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ABSTRACT

Training billion-parameter Transformers is often brittle, with transient loss spikes
and divergence that waste compute. Even though the recently developed Edge of
Stability (EoS) theory provides a powerful tool to understand and control the sta-
bility of optimization methods via the (preconditioned) curvature, these curvature-
controlling methods are not popular in large-scale Transformer training due to the
complexity of curvature estimation. To this end, we first introduce a fast online
estimator of the largest (preconditioned) Hessian eigenvalue (i.e., curvature) based
on a warm-started variant for power iteration with Hessian–vector products. We
show theoretically, and verify empirically, that the proposed method makes per-
iteration curvature tracking feasible at billion-parameter scale while being more
accurate. Using this tool, we find that training instabilities coincide with surges
in preconditioned curvature and that curvature grows with depth. Motivated by
these observations, we propose architecture warm-up: progressively growing net-
work depth to carefully control the preconditioned Hessian and stabilize training.
Experiments on large Transformers validate that our approach enables efficient
curvature tracking and reduces instabilities compared to existing state-of-the-art
stabilization techniques without slowing down convergence.

1 INTRODUCTION

Scaling up Transformers has driven remarkable progress across domains, from large language mod-
els that power conversational systems to diffusion-based models for image generation (Vaswani
et al., 2017; Kaplan et al., 2020; Brown et al., 2020; Ouyang et al., 2022; Ho et al., 2020; Rom-
bach et al., 2022). Yet, despite these gains, large models frequently exhibit training instabilities, i.e,
large loss spikes and even divergence, especially at scale (Chowdhery et al., 2022; Dehghani et al.,
2023; Zhang et al., 2022; Molybog et al., 2023; OLMo et al., 2024). As billion-parameter training
becomes the norm, improving training stability is paramount: transient instabilities, i.e., loss spikes,
gradient blow-ups, or full divergence, can consume vast compute budgets and wall-clock time. As
models and datasets scale, stabilizing optimization reduces monetary and environmental costs while
improving reproducibility and throughput, enabling dependable progress.

Stabilization at scale often relies on empirical controls for attention and optimization: soft-capping
the logits (Gemma Team, 2024), QK-normalization or QK-clip to bound dot-product magnitudes
of queries and keys (Henry et al., 2020; Dehghani et al., 2023; Team et al., 2025), and learning-rate
or batch warmup to temper early steps (Gilmer et al., 2021; Dubey et al., 2024). In parallel, the Edge
of Stability (EoS) literature shows that gradient methods gravitate toward regions where the product
of step size and curvature approaches the stability boundary from classical quadratic optimization
theory: for full-batch Gradient Descent (GD), training spends long phases with η λmax(H) ≈ 2
(Cohen et al., 2021; Wang et al., 2022)—where λmax(H) and η denotes the largest eigenvalue
of the Hessian H and the step size, respectively—while for preconditioned/adaptive methods the
relevant quantity is the preconditioned1 curvature (Cohen et al., 2022; Damian et al., 2023). Thus
the stability threshold is inversely proportional to the step size and directly governed by the largest
eigenvalue of the (preconditioned) Hessian. Although many of the previous works in stabilizing
Transformers can be interpreted as attempts to keep η λmax(H) below this boundary (Zhai et al.,

1Preconditioned Hessian should be considered for optimizers that use preconditioned updates, and adaptive
methods are shown to operate at optimizer dependent stability thresholds (Cohen et al., 2022).
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2023; Wortsman et al., 2023b; Gilmer et al., 2021; Shazeer & Stern, 2018), verifying such claims has
been difficult in practice, because estimating the curvature online for billion-parameter Transformers
remains memory and compute-intensive.

To this end, we first introduce an efficient method to estimate the curvature online using warm-
started power-iteration with Hessian-Vector Products (HVP) tailored for large models. Our key
insight is that the top eigenvector of the (preconditioned) Hessian is slow-moving and warm-starting
with the previous step’s eigenvector significantly 1) reduces the iteration count and 2) improves ac-
curacy. In particular, we require less than five HVPs per step (≲ 5), an order of magnitude lower than
existing methods (Granziol, 2025), while seamlessly extending to the time-varying preconditioned
matrix for adaptive methods. We provide theoretical bounds for the change in the eigenvector and the
resultant iteration saving. This makes online curvature tracking feasible for billion-parameter
Transformers. We then use this approach to confirm that loss spikes in large-scale Transformers
correlate with spikes in preconditioned curvature and show that the latter increases with the network
depth.

Combining these insights, we introduce an architecture warm-up strategy for stable training. The
idea is to ensure the (preconditioned) curvature follows the trend of the stability threshold such that
the stability criterion is satisfied throughout training. Precisely, we restrict the model to have small
curvature during the initial learning rate warm-up phase, and gradually relax this restriction (i.e.,
increase the curvature) when we start decaying the learning rate, noting that the stability threshold
is inversely proportional to the learning rate. To control the curvature, we adopt a holistic approach
of controlling the number of (effective) Transformer layers (i.e., depth), rather than making fine-
grained modifications to each layer. Specifically, we freeze some Transformer layers to identity at
initialization, and gradually unfreeze these layers as per a predefined schedule, ensuring a smooth in-
crease in curvature. This architecture warm-up approach can be readily integrated to existing training
recipes and standard architectures as it does not require dynamic computation graph surgery, outper-
forms existing stabilization techniques, and expands the range of stable learning rates without any
performance penalty. We provide extensive experiments demonstrating accurate curvature tracking
and consistent stability gains across large transformer settings compared to existing methods.

2 PRELIMINARIES

Below, we briefly review the literature on Edge of Stability (EoS) (Cohen et al., 2021; 2022), and
power iteration to compute the largest eigenvalue of the Hessian using Hessian-Vector Products
(HVP) (Martens, 2010), upon which we build our work. We refer the interested reader to the respec-
tive papers for more details.

