littwin, Dan Busbridge, Jason Ramapuram, Yizhe
Zhang, Jiatao Gu, and Joshua M Susskind. Stabilizing transformer training by preventing attention
entropy collapse. In International Conference on Machine Learning, pp. 40770–40803. PMLR,
2023.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer,
Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, Luke Zettlemoyer, et al. Opt:
Open pre-trained transformer language models. arXiv preprint arXiv:2205.01068, 2022. URL
https://arxiv.org/abs/2205.01068.

13

https://arxiv.org/abs/1901.06523
https://arxiv.org/abs/2205.01068

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

7 APPENDIX

A PROOFS

A.1 PROOF FOR THEOREM 1

Proof. First, We recall a useful result from Davis–Kahan, sin-Θ theorem.

Let Σ, Σ̂ ∈ Rp×p be symmetric, with eigenvalues λ1 ≥ · · · ≥ λp and λ̂1 ≥ · · · ≥ λ̂p,
respectively. Fix 1 ≤ r ≤ s ≤ p and assume that

min{λr−1 − λr, λs − λs+1} > 0,

where we define λ0 = ∞ and λp+1 = −∞. Let d = s − r + 1, and let V =

(vr, vr+1, . . . , vs) ∈ Rp×d and V̂ = (v̂r, v̂r+1, . . . , v̂s) ∈ Rp×d have orthonormal columns
satisfying Σvj = λjvj and Σ̂ v̂j = λ̂j v̂j for j = r, r + 1, . . . , s. Then

∥∥sinΘ(V̂ , V)
∥∥
F
≤

2 min
(
d1/2 ∥Σ̂− Σ∥op, ∥Σ̂− Σ∥F

)
min

(
λr−1 − λr, λs − λs+1

) . (2)

We set r = s = 1. Then we have, min
(
λr−1 − λr, λs − λs+1

)
= λ1 − λ2. Further, V̂ = v̂1 and

V = v1, d = 1.

Substituting Σ̂ = Hk+1 and Σ = Hk to above result, and with the Lipschitz condition, we have

sin εk ≤
2 min

(
∥Hk+1 −Hk∥op, ∥Hk+1 −Hk∥F

)
γ

And we know, min
(
∥Hk+1 −Hk∥op, ∥Hk+1 −Hk∥F

)
= ∥Hk+1 −Hk∥F.

So we have,

sin εk ≤
∥Hk+1 −Hk∥

γ
≤ LH

γ
∥θk+1 − θk∥. (17)

For gradient descent, ∥θk+1− θk∥ = ηk∥∇f(θk)∥. If θk+1 = θk − ηkgk with E[gk | θk] = ∇f(θk)
and E∥gk∥2 ≤ G2, then E

[
sin εk | θk

]
≤ (LH/γ) ηk E∥gk∥ ≤ (LH/γ) ηkG.

A.2 PROOF FOR THEOREM 2

Proof. For a symmetric matrix with simple top eigenvalue,

tan θt+1 =
∥(I − v1v

⊤
1)Ay(t)∥

|⟨v1, Ay(t)⟩|
≤ |λ2|
|λ1|

tan θt = ρ tan θt,

hence by induction
tan θt ≤ ρ t tan θ0.

Take A = Hk+1, v1 = v1,k+1, and y(0) = v1,k. Then

θ0 = ∠
(
y(0), v1,k+1

)
= ∠

(
v1,k, v1,k+1

)
= εk,

so with ρk+1 := λ2,k+1/λ1,k+1 ∈ [0, 1),

tan θt ≤ ρ t
k+1 tan εk,

Expand y in the Hk+1-eigenbasis:

y⊤Hk+1y =
∑
i≥1

λi,k+1 ⟨y, vi,k+1⟩2.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Therefore,

λ1,k+1 − y⊤Hk+1y =
∑
i≥2

(
λ1,k+1 − λi,k+1

)
⟨y, vi,k+1⟩2 ≤

(
λ1,k+1 − λ2,k+1

)∑
i≥2

⟨y, vi,k+1⟩2,

and since
∑

i≥2⟨y, vi,k+1⟩2 = sin2 θt,

0 ≤ λ1,k+1 − y⊤Hk+1y ≤
(
λ1,k+1 − λ2,k+1

)
sin2 θt.

