

# 000 001 002 003 004 005 TAMING CURVATURE: ARCHITECTURE WARM-UP FOR 006 STABLE TRANSFORMER TRAINING 007 008 009

010 **Anonymous authors**  
011 Paper under double-blind review  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  
024  
025  
026

## ABSTRACT

027  
028  
029  
030  
031  
032  
033  
034  
035  
036  
037  
038  
039  
040  
041  
042  
043  
044  
045  
046  
047  
048  
049  
050  
051  
052  
053  
Training billion-parameter Transformers is often brittle, with transient loss spikes and divergence that waste compute. Even though the recently developed Edge of Stability (EoS) theory provides a powerful tool to understand and control the stability of optimization methods via the (preconditioned) curvature, these curvature-controlling methods are not popular in large-scale Transformer training due to the complexity of curvature estimation. To this end, we first introduce a fast *online* estimator of the largest (preconditioned) Hessian eigenvalue (i.e., curvature) based on a *warm-started* variant for power iteration with Hessian–vector products. We show theoretically, and verify empirically, that the proposed method makes per-iteration curvature tracking feasible at billion-parameter scale while being more accurate. Using this tool, we find that training instabilities coincide with surges in preconditioned curvature and that curvature grows with depth. Motivated by these observations, we propose *architecture warm-up*: progressively growing network depth to carefully control the preconditioned Hessian and stabilize training. Experiments on large Transformers validate that our approach enables efficient curvature tracking and reduces instabilities compared to existing state-of-the-art stabilization techniques without slowing down convergence.

## 1 INTRODUCTION

Scaling up Transformers has driven remarkable progress across domains, from large language models that power conversational systems to diffusion-based models for image generation (Vaswani et al., 2017; Kaplan et al., 2020; Brown et al., 2020; Ouyang et al., 2022; Ho et al., 2020; Rombach et al., 2022). Yet, despite these gains, large models frequently exhibit training instabilities, i.e., large loss spikes and even divergence, especially at scale (Chowdhery et al., 2022; Dehghani et al., 2023; Zhang et al., 2022; Molybog et al., 2023; OLMO et al., 2024). As billion-parameter training becomes the norm, improving training stability is paramount: transient instabilities, i.e., loss spikes, gradient blow-ups, or full divergence, can consume vast compute budgets and wall-clock time. As models and datasets scale, stabilizing optimization reduces monetary and environmental costs while improving reproducibility and throughput, enabling dependable progress.

Stabilization at scale often relies on *empirical controls* for attention and optimization: soft-capping the logits (Gemma Team, 2024),  $QK$ -normalization or  $QK$ -clip to bound dot-product magnitudes of queries and keys (Henry et al., 2020; Dehghani et al., 2023; Team et al., 2025), and learning-rate or batch warmup to temper early steps (Gilmer et al., 2021; Dubey et al., 2024). In parallel, the Edge of Stability (EoS) literature shows that gradient methods gravitate toward regions where the product of step size and curvature approaches the stability boundary from classical quadratic optimization theory: for full-batch Gradient Descent (GD), training spends long phases with  $\eta \lambda_{\max}(H) \approx 2$  (Cohen et al., 2021; Wang et al., 2022)—where  $\lambda_{\max}(H)$  and  $\eta$  denotes the largest eigenvalue of the Hessian  $H$  and the step size, respectively—while for preconditioned/adaptive methods the relevant quantity is the *preconditioned*<sup>1</sup> curvature (Cohen et al., 2022; Damian et al., 2023). Thus the stability threshold is inversely proportional to the step size and directly governed by the largest eigenvalue of the (preconditioned) Hessian. Although many of the previous works in stabilizing Transformers can be interpreted as attempts to keep  $\eta \lambda_{\max}(H)$  below this boundary (Zhai et al.,

<sup>1</sup>Preconditioned Hessian should be considered for optimizers that use preconditioned updates, and adaptive methods are shown to operate at optimizer dependent stability thresholds (Cohen et al., 2022).

054 2023; Wortsman et al., 2023b; Gilmer et al., 2021; Shazeer & Stern, 2018), *verifying* such claims has  
 055 been difficult in practice, because estimating the curvature online for billion-parameter Transformers  
 056 remains memory and compute-intensive.

057 To this end, we first introduce an efficient method to estimate the curvature *online* using *warm-*  
 058 *started power-iteration* with Hessian-Vector Products (HVP) tailored for large models. Our key  
 059 insight is that the top eigenvector of the (preconditioned) Hessian is *slow-moving* and warm-starting  
 060 with the previous step’s eigenvector significantly 1) reduces the iteration count and 2) improves ac-  
 061 curacy. In particular, we require *less than five HVPs per step* ( $\lesssim 5$ ), an order of magnitude lower than  
 062 existing methods (Graniol, 2025), while seamlessly extending to the time-varying preconditioned  
 063 matrix for adaptive methods. We provide theoretical bounds for the change in the eigenvector and the  
 064 resultant iteration saving. **This makes online curvature tracking feasible for billion-parameter**  
 065 **Transformers.** We then use this approach to confirm that loss spikes in large-scale Transformers  
 066 correlate with spikes in preconditioned curvature and show that the latter increases with the network  
 067 depth.

068 Combining these insights, we introduce an *architecture warm-up* strategy for stable training. The  
 069 idea is to ensure the (preconditioned) curvature follows the trend of the stability threshold such that  
 070 the stability criterion is satisfied throughout training. Precisely, we restrict the model to have small  
 071 curvature during the initial learning rate warm-up phase, and gradually relax this restriction (i.e.,  
 072 increase the curvature) when we start decaying the learning rate, noting that the stability threshold  
 073 is inversely proportional to the learning rate. To control the curvature, we adopt a holistic approach  
 074 of controlling the number of (effective) Transformer layers (i.e., depth), rather than making fine-  
 075 grained modifications to each layer. Specifically, we freeze some Transformer layers to identity at  
 076 initialization, and gradually unfreeze these layers as per a predefined schedule, ensuring a smooth in-  
 077 crease in curvature. This architecture warm-up approach can be readily integrated to existing training  
 078 recipes and standard architectures as it does not require dynamic computation graph surgery, outper-  
 079 forms existing stabilization techniques, and expands the range of stable learning rates without any  
 080 performance penalty. We provide extensive experiments demonstrating accurate curvature tracking  
 081 and consistent stability gains across large transformer settings compared to existing methods.

## 082 2 PRELIMINARIES

084 Below, we briefly review the literature on Edge of Stability (EoS) (Cohen et al., 2021; 2022), and  
 085 power iteration to compute the largest eigenvalue of the Hessian using Hessian-Vector Products  
 086 (HVP) (Martens, 2010), upon which we build our work. We refer the interested reader to the respec-  
 087 tive papers for more details.

### 089 2.1 EDGE OF STABILITY

091 For a quadratic objective  $\mathcal{L}(\theta) = \frac{1}{2}\theta^\top A\theta + b^\top \theta + c$ , gradient descent with step size  $\eta$  is stable only  
 092 if  $\eta < 2/\lambda_{\max}(A)$ . Locally, neural network training admits the quadratic approximation:

$$093 \mathcal{L}(\theta + \Delta) \approx \mathcal{L}(\theta) + \nabla \mathcal{L}(\theta)^\top \Delta + \frac{1}{2} \Delta^\top H(\theta) \Delta, \quad (1)$$

095 so the Hessian  $H(\theta)$  plays the role of  $A$ , and  $\lambda_{\max}(H(\theta))$  determines the maximum stable step  
 096 size: violating  $\eta \leq 2/\lambda_{\max}(H)$  causes oscillation or divergence along the sharpest direction. Em-  
 097 pirically, full-batch GD often operates near the *Edge of Stability* (EoS) where  $\eta \lambda_{\max}(H) \approx 2$   
 098 (Cohen et al., 2021). Adaptive methods (e.g., Adam (Kingma & Ba, 2014)) show an analo-  
 099 gous behavior with the time-varying *preconditioned* curvature  $\lambda_{\max}(P_t^{-1/2} H P_t^{-1/2})$  (Cohen et al.,  
 100 2022), where  $P_t^{-1}$  denotes the update preconditioning. For Adam, the preconditioner takes the  
 101 form:  $P_t = \text{diag}(\sqrt{v_t} + \varepsilon)$  where  $v_{t+1} = \beta_2 v_t + (1 - \beta_2) g_t^2$ . Note that the stability crite-  
 102 rion is optimizer-dependent and for Adam with  $\beta_1 = 0.9$ , adaptive EoS is determined to be  
 103  $\eta \lambda_{\max}(P_t^{-1/2} H P_t^{-1/2}) \approx 38$ .

104 This enables a powerful tool to understand and control the stability of optimization methods by  
 105 controlling the learning rate and the preconditioned curvature. However, this theory has only been  
 106 verified on small-scale models ( $\lesssim 25$ M parameters), mainly due to the memory complexity of com-  
 107 puting the Hessian, or the time complexity associated with estimating an iterative approximation.  
 Below, we first discuss a well-established power-iteration method to compute the curvature without

materializing the Hessian explicitly, and later introduce our approach that reduces its iteration complexity by an order of magnitude, making online curvature tracking feasible and more accurate at billion-parameter scale.