2.1 EDGE OF STABILITY

For a quadratic objective L(θ) = 1
2θ

⊤Aθ+ b⊤θ+ c, gradient descent with step size η is stable only
if η < 2/λmax(A). Locally, neural network training admits the quadratic approximation:

L(θ +∆) ≈ L(θ) +∇L(θ)⊤∆+ 1
2∆

⊤H(θ)∆ , (1)

so the Hessian H(θ) plays the role of A, and λmax(H(θ)) determines the maximum stable step
size: violating η ≤ 2/λmax(H) causes oscillation or divergence along the sharpest direction. Em-
pirically, full-batch GD often operates near the Edge of Stability (EoS) where η λmax(H) ≈ 2
(Cohen et al., 2021). Adaptive methods (e.g., Adam (Kingma & Ba, 2014)) show an analo-
gous behavior with the time-varying preconditioned curvature λmax(P

−1/2
t HP

−1/2
t ) (Cohen et al.,

2022), where P−1
t denotes the update preconditioning. For Adam, the preconditioner takes the

form: Pt = diag(
√
vt + ε) where vt+1 = β2vt + (1 − β2)g

2
t . Note that the stability crite-

rion is optimizer-dependent and for Adam with β1 = 0.9, adaptive EoS is determined to be
η λmax(P

−1/2
t HP

−1/2
t ) ≈ 38.

This enables a powerful tool to understand and control the stability of optimization methods by
controlling the learning rate and the preconditioned curvature. However, this theory has only been
verified on small-scale models (≲25M parameters), mainly due to the memory complexity of com-
puting the Hessian, or the time complexity associated with estimating an iterative approximation.
Below, we first discuss a well-established power-iteration method to compute the curvature without
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materializing the Hessian explicitly, and later introduce our approach that reduces its iteration com-
plexity by an order of magnitude, making online curvature tracking feasible and more accurate at
billion-parameter scale.

2.2 COMPUTING THE LARGEST HESSIAN EIGENVALUE VIA HVP-BASED POWER ITERATION

Given θ ∈ Rd and the loss f : Rd → R, we can estimate the top eigenpair
{λmax(H(θ)), vmax(H(θ)}, where H(θ) := ∇2f(θ) without explicitly forming H(θ). For any
vector v,

H(θ)v = ∇θ

(
g(θ)⊤v

)
=

d

dϵ
g(θ + ϵv)

∣∣∣∣
ϵ=0

. (2)

Thus, H(θ)v, i.e., the Hessian-Vector-product (HVP), is a directional derivative of the gradient
(which quantifies how much the curvature would change in the direction of v) and can be obtained
without materializing full H (Martens, 2010). This costs roughly two backprop passes and uses
O(1) extra memory beyond the retained graph. The efficient computation of HVP allows us to
compute the λmax(H(θ)) and vmax(H(θ)) with power iteration. Let H(θ) be symmetric. Suppose
its eigenvalues satisfy: λ1 ≥ λ2 ≥ · · · ≥ λd, ρ := λ2

λ1
∈ [0, 1) . Starting from a unit vector

y(0), define the normalized power iteration:

z(t+1) ← Hy(t) , y(t+1) ← z(t+1)

∥z(t+1)∥2
, λ̂(t+1) ← ⟨y(t+1), Hy(t+1)⟩ . (3)

With above iterations, z(t) → vmax and λ̂(t) → λmax as t → ∞. The only primitive is u 7→
Hu, i.e., an HVP. This in practice is expensive for large H , since power iteration requires multiple
steps to converge from a random initialization, each requiring two backward passes. This is more
prominent in high dimensions where the initial alignment with the leading eigenvector is O(1/

√
d)

in expectation, where d is the dimension of the parameter vector.

3 METHODOLOGY

In this section, we first elaborate on our key insight that the (preconditioned) curvature of the Hessian
is slow-moving with theoretical and empirical justifications, enabling us to develop a warm-started
power iteration variant to compute the curvature efficiently with less than five HVP steps. This
allows us to verify that the loss spikes in large-scale transformers are also a result of spikes in
curvature, verifying the EoS theory at scale. Based on this, we later develop our architecture warm-
up strategy that restricts the curvature of the model at the early learning rate warm-up phase and
increases the curvature as the learning rate starts to decay, ensuring the stability criterion of adaptive
EoS is satisfied throughout training.

3.1 ONLINE CURVATURE TRACKING WITH WARM-STARTED POWER ITERATION

We show that under practical assumptions, the largest eigenvalue of the Hessian of neural networks
evolves slowly. Specifically, under Lipchitz continuity of the Hessian and a nonvanishing spectral
gap γ, we can precisely bound the change in the leading eigenvector between successive steps:

sin∠
(
v1,k+1, v1,k

)
≤ LH

γ
∥θk+1 − θk∥ , (4)

Thus, when step sizes and gradients shrink during training, v1,k is an increasingly accurate initializer
for v1,k+1. This result is formally presented below.
Theorem 1. Let {θk}k≥0 be a parameter sequence and Hk := H(θk). Assume that there exists
LH <∞ with ∥H(θ)−H(θ′)∥ ≤ LH∥θ − θ′∥ for all θ, θ′. Equivalently, ∥∇3f(θ)∥op ≤ LH and
Along the parameter path considered, γ(θ) := λ1(H)− λ2(H) ≥ γ > 0. Then, with v1,k a unit top
eigenvector of Hk and εk := ∠(v1,k+1, v1,k), we have

sin εk ≤
∥Hk+1 −Hk∥

γ
≤ LH

γ
∥θk+1 − θk∥ . (5)
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Further, with stochastic gradient descent with step size ηk such that θk+1 = θk − ηkgk with
E[gk | θk] = ∇f(θk) and E∥gk∥2 ≤ G2, we have

E
[
sin εk | θk

]
≤ (LH/γ) ηk E∥gk∥ ≤ (LH/γ) ηkG . (6)

Leveraging the above result, we propose a simple yet novel modification: warm-starting power
iteration across training steps. At iteration k, suppose we have obtained an estimate of the top
eigenvector v1,k of the Hessian Hk = ∇2f(θk). At the next training iteration, instead of reinitializ-
ing power iteration from a random vector, we initialize from v1,k and run power iteration on Hk+1.
Below, we quantify the gain in iteration count due to warm-start.

Theorem 2. Let Hk = H(θk) have eigenvalues λ1,k ≥ λ2,k ≥ · · · and unit eigenvectors vi,k. Set
ρk+1 := λ2,k+1/λ1,k+1 ∈ [0, 1). Define the successive misalignment εk := ∠(v1,k+1, v1,k). Run
normalized power iteration on Hk+1:

y(t+1) =
Hk+1y

(t)

∥Hk+1y(t)∥
, y(0) = v1,k , (7)

and let αt := ∠(y(t), v1,k+1). Then:

0 ≤ λ1,k+1 − y(t)⊤Hk+1y
(t) ≤

(
λ1,k+1 − λ2,k+1

)
sin2 αt ≤ (1− ρk+1)λ1,k+1 ρ

2t
k+1 tan

2 εk.
(8)

Also, let t and trand be the number of iterations needed for warm start and random initialization to
achieve convergence, respectively. Then, with a high probability, we have,

trand − t ≈
1
2 log d− log

(
LH

γ ∥θk+1 − θk∥
)

log(1/ρk+1)
. (9)

Hence warm-starting is strictly advantageous whenever LH

γ ∥θk+1 − θk∥ ≪ d1/2.

