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ABSTRACT

Recent large language models (LLMs) have made great progress in the field of
text-to-speech (TTS), but they still face major challenges in synthesizing fine-
grained emotional speech in an interpretable manner. Traditional methods rely
on discrete emotion labels to control emotion categories and intensities, which
cannot capture the complexity and continuity of human emotional perception and
expression. The lack of large-scale emotional speech datasets with balanced emo-
tion distributions and fine-grained emotional annotations often causes overfitting
in synthesis models and impedes effective emotion control. To address these is-
sues, we propose UDDETTS, a universal LLM framework unifying discrete and
dimensional emotions for controllable emotional TTS. This model introduces the
interpretable Arousal-Dominance-Valence (ADV) space for dimensional emotion
description and supports emotion control driven by either discrete emotion labels
or nonlinearly quantified ADV values. Furthermore, a semi-supervised training
strategy is designed to comprehensively utilize diverse speech datasets with dif-
ferent types of emotional annotations to train the UDDETTS. Experiments show
that UDDETTS achieves linear emotion control along three interpretable dimen-
sions, and exhibits superior end-to-end emotional speech synthesis capabilities.
Code and demos are available at: https://anonymous.4open.science/
w/UDDETTS.

1 INTRODUCTION

Figure 1: The overview of UDDETTS. It is designed for large-scale emotional speech datasets and
integrates discrete label and dimensional ADV annotations to enable controllable emotional TTS.

Recently, a growing number of LLM-based TTS models, e.g. CosyVoice1-3 (Du et al., 2024a;b;
2025), IndexTTS1-2 (Deng et al., 2025; Zhou et al., 2025), FireRedTTS1-2 (Guo et al., 2025; Xie
et al., 2025), VibeVoice (Peng et al., 2025), F5-TTS (Chen et al., 2025c), Seed-TTS (Anastassiou
et al., 2024), VALL-E (Chen et al., 2025b), Spark-TTS (Wang et al., 2025), have emerged and her-
alded a new epoch in the field of TTS. These models leverage the strong language understanding of
LLMs to generate speech semantic tokens from text tokens, thereby achieving significant advantages
in synthesizing expressive speech. In human-computer interaction, enhancing speech expressiveness
has become increasingly important, with controllable emotional TTS as a core element. Current
LLM-based methods primarily rely on emotion prompts for supervised fine-tuning. They simplify
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emotional expression by mapping emotions into predefined discrete categories such as happy, sad,
angry, etc. Although some models employ more detailed prompts such as emotion descriptions,
timbre, age and prosody to fine-grained control, they do not achieve interpretable disentanglement
of speech emotions, so it is still fundamentally constrained by discrete labels in the dataset. Due to
the limited variety and granularity of labels and descriptions, this approach generates speech emo-
tions with average expressions per category. In reality, Hong et al. (2025) and Chang (2024) have
shown that LLMs can understand complex emotions and exhibit empathy, while Hamann (2012)
suggests that emotions exist as a highly interconnected continuum in a continuous space rather than
isolated categories. Addressing this limitation requires developing continuous emotion modeling
mechanisms in LLM-based TTS models to better capture subtle emotional variations.

With the development of affective computing, dimensional emotion theory (Plutchik, 1980; Russell,
1980; Mehrabian & Russell, 1974; Cowie et al., 2001; Bakker et al., 2014; Gunes & Schuller, 2013)
provides a more refined framework for modeling genuine human psychological emotions. Among
these, the Arousal-Dominance-Valence (ADV) space (Mehrabian & Russell, 1974) is a commonly
used three-dimensional emotion disentanglement space. Arousal represents psychological alertness
levels. Low arousal involves being sleepy or bored, while high arousal involves being awake or
excited. Dominance measures control over others or being controlled, reflecting emotional expres-
sion desires. Low dominance involves being aggrieved or weak, while high dominance involves
being angry or amused. Valence (also known as Pleasure) represents the emotional positivity and
negativity, such as being sad or angry as low valence, while being happy or excited as high valence.
Mehrabian & Russell (1974) and Jia et al. (2025) indicate that these three dimensions account for
all variations across 42 emotion scales and cover almost all speech emotion states.