## 2.2 COMPUTING THE LARGEST HESSIAN EIGENVALUE VIA HVP-BASED POWER ITERATION

Given  $\theta \in \mathbb{R}^d$  and the loss  $f : \mathbb{R}^d \rightarrow \mathbb{R}$ , we can estimate the top eigenpair  $\{\lambda_{\max}(H(\theta)), v_{\max}(H(\theta))\}$ , where  $H(\theta) := \nabla^2 f(\theta)$  without explicitly forming  $H(\theta)$ . For any vector  $v$ ,

$$H(\theta)v = \nabla_\theta(g(\theta)^\top v) = \frac{d}{d\epsilon} g(\theta + \epsilon v) \Big|_{\epsilon=0}. \quad (2)$$

Thus,  $H(\theta)v$ , i.e., the Hessian-Vector-product (HVP), is a *directional derivative* of the gradient (which quantifies how much the curvature would change in the direction of  $v$ ) and can be obtained without materializing full  $H$  (Martens, 2010). This costs roughly two backprop passes and uses  $O(1)$  extra memory beyond the retained graph. The efficient computation of HVP allows us to compute the  $\lambda_{\max}(H(\theta))$  and  $v_{\max}(H(\theta))$  with power iteration. Let  $H(\theta)$  be symmetric. Suppose its eigenvalues satisfy:  $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_d$ ,  $\rho := \frac{\lambda_2}{\lambda_1} \in [0, 1)$ . Starting from a unit vector  $y^{(0)}$ , define the normalized power iteration:

$$z^{(t+1)} \leftarrow Hy^{(t)}, \quad y^{(t+1)} \leftarrow \frac{z^{(t+1)}}{\|z^{(t+1)}\|_2}, \quad \hat{\lambda}^{(t+1)} \leftarrow \langle y^{(t+1)}, Hy^{(t+1)} \rangle. \quad (3)$$

With above iterations,  $z^{(t)} \rightarrow v_{\max}$  and  $\hat{\lambda}^{(t)} \rightarrow \lambda_{\max}$  as  $t \rightarrow \infty$ . The only primitive is  $u \mapsto Hu$ , i.e., an HVP. This in practice is expensive for large  $H$ , since power iteration requires multiple steps to converge from a random initialization, each requiring two backward passes. This is more prominent in high dimensions where the initial alignment with the leading eigenvector is  $O(1/\sqrt{d})$  in expectation, where  $d$  is the dimension of the parameter vector.

## 3 METHODOLOGY

In this section, we first elaborate on our key insight that the (preconditioned) curvature of the Hessian is *slow-moving* with theoretical and empirical justifications, enabling us to develop a *warm-started power iteration* variant to compute the curvature efficiently with less than five HVP steps. This allows us to verify that the loss spikes in large-scale transformers are also a result of spikes in curvature, verifying the EoS theory at scale. Based on this, we later develop our *architecture warm-up* strategy that restricts the curvature of the model at the early learning rate warm-up phase and increases the curvature as the learning rate starts to decay, ensuring the stability criterion of adaptive EoS is satisfied throughout training.

### 3.1 ONLINE CURVATURE TRACKING WITH WARM-STARTED POWER ITERATION

We show that under practical assumptions, the largest eigenvalue of the Hessian of neural networks evolves slowly. Specifically, under Lipschitz continuity of the Hessian and a nonvanishing spectral gap  $\gamma$ , we can precisely bound the change in the leading eigenvector between successive steps:

$$\sin \angle(v_{1,k+1}, v_{1,k}) \leq \frac{L_H}{\gamma} \|\theta_{k+1} - \theta_k\|, \quad (4)$$

Thus, when step sizes and gradients shrink during training,  $v_{1,k}$  is an increasingly accurate initializer for  $v_{1,k+1}$ . This result is formally presented below.

**Theorem 1.** *Let  $\{\theta_k\}_{k \geq 0}$  be a parameter sequence and  $H_k := H(\theta_k)$ . Assume that there exists  $L_H < \infty$  with  $\|H(\theta) - H(\theta')\| \leq L_H \|\theta - \theta'\|$  for all  $\theta, \theta'$ . Equivalently,  $\|\nabla^3 f(\theta)\|_{\text{op}} \leq L_H$  and Along the parameter path considered,  $\gamma(\theta) := \lambda_1(H) - \lambda_2(H) \geq \gamma > 0$ . Then, with  $v_{1,k}$  a unit top eigenvector of  $H_k$  and  $\varepsilon_k := \angle(v_{1,k+1}, v_{1,k})$ , we have*

$$\sin \varepsilon_k \leq \frac{\|H_{k+1} - H_k\|}{\gamma} \leq \frac{L_H}{\gamma} \|\theta_{k+1} - \theta_k\|. \quad (5)$$

162 Further, with stochastic gradient descent with step size  $\eta_k$  such that  $\theta_{k+1} = \theta_k - \eta_k g_k$  with  
 163  $\mathbb{E}[g_k \mid \theta_k] = \nabla f(\theta_k)$  and  $\mathbb{E}\|g_k\|^2 \leq G^2$ , we have  
 164

$$165 \mathbb{E}[\sin \varepsilon_k \mid \theta_k] \leq (L_H/\gamma) \eta_k \mathbb{E}\|g_k\| \leq (L_H/\gamma) \eta_k G. \quad (6)$$

166 Leveraging the above result, we propose a simple yet novel modification: **warm-starting power**  
 167 **iteration across training steps**. At iteration  $k$ , suppose we have obtained an estimate of the top  
 168 eigenvector  $v_{1,k}$  of the Hessian  $H_k = \nabla^2 f(\theta_k)$ . At the next training iteration, instead of reinitializing  
 169 power iteration from a random vector, we initialize from  $v_{1,k}$  and run power iteration on  $H_{k+1}$ .  
 170 Below, we quantify the gain in iteration count due to warm-start.  
 171

172 **Theorem 2.** Let  $H_k = H(\theta_k)$  have eigenvalues  $\lambda_{1,k} \geq \lambda_{2,k} \geq \dots$  and unit eigenvectors  $v_{i,k}$ . Set  
 173  $\rho_{k+1} := \lambda_{2,k+1}/\lambda_{1,k+1} \in [0, 1)$ . Define the successive misalignment  $\varepsilon_k := \angle(v_{1,k+1}, v_{1,k})$ . Run  
 174 normalized power iteration on  $H_{k+1}$ :

$$175 \quad y^{(t+1)} = \frac{H_{k+1}y^{(t)}}{\|H_{k+1}y^{(t)}\|}, \quad y^{(0)} = v_{1,k}, \quad (7)$$

178 and let  $\alpha_t := \angle(y^{(t)}, v_{1,k+1})$ . Then:

$$180 \quad 0 \leq \lambda_{1,k+1} - y^{(t)\top} H_{k+1} y^{(t)} \leq (\lambda_{1,k+1} - \lambda_{2,k+1}) \sin^2 \alpha_t \leq (1 - \rho_{k+1}) \lambda_{1,k+1} \rho_{k+1}^{2t} \tan^2 \varepsilon_k. \quad (8)$$

182 Also, let  $t$  and  $t_{\text{rand}}$  be the number of iterations needed for warm start and random initialization to  
 183 achieve convergence, respectively. Then, with a high probability, we have,  
 184

$$185 \quad t_{\text{rand}} - t \approx \frac{\frac{1}{2} \log d - \log\left(\frac{L_H}{\gamma} \|\theta_{k+1} - \theta_k\|\right)}{\log(1/\rho_{k+1})}. \quad (9)$$

188 Hence warm-starting is strictly advantageous whenever  $\frac{L_H}{\gamma} \|\theta_{k+1} - \theta_k\| \ll d^{1/2}$ .  
 189

### 190 3.1.1 EXTENSION TO THE PRECONDITIONED HESSIAN

192 When the optimization algorithm incorporates momentum and adaptive learning-rate scaling (i.e.,  
 193 preconditioning), stability depends on the *preconditioned* curvature. Let us consider the Adam  
 194 update:  $\theta_{t+1} = \theta_t - \eta P_t^{-1} m_{t+1}$ , where  $m_t$  is the momentum, updated as an exponential moving  
 195 average  $m_{t+1} = \beta_1 m_t + (1 - \beta_2) g_t$  with  $g_t = \nabla \mathcal{L}(\theta_t)$  and the preconditioner is the square-root  
 196 of the second moment of the gradients. The *effective* curvature, therefore, is the spectrum of

$$197 \quad G_t := P_t^{-1/2} H(\theta_t) P_t^{-1/2}, \quad (10)$$

199 not of  $H(\theta_t)$  itself. Because the preconditioner  $P_t$  changes slowly when  $\beta_2 \approx 1$  and  $H(\theta_t)$  is  
 200 Lipschitz smooth,  $G_t$  evolves smoothly along the training trajectory. As a result, our warm-starting  
 201 extends verbatim to the preconditioned Hessian. That is, the previous warm-start analysis for  $H(\theta)$   
 202 carries over by replacing  $H$  with  $G_t$ . Define the top eigenvector  $u_{1,t}$  of  $G_t$  and the eigengap  $\gamma_t^{\text{eff}} =$   
 203  $\lambda_1(G_t) - \lambda_2(G_t)$ . From Theorem 1 we can directly obtain:

$$205 \quad \sin \angle(u_{1,t+1}, u_{1,t}) \leq \frac{\|G_{t+1} - G_t\|_2}{\gamma_t^{\text{eff}}}. \quad (11)$$

207 So under a Lipschitz Hessian ( $\|H(\theta_{t+1}) - H(\theta_t)\| \leq L_H \|\theta_{t+1} - \theta_t\|$ ) and slowly varying  $P_t$  (e.g.,  
 208  $\|P_{t+1}^{-1/2} - P_t^{-1/2}\| \leq L_P \|\theta_{t+1} - \theta_t\|$  with  $L_P \propto (1 - \beta_2)$ ), the top eigendirection of  $G_t$  is *slow-moving*.  
 209 Consequently, power iteration on  $G_{t+1}$  *warm-started* from  $u_{1,t}$  enjoys the same benefits as  
 210 in the non-preconditioned case. This allows us to compute HVP for  $G_t$  without new primitives.  
 211

212 **Warm-started tracking of the preconditioned Hessian.** At step  $t$ , we form the diagonal pre-  
 213 condition  $P_t = \text{diag}(\sqrt{v_t} + \varepsilon)$  from the optimizer state. We estimate the top eigenpair of  
 214  $G_t := P_t^{-1/2} H(\theta_t) P_t^{-1/2}$  by power iteration with a *warm start* from the previous step. Concretely:  
 215 (i) initialize  $y^{(0)}$  with the transported eigenvector  $y^{(0)} = \text{normalize}\left(P_t^{1/2} P_{t-1}^{-1/2} u_{1,t-1}\right)$  (or simply

216  $y^{(0)} = u_{1,t-1}$  if transport is omitted); (ii) for  $\tau = 0, 1, \dots$  perform one *preconditioned HVP* power  
 217 step

$$218 \quad u = P_t^{-1/2} y^{(\tau)}, \quad v = H(\theta_t) u \text{ (HVP)}, \quad z = P_t^{-1/2} v, \quad y^{(\tau+1)} = z/\|z\|_2; \quad (12)$$

220 (iii) compute the Rayleigh estimate  $\hat{\lambda}_t = (y^{(\tau)})^\top G_t y^{(\tau)} = u^\top v$  and stop when the change in  
 221  $\hat{\lambda}_t$  falls below a tolerance. The output  $(\hat{\lambda}_t, u_{1,t} = y^{(\tau^*)})$  is reused at step  $t+1$ . Each iteration  
 222 costs a single HVP plus cheap elementwise scalings by  $P_t^{\pm 1/2}$ ; with warm starts,  $\tau^*$  is typically  
 223  $< 5$ , enabling efficient, step-by-step tracking of the *effective* curvature that governs stability under  
 224 momentum/Adam (e.g., see Fig. 3).