3.1.1 EXTENSION TO THE PRECONDITIONED HESSIAN

When the optimization algorithm incorporates momentum and adaptive learning-rate scaling (i.e,
preconditioning), stability depends on the preconditioned curvature. Let us consider the Adam
update: θt+1 = θt − η P−1

t mt+1 , where mt is the momentum, updated as an exponential moving
average mt+1 = β1 mt + (1 − β2) gt with gt = ∇L(θt) and the preconditioner is the square-root
of the second moment of the gradients. The effective curvature, therefore, is the spectrum of

Gt := P
−1/2
t H(θt)P

−1/2
t , (10)

not of H(θt) itself. Because the preconditioner Pt changes slowly when β2 ≈ 1 and H(θt) is
Lipschitz smooth, Gt evolves smoothly along the training trajectory. As a result, our warm-starting
extends verbatim to the preconditioned Hessian. That is, the previous warm-start analysis for H(θ)
carries over by replacing H with Gt. Define the top eigenvector u1,t of Gt and the eigengap γeff

t =
λ1(Gt)− λ2(Gt). From Theorem 1 we can directly obtain:

sin∠
(
u1,t+1, u1,t

)
≤ ∥Gt+1 −Gt∥2

γeff
t

. (11)

So under a Lipschitz Hessian (∥H(θt+1)−H(θt)∥ ≤ LH∥θt+1 − θt∥) and slowly varying Pt (e.g.,
∥P−1/2

t+1 − P
−1/2
t ∥ ≤ LP ∥θt+1 − θt∥ with LP ∝ (1 − β2), the top eigendirection of Gt is slow-

moving. Consequently, power iteration on Gt+1 warm-started from u1,t enjoys the same benefits as
in the non-preconditioned case. This allows us to compute HVP for Gt without new primitives.

Warm-started tracking of the preconditioned Hessian. At step t, we form the diagonal pre-
conditioner Pt = diag(

√
vt + ε) from the optimizer state. We estimate the top eigenpair of

Gt := P
−1/2
t H(θt)P

−1/2
t by power iteration with a warm start from the previous step. Concretely:

(i) initialize y(0) with the transported eigenvector y(0) = normalize
(
P

1/2
t P

−1/2
t−1 u1,t−1

)
(or simply

4
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y(0) =u1,t−1 if transport is omitted); (ii) for τ = 0, 1, . . . perform one preconditioned HVP power
step

u = P
−1/2
t y(τ) , v = H(θt)u (HVP) , z = P

−1/2
t v , y(τ+1) = z/∥z∥2 ; (12)

(iii) compute the Rayleigh estimate λ̂t = (y(τ))⊤Gty
(τ) = u⊤v and stop when the change in

λ̂t falls below a tolerance. The output (λ̂t, u1,t = y(τ
⋆)) is reused at step t+1. Each iteration

costs a single HVP plus cheap elementwise scalings by P
±1/2
t ; with warm starts, τ⋆ is typically

< 5, enabling efficient, step-by-step tracking of the effective curvature that governs stability under
momentum/Adam (e.g., see Fig. 3).

3.2 ARCHITECTURE WARM-UP

Now, we are ready to introduce our approach to control the curvature. Specifically, we first review
that deeper networks have the potential to increase the curvature, and provide an approach to seam-
lessly increase the number of trainable layers without introducing any function or gradient disconti-
nuities. Recall that, at the EoS, the learning rate and curvature are inversely proportional; therefore,
we keep the network shallow in the early learning rate warm-up phase, and gradually increase (ef-
fective) depth when we start decaying the learning rate, ensuring the stability criterion is satisfied
throughout training. The proposed method can be readily integrated into existing training recipes
and assumes a standard transformer architecture without requiring hardware-level operations.

3.2.1 DEEPER NETWORKS INCREASE CURVATURE AND SHRINK STABILITY THRESHOLD

Let gθ = ΦL ◦ · · · ◦Φ1 be an L-block residual Transformer with Φℓ(x) = x+Bℓ(x). For the input
Jacobian,

∥Jxgθ(x)∥ ≤
L∏

ℓ=1

∥I + ∂Bℓ(xℓ−1)∥ ≤ exp
( L∑

ℓ=1

∥∂Bℓ(xℓ−1)∥
)
. (13)

For losses L(θ) = E(x,y)[ℓ(gθ(x), y)] with λmax(∇2
zℓ) ≤ Lℓ, the Gauss–Newton bound yields

λmax

(
∇2

θL(θ)
)
≤ Lℓ

(
sup
x
∥Jθgθ(x)∥

)2
, (14)

and Jθgθ inherits the multiplicative growth in Eq. 13 through backprop. Hence λmax(H) (and,
under a Positive Semi-Definite (PSD) diagonal preconditioner Pt, λmax(Gt)) increases with depth
L, shrinking the first-order stability margin. See App. B for more formal results and discussions.

Remarks. Although we can derive an upperbound as in Eq. 14 it is not sufficient to conclude
that curvature must strictly increase with depth. Empirically, the curvature might be lower than the
bound due to architecture components such as residual connections, and normalization (Sagun et al.,
2016; Li et al., 2018; Ghorbani et al., 2019; Yao et al., 2020), or due to the specific parameterization
of the model (Dinh et al., 2017). Furthermore, since the preconditioned geometry is the relevant
one for adaptive optimizers, efficient online tracking of (curvature) top eigenvalues, especially the
preconditioned analogue λmax(Gt), is more informative than pointwise analyses at initialization or
at local optima (Yao et al., 2020; Sagun et al., 2016; Ghorbani et al., 2019). Our method enables
such tracking up to multi-billion-parameter Transformers, where we observe (in Sec. 4.3) that (i)
preconditioned curvature spikes predominantly during learning-rate warm-up and (ii) increases with
depth.