Using equation A.2 and sin θt ≤ tan θt on [0, π
2],

λ1,k+1 − y⊤Hk+1y ≤
(
λ1,k+1 − λ2,k+1

)
ρ 2t
k+1 tan2 εk = (1− ρk+1)λ1,k+1 ρ

2t
k+1 tan2 εk,

which is equation 8.

By Theorem 1,

tan εk ≤ sin εk ≤
LH

γ
∥θk+1 − θk∥ ⇒ tan θt ≤ ρ t

k+1

LH

γ
∥θk+1 − θk∥.

To ensure θt ≤ δ ∈ (0, π
2), it suffices that

ρ t
k+1

LH

γ
∥θk+1 − θk∥ ≤ tan δ.

Since 0 < ρk+1 < 1, taking logs yields

t ≥
log

(
LH

γ ∥θk+1 − θk∥
)
− log(tan δ)

log(1/ρk+1)
,

.

Let x ∼ Unif(Sd−1). With high probability,

⟨x, v1,k+1⟩2 = Θ(1/d) ⇒ tan∠(x, v1,k+1) = Θ(
√
d).

Thus tan θt ≤ ρ t
k+1 Θ(

√
d) ≤ tan δ implies

trand ≳
1
2 log d− log(tan δ)

log(1/ρk+1)
,

and subtracting the warm-start bound gives equation 9.

A.3 IMPLEMENTATION SKETCH OF WARM-START POWER ITERATION

Algorithm 1 Warm-Start HVP Power Iteration for λmax(H(θ))

1: input: parameters θ; optional warm vector ywarm with ∥ywarm∥2 = 1; optional previous esti-
mate λ̂warm; tolerance ε

2: initialize:

3: y(0) ←
{

ywarm, if provided
randn unit vector, otherwise

4: (early exit check) If λ̂warm provided, optionally compute residual r(0) ← ∥(H(θ) −
λ̂warmI)y

(0)∥2 (1 HVP). If r(0) ≤ ε |λ̂warm|, return (λ̂warm, y
(0)).

5: for t = 0, 1, 2, . . . do
6: z(t+1) ← H(θ) y(t) {Pearlmutter HVP}
7: guard: If ∥z(t+1)∥2 = 0 (numerical underflow), reinitialize y(t) to a fresh random unit vector

and continue.
8: y(t+1) ← z(t+1)/∥z(t+1)∥2 {power update}
9: λ̂(t+1) ← ⟨y(t+1), H(θ) y(t+1)⟩ {one extra HVP or reuse if cached}

10: warm-start stabilization (optional):
11: (i) Momentum mix: if t = 0 and ywarm provided, set y(1) ←

normalize
(
α y(1) + (1−α) ywarm

)
with small (1−α) (e.g., 0.1).

12: (ii) Cosine guard: if t = 0 and |⟨y(1), ywarm⟩| < τ (e.g., τ=0.1), replace y(1) ← ywarm.
13: stopping test: If ∥(H(θ)− λ̂(t+1)I)y(t+1)∥2 ≤ ε |λ̂(t+1)|, return (λ̂(t+1), y(t+1)).
14: end for

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Note that the proposed warm-start strategy is particularly well suited for large neural networks where
HVPs are expensive and frequent monitoring of curvature is desirable. By amortizing eigenvector
estimation across training steps, we enable efficient online tracking of sharpness without compro-
mising accuracy. To the best of our knowledge, this continuation-style use of power iteration has
not been previously explored in the deep learning literature, despite being a standard idea in numer-
ical linear algebra. Our theoretical guarantees and empirical results demonstrate its clear superiority
over random initialization for curvature estimation in neural network training.