### 226 3.2 ARCHITECTURE WARM-UP

228 Now, we are ready to introduce our approach to control the curvature. Specifically, we first review  
 229 that deeper networks have the potential to increase the curvature, and provide an approach to seam-  
 230 lessly increase the number of trainable layers without introducing any function or gradient discon-  
 231 tinuities. Recall that, at the EoS, the learning rate and curvature are inversely proportional; therefore,  
 232 we keep the network shallow in the early learning rate warm-up phase, and gradually increase (ef-  
 233 fective) depth when we start decaying the learning rate, ensuring the stability criterion is satisfied  
 234 throughout training. The proposed method can be readily integrated into existing training recipes  
 235 and assumes a standard transformer architecture without requiring hardware-level operations.

#### 236 3.2.1 DEEPER NETWORKS INCREASE CURVATURE AND SHRINK STABILITY THRESHOLD

238 Let  $g_\theta = \Phi_L \circ \dots \circ \Phi_1$  be an  $L$ -block residual Transformer with  $\Phi_\ell(x) = x + B_\ell(x)$ . For the input  
 239 Jacobian,

$$240 \quad \|J_x g_\theta(x)\| \leq \prod_{\ell=1}^L \|I + \partial B_\ell(x_{\ell-1})\| \leq \exp\left(\sum_{\ell=1}^L \|\partial B_\ell(x_{\ell-1})\|\right). \quad (13)$$

243 For losses  $\mathcal{L}(\theta) = \mathbb{E}_{(x,y)}[\ell(g_\theta(x), y)]$  with  $\lambda_{\max}(\nabla_z^2 \ell) \leq L_\ell$ , the Gauss–Newton bound yields

$$244 \quad \lambda_{\max}(\nabla_\theta^2 \mathcal{L}(\theta)) \leq L_\ell \left(\sup_x \|J_\theta g_\theta(x)\|\right)^2, \quad (14)$$

246 and  $J_\theta g_\theta$  inherits the multiplicative growth in Eq. 13 through backprop. Hence  $\lambda_{\max}(H)$  (and,  
 247 under a Positive Semi-Definite (PSD) diagonal preconditioner  $P_t$ ,  $\lambda_{\max}(G_t)$ ) increases with depth  
 248  $L$ , shrinking the first-order stability margin. See App. B for more formal results and discussions.

250 **Remarks.** Although we can derive an upperbound as in Eq. 14 it is not sufficient to conclude  
 251 that curvature must strictly increase with depth. Empirically, the curvature might be lower than the  
 252 bound due to architecture components such as residual connections, and normalization (Sagun et al.,  
 253 2016; Li et al., 2018; Ghorbani et al., 2019; Yao et al., 2020), or due to the specific parameterization  
 254 of the model (Dinh et al., 2017). Furthermore, since the *preconditioned* geometry is the relevant  
 255 one for adaptive optimizers, efficient *online* tracking of (curvature) top eigenvalues, especially the  
 256 preconditioned analogue  $\lambda_{\max}(G_t)$ , is more informative than pointwise analyses at initialization or  
 257 at local optima (Yao et al., 2020; Sagun et al., 2016; Ghorbani et al., 2019). Our method enables  
 258 such tracking up to multi-billion-parameter Transformers, where we observe (in Sec. 4.3) that (i)  
 259 preconditioned curvature spikes predominantly during learning-rate warm-up and (ii) increases with  
 260 depth.

#### 261 3.2.2 PROGRESSIVE DEPTH VIA CONSTRAINING BLOCK WEIGHTS TO ZERO

263 Recall that at the stability threshold, the (preconditioned) curvature  $\lambda_{\max}(G_t)$  scales inversely with  
 264 the learning rate  $\eta$ : larger  $\eta$ , the *smaller* the admissible  $\lambda_{\max}(G_t)$  must be to remain stable. Con-  
 265sequently, while  $\eta$  ramps up during warmup (tightening the threshold), we keep the network’s *ef-  
 266 fective depth* low to limit  $\lambda_{\max}(G_t)$ . As training proceeds—after the peak learning rate or during  
 267 learning-rate decay, when the stability threshold relaxes—we progressively enable additional depth,  
 268 activating the full model only once the stability margin permits it. To this end, we wish to add depth  
 269 keeping *controlling curvature* and avoiding function discontinuities. Note that the transformer block  
 function can be expanded as follows: Let the input to the  $l^{\text{th}}$  layer be  $\mathbf{X}^l \in \mathbb{R}^{b \times n \times d}$ , where  $b, n$ , and

270  $d$  are the batch size, sequence length, and embedding dimension, respectively. Then the function  
 271 admits a recursive structure as

$$272 \quad \mathbf{X}^{l+1} = \mathbf{X}_{\text{hidden}}^l \mathbf{W}_{p_2}^l + \mathbf{X}_{\text{concat}}^l \mathbf{W}_{p_1}^l + \mathbf{X}^l, \quad (15)$$

273 where hidden and concat are the hidden layer of the feedforward network and the concatenated output  
 274 of the attention heads, respectively.  $\mathbf{W}_{p_1}^l$  and  $\mathbf{W}_{p_2}^l$  are linear projection weights. A natural idea is to  
 275 hold only the projection matrices at zero (i.e.,  $\mathbf{W}_{p_1}^l = \mathbf{W}_{p_2}^l = \mathbf{0}$ ) so the block computes the identity  
 276 with  $\mathbf{X}_{l+1} = \mathbf{X}_l$ , and can later be “unlocked.” However, this can still induce a *discontinuous jump in*  
 277 *the network’s Lipschitz constant* at unlock: even a small change in  $\mathbf{W}_{p_1}^l$  or  $\mathbf{W}_{p_2}^l$  immediately injects  
 278 the pre-existing (randomly initialized) attention/FFN paths into the residual stream. Formally, the  
 279 input–output Jacobian of the  $l$ -th block satisfies the first-order bound  
 280

$$281 \quad \|J_{\mathbf{X}^l} \Phi_l - I\| \leq \|\mathbf{W}_{p_1}^l\| \|J_{\mathbf{X}^l} \mathbf{X}_{\text{concat}}^l\| + \|\mathbf{W}_{p_2}^l\| \|J_{\mathbf{X}^l} \mathbf{X}_{\text{hidden}}^l\|. \quad (16)$$

283 If all other weights retain their (nonzero) random initialization while the projections are zeroed, then  
 284  $\|J_{\mathbf{X}^l} \mathbf{X}_{\text{concat}}^l\|$  and  $\|J_{\mathbf{X}^l} \mathbf{X}_{\text{hidden}}^l\|$  can already be large at the moment of unlock; consequently, even  
 285 tiny updates to  $\mathbf{W}_{p_1}^l$  or  $\mathbf{W}_{p_2}^l$  can *abruptly raise*  $\|J_{\mathbf{X}^l} \Phi_l\|$ , inflating  $\sup_x \|J_{\theta} g_{\theta}(x)\|$  of the bound  
 286 Eq. 14, and thus increasing the curvature. This sudden elevation can push the model over the stability  
 287 threshold, often manifesting as loss spikes or instabilities.

288 To remedy this, and to guarantee continuity of both the *function* and its *first derivative* at un-  
 289 lock, we set all the weights (except RMSNorm weights)<sup>2</sup> and exclude these parameters from the  
 290 optimizer while the block is locked. Under this constraint,  $\mathbf{X}_{\text{concat}}^l = \mathbf{0}$  and  $\mathbf{X}_{\text{hidden}}^l = \mathbf{0}$ , so  
 291  $\mathbf{X}^{l+1} = \mathbf{X}^l$  and  $J_{\mathbf{X}^l} \Phi_l = I$ , i.e., the block is an exact identity with *no increase* in the Jacobian.  
 292 When the block is unlocked, all paths start from zero, and the Jacobian perturbation grows smoothly  
 293 as the newly trainable weights move away from zero. This prevents the instantaneous jump in effec-  
 294 tive Jacobian and thus avoids the associated curvature spike. In practice, we keep all block weights  
 295 at zero and frozen within the optimizer until a curvature criterion is met; then we start training them  
 296 with zero initialization. This *architecture warm-up* keeps the product  $\eta \lambda_{\max}(G_t)$  within the stability  
 297 envelope while depth increases, yielding smoother loss and more reliable training.