3.2.2 PROGRESSIVE DEPTH VIA CONSTRAINING BLOCK WEIGHTS TO ZERO

Recall that at the stability threshold, the (preconditioned) curvature λmax(Gt) scales inversely with
the learning rate η: larger η, the smaller the admissible λmax(Gt) must be to remain stable. Con-
sequently, while η ramps up during warmup (tightening the threshold), we keep the network’s ef-
fective depth low to limit λmax(Gt). As training proceeds—after the peak learning rate or during
learning-rate decay, when the stability threshold relaxes—we progressively enable additional depth,
activating the full model only once the stability margin permits it. To this end, we wish to add depth
keeping controlling curvature and avoiding function discontinuities. Note that the transformer block
function can be expanded as follows: Let the input to the lth layer be Xl ∈ Rb×n×d, where b, n, and
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d are the batch size, sequence length, and embedding dimension, respectively. Then the function
admits a recursive structure as

Xl+1 = Xl
hiddenW

l
p2

+Xl
concatW

l
p1

+Xl , (15)

where hidden and concat are the hidden layer of the feedforward network and the concatinated output
of the attention heads, respectively. Wl

p1
and Wl

p2
are linear projection weights. A natural idea is to

hold only the projection matrices at zero (i.e., Wl
p1

= Wl
p2

= 0) so the block computes the identity
with Xl+1 = Xl, and can later be “unlocked.” However, this can still induce a discontinuous jump in
the network’s Lipschitz constant at unlock: even a small change in Wl

p1
or Wl

p2
immediately injects

the pre-existing (randomly initialized) attention/FFN paths into the residual stream. Formally, the
input–output Jacobian of the l-th block satisfies the first-order bound

∥JXlΦl − I∥ ≤ ∥Wl
p1
∥ ∥JXlXl

concat∥ + ∥Wl
p2
∥ ∥JXlXhidden∥. (16)

If all other weights retain their (nonzero) random initialization while the projections are zeroed, then
∥JXlXl

concat∥ and ∥JXlXhidden∥ can already be large at the moment of unlock; consequently, even
tiny updates to Wl

p1
or Wl

p2
can abruptly raise ∥JXlΦl∥, inflating supx ∥Jθgθ(x)∥ of the bound

Eq. 14, and thus increasing the curvature. This sudden elevation can push the model over the stability
threshold, often manifesting as loss spikes or instabilities.

To remedy this, and to guarantee continuity of both the function and its first derivative at un-
lock, we set all the weights (except RMSNorm weights)2 and exclude these parameters from the
optimizer while the block is locked. Under this constraint, Xl

concat = 0 and Xhidden = 0, so
Xl+1 = Xl and JXlΦl = I , i.e., the block is an exact identity with no increase in the Jacobian.
When the block is unlocked, all paths start from zero, and the Jacobian perturbation grows smoothly
as the newly trainable weights move away from zero. This prevents the instantaneous jump in effec-
tive Jacobian and thus avoids the associated curvature spike. In practice, we keep all block weights
at zero and frozen within the optimizer until a curvature criterion is met; then we start training them
with zero initialization. This architecture warm-up keeps the product η λmax(Gt) within the stability
envelope while depth increases, yielding smoother loss and more reliable training.

Does architecture warm up compromise representation capacity? We provide intuitions from
two perspectives; (i) Spectral bias / F-principle: deep nets fit low-frequency structure first, with
higher frequencies learned later (Rahaman et al., 2019; Xu et al., 2019); a shallow stack suf-
fices early, so temporarily limiting depth does not bottleneck what the model actually learns. (ii)
Function-space/NTK view: early training operates in a near-linear, low-curvature regime where
learning aligns with dominant, low-complexity components (Jacot et al., 2018); additional layers
can be enabled later to increase expressivity without restricting the attainable solution class. Our
convergence results, and prior work on progressive, function-preserving growth, corroborate that
deferred depth does not harm final performance (Chen et al., 2016; Wei et al., 2016; Gong et al.,
2019; Chen et al., 2020).

4 EXPERIMENTS

We evaluate decoder-only Transformers (Llama 3–style (Dubey et al., 2024)) on three large-scale
corpora: Fineweb (Penedo et al., 2024), DCLM (Li et al., 2024) and Olmo-Mix (Allen Institute
for AI, 2024). We reserve a held-out set for validation. Unless otherwise noted, we train with
context length 1024, embedding dimension 2048, 32 heads, global batch size 1024, weight decay
0.01, AdamW optimizer with standard parameters, and a linear warmup over 2000 steps followed
by linear decay. Tokenization is GPT-2 (vocabulary size 50,000). We use five power iterations
with warm-start for online curvature tracking. Our experiments include models scaling up to 3-
billion parameters. Architecture warm-up schedule: Unless noted otherwise, we keep the model
at half depth until learning-rate warmup completes, then unlock the remaining layers in four groups,
spaced by 500 training iterations, to reach full depth. Although we use this schedule, we observed
that performance is not tightly coupled to this spacing (see App. E).

2Excluding RMSNorm weights is critical since they show inferior convergence from zero initialization.
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4.1 SLOWLY MOVING TOP EIGENVECTORS

Figure 1: Leading eigenvector is
slow-moving. For a 4-layer Trans-
former, we compute the exact top Hes-
sian eigenvector at each train step and
plot the principal angle to the next step.
Consistent with Theorem 1, angles are
typically < 0.1 radians, with only rare
outliers.

Theorem 1 predicts that the leading Hessian eigendirection
moves slowly along the optimization path. To verify this em-
pirically (without any estimator bias), we compute the exact
Hessian for a 4-layer Transformer and measure the princi-
pal angle between successive top eigenvectors across training
steps. We choose a shallow network as computing the exact
Hessian of a large model is computationally prohibitive. Fig. 1
shows that these angles are typically < 0.1 rad (≈ 5.7◦) (ex-
cept for a few spikes), confirming the “slow drift” property.

4.2 EFFECTIVENESS
OF WARM-START POWER ITERATION

We compare our warm-started estimator to a cold-start (ran-
dom) power method on a 4-layer model, using the relative error
|λ̂−λexact| as the metric. Figure 2 reports error versus iteration
count. We ran each experiment five times and report the error
bars. Warm start achieves high-accuracy estimates even with
≈ 5 iterations, while the cold start error is higher with even ≥20 iterations. Further, the variance of
the cold-start error is constantly high across the number of iterations. As shown in Fig. 2 this is due
to the occasional large errors at certain steps (sensitivity to the initializer) even with a high iteration
count. This confirms that reusing the previous step’s top direction substantially reduces the HVP
budget and stabilizes power convergence.