B DEPTH, LIPSCHITZ GROWTH, AND CURVATURE

In this section, we discuss the connection between the depth and the stability margin with formal
results.

Setup and notation. Let gθ = ΦL ◦ · · · ◦ Φ1 with residual blocks Φℓ(x) = x + Bℓ(x). Write
Jℓ(x) = I + ∂Bℓ(x), Jxgθ for the input Jacobian, and x0 = x, xℓ = Φℓ(xℓ−1). Norms are operator
(spectral) norms.
Lemma 1 (Depth–Lipschitz bound). For all x,

∥Jxgθ(x)∥ ≤
L∏

ℓ=1

∥Jℓ(xℓ−1)∥ ≤ exp
(L∑

ℓ=1

∥∂Bℓ(xℓ−1)∥
)
.

Proof. By the chain rule, Jxgθ(x) = JL(xL−1) · · · J1(x0). Submultiplicativity gives ∥Jxgθ(x)∥ ≤∏
ℓ ∥Jℓ(xℓ−1)∥. Next use ∥I +A∥ ≤ 1 + ∥A∥ ≤ exp(∥A∥) to obtain the exponential bound.

Lemma 2 (Parameter sensitivity growth). Let Jθgθ(x) denote the Jacobian of gθ w.r.t. parameters.
Then ∥Jθgθ(x)∥ ≤ C

∏L
ℓ=1 ∥Jℓ(xℓ−1)∥ for some constant C depending on block parametrization

(e.g., linear maps and elementwise activations yield C = 1 up to dimension factors). In particular,
Jθgθ inherits the multiplicative growth in Lemma 1.

Proof. Differentiate the composition with respect to block parameters; each term contains a product
of input Jacobians Jk before and after the block where parameters appear. Bounding each product
by

∏
ℓ ∥Jℓ∥ gives the stated inequality (constants collect per-block linear maps).

Proposition 1 (Curvature bound via Gauss–Newton). Assume ℓ is twice differentiable in z = gθ(x)
with λmax(∇2

zℓ) ≤ Lℓ. Then

λmax

(
∇2

θL(θ)
)
≤ Lℓ

(
sup
x
∥Jθgθ(x)∥

)2
.

Proof. For each (x, y), the Gauss–Newton term is Jθgθ(x)⊤∇2
zℓ Jθgθ(x) ⪯ Lℓ Jθgθ(x)

⊤Jθgθ(x),
hence the stated bound after taking expectation and the maximum eigenvalue.

Corollary 1 (Preconditioned curvature). Let Pt be SPD diagonal with mtI ⪯ Pt ⪯MtI . Then for
Gt = P

−1/2
t HP

−1/2
t ,

1

Mt
λmax(H) ≤ λmax(Gt) ≤

1

mt
λmax(H).

Hence the depth dependence of λmax(Gt) mirrors that of λmax(H) up to constant factors (mt,Mt).

Proof. For SPD Pt, Rayleigh quotients give λmax(Gt) = max∥v∥=1 v
⊤P

−1/2
t HP

−1/2
t v =

max∥u∥Pt=1 u
⊤Hu, where ∥u∥2Pt

= u⊤Ptu. Using mt∥u∥2 ≤ ∥u∥2Pt
≤ Mt∥u∥2 yields the

bounds.

Corollary 2 (Stability margin scales as 1/λmax). For a quadratic model of the local dynamics,
gradient descent is stable if η < 2/λmax(H); with momentum/Adam, the admissible region for
(η, β) scales as O(1/λmax(Gt)). Combining Lemma 1, Lemma 2, and Proposition 1 shows that
increasing depth L raises λmax(H) (and λmax(Gt)), thereby shrinking the stability margin.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C SELF-STABILIZATION OF CURVATURE DURING TRAINING

C.1 CURVATURE AS TRAINING PROGRESSES

We track the raw curvature λmax(H(θt)), the effective (preconditioned) curvature λmax(Gt), and the
preconditioner inverse P−1

t for a 16-layer (1B) model. As shown in Fig. 7, after an initial transient
the dynamics enter a regime where λmax(Gt) oscillates within a narrow band, consistent with the
edge-of-stability picture. This self-stabilization supports increasing depth later in training, once
curvature has settled. Notably, P−1

t continues to grow over time, indicating a steadily strengthening
preconditioning effect from the optimizer.