298 **Does architecture warm up compromise representation capacity?** We provide intuitions from  
 299 two perspectives; (i) *Spectral bias / F-principle*: deep nets fit *low*-frequency structure first, with  
 300 higher frequencies learned later (Rahaman et al., 2019; Xu et al., 2019); a shallow stack suf-  
 301 fices early, so temporarily limiting depth does not bottleneck what the model actually learns. (ii)  
 302 *Function-space/NTK view*: early training operates in a near-linear, low-curvature regime where  
 303 learning aligns with dominant, low-complexity components (Jacot et al., 2018); additional layers  
 304 can be enabled later to increase expressivity without restricting the attainable solution class. Our  
 305 convergence results, and prior work on progressive, function-preserving growth, corroborate that  
 306 deferred depth does not harm final performance (Chen et al., 2016; Wei et al., 2016; Gong et al.,  
 307 Chen et al., 2020).

## 309 4 EXPERIMENTS

311 We evaluate decoder-only Transformers (Llama 3-style (Dubey et al., 2024)) on three large-scale  
 312 corpora: Fineweb (Penedo et al., 2024), DCLM (Li et al., 2024) and Olmo-Mix (Allen Institute  
 313 for AI, 2024). We reserve a held-out set for validation. Unless otherwise noted, we train with  
 314 context length 1024, embedding dimension 2048, 32 heads, global batch size 1024, weight decay  
 315 0.01, AdamW optimizer with standard parameters, and a linear warmup over 2000 steps followed  
 316 by linear decay. Tokenization is GPT-2 (vocabulary size 50,000). We use five power iterations  
 317 with warm-start for online curvature tracking. Our experiments include models scaling up to 3-  
 318 billion parameters. **Architecture warm-up schedule:** Unless noted otherwise, we keep the model  
 319 at half depth until learning-rate warmup completes, then unlock the remaining layers in four groups,  
 320 spaced by 500 training iterations, to reach full depth. Although we use this schedule, we observed  
 321 that performance is not tightly coupled to this spacing (see App. E).

322 <sup>2</sup>Excluding RMSNorm weights is critical since they show inferior convergence from zero initialization.

324  
325

## 4.1 SLOWLY MOVING TOP EIGENVECTORS

326  
327  
328  
329  
330  
331  
332  
333  
334

Theorem 1 predicts that the leading Hessian eigendirection moves slowly along the optimization path. To verify this empirically (without any estimator bias), we compute the *exact* Hessian for a 4-layer Transformer and measure the principal angle between successive top eigenvectors across training steps. We choose a shallow network as computing the exact Hessian of a large model is computationally prohibitive. Fig. 1 shows that these angles are typically  $< 0.1$  rad ( $\approx 5.7^\circ$ ) (except for a few spikes), confirming the “slow drift” property.

335  
336  
3374.2 EFFECTIVENESS  
OF WARM-START POWER ITERATION338  
339  
340  
341  
342  
343  
344  
345  
346  
347

We compare our warm-started estimator to a cold-start (random) power method on a 4-layer model, using the relative error  $|\hat{\lambda} - \lambda_{\text{exact}}|$  as the metric. Figure 2 reports error versus iteration count. We ran each experiment five times and report the error bars. Warm start achieves high-accuracy estimates even with  $\approx 5$  iterations, while the cold start error is higher with even  $\geq 20$  iterations. Further, the variance of the cold-start error is constantly high across the number of iterations. As shown in Fig. 2 this is due to the occasional large errors at certain steps (sensitivity to the initializer) even with a high iteration count. This confirms that reusing the previous step’s top direction substantially reduces the HVP budget and stabilizes power convergence.

348

## 4.3 DEPTH, EFFECTIVE CURVATURE, AND STABILITY

349  
350

We examine the impact of depth on curvature and stability by training 8, 16, and 32-layer models on the FineWeb dataset with peak learning rate  $8 \times 10^{-3}$ . Figure 3 plots  $\lambda_{\text{max}}(H)$  and  $\lambda_{\text{max}}(G_t)$  over training. The 8-layer network maintains low, stable curvature and a smooth loss trajectory. As depth increases, both  $\lambda_{\text{max}}(H)$  and  $\lambda_{\text{max}}(G_t)$  exhibit higher levels and variability, and the training loss becomes prone to spikes and divergence. These results support the hypothesis that deeper stacks go beyond the stability margin with increased curvature. This observation motivates our *architecture warm-up*: start shallow (low curvature), when during the learning rate warm-up (where the stability threshold increasingly becomes lower) and progressively unlock additional layers when the stability margin is higher.

368  
369  
3704.4 STABILITY  
OF ARCHITECTURE WARM-UP371  
372  
373  
374  
375  
376  
377

As discussed in Sec. 3.1.1, under the stability threshold,  $\lambda_{\text{max}}(G_t)$  scales as  $O(1/\lambda_{\text{max}}(G_t))$  against  $\eta$  in first-order methods. Thus, larger  $\eta$  demands *smaller* effective curvature. We show that *architecture warm-up*, which suppresses curvature early and lets it grow in a controlled manner, substantially widens the range of stable learning rates: across peak- $\eta$  sweeps, models trained with architecture warm-up maintain bounded  $\lambda_{\text{max}}(G_t)$  and avoid loss spikes, whereas



Figure 1: **Leading eigenvector is slow-moving.** For a 4-layer Transformer, we compute the *exact* top Hessian eigenvector at each train step and plot the principal angle to the next step. Consistent with Theorem 1, angles are typically  $< 0.1$  radians, with only rare outliers.



Figure 2: **Effectiveness of warm-start HVP.** (a,b) Online tracking error (vs. exact curvature) using 5 and 20 power-iteration steps, respectively, over the course of training. (c) Error vs. number of power-iteration steps with error bars over 5 random seeds (both model init and HVP probes). The warm-started estimator converges faster (even with 5 HVPs) and attains lower error and variance than cold-start baselines.



387 **Figure 3: Curvature vs. depth.** We train transformers of increasing depth/size—8 layers (640M), 16 layers  
388 (1B), and 32 layers (3B)—with a learning rate  $8 \times 10^{-3}$  and track training loss,  $\lambda_{\max}(H)$ , and  $\lambda_{\max}(G_t)$ .  
389 Consistent with Sec. 3.2.1, curvature rises with depth: the 16 and 32-layer models exhibit pronounced spikes  
390 in  $\lambda_{\max}(H)$  and  $\lambda_{\max}(G_t)$  during learning-rate warmup, crossing the stability boundary and diverging. By  
391 contrast, the 8-layer model maintains lower curvature and converges stably ( $\lambda_{\max}(H)$  and  $\lambda_{\max}(G_t)$  are nor-  
392 malized).

393 vanilla networks (no architecture warm-up) exhibit rapid curvature escalation and unstable con-  
394 vergence under the same settings (Fig. 4).



404 **Figure 4: Convergence under varying stability thresholds.** As the stability boundary scales as  $O(1/\eta)$   
405 for fixed curvature, we sweep the peak learning rate  $\eta$  (i.e., tightening/relaxing the threshold) and compare  
406 *architecture warm-up* to an unaltered baseline. As  $\eta$  increases (smaller  $1/\eta$  margin), the baseline becomes  
407 increasingly unstable, whereas architecture warm-up maintains stable convergence across the range. Models  
408 are trained on FineWeb.

#### 4.5 COMPARISON AGAINST OTHER STABILIZATION METHODS

411 We compare architecture warmup to three state-of-the-art stabilization baselines, QK-Norm (Henry  
412 et al., 2020), QK-Clip (Team et al., 2025), and Softcap (Gemma Team, 2024), and an unmodified  
413 baseline (Fig. 5) with a peak LR of  $8 \times 10^{-3}$ . To this end, we use 16-layer, 1B parameter models.  
414 Note that we intentionally use a higher learning rate to observe the performance of methods under  
415 a smaller stability threshold. Architecture Warmup consistently reduces spike frequency and mag-  
416 nitude, avoids divergence, and exhibit faster convergence where other methods destabilize, yielding  
417 more reliable training across datasets. Interestingly, we found QK-CLIP to be quite unstable, of-  
418 ten diverging to NaN values mid training. Table 1 shows validation perplexities. As QK-norm  
419 was performing best on FineWeb, we compare against it on a longer training run, up to Chinchilla  
420 (Hoffmann et al., 2022) compute optimal (see App. D)



430 **Figure 5: Comparison against existing stabilization techniques.** Across datasets, competing methods con-  
431 verge more slowly and exhibit frequent loss spikes, sometimes leading to divergence, whereas our method  
432 remains stable and consistently faster to train.

432

Table 1: Perplexity ( $\downarrow$ ) across three datasets and five methods. \* indicates the diverged runs.

433

434

435

436

437

438

439

440

## 441 4.6 CAN LEARNING-RATE WARMUP BE REPLACED BY ARCHITECTURE WARM-UP?

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

Learning-rate warmup stabilizes early training by enlarging the stability margin ( $\propto O(1/\eta)$ ) when curvature is high; as  $\eta$  increases, this margin tightens. *Architecture warm-up* plays the complementary role by directly *controlling curvature*: keep depth (and thus  $\lambda_{\max}(G_t)$ ) low initially, then increase depth as training progresses. We therefore ask whether LR warmup is necessary if curvature is gated by architecture. As shown in Fig. 6, models equipped with architecture warmup, achieves on par convergence while exceeding the stability of LR warmup.

457

Here, the baseline is trained with a standard, well-tuned learning-rate schedule with warm-up. Concretely, we use commonly adopted hyperparameters for LLaMA-style models: peak learning rate  $4 \times 10^{-4}$ , weight decay 0.1, 2000 warm-up steps, and a cosine decay schedule.

458

The *architecture-warm-up-only* variant is obtained by taking this baseline configuration and removing only the LR warm-up: we set the number of warm-up steps to zero, keep the peak learning rate and decay schedule unchanged, keep all optimizer hyperparameters (including weight decay) fixed, and then enable architecture warm-up.