4.3 DEPTH, EFFECTIVE CURVATURE, AND STABILITY
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(a) 5 HVP iterations.
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(b) 20 HVP iterations.
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Figure 2: Effectiveness of warm-start HVP. (a,b)
Online tracking error (vs. exact curvature) using 5 and
20 power-iteration steps, respectively, over the course
of training. (c) Error vs. number of power-iteration
steps with error bars over 5 random seeds (both model
init and HVP probes). The warm-started estimator con-
verges faster (even with 5 HVPs) and attains lower error
and variance than cold-start baselines.

We examine the impact of depth on curvature
and stability by training 8, 16, and 32-layer
models on the FineWeb dataset with peak learn-
ing rate 8 × 10−3. Figure 3 plots λmax(H)
and λmax(Gt) over training. The 8-layer net-
work maintains low, stable curvature and a
smooth loss trajectory. As depth increases, both
λmax(H) and λmax(Gt) exhibit higher levels
and variability, and the training loss becomes
prone to spikes and divergence. These re-
sults support the hypothesis that deeper stacks
go beyond the stability margin with increased
curvature. This observation motivates our ar-
chitecture warm-up: start shallow (low curva-
ture), when during the learning rate warm-up
(where the stability threshold increasingly be-
comes lower) and progressively unlock addi-
tional layers when the stability margin is higher.

4.4 STABILITY
OF ARCHITECTURE WARM-UP

As discussed in Sec. 3.1.1, under the stability
threshold, λmax(Gt) scales as O(1/λmax(Gt))
against η in first-order methods. Thus, larger η
demands smaller effective curvature. We show
that architecture warm-up, which suppresses
curvature early and lets it grow in a controlled
manner, substantially widens the range of stable learning rates: across peak-η sweeps, models
trained with architecture warm-up maintain bounded λmax(Gt) and avoid loss spikes, whereas
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Figure 3: Curvature vs. depth. We train transformers of increasing depth/size—8 layers (640M), 16 layers
(1B), and 32 layers (3B)—with a learning rate 8 × 10−3 and track training loss, λmax(H), and λmax(Gt).
Consistent with Sec. 3.2.1, curvature rises with depth: the 16 and 32-layer models exhibit pronounced spikes
in λmax(H) and λmax(Gt) during learning-rate warmup, crossing the stability boundary and diverging. By
contrast, the 8-layer model maintains lower curvature and converges stably (λmax(H) and λmax(Gt) are nor-
malized).

vanilla networks (no architecture warm-up) exhibit rapid curvature escalation and unstable con-
vergence under the same settings (Fig. 4).

(a) η = 3 × 10−3 (b) η = 6 × 10−3 (c) η = 8 × 10−3 (d) λmax(Gt)@η = 8 × 10−3

Figure 4: Convergence under varying stability thresholds. As the stability boundary scales as O(1/η)
for fixed curvature, we sweep the peak learning rate η (i.e., tightening/relaxing the threshold) and compare
architecture warm-up to an unaltered baseline. As η increases (smaller 1/η margin), the baseline becomes
increasingly unstable, whereas architecture warm-up maintains stable convergence across the range. Models
are trained on FineWeb.

4.5 COMPARISON AGAINST OTHER STABILIZATION METHODS

We compare architecture warmup to three state-of-the-art stabilization baselines, QK-Norm (Henry
et al., 2020), QK-Clip (Team et al., 2025), and Softcap (Gemma Team, 2024), and an unmodified
baseline (Fig. 5) with a peak LR of 8 × 10−3. To this end, we use 16-layer, 1B parameter models.
Note that we intentionally use a higher learning rate to observe the performance of methods under
a smaller stability threshold. Architecture Warmup consistently reduces spike frequency and mag-
nitude, avoids divergence, and exhibit faster convergence where other methods destabilize, yielding
more reliable training across datasets. Interestingly, we found QK-CLIP to be quite unstable, of-
ten diverging to NaN values mid training. Table 1 shows validation perplexities. As QK-norm
was performing best on FineWeb, we compare against it on a longer training run, up to Chinchilla
(Hoffmann et al., 2022) compute optimal (see App. D)
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(b) DCLM
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Figure 5: Comparison against existing stabilization techniques. Across datasets, competing methods con-
verge more slowly and exhibit frequent loss spikes, sometimes leading to divergence, whereas our method
remains stable and consistently faster to train.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 1: Perplexity (↓) across three datasets and five methods. ∗ indicates the diverged runs.

Dataset Baseline QK-Norm QK-Clip Softcap Arch-Warmup

FineWeb ∗ 49.88±0.003 ∗ 51.41±0.002 25.02 ± 0.001
DCLM 165.62 ±0.04 61.57±0.012 ∗ 43.38±0.03 22.64 ± 0.002
OLMo-Mix ∗ ∗ ∗ ∗ 18.54 ± 0.001

4.6 CAN LEARNING-RATE WARMUP BE REPLACED BY ARCHITECTURE WARM-UP?
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Figure 6: Replacing LR warmup with
Arch-warmup. A 16-layer (1B) Trans-
former trained on FineWeb using architec-
ture warm-up without learning-rate warmup
attains on-par convergence while exhibiting
more stable training.

Learning-rate warmup stabilizes early training by enlarg-
ing the stability margin (∝ O(1/η)) when curvature is
high; as η increases, this margin tightens. Architecture
warm-up plays the complementary role by directly con-
trolling curvature: keep depth (and thus λmax(Gt)) low
initially, then increase depth as training progresses. We
therefore ask whether LR warmup is necessary if curva-
ture is gated by architecture. As shown in Fig. 6, models
equipped with architecture warmup, achieves on par con-
vergence while exceeding the stability of LR warmup.

Here, the baseline is trained with a standard, well-tuned
learning-rate schedule with warm-up. Concretely, we use
commonly adopted hyperparameters for LLaMA-style
models: peak learning rate 4 × 10−4, weight decay 0.1,
2000 warm-up steps, and a cosine decay schedule.

The architecture-warm-up–only variant is obtained by
taking this baseline configuration and removing only the LR warm-up: we set the number of warm-
up steps to zero, keep the peak learning rate and decay schedule unchanged, keep all optimizer
hyperparameters (including weight decay) fixed, and then enable architecture warm-up.

This suggests architecture warm-up has the potential to replace LR warmup in practice, or be com-
bined with it for an even wider stable operating range.