Inspired by the strengths of ADV space in decoupling emotions into interpretable and linearly con-
trollable vectors, how to leverage diverse emotional annotations and address the imbalanced and
limited distributions of emotions within the ADV space remains an open challenge. On one hand,
existing speech datasets tend to overrepresent neutral emotions, leading to overfitting during train-
ing. On the other hand, due to the high cost of emotion annotation, most large-scale emotional
speech datasets provide only discrete emotion labels, while only a few offer both discrete labels and
dimensional ADV values. This scarcity of ADV annotations leads to low controllable coverage rate
in the ADV space. Previous studies (Lugger & Yang, 2008; Wang et al., 2023; Liang et al., 2023)
have addressed label-based emotional imbalance. However, none of these methods have explored
solutions within the ADV space. Some recent studies (Luo et al., 2025; Li et al., 2025a; Park &
Caragea, 2024; Qiu et al., 2024; Lian et al., 2025) have employed semi-supervised training in LLMs
to tackle the challenges of diverse annotations. In particular, Luo et al. (2025) shows that semi-
supervised training enables interaction across diverse annotation types, and effectively propagates
knowledge from labeled to unlabeled data, providing a promising way to address these challenges.

This paper proposes UDDETTS, a universal LLM framework comprising a neural codec language
model, an optimal-transport conditional flow matching (OT-CFM) module, and a vocoder, as shown
in Figure 1. UDDETTS is the first LLM-based TTS to introduce the interpretable ADV space, en-
abling fine-grained, decoupled emotion control beyond traditional label-based or description-based
methods. It categorizes all datasets into spontaneous emotion datasets and elicited emotion datasets.
To address the low controllable coverage rate of the ADV space, it adopts semi-supervised training
to accommodate different types of emotional speech datasets, and fuses ADV and label annotations
from these datasets. UDDETTS nonlinearly quantizes the ADV space into controllable units as
ADV tokens, and introduces an ADV predictor to enhance end-to-end emotional TTS in the absence
of emotional annotations. The OT-CFM module employs an emotional mixture encoder to integrate
the masked ADV tokens and label token into emotion conditions. We evaluate UDDETTS using ob-
jective and subjective metrics across three tasks: label-controlled, ADV-controlled, and end-to-end
emotional TTS, comparing it with LLM-based TTS models and analyzing its control performance.
Experiments demonstrate UDDETTS achieves more accurate emotional expression while maintain-
ing high naturalness and low WER, and uniquely supports linear control of decoupled emotions
along three dimensions.

In summary, our contributions to the community include:

1. We propose UDDETTS, a unified emotional TTS framework that unifies both discrete and
dimensional emotions, featuring the first LLM supporting both ADV and label inputs for
fine-grained emotional speech synthesis.
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2. We propose a nonlinear binning strategy for the ADV space with semi-supervised training
to address the imbalance and limited distributions within it, and we leverage large-scale
emotional speech datasets to learn a broader range of emotions.

3. UDDETTS disentangles speech emotions in an interpretable manner, enabling linear con-
trol along three dimensions, higher naturalness and emotion similarity under label control,
and text-adaptive emotion synthesis with text input alone.

2 RELATED WORK

Current controllable emotional TTS models can be categorized into label-controlled and space-
controlled approaches.

Label-based control models learn from discrete emotion categories and intensity levels. For ex-
ample, current LLM-based models (Du et al., 2024a;b; 2025; Anastassiou et al., 2024; Wang et al.,
2025) synthesize emotional speech with specified label prompts, Kang et al. (2023) uses a diffu-
sion model for zero-shot conversion of neutral speech to a target emotional category. To capture
fine-grained emotions, Inoue et al. (2024); Liu et al. (2025) employ hierarchical control conditions
across coarse and fine granularities. Liu et al. (2024) synthesizes emotional speech based on di-
alogue context, including emotion labels and intensities. Others explore relative ranking matrices
(Zhu et al., 2019), interpolation (Guo et al., 2023), or distance-based quantization (Im et al., 2022)
methods to control speech emotional intensity. However, these methods struggle to capture the
continuity of emotion distributions.