460

This suggests architecture warm-up has the potential to *replace* LR warmup in practice, or be combined with it for an even wider stable operating range.

461

462

463

464

## 5 RELATED WORKS

465

466

**Transformer training stability.** Stabilization strategies for transformers span attention- and optimizer-level interventions. On the attention side, *soft-capping* limits logit magnitudes to avoid softmax saturation (Gemma Team, 2024), and *QK-normalization* bounds dot-product scales (Henry et al., 2020). On the optimization side, methods adjust or regularize updates (e.g., Adafactor and related stabilizers) (Shazeer & Stern, 2018; Wortsman et al., 2023a). These techniques target proximate causes of loss spikes and are complementary to curvature-based diagnostics that we focus on.

467

**Edge of Stability.** The *Edge of Stability* (EoS) describes the regime where training hovers near the stability boundary, with  $\eta \lambda_{\max}(H) \approx 2$  for full-batch GD (Cohen et al., 2021; Wang et al., 2022). Follow-ups generalized the phenomenon to preconditioned/adaptive methods, replacing  $H$  by the

468

*preconditioned* Hessian  $G_t = P_t^{-1/2} H P_t^{-1/2}$ , and analyzed implicit self-stabilization dynamics (Cohen et al., 2022; Damian et al., 2023; Chen & Bruna, 2023). Collectively, these works suggest that practical training often operates close to the spectral stability limit, motivating *online* control of the (preconditioned) top curvature rather than relying solely on fixed hypertuning. Our work aligns with this direction, but extend the analysis from previously explored small scale models to billion parameter transformers proposing an efficient HVP estimation mechanism.

469

**Progressive growing of Transformers.** Prior work increases Transformer capacity during training to cut cost while preserving accuracy: *Progressively Stacking* adds layers stagewise in BERT (Gong et al., 2019; Chen et al., 2020); function-preserving expansions (Net2Net, Network Morphism) enlarge depth/width without changing the realized function (Chen et al., 2016; Wei et al., 2016); and *LiGO* learns growth operators to expand pretrained Transformers with minimal regression (Li et al., 2023). Our focus is stability: we keep the full graph present from initialization and ensure that depth unlocking preserves curvature. This ties growth to an explicit stability criterion, rather than fixed stage schedules or efficiency alone, and further avoids computational graph surgery.



Figure 6: **Replacing LR warmup with Arch-warmup.** A 16-layer (1B) Transformer trained on FineWeb using *architecture warm-up* without learning-rate warmup attains on-par convergence while exhibiting more stable training.

486 **6 CONCLUSION**

487 We introduce a scalable framework for curvature-aware training of large Transformers. First, we  
 488 propose an online estimator for the top eigenvalue of the (preconditioned) Hessian that reuses the  
 489 previous step's eigenvector as a warm start. Under standard smoothness and eigengap assumptions,  
 490 we prove that the leading eigendirection is slow-moving, which yields rapid geometric convergence  
 491 of warm-started power iteration. Then, we propose *architecture warm-up*: a function-preserving  
 492 mechanism that progressively increases the effective depth according to a curvature budget, thereby  
 493 controlling the growth of effective curvature. Empirically, this combination broadens the range of  
 494 stable learning rates, reduces loss spikes, and improves training reliability.

496 **REFERENCES**

498 Allen Institute for AI. Olmo-mix-1124: Stage-1 pretraining mixture for olmo 2. <https://huggingface.co/datasets/allenai/olmo-mix-1124>, 2024. Dataset card (Hug-  
 499 ging Face).

501 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,  
 502 Arvind Neelakantan, et al. Language models are few-shot learners. In *Advances in Neural Infor-  
 503 mation Processing Systems (NeurIPS)*, 2020.

505 Lei Chen and Joan Bruna. Beyond the edge of stability via two-step gradient updates. In *Proceedings  
 506 of the 40th International Conference on Machine Learning (ICML)*, volume 202 of *Proceedings of  
 507 Machine Learning Research*, pp. 2617–2665. PMLR, 2023. URL <https://proceedings.mlr.press/v202/chen23b.html>.

509 Shuo Chen et al. Progressively stacking 2.0: A multi-stage layerwise training method for bert. *arXiv  
 510 preprint arXiv:2011.13635*, 2020. URL <https://arxiv.org/abs/2011.13635>.

512 Tianqi Chen, Ian Goodfellow, and Jonathon Shlens. Net2net: Accelerating learning via knowledge  
 513 transfer. *arXiv preprint arXiv:1511.05641*, 2016. URL <https://arxiv.org/abs/1511.05641>.

515 Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam  
 516 Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:  
 517 Scaling language modeling with pathways. *arXiv preprint arXiv:2204.02311*, 2022. URL  
 518 <https://arxiv.org/abs/2204.02311>.

520 Jeremy Cohen, Cameron Musco, and Christopher Musco. Gradient descent on neural networks  
 521 typically occurs at the edge of stability. In *International Conference on Learning Representations  
 522 (ICLR)*, 2021.

523 Jeremy M Cohen, Behrooz Ghorbani, Shankar Krishnan, Naman Agarwal, Sourabh Medapati,  
 524 Michal Badura, Daniel Suo, David Cardoze, Zachary Nado, George E Dahl, et al. Adaptive  
 525 gradient methods at the edge of stability. *arXiv preprint arXiv:2207.14484*, 2022.

527 Alex Damian, Eshaan Nichani, and Jason D. Lee. Self-stabilization: The implicit bias of gradient  
 528 descent at the edge of stability. In *International Conference on Learning Representations (ICLR)*,  
 529 2023. URL <https://openreview.net/pdf?id=nhKHA59gXz>.

531 Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,  
 532 Andreas Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, Rodolphe Jenatton,  
 533 Lucas Beyer, Michael Tschannen, Anurag Arnab, Xiao Wang, Carlos Riquelme, Matthias Min-  
 534 derer, Joan Puigcerver, Utku Evci, Manoj Kumar, Sjoerd van Steenkiste, Gamaleldin F. Elsayed,  
 535 Aravindh Mahendran, Fisher Yu, Avital Oliver, Fantine Huot, Jasmijn Bastings, Mark Patrick Col-  
 536 lier, Alexey A. Gritsenko, Vighnesh Birodkar, Cristina Vasconcelos, Yi Tay, Thomas Mensink,  
 537 Alexander Kolesnikov, Filip Pavetic, Dustin Tran, Thomas Kipf, Mario Lučić, Xiaohua Zhai,  
 538 Daniel Keysers, Jeremiah Harmsen, and Neil Houlsby. Scaling vision transformers to 22 bil-  
 539 lion parameters. In *Proceedings of the 40th International Conference on Machine Learning (ICML)*,  
 540 volume 202 of *Proceedings of Machine Learning Research*. PMLR, 2023. URL  
<https://proceedings.mlr.press/v202/dehghani23a.html>.

540 Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize  
 541 for deep nets. *arXiv preprint arXiv:1703.04933*, 2017. URL <https://arxiv.org/abs/1703.04933>.

543

544 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha  
 545 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.  
 546 *arXiv e-prints*, pp. arXiv–2407, 2024.

547 Gemma Team. Gemma 2: Improving open language models at a practical size. *arXiv preprint  
 548 arXiv:2408.00118*, 2024. URL <https://arxiv.org/abs/2408.00118>. Includes attention  
 549 logit soft-capping details.

550

551 Amir Ghorbani, Vivek Krishnan, and Ying Xiao. An investigation into neural net hessians. In  
 552 *International Conference on Machine Learning (ICML)*, pp. 2232–2241. PMLR, 2019.

553 Justin Gilmer, Behrooz Ghorbani, Ankush Garg, Sneha Kudugunta, Behnam Neyshabur, David Car-  
 554 doze, George Dahl, Zachary Nado, and Orhan Firat. A loss curvature perspective on training  
 555 instability in deep learning. *arXiv preprint arXiv:2110.04369*, 2021.

556

557 Yichen Gong, Yelong He, Weizhu Li, et al. Efficient training of BERT by progressively stack-  
 558 ing. In *International Conference on Machine Learning (ICML)*, 2019. URL <https://proceedings.mlr.press/v97/gong19a/gong19a.pdf>.

559

560 Diego Granziol. Hessformer: Hessians at foundation scale. *arXiv:2501.XXXX*, 2025.

561

562 Alex Henry, Prudhvi Raj Dachapally, Shubham Pawar, and Yuxuan Chen. Query-key normalization  
 563 for transformers. In *Findings of the Association for Computational Linguistics: EMNLP 2020*,  
 564 pp. 4246–4253, 2020. URL <https://aclanthology.org/2020.findings-emnlp.379.pdf>.

565

566 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *Advances  
 567 in Neural Information Processing Systems (NeurIPS)*, 2020.

568

569 Jordan Hoffmann, Sébastien Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza  
 570 Rutherford, Diego de Las Casas, Sally Henderson, Jacob Menick, Katie Millican, et al. Training  
 571 compute-optimal large language models. In *Advances in Neural Information Processing Systems  
 572 (NeurIPS)*, 2022. URL <https://arxiv.org/abs/2203.15556>.

573 Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gener-  
 574 alization in neural networks. In *Advances in Neural Information Processing Systems (NeurIPS)*,  
 575 volume 31, 2018. URL <https://proceedings.neurips.cc/paper/2018/hash/5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html>.

576

577 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, et al. Scaling laws for neural  
 578 language models. *arXiv preprint arXiv:2001.08361*, 2020.

579

580 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint  
 581 arXiv:1412.6980*, 2014.

582

583 Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss land-  
 584 scape of neural nets. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2018.  
 585 URL <https://arxiv.org/abs/1712.09913>.

586

587 Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Gadre, Hritik Bansal,  
 588 Etash Guha, Sedrick Keh, Kushal Arora, et al. Datacomp-lm: In search of the next generation  
 589 of training sets for language models. *arXiv preprint arXiv:2406.11794*, 2024. URL <https://arxiv.org/abs/2406.11794>.