0 1k 2k 3k 4k 5k 6k

Training step

0.0

0.2

0.4

0.6

0.8

1.0

P
1/

2

16 layers (1B)

(a) P−1

0 1k 2k 3k 4k 5k 6k

Training step

0.0

0.2

0.4

0.6

0.8

1.0

m
ax

(H
)

16 layers (1B)

(b) λmax(H)

0 1k 2k 3k 4k 5k 6k

Training step

0.0

0.2

0.4

0.6

0.8

1.0

m
ax

(G
t)

16 layers

(c) λmax(Gt)

Figure 7: Self stabilization of transformers. After an initial transient period, both the raw cur-
vature and the preconditioned curvature settles down to a stable, lower band. This supports the
effectiveness of increasing the depth later in the training. Interestingly, P−1 keeps growing as the
training progresses (shown values are normalized).

C.2 SELF STABILIZATION OF CURVATURE DURING TRAINING

We observe a self-stabilization effect in Transformers (see Fig. 8): when curvature rises, the op-
timizer’s preconditioner counteracts it. In Adam-like methods with Pt = diag(

√
vt + ε) and

vt+1 = β2vt + (1 − β2)g
⊙2
t , larger curvature typically coincides with larger gradients gt, which

increases vt and thus Pt. Since the effective curvature is Gt = P
−1/2
t HP

−1/2
t , a larger Pt (smaller

P−1
t) reduces Rayleigh quotients and damps λmax(Gt), yielding a stabilizing feedback. See below

for a formal discussion.

Self-stabilization via adaptive preconditioning (and its limits). Let Ht :=H(θt) and consider
an Adam-like update θt+1 = θt − ηM−1

t m̂t with diagonal preconditioner Mt = diag(
√
vt + ε),

where
vt+1 = β2vt + (1− β2) g

⊙2
t , gt = ∇L(θt).

The effective (preconditioned) curvature experienced by the optimizer is

Gt = M
−1/2
t Ht M

−1/2
t , λmax(Gt) = max

∥x∥=1
x⊤M

−1/2
t HtM

−1/2
t x.

When curvature or gradient energy surges, g⊙2
t increases and (after EMA smoothing) Mt+1 ↑; con-

sequently M
−1/2
t+1 ↓ and all Rayleigh quotients of Gt+1 decrease. A simple bound follows from the

Rayleigh quotient and diagonal ordering:

λmax(Gt+1) ≤ ∥M−1/2
t+1 ∥ 22 λmax(Ht+1) =

λmax(Ht+1)

mini (
√
vt+1,i + ε)2

.

Thus, as vt+1 grows, the preconditioner shrinks the effective curvature, exhibiting an implicit self-
stabilization that nudges the product η λmax(Gt) toward the stability band (the EoS).

However, this is not sufficient to ensure stable convergence. Despite this automatic balancing, there
are three failure modes: (i) lag: vt reacts on a time scale ∼ 1

1−β2
steps, so sharp, step-scale spikes

in Ht can push η λmax(Gt) beyond the boundary before Mt catches up; (ii) anisotropy: Mt is
diagonal, whereas Ht can be highly anisotropic; a coordinate-wise preconditioner cannot instantly

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 8: Self-stabilization in Transformers. Close-ups over particular training windows of
second- and first-order statistics for 8-, 16-, and 32-layer models. Each row (left→right) shows
λmax(H), P−1, and λmax(Gt). When the Hessian spikes, the preconditioner dips, reducing
λmax(Gt) and partially stabilizing the effective curvature; however, this feedback is not always
sufficient to keep λmax(Gt) within the stability threshold.

suppress a sharp direction that is a dense combination of coordinates; (iii) coupling with momen-
tum: with β1 > 0, a large mt can overshoot even if Mt starts to grow, transiently amplifying the
update.