5 RELATED WORKS

Transformer training stability. Stabilization strategies for transformers span attention- and
optimizer-level interventions. On the attention side, soft-capping limits logit magnitudes to avoid
softmax saturation (Gemma Team, 2024), and QK-normalization bounds dot-product scales (Henry
et al., 2020). On the optimization side, methods adjust or regularize updates (e.g., Adafactor and
related stabilizers) (Shazeer & Stern, 2018; Wortsman et al., 2023a). These techniques target proxi-
mate causes of loss spikes and are complementary to curvature-based diagnostics that we focus on.
Edge of Stability. The Edge of Stability (EoS) describes the regime where training hovers near the
stability boundary, with η λmax(H)≈ 2 for full-batch GD (Cohen et al., 2021; Wang et al., 2022).
Follow-ups generalized the phenomenon to preconditioned/adaptive methods, replacing H by the
preconditioned Hessian Gt = P

−1/2
t HP

−1/2
t , and analyzed implicit self-stabilization dynamics

(Cohen et al., 2022; Damian et al., 2023; Chen & Bruna, 2023). Collectively, these works suggest
that practical training often operates close to the spectral stability limit, motivating online control of
the (preconditioned) top curvature rather than relying solely on fixed hypertuning. Our work aligns
with this direction, but extend the analysis from previously explored small scale models to billion
parameter transformers proposing an efficient HVP estimation mechanism. Progressive growing
of Transformers. Prior work increases Transformer capacity during training to cut cost while pre-
serving accuracy: Progressively Stacking adds layers stagewise in BERT (Gong et al., 2019; Chen
et al., 2020); function-preserving expansions (Net2Net, Network Morphism) enlarge depth/width
without changing the realized function (Chen et al., 2016; Wei et al., 2016); and LiGO learns growth
operators to expand pretrained Transformers with minimal regression (Li et al., 2023). Our focus is
stability: we keep the full graph present from initialization and and ensure that depth unlocking pre-
serves curvature. This ties growth to an explicit stability criterion, rather than fixed stage schedules
or efficiency alone, and further avoids computational graph surgery.
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6 CONCLUSION
We introduce a scalable framework for curvature-aware training of large Transformers. First, we
propose an online estimator for the top eigenvalue of the (preconditioned) Hessian that reuses the
previous step’s eigenvector as a warm start. Under standard smoothness and eigengap assumptions,
we prove that the leading eigendirection is slow-moving, which yields rapid geometric convergence
of warm-started power iteration. Then, we propose architecture warm-up: a function-preserving
mechanism that progressively increases the effective depth according to a curvature budget, thereby
controlling the growth of effective curvature. Empirically, this combination broadens the range of
stable learning rates, reduces loss spikes, and improves training reliability.
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7 APPENDIX

A PROOFS

A.1 PROOF FOR THEOREM 1

Proof. First, We recall a useful result from Davis–Kahan, sin-Θ theorem.

Let Σ, Σ̂ ∈ Rp×p be symmetric, with eigenvalues λ1 ≥ · · · ≥ λp and λ̂1 ≥ · · · ≥ λ̂p,
respectively. Fix 1 ≤ r ≤ s ≤ p and assume that

min{λr−1 − λr, λs − λs+1} > 0,

where we define λ0 = ∞ and λp+1 = −∞. Let d = s − r + 1, and let V =

(vr, vr+1, . . . , vs) ∈ Rp×d and V̂ = (v̂r, v̂r+1, . . . , v̂s) ∈ Rp×d have orthonormal columns
satisfying Σvj = λjvj and Σ̂ v̂j = λ̂j v̂j for j = r, r + 1, . . . , s. Then

∥∥sinΘ(V̂ , V )
∥∥
F
≤

2 min
(
d1/2 ∥Σ̂− Σ∥op, ∥Σ̂− Σ∥F

)
min

(
λr−1 − λr, λs − λs+1

) . (2)

We set r = s = 1. Then we have, min
(
λr−1 − λr, λs − λs+1

)
= λ1 − λ2. Further, V̂ = v̂1 and

V = v1, d = 1.

Substituting Σ̂ = Hk+1 and Σ = Hk to above result, and with the Lipschitz condition, we have

sin εk ≤
2 min

(
∥Hk+1 −Hk∥op, ∥Hk+1 −Hk∥F

)
γ

And we know, min
(
∥Hk+1 −Hk∥op, ∥Hk+1 −Hk∥F

)
= ∥Hk+1 −Hk∥F.

So we have,

sin εk ≤
∥Hk+1 −Hk∥

γ
≤ LH

γ
∥θk+1 − θk∥. (17)

For gradient descent, ∥θk+1− θk∥ = ηk∥∇f(θk)∥. If θk+1 = θk − ηkgk with E[gk | θk] = ∇f(θk)
and E∥gk∥2 ≤ G2, then E

[
sin εk | θk

]
≤ (LH/γ) ηk E∥gk∥ ≤ (LH/γ) ηkG.

A.2 PROOF FOR THEOREM 2

Proof. For a symmetric matrix with simple top eigenvalue,

tan θt+1 =
∥(I − v1v

⊤
1 )Ay(t)∥

|⟨v1, Ay(t)⟩|
≤ |λ2|
|λ1|

tan θt = ρ tan θt,

hence by induction
tan θt ≤ ρ t tan θ0.

Take A = Hk+1, v1 = v1,k+1, and y(0) = v1,k. Then

θ0 = ∠
(
y(0), v1,k+1

)
= ∠

(
v1,k, v1,k+1

)
= εk,

so with ρk+1 := λ2,k+1/λ1,k+1 ∈ [0, 1),

tan θt ≤ ρ t
k+1 tan εk,

Expand y in the Hk+1-eigenbasis:

y⊤Hk+1y =
∑
i≥1

λi,k+1 ⟨y, vi,k+1⟩2.

14
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Therefore,

λ1,k+1 − y⊤Hk+1y =
∑
i≥2

(
λ1,k+1 − λi,k+1

)
⟨y, vi,k+1⟩2 ≤

(
λ1,k+1 − λ2,k+1

)∑
i≥2

⟨y, vi,k+1⟩2,

and since
∑

i≥2⟨y, vi,k+1⟩2 = sin2 θt,

0 ≤ λ1,k+1 − y⊤Hk+1y ≤
(
λ1,k+1 − λ2,k+1

)
sin2 θt.

Using equation A.2 and sin θt ≤ tan θt on [0, π
2 ],

λ1,k+1 − y⊤Hk+1y ≤
(
λ1,k+1 − λ2,k+1

)
ρ 2t
k+1 tan2 εk = (1− ρk+1)λ1,k+1 ρ

2t
k+1 tan2 εk,

which is equation 8.