590

591 Zhen Li, Xiuyu Chen, Ji Liu, and Zhangyang Wang. Learning to grow pretrained models for efficient  
 592 transformer training. In *International Conference on Learning Representations (ICLR)*, 2023.  
 593 URL <https://openreview.net/forum?id=LmD2gq2kWUY>.

594

595 James Martens. Deep learning via hessian-free optimization. In *ICML*, 2010.

594 Igor Molybog, Peter Albert, Moya Chen, Zachary DeVito, David Esiobu, Naman Goyal, Punit Singh  
595 Koura, Diana Liskovich, Sharan Narang, Andrew Poulton, Ruan Silva, Binh Tang, Puxin Xu,  
596 Yuchen Zhang, Melanie Kambadur, Stephen Roller, and Susan Zhang. A theory on adam  
597 instability in large-scale machine learning. *arXiv preprint arXiv:2304.09871*, 2023. URL  
598 <https://arxiv.org/abs/2304.09871>.

599 Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita  
600 Bhagia, Yuling Gu, Shengyi Huang, Matt Jordan, et al. 2 olmo 2 furious. *arXiv preprint*  
601 *arXiv:2501.00656*, 2024.

602 Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pam Mishkin, Chong Zhang,  
603 et al. Training language models to follow instructions with human feedback. In *Advances in*  
604 *Neural Information Processing Systems (NeurIPS)*, 2022.

605 Guilherme Penedo, Hynek Kydlíček, Loubna Ben Allal, Anton Lozhkov, Margaret Mitchell,  
606 Colin Raffel, Leandro von Werra, and Thomas Wolf. The fineweb datasets: De-  
607 canting the web for the finest text data at scale. In *NeurIPS Datasets and Bench-  
608 marks Track*, 2024. URL [https://papers.nips.cc/paper/2024/file/370df50ccfdf8bde18f8f9c2d9151bda-Paper-Datasets\\_and\\_Benchmarks\\_Track.pdf](https://papers.nips.cc/paper/2024/file/370df50ccfdf8bde18f8f9c2d9151bda-Paper-Datasets_and_Benchmarks_Track.pdf). See also arXiv:2406.17557.

609 Nasim Rahaman, Devansh Arpit, Aristide Baratin, Felix Draxler, Min Lin, Fred A. Hamprecht,  
610 Joshua Bengio, and Aaron Courville. On the spectral bias of neural networks. In *Proceedings*  
611 *of the 36th International Conference on Machine Learning (ICML)*, volume 97 of *Proceedings of*  
612 *Machine Learning Research*, pp. 5301–5310. PMLR, 2019. URL <https://proceedings.mlr.press/v97/rahaman19a.html>.

613 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-  
614 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF Con-  
615 ference on Computer Vision and Pattern Recognition (CVPR)*, 2022.

616 Levent Sagun, Léon Bottou, and Yann LeCun. Eigenvalues of the hessian in deep learning: Sin-  
617 gularity and beyond. *arXiv preprint arXiv:1611.07476*, 2016. URL <https://arxiv.org/abs/1611.07476>.

618 Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.  
619 In *International Conference on Machine Learning*, pp. 4596–4604. PMLR, 2018.

620 Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,  
621 Yanru Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. *arXiv*  
622 *preprint arXiv:2507.20534*, 2025.

623 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,  
624 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in Neural Infor-  
625 mation Processing Systems (NeurIPS)*, 2017.

626 Zixuan Wang, Zhouzi Li, and Jian Li. Analyzing sharpness along gd trajectory: Progressive sharp-  
627 ening and edge of stability. *Advances in Neural Information Processing Systems*, 35:9983–9994,  
628 2022.

629 Tao Wei, Changhu Wang, Yong Rui, and Changyou Chen. Network morphism. In *ICML Workshop*  
630 *on Principles of Machine Learning*, 2016. URL <https://www.microsoft.com/en-us/research/publication/modularized-morphing-of-neural-networks/>.

631 Mitchell Wortsman, Tim Dettmers, Luke Zettlemoyer, Ari Morcos, Ali Farhadi, and Ludwig  
632 Schmidt. Stable and low-precision training for large-scale vision-language models. *Advances*  
633 *in Neural Information Processing Systems*, 36:10271–10298, 2023a.

634 Mitchell Wortsman, Peter J Liu, Lechao Xiao, Katie Everett, Alex Alemi, Ben Adlam, John D Co-  
635 Reyes, Izzeddin Gur, Abhishek Kumar, Roman Novak, et al. Small-scale proxies for large-scale  
636 transformer training instabilities. *arXiv preprint arXiv:2309.14322*, 2023b.

648 Zhi-Qin John Xu, Yaoyu Zhang, Tao Luo, Yanyang Xiao, and Zheng Ma. Frequency principle:  
649 Fourier analysis sheds light on deep neural networks. *arXiv preprint arXiv:1901.06523*, 2019.  
650 URL <https://arxiv.org/abs/1901.06523>.  
651

652 Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W. Mahoney. PyHessian: Neural networks  
653 through the lens of the hessian. In *IEEE International Conference on Big Data*, pp. 581–590.  
654 IEEE, 2020.

655 Shuangfei Zhai, Tatiana Likhomanenko, Eta Littwin, Dan Busbridge, Jason Ramapuram, Yizhe  
656 Zhang, Jiatao Gu, and Joshua M Susskind. Stabilizing transformer training by preventing attention  
657 entropy collapse. In *International Conference on Machine Learning*, pp. 40770–40803. PMLR,  
658 2023.

659 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-  
660 pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer,  
661 Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, Luke Zettlemoyer, et al. Opt:  
662 Open pre-trained transformer language models. *arXiv preprint arXiv:2205.01068*, 2022. URL  
663 <https://arxiv.org/abs/2205.01068>.  
664  
665  
666  
667  
668  
669  
670  
671  
672  
673  
674  
675  
676  
677  
678  
679  
680  
681  
682  
683  
684  
685  
686  
687  
688  
689  
690  
691  
692  
693  
694  
695  
696  
697  
698  
699  
700  
701

702 7 APPENDIX  
703704 A PROOFS  
705706 A.1 PROOF FOR THEOREM 1  
707708 *Proof.* First, We recall a useful result from Davis–Kahan, sin- $\Theta$  theorem.  
709710 Let  $\Sigma, \widehat{\Sigma} \in \mathbb{R}^{p \times p}$  be symmetric, with eigenvalues  $\lambda_1 \geq \dots \geq \lambda_p$  and  $\widehat{\lambda}_1 \geq \dots \geq \widehat{\lambda}_p$ ,  
711 respectively. Fix  $1 \leq r \leq s \leq p$  and assume that  
712

713 
$$\min\{\lambda_{r-1} - \lambda_r, \lambda_s - \lambda_{s+1}\} > 0,$$

714 where we define  $\lambda_0 = \infty$  and  $\lambda_{p+1} = -\infty$ . Let  $d = s - r + 1$ , and let  $V =$   
715  $(v_r, v_{r+1}, \dots, v_s) \in \mathbb{R}^{p \times d}$  and  $\widehat{V} = (\widehat{v}_r, \widehat{v}_{r+1}, \dots, \widehat{v}_s) \in \mathbb{R}^{p \times d}$  have orthonormal columns  
716 satisfying  $\Sigma v_j = \lambda_j v_j$  and  $\widehat{\Sigma} \widehat{v}_j = \widehat{\lambda}_j \widehat{v}_j$  for  $j = r, r+1, \dots, s$ . Then  
717

718 
$$\|\sin \Theta(\widehat{V}, V)\|_F \leq \frac{2 \min(d^{1/2} \|\widehat{\Sigma} - \Sigma\|_{\text{op}}, \|\widehat{\Sigma} - \Sigma\|_F)}{\min(\lambda_{r-1} - \lambda_r, \lambda_s - \lambda_{s+1})}. \quad (2)$$
  
720

721 We set  $r = s = 1$ . Then we have,  $\min(\lambda_{r-1} - \lambda_r, \lambda_s - \lambda_{s+1}) = \lambda_1 - \lambda_2$ . Further,  $\widehat{V} = \widehat{v}_1$  and  
722  $V = v_1$ ,  $d = 1$ .  
723724 Substituting  $\widehat{\Sigma} = H_{k+1}$  and  $\Sigma = H_k$  to above result, and with the Lipschitz condition, we have  
725

726 
$$\sin \varepsilon_k \leq \frac{2 \min(\|H_{k+1} - H_k\|_{\text{op}}, \|H_{k+1} - H_k\|_F)}{\gamma}$$
  
727

728 And we know,  $\min(\|H_{k+1} - H_k\|_{\text{op}}, \|H_{k+1} - H_k\|_F) = \|H_{k+1} - H_k\|_F$ .  
729730 So we have,  
731

732 
$$\sin \varepsilon_k \leq \frac{\|H_{k+1} - H_k\|}{\gamma} \leq \frac{L_H}{\gamma} \|\theta_{k+1} - \theta_k\|. \quad (17)$$
  
733

734 For gradient descent,  $\|\theta_{k+1} - \theta_k\| = \eta_k \|\nabla f(\theta_k)\|$ . If  $\theta_{k+1} = \theta_k - \eta_k g_k$  with  $\mathbb{E}[g_k \mid \theta_k] = \nabla f(\theta_k)$   
735 and  $\mathbb{E}\|g_k\|^2 \leq G^2$ , then  $\mathbb{E}[\sin \varepsilon_k \mid \theta_k] \leq (L_H/\gamma) \eta_k \mathbb{E}\|g_k\| \leq (L_H/\gamma) \eta_k G$ .  $\square$   
736737 A.2 PROOF FOR THEOREM 2  
738739 *Proof.* For a symmetric matrix with simple top eigenvalue,  
740