In summary, adaptive methods do provide a reactive stabilizer, M−1
t tends to drop as curvature

rises, reducing λmax(Gt), but this mechanism is imperfect under fast spikes, strong anisotropy, or
momentum coupling. Our architecture warm-up complements this by acting proactively on Ht

itself: by keeping depth (and hence the operator norm of intermediate Jacobians) low early and
unlocking blocks later in training, we keep the system inside the stability envelope even when the
optimizer’s preconditioner has not yet adapted.

D VALIDATION AT COMPUTE OPTIMAL

Since QK-Norm was the strongest baseline in our shorter FineWeb runs, we benchmark it at the
Chinchilla compute-optimal setting (Hoffmann et al., 2022): a 1B-parameter, 16-layer model trained
for 25B tokens on FineWeb. This experiment tests whether early-phase gains from Arch-Warmup
persist at compute-optimal budget. As Table 2 shows, Arch-Warmup outperforms QK-Norm at
this scale, indicating stronger convergence and stability that carry through to the compute-optimal
regime

E SENSITIVITY TO THE WARM UP SCHEDULE

.

By default, we keep the model at half depth until learning-rate warmup completes, then unlock the
remaining layers in four groups spaced by 500 training iterations to reach full depth. Performance,
however, is not sensitive to this spacing: Fig. 10 shows that even with zero spacing (i.e., unlocking
all remaining layers at once at peak learning rate), results are similar. The reason is that newly
enabled blocks are zero-initialized, so their contribution to the Jacobian/Hessian—and thus the total
(preconditioned) curvature—grows gradually from the half-depth baseline. The model therefore

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

0k 1k 2k 3k 4k 5k

Training step

4

6

8

10

Lo
ss

Arch-warmup (spacing 500)
Arch-warmup (spacing 250)
Arch-warmup (spacing 0)

Figure 9: Convergence with different architecture warm-up schedules. We observe that our method
is not highly sensitive to the schedule.

Table 2: Validation perplexity (PPL) on FineWeb at Chinchilla compute-optimal (1B, 16 layers, 25B
tokens). Lower is better.

Method Val PPL ↓
QK-Norm 20.28
Softcap 32.44
Arch-Warmup 18.35

never encounters a sudden “full-depth” curvature jump at the unlock step; instead, capacity and
curvature are realized progressively as those weights move away from zero.

0k 1k 2k 3k 4k 5k

Training step

5

10

15

20

m
ax

(G
t)

Baseline
Arch-warmup

Figure 10: Log-scale plot for the evolution of λmax(Gt) with a peak learning rate of 8× 10−3.

19

	Introduction
	Preliminaries
	Edge of Stability
	Computing the Largest Hessian Eigenvalue via HVP-based Power Iteration

	Methodology
	Online Curvature Tracking with Warm-Started Power Iteration
	Extension to the Preconditioned Hessian

	Architecture Warm-Up
	Deeper Networks Increase curvature and Shrink Stability Threshold
	Progressive Depth via constraining Block Weights to zero

	Experiments
	Slowly Moving Top Eigenvectors
	Effectiveness of Warm-Start Power Iteration
	Depth, Effective Curvature, and Stability
	Stability of architecture warm-up
	Comparison against other stabilization methods
	Can learning-rate warmup be replaced by architecture warm-up?

	Related works
	Conclusion
	Appendix
	Proofs
	Proof for Theorem 1
	Proof for Theorem 2
	Implementation sketch of warm-start power iteration

	Depth, Lipschitz growth, and curvature
	Self-Stabilization of Curvature During Training
	Curvature as training progresses
	Self stabilization of curvature during training

	Validation at compute optimal
	Sensitivity to the warm up schedule