By Theorem 1,

tan εk ≤ sin εk ≤
LH

γ
∥θk+1 − θk∥ ⇒ tan θt ≤ ρ t

k+1

LH

γ
∥θk+1 − θk∥.

To ensure θt ≤ δ ∈ (0, π
2 ), it suffices that

ρ t
k+1

LH

γ
∥θk+1 − θk∥ ≤ tan δ.

Since 0 < ρk+1 < 1, taking logs yields

t ≥
log

(
LH

γ ∥θk+1 − θk∥
)
− log(tan δ)

log(1/ρk+1)
,

.

Let x ∼ Unif(Sd−1). With high probability,

⟨x, v1,k+1⟩2 = Θ(1/d) ⇒ tan∠(x, v1,k+1) = Θ(
√
d).

Thus tan θt ≤ ρ t
k+1 Θ(

√
d) ≤ tan δ implies

trand ≳
1
2 log d− log(tan δ)

log(1/ρk+1)
,

and subtracting the warm-start bound gives equation 9.

A.3 IMPLEMENTATION SKETCH OF WARM-START POWER ITERATION

Algorithm 1 Warm-Start HVP Power Iteration for λmax(H(θ))

1: input: parameters θ; optional warm vector ywarm with ∥ywarm∥2 = 1; optional previous esti-
mate λ̂warm; tolerance ε

2: initialize:

3: y(0) ←
{

ywarm, if provided
randn unit vector, otherwise

4: (early exit check) If λ̂warm provided, optionally compute residual r(0) ← ∥(H(θ) −
λ̂warmI)y

(0)∥2 (1 HVP). If r(0) ≤ ε |λ̂warm|, return (λ̂warm, y
(0)).

5: for t = 0, 1, 2, . . . do
6: z(t+1) ← H(θ) y(t) {Pearlmutter HVP}
7: guard: If ∥z(t+1)∥2 = 0 (numerical underflow), reinitialize y(t) to a fresh random unit vector

and continue.
8: y(t+1) ← z(t+1)/∥z(t+1)∥2 {power update}
9: λ̂(t+1) ← ⟨y(t+1), H(θ) y(t+1)⟩ {one extra HVP or reuse if cached}

10: warm-start stabilization (optional):
11: (i) Momentum mix: if t = 0 and ywarm provided, set y(1) ←

normalize
(
α y(1) + (1−α) ywarm

)
with small (1−α) (e.g., 0.1).

12: (ii) Cosine guard: if t = 0 and |⟨y(1), ywarm⟩| < τ (e.g., τ=0.1), replace y(1) ← ywarm.
13: stopping test: If ∥(H(θ)− λ̂(t+1)I)y(t+1)∥2 ≤ ε |λ̂(t+1)|, return (λ̂(t+1), y(t+1)).
14: end for
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Note that the proposed warm-start strategy is particularly well suited for large neural networks where
HVPs are expensive and frequent monitoring of curvature is desirable. By amortizing eigenvector
estimation across training steps, we enable efficient online tracking of sharpness without compro-
mising accuracy. To the best of our knowledge, this continuation-style use of power iteration has
not been previously explored in the deep learning literature, despite being a standard idea in numer-
ical linear algebra. Our theoretical guarantees and empirical results demonstrate its clear superiority
over random initialization for curvature estimation in neural network training.

B DEPTH, LIPSCHITZ GROWTH, AND CURVATURE

In this section, we discuss the connection between the depth and the stability margin with formal
results.

Setup and notation. Let gθ = ΦL ◦ · · · ◦ Φ1 with residual blocks Φℓ(x) = x + Bℓ(x). Write
Jℓ(x) = I + ∂Bℓ(x), Jxgθ for the input Jacobian, and x0 = x, xℓ = Φℓ(xℓ−1). Norms are operator
(spectral) norms.
Lemma 1 (Depth–Lipschitz bound). For all x,

∥Jxgθ(x)∥ ≤
L∏

ℓ=1

∥Jℓ(xℓ−1)∥ ≤ exp
( L∑

ℓ=1

∥∂Bℓ(xℓ−1)∥
)
.

Proof. By the chain rule, Jxgθ(x) = JL(xL−1) · · · J1(x0). Submultiplicativity gives ∥Jxgθ(x)∥ ≤∏
ℓ ∥Jℓ(xℓ−1)∥. Next use ∥I +A∥ ≤ 1 + ∥A∥ ≤ exp(∥A∥) to obtain the exponential bound.

Lemma 2 (Parameter sensitivity growth). Let Jθgθ(x) denote the Jacobian of gθ w.r.t. parameters.
Then ∥Jθgθ(x)∥ ≤ C

∏L
ℓ=1 ∥Jℓ(xℓ−1)∥ for some constant C depending on block parametrization

(e.g., linear maps and elementwise activations yield C = 1 up to dimension factors). In particular,
Jθgθ inherits the multiplicative growth in Lemma 1.

Proof. Differentiate the composition with respect to block parameters; each term contains a product
of input Jacobians Jk before and after the block where parameters appear. Bounding each product
by

∏
ℓ ∥Jℓ∥ gives the stated inequality (constants collect per-block linear maps).

Proposition 1 (Curvature bound via Gauss–Newton). Assume ℓ is twice differentiable in z = gθ(x)
with λmax(∇2

zℓ) ≤ Lℓ. Then

λmax

(
∇2

θL(θ)
)
≤ Lℓ

(
sup
x
∥Jθgθ(x)∥

)2
.

Proof. For each (x, y), the Gauss–Newton term is Jθgθ(x)⊤∇2
zℓ Jθgθ(x) ⪯ Lℓ Jθgθ(x)

⊤Jθgθ(x),
hence the stated bound after taking expectation and the maximum eigenvalue.

Corollary 1 (Preconditioned curvature). Let Pt be SPD diagonal with mtI ⪯ Pt ⪯MtI . Then for
Gt = P

−1/2
t HP

−1/2
t ,

1

Mt
λmax(H) ≤ λmax(Gt) ≤

1

mt
λmax(H).

Hence the depth dependence of λmax(Gt) mirrors that of λmax(H) up to constant factors (mt,Mt).

Proof. For SPD Pt, Rayleigh quotients give λmax(Gt) = max∥v∥=1 v
⊤P

−1/2
t HP

−1/2
t v =

max∥u∥Pt=1 u
⊤Hu, where ∥u∥2Pt

= u⊤Ptu. Using mt∥u∥2 ≤ ∥u∥2Pt
≤ Mt∥u∥2 yields the

bounds.