741 
$$\tan \theta_{t+1} = \frac{\|(I - v_1 v_1^\top) A y^{(t)}\|}{|\langle v_1, A y^{(t)} \rangle|} \leq \frac{|\lambda_2|}{|\lambda_1|} \tan \theta_t = \rho \tan \theta_t,$$
  
742

743 hence by induction  
744

745 
$$\tan \theta_t \leq \rho^t \tan \theta_0.$$
  
746

747 Take  $A = H_{k+1}$ ,  $v_1 = v_{1,k+1}$ , and  $y^{(0)} = v_{1,k}$ . Then  
748

749 
$$\theta_0 = \angle(y^{(0)}, v_{1,k+1}) = \angle(v_{1,k}, v_{1,k+1}) = \varepsilon_k,$$
  
750

751 so with  $\rho_{k+1} := \lambda_{2,k+1}/\lambda_{1,k+1} \in [0, 1]$ ,  
752

753 
$$\tan \theta_t \leq \rho_{k+1}^t \tan \varepsilon_k,$$
  
754

755 Expand  $y$  in the  $H_{k+1}$ -eigenbasis:  
756

757 
$$y^\top H_{k+1} y = \sum_{i \geq 1} \lambda_{i,k+1} \langle y, v_{i,k+1} \rangle^2.$$
  
758

756 Therefore,

$$758 \quad \lambda_{1,k+1} - y^\top H_{k+1} y = \sum_{i \geq 2} (\lambda_{1,k+1} - \lambda_{i,k+1}) \langle y, v_{i,k+1} \rangle^2 \leq (\lambda_{1,k+1} - \lambda_{2,k+1}) \sum_{i \geq 2} \langle y, v_{i,k+1} \rangle^2,$$

760 and since  $\sum_{i \geq 2} \langle y, v_{i,k+1} \rangle^2 = \sin^2 \theta_t$ ,

$$761 \quad 0 \leq \lambda_{1,k+1} - y^\top H_{k+1} y \leq (\lambda_{1,k+1} - \lambda_{2,k+1}) \sin^2 \theta_t.$$

763 Using equation A.2 and  $\sin \theta_t \leq \tan \theta_t$  on  $[0, \frac{\pi}{2}]$ ,

$$764 \quad \lambda_{1,k+1} - y^\top H_{k+1} y \leq (\lambda_{1,k+1} - \lambda_{2,k+1}) \rho_{k+1}^{2t} \tan^2 \varepsilon_k = (1 - \rho_{k+1}) \lambda_{1,k+1} \rho_{k+1}^{2t} \tan^2 \varepsilon_k,$$

765 which is equation 8.

767 By Theorem 1,

$$768 \quad \tan \varepsilon_k \leq \sin \varepsilon_k \leq \frac{L_H}{\gamma} \|\theta_{k+1} - \theta_k\| \Rightarrow \tan \theta_t \leq \rho_{k+1}^t \frac{L_H}{\gamma} \|\theta_{k+1} - \theta_k\|.$$

771 To ensure  $\theta_t \leq \delta \in (0, \frac{\pi}{2})$ , it suffices that

$$772 \quad \rho_{k+1}^t \frac{L_H}{\gamma} \|\theta_{k+1} - \theta_k\| \leq \tan \delta.$$

774 Since  $0 < \rho_{k+1} < 1$ , taking logs yields

$$776 \quad t \geq \frac{\log\left(\frac{L_H}{\gamma} \|\theta_{k+1} - \theta_k\|\right) - \log(\tan \delta)}{\log(1/\rho_{k+1})},$$

779 Let  $x \sim \text{Unif}(\mathbb{S}^{d-1})$ . With high probability,

$$780 \quad \langle x, v_{1,k+1} \rangle^2 = \Theta(1/d) \Rightarrow \tan \angle(x, v_{1,k+1}) = \Theta(\sqrt{d}).$$

782 Thus  $\tan \theta_t \leq \rho_{k+1}^t \Theta(\sqrt{d}) \leq \tan \delta$  implies

$$783 \quad t_{\text{rand}} \gtrsim \frac{\frac{1}{2} \log d - \log(\tan \delta)}{\log(1/\rho_{k+1})},$$

786 and subtracting the warm-start bound gives equation 9.  $\square$

### 787 A.3 IMPLEMENTATION SKETCH OF WARM-START POWER ITERATION

---

#### 790 Algorithm 1 Warm-Start HVP Power Iteration for $\lambda_{\max}(H(\theta))$

---

791 1: **input:** parameters  $\theta$ ; optional warm vector  $y_{\text{warm}}$  with  $\|y_{\text{warm}}\|_2 = 1$ ; optional previous esti-  
 792      mate  $\hat{\lambda}_{\text{warm}}$ ; tolerance  $\varepsilon$   
 793 2: **initialize:**  
 794      3:  $y^{(0)} \leftarrow \begin{cases} y_{\text{warm}}, & \text{if provided} \\ \text{randn unit vector,} & \text{otherwise} \end{cases}$   
 795 4: **(early exit check)** If  $\hat{\lambda}_{\text{warm}}$  provided, optionally compute residual  $r^{(0)} \leftarrow \|(H(\theta) -$   
 $\hat{\lambda}_{\text{warm}} I)y^{(0)}\|_2$  (1 HVP). If  $r^{(0)} \leq \varepsilon |\hat{\lambda}_{\text{warm}}|$ , **return**  $(\hat{\lambda}_{\text{warm}}, y^{(0)})$ .  
 796 5: **for**  $t = 0, 1, 2, \dots$  **do**  
 797      6:  $z^{(t+1)} \leftarrow H(\theta) y^{(t)}$  {Pearlmutter HVP}  
 798      7: **guard:** If  $\|z^{(t+1)}\|_2 = 0$  (numerical underflow), reinitialize  $y^{(t)}$  to a fresh random unit vector  
 799      8: and **continue**.  
 800      9:  $y^{(t+1)} \leftarrow z^{(t+1)} / \|z^{(t+1)}\|_2$  {power update}  
 801      10:  $\hat{\lambda}^{(t+1)} \leftarrow \langle y^{(t+1)}, H(\theta) y^{(t+1)} \rangle$  {one extra HVP or reuse if cached}  
 802 11: **warm-start stabilization (optional):**  
 803      12: *(i) Momentum mix:* if  $t = 0$  and  $y_{\text{warm}}$  provided, set  $y^{(1)} \leftarrow$   
 804      13: normalize( $\alpha y^{(1)} + (1-\alpha) y_{\text{warm}}$ ) with small  $(1-\alpha)$  (e.g., 0.1).  
 805      14: *(ii) Cosine guard:* if  $t = 0$  and  $|\langle y^{(1)}, y_{\text{warm}} \rangle| < \tau$  (e.g.,  $\tau=0.1$ ), replace  $y^{(1)} \leftarrow y_{\text{warm}}$ .  
 806 15: **stopping test:** If  $\|(H(\theta) - \hat{\lambda}^{(t+1)} I)y^{(t+1)}\|_2 \leq \varepsilon |\hat{\lambda}^{(t+1)}|$ , **return**  $(\hat{\lambda}^{(t+1)}, y^{(t+1)})$ .  
 807 16: **end for**

---

Note that the proposed warm-start strategy is particularly well suited for large neural networks where HVPs are expensive and frequent monitoring of curvature is desirable. By amortizing eigenvector estimation across training steps, we enable efficient online tracking of sharpness without compromising accuracy. To the best of our knowledge, this continuation-style use of power iteration has not been previously explored in the deep learning literature, despite being a standard idea in numerical linear algebra. Our theoretical guarantees and empirical results demonstrate its clear superiority over random initialization for curvature estimation in neural network training.

## B DEPTH, LIPSCHITZ GROWTH, AND CURVATURE

In this section, we discuss the connection between the depth and the stability margin with formal results.

**Setup and notation.** Let  $g_\theta = \Phi_L \circ \dots \circ \Phi_1$  with residual blocks  $\Phi_\ell(x) = x + B_\ell(x)$ . Write  $J_\ell(x) = I + \partial B_\ell(x)$ ,  $J_x g_\theta$  for the input Jacobian, and  $x_0 = x$ ,  $x_\ell = \Phi_\ell(x_{\ell-1})$ . Norms are operator (spectral) norms.

**Lemma 1** (Depth–Lipschitz bound). *For all  $x$ ,*

$$\|J_x g_\theta(x)\| \leq \prod_{\ell=1}^L \|J_\ell(x_{\ell-1})\| \leq \exp\left(\sum_{\ell=1}^L \|\partial B_\ell(x_{\ell-1})\|\right).$$

*Proof.* By the chain rule,  $J_x g_\theta(x) = J_L(x_{L-1}) \cdots J_1(x_0)$ . Submultiplicativity gives  $\|J_x g_\theta(x)\| \leq \prod_\ell \|J_\ell(x_{\ell-1})\|$ . Next use  $\|I + A\| \leq 1 + \|A\| \leq \exp(\|A\|)$  to obtain the exponential bound.  $\square$

**Lemma 2** (Parameter sensitivity growth). *Let  $J_\theta g_\theta(x)$  denote the Jacobian of  $g_\theta$  w.r.t. parameters. Then  $\|J_\theta g_\theta(x)\| \leq C \prod_{\ell=1}^L \|J_\ell(x_{\ell-1})\|$  for some constant  $C$  depending on block parametrization (e.g., linear maps and elementwise activations yield  $C = 1$  up to dimension factors). In particular,  $J_\theta g_\theta$  inherits the multiplicative growth in Lemma 1.*

*Proof.* Differentiate the composition with respect to block parameters; each term contains a product of input Jacobians  $J_k$  before and after the block where parameters appear. Bounding each product by  $\prod_\ell \|J_\ell\|$  gives the stated inequality (constants collect per-block linear maps).  $\square$