Corollary 2 (Stability margin scales as 1/λmax). For a quadratic model of the local dynamics,
gradient descent is stable if η < 2/λmax(H); with momentum/Adam, the admissible region for
(η, β) scales as O(1/λmax(Gt)). Combining Lemma 1, Lemma 2, and Proposition 1 shows that
increasing depth L raises λmax(H) (and λmax(Gt)), thereby shrinking the stability margin.
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C SELF-STABILIZATION OF CURVATURE DURING TRAINING

C.1 CURVATURE AS TRAINING PROGRESSES

We track the raw curvature λmax(H(θt)), the effective (preconditioned) curvature λmax(Gt), and the
preconditioner inverse P−1

t for a 16-layer (1B) model. As shown in Fig. 7, after an initial transient
the dynamics enter a regime where λmax(Gt) oscillates within a narrow band, consistent with the
edge-of-stability picture. This self-stabilization supports increasing depth later in training, once
curvature has settled. Notably, P−1

t continues to grow over time, indicating a steadily strengthening
preconditioning effect from the optimizer.
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Figure 7: Self stabilization of transformers. After an initial transient period, both the raw cur-
vature and the preconditioned curvature settles down to a stable, lower band. This supports the
effectiveness of increasing the depth later in the training. Interestingly, P−1 keeps growing as the
training progresses (shown values are normalized).

C.2 SELF STABILIZATION OF CURVATURE DURING TRAINING

We observe a self-stabilization effect in Transformers (see Fig. 8): when curvature rises, the op-
timizer’s preconditioner counteracts it. In Adam-like methods with Pt = diag(

√
vt + ε) and

vt+1 = β2vt + (1 − β2)g
⊙2
t , larger curvature typically coincides with larger gradients gt, which

increases vt and thus Pt. Since the effective curvature is Gt = P
−1/2
t HP

−1/2
t , a larger Pt (smaller

P−1
t ) reduces Rayleigh quotients and damps λmax(Gt), yielding a stabilizing feedback. See below

for a formal discussion.

Self-stabilization via adaptive preconditioning (and its limits). Let Ht :=H(θt) and consider
an Adam-like update θt+1 = θt − ηM−1

t m̂t with diagonal preconditioner Mt = diag(
√
vt + ε),

where
vt+1 = β2vt + (1− β2) g

⊙2
t , gt = ∇L(θt).

The effective (preconditioned) curvature experienced by the optimizer is

Gt = M
−1/2
t Ht M

−1/2
t , λmax(Gt) = max

∥x∥=1
x⊤M

−1/2
t HtM

−1/2
t x.

When curvature or gradient energy surges, g⊙2
t increases and (after EMA smoothing) Mt+1 ↑; con-

sequently M
−1/2
t+1 ↓ and all Rayleigh quotients of Gt+1 decrease. A simple bound follows from the

Rayleigh quotient and diagonal ordering:

λmax(Gt+1) ≤ ∥M−1/2
t+1 ∥ 22 λmax(Ht+1) =

λmax(Ht+1)

mini (
√
vt+1,i + ε)2

.

Thus, as vt+1 grows, the preconditioner shrinks the effective curvature, exhibiting an implicit self-
stabilization that nudges the product η λmax(Gt) toward the stability band (the EoS).

However, this is not sufficient to ensure stable convergence. Despite this automatic balancing, there
are three failure modes: (i) lag: vt reacts on a time scale ∼ 1

1−β2
steps, so sharp, step-scale spikes

in Ht can push η λmax(Gt) beyond the boundary before Mt catches up; (ii) anisotropy: Mt is
diagonal, whereas Ht can be highly anisotropic; a coordinate-wise preconditioner cannot instantly
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Figure 8: Self-stabilization in Transformers. Close-ups over particular training windows of
second- and first-order statistics for 8-, 16-, and 32-layer models. Each row (left→right) shows
λmax(H), P−1, and λmax(Gt). When the Hessian spikes, the preconditioner dips, reducing
λmax(Gt) and partially stabilizing the effective curvature; however, this feedback is not always
sufficient to keep λmax(Gt) within the stability threshold.

suppress a sharp direction that is a dense combination of coordinates; (iii) coupling with momen-
tum: with β1 > 0, a large mt can overshoot even if Mt starts to grow, transiently amplifying the
update.

In summary, adaptive methods do provide a reactive stabilizer, M−1
t tends to drop as curvature

rises, reducing λmax(Gt), but this mechanism is imperfect under fast spikes, strong anisotropy, or
momentum coupling. Our architecture warm-up complements this by acting proactively on Ht

itself: by keeping depth (and hence the operator norm of intermediate Jacobians) low early and
unlocking blocks later in training, we keep the system inside the stability envelope even when the
optimizer’s preconditioner has not yet adapted.

D VALIDATION AT COMPUTE OPTIMAL

Since QK-Norm was the strongest baseline in our shorter FineWeb runs, we benchmark it at the
Chinchilla compute-optimal setting (Hoffmann et al., 2022): a 1B-parameter, 16-layer model trained
for 25B tokens on FineWeb. This experiment tests whether early-phase gains from Arch-Warmup
persist at compute-optimal budget. As Table 2 shows, Arch-Warmup outperforms QK-Norm at
this scale, indicating stronger convergence and stability that carry through to the compute-optimal
regime

E SENSITIVITY TO THE WARM UP SCHEDULE

.

By default, we keep the model at half depth until learning-rate warmup completes, then unlock the
remaining layers in four groups spaced by 500 training iterations to reach full depth. Performance,
however, is not sensitive to this spacing: Fig. 10 shows that even with zero spacing (i.e., unlocking
all remaining layers at once at peak learning rate), results are similar. The reason is that newly
enabled blocks are zero-initialized, so their contribution to the Jacobian/Hessian—and thus the total
(preconditioned) curvature—grows gradually from the half-depth baseline. The model therefore
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Figure 9: Convergence with different architecture warm-up schedules. We observe that our method
is not highly sensitive to the schedule.

Table 2: Validation perplexity (PPL) on FineWeb at Chinchilla compute-optimal (1B, 16 layers, 25B
tokens). Lower is better.

Method Val PPL ↓
QK-Norm 20.28
Softcap 32.44
Arch-Warmup 18.35

never encounters a sudden “full-depth” curvature jump at the unlock step; instead, capacity and
curvature are realized progressively as those weights move away from zero.
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Figure 10: Log-scale plot for the evolution of λmax(Gt) with a peak learning rate of 8× 10−3.
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