**Proposition 1** (Curvature bound via Gauss–Newton). *Assume  $\ell$  is twice differentiable in  $z = g_\theta(x)$  with  $\lambda_{\max}(\nabla_z^2 \ell) \leq L_\ell$ . Then*

$$\lambda_{\max}(\nabla_\theta^2 \mathcal{L}(\theta)) \leq L_\ell \left( \sup_x \|J_\theta g_\theta(x)\| \right)^2.$$

*Proof.* For each  $(x, y)$ , the Gauss–Newton term is  $J_\theta g_\theta(x)^\top \nabla_z^2 \ell J_\theta g_\theta(x) \preceq L_\ell J_\theta g_\theta(x)^\top J_\theta g_\theta(x)$ , hence the stated bound after taking expectation and the maximum eigenvalue.  $\square$

**Corollary 1** (Preconditioned curvature). *Let  $P_t$  be SPD diagonal with  $m_t I \preceq P_t \preceq M_t I$ . Then for  $G_t = P_t^{-1/2} H P_t^{-1/2}$ ,*

$$\frac{1}{M_t} \lambda_{\max}(H) \leq \lambda_{\max}(G_t) \leq \frac{1}{m_t} \lambda_{\max}(H).$$

*Hence the depth dependence of  $\lambda_{\max}(G_t)$  mirrors that of  $\lambda_{\max}(H)$  up to constant factors ( $m_t, M_t$ ).*

*Proof.* For SPD  $P_t$ , Rayleigh quotients give  $\lambda_{\max}(G_t) = \max_{\|v\|=1} v^\top P_t^{-1/2} H P_t^{-1/2} v = \max_{\|u\|_{P_t}=1} u^\top H u$ , where  $\|u\|_{P_t}^2 = u^\top P_t u$ . Using  $m_t \|u\|^2 \leq \|u\|_{P_t}^2 \leq M_t \|u\|^2$  yields the bounds.  $\square$

**Corollary 2** (Stability margin scales as  $1/\lambda_{\max}$ ). *For a quadratic model of the local dynamics, gradient descent is stable if  $\eta < 2/\lambda_{\max}(H)$ ; with momentum/Adam, the admissible region for  $(\eta, \beta)$  scales as  $O(1/\lambda_{\max}(G_t))$ . Combining Lemma 1, Lemma 2, and Proposition 1 shows that increasing depth  $L$  raises  $\lambda_{\max}(H)$  (and  $\lambda_{\max}(G_t)$ ), thereby shrinking the stability margin.*

864 C SELF-STABILIZATION OF CURVATURE DURING TRAINING  
865866 C.1 CURVATURE AS TRAINING PROGRESSES  
867

868 We track the raw curvature  $\lambda_{\max}(H(\theta_t))$ , the *effective* (preconditioned) curvature  $\lambda_{\max}(G_t)$ , and the  
869 preconditioner inverse  $P_t^{-1}$  for a 16-layer (1B) model. As shown in Fig. 7, after an initial transient  
870 the dynamics enter a regime where  $\lambda_{\max}(G_t)$  oscillates within a narrow band, consistent with the  
871 edge-of-stability picture. This self-stabilization supports increasing depth later in training, once  
872 curvature has settled. Notably,  $P_t^{-1}$  continues to grow over time, indicating a steadily strengthening  
873 preconditioning effect from the optimizer.



883 Figure 7: **Self stabilization of transformers.** After an initial transient period, both the raw cur-  
884 vature and the preconditioned curvature settles down to a stable, lower band. This supports the  
885 effectiveness of increasing the depth later in the training. Interestingly,  $P_t^{-1}$  keeps growing as the  
886 training progresses (shown values are normalized).

887 C.2 SELF STABILIZATION OF CURVATURE DURING TRAINING  
888

889 We observe a self-stabilization effect in Transformers (see Fig. 8): when curvature rises, the  
890 optimizer’s preconditioner counteracts it. In Adam-like methods with  $P_t = \text{diag}(\sqrt{v_t} + \varepsilon)$  and  
891  $v_{t+1} = \beta_2 v_t + (1 - \beta_2) g_t^{\odot 2}$ , larger curvature typically coincides with larger gradients  $g_t$ , which  
892 increases  $v_t$  and thus  $P_t$ . Since the effective curvature is  $G_t = P_t^{-1/2} H P_t^{-1/2}$ , a larger  $P_t$  (smaller  
893  $P_t^{-1}$ ) reduces Rayleigh quotients and damps  $\lambda_{\max}(G_t)$ , yielding a stabilizing feedback. See below  
894 for a formal discussion.

895 **Self-stabilization via adaptive preconditioning (and its limits).** Let  $H_t := H(\theta_t)$  and consider  
896 an Adam-like update  $\theta_{t+1} = \theta_t - \eta M_t^{-1} \hat{m}_t$  with diagonal preconditioner  $M_t = \text{diag}(\sqrt{v_t} + \varepsilon)$ ,  
897 where

$$901 v_{t+1} = \beta_2 v_t + (1 - \beta_2) g_t^{\odot 2}, \quad g_t = \nabla \mathcal{L}(\theta_t).$$

902 The *effective* (preconditioned) curvature experienced by the optimizer is

$$903 G_t = M_t^{-1/2} H_t M_t^{-1/2}, \quad \lambda_{\max}(G_t) = \max_{\|x\|=1} x^\top M_t^{-1/2} H_t M_t^{-1/2} x.$$

904 When curvature or gradient energy surges,  $g_t^{\odot 2}$  increases and (after EMA smoothing)  $M_{t+1} \uparrow$ ; con-  
905 sequently  $M_{t+1}^{-1/2} \downarrow$  and *all* Rayleigh quotients of  $G_{t+1}$  decrease. A simple bound follows from the  
906 Rayleigh quotient and diagonal ordering:

$$910 \lambda_{\max}(G_{t+1}) \leq \|M_{t+1}^{-1/2}\|_2^2 \lambda_{\max}(H_{t+1}) = \frac{\lambda_{\max}(H_{t+1})}{\min_i (\sqrt{v_{t+1,i}} + \varepsilon)^2}.$$

911 Thus, as  $v_{t+1}$  grows, the preconditioner shrinks the effective curvature, exhibiting an *implicit self-*  
912 *stabilization* that nudges the product  $\eta \lambda_{\max}(G_t)$  toward the stability band (the EoS).

913 *However, this is not sufficient to ensure stable convergence.* Despite this automatic balancing, there  
914 are three failure modes: (i) **lag**:  $v_t$  reacts on a time scale  $\sim \frac{1}{1-\beta_2}$  steps, so sharp, step-scale spikes  
915 in  $H_t$  can push  $\eta \lambda_{\max}(G_t)$  beyond the boundary before  $M_t$  catches up; (ii) **anisotropy**:  $M_t$  is  
916 diagonal, whereas  $H_t$  can be highly anisotropic; a coordinate-wise preconditioner cannot instantly



Figure 8: **Self-stabilization in Transformers.** Close-ups over particular training windows of second- and first-order statistics for 8-, 16-, and 32-layer models. Each row (left→right) shows  $\lambda_{\max}(H)$ ,  $P^{-1}$ , and  $\lambda_{\max}(G_t)$ . When the Hessian spikes, the preconditioner dips, reducing  $\lambda_{\max}(G_t)$  and partially stabilizing the effective curvature; however, this feedback is not always sufficient to keep  $\lambda_{\max}(G_t)$  within the stability threshold.

suppress a sharp *direction* that is a dense combination of coordinates; (iii) **coupling with momentum**: with  $\beta_1 > 0$ , a large  $m_t$  can overshoot even if  $M_t$  starts to grow, transiently amplifying the update.

In summary, adaptive methods do provide a *reactive* stabilizer,  $M_t^{-1}$  tends to drop as curvature rises, reducing  $\lambda_{\max}(G_t)$ , but this mechanism is imperfect under fast spikes, strong anisotropy, or momentum coupling. Our *architecture warm-up* complements this by acting *proactively* on  $H_t$  itself: by keeping depth (and hence the operator norm of intermediate Jacobians) low early and unlocking blocks later in training, we keep the system inside the stability envelope even when the optimizer’s preconditioner has not yet adapted.

## D VALIDATION AT COMPUTE OPTIMAL

Since *QK-Norm* was the strongest baseline in our shorter FineWeb runs, we benchmark it at the *Chinchilla* compute-optimal setting (Hoffmann et al., 2022): a 1B-parameter, 16-layer model trained for 25B tokens on FineWeb. This experiment tests whether early-phase gains from Arch-Warmup persist at compute-optimal budget. As Table 2 shows, Arch-Warmup outperforms QK-Norm at this scale, indicating stronger convergence and stability that carry through to the compute-optimal regime

## E SENSITIVITY TO THE WARM UP SCHEDULE

By default, we keep the model at half depth until learning-rate warmup completes, then unlock the remaining layers in four groups spaced by 500 training iterations to reach full depth. Performance, however, is not sensitive to this spacing: Fig. 10 shows that even with *zero* spacing (i.e., unlocking all remaining layers at once at peak learning rate), results are similar. The reason is that newly enabled blocks are *zero-initialized*, so their contribution to the Jacobian/Hessian—and thus the total (preconditioned) curvature—grows gradually from the half-depth baseline. The model therefore



Figure 9: Convergence with different architecture warm-up schedules. We observe that our method is not highly sensitive to the schedule.

Table 2: Validation perplexity (PPL) on FineWeb at Chinchilla compute-optimal (1B, 16 layers, 25B tokens). Lower is better.

| Method      | Val PPL ↓    |
|-------------|--------------|
| QK-Norm     | 20.28        |
| Softcap     | 32.44        |
| Arch-Warmup | <b>18.35</b> |

never encounters a sudden “full-depth” curvature jump at the unlock step; instead, capacity and curvature are realized progressively as those weights move away from zero.



Figure 10: Log-scale plot for the evolution of  $\lambda_{\max}(G_t)$  with a peak learning rate of  $8 \times 10^{-3}$ .