Space-based control models aim to construct a continuous space and capture relationships between
different emotions. For example, Li et al. (2025b) proposes a unified TTS framework that learns
continuous emotional representation spaces from multimodal emotion prompts. Chen et al. (2023)
maps emotions into hyperbolic space to better capture their hierarchical structure. Tang et al. (2023);
Zhou et al. (2023); Oh et al. (2023) use interpolation of the embedding space to synthesis speech
with a mixture of emotions. AffectEcho (Viswanath et al., 2023) uses a vector quantized space to
model fine-grained variations within the same emotion. But these models fail to disentangle the emo-
tion space interpretably, restricting manual control. Recently, EmoSphere-TTS (Cho et al., 2024)
and EmoSphere++ (Cho et al., 2025) have explored ADV spaces for interpretable control, using
a Cartesian-spherical transformation to control emotion categories and intensities. However, this
distorts original emotion clusters and increases overlap, e.g., failing to capture intermediate emo-
tions along the dominance dimension between angry and sad. Moreover, limited and imbalanced
emotional annotations hinder their application to LLMs.

3 UDDETTS

UDDETTS needs to learn discrete and dimensional emotions and integrate both in large-scale emo-
tional speech datasets. It categorizes these datasets into spontaneous emotion datasets DS and
elicited emotion datasets DE , and further divides them based on annotation types into four types:
DS,AL (DS w/ label & w/ ADV), DS,L (DS w/ label & w/o ADV), DE,AL (DE w/ label & w/ ADV),
and DE,L (DE w/ label & w/o ADV). DS are recorded in natural scenarios such as conversations,
speeches, or performances. In many samples, the emotional representations in speech align with
the textual content, enabling the LLM to learn meaningful emotional mappings from a text to ADV
and label values. In contrast, DE are created by asking speakers to express predefined emotions
with varying categories and intensities using the same text. Here, a single text may correspond to
multiple labels that do not match its inherent emotion, making it difficult for the LLM to learn emo-
tional mappings from a text to a label, and requiring the ADV or label to guide speech emotions.
UDDETTS is designed to control speech emotions using either label or ADV inputs. Its core is a
neural codec language model with specially designed token sequences.

3.1 SEMI-SUPERVISED NEURAL CODEC LANGUAGE MODEL

3.1.1 MODEL ARCHITECTURE

For the neural codec language model as shown in Figure 2, which is based on the Transformer
architecture, the design of input-output sequences is crucial. Inspired by Spark-TTS (Wang et al.,
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Figure 2: Left: the supervised multi-task speech tokenizer. Right: the neural codec language model
running autoregressively until EOS. During semi-supervised training, ADV tokens in the input and
label token in the output are dynamically masked depending on dataset type.

2025), the LLM separates textual content from speech attribute features, further decoupling speaker
timbre from emotional representations within the latter. It integrates the input-output sequences of
different dataset types into a unified model, as defined in Eqs. (1-3).

DS|E,AL :
xinput = [xsos,xtext, xattr, xspk,xadv ∈ Z3

[1,m], xgen, xlbl ∈ Z1
[0,n],xsem]

xoutput = [xign, xlbl ∈ Z1
[1,n],xsem, xeos]

(1)

DS,L :
xinput = [xsos,xtext, xattr, xspk,xign ∈ Z3, xgen, xlbl ∈ Z1

[0,n],xsem]

xoutput = [xign, xlbl ∈ Z1
[1,n],xsem, xeos]

(2)

DE,L :
xinput = [xsos,xtext, xattr, xspk,xign ∈ Z3, xgen, xlbl ∈ Z1

[0,n],xsem]

xoutput = [xign, xign ∈ Z1,xsem, xeos]
(3)

where xinput and xoutput are the input sequence and output sequence of the neural codec language
model. Specifically, xsos, xeos, xattr and xgen represent the start-of-sequence token, end-of-sequence
token, attribute-start token, and generation-start token, respectively. All of them are fixed values
and belong to Z1. xign is the ignore tokens, used to mask positions in the xoutput during training.
xtext is obtained by processing raw text with a Byte Pair Encoding (BPE)-based tokenizer (Radford
et al., 2023). To align semantic information, xtext is encoded into text embeddings via a Conformer-
based text encoder. xspk is the speaker id, encoded as the speaker embedding computed by averaging
timbre vectors extracted from all neutral emotional speech samples of this speaker using a voiceprint
model (Chen et al., 2024). This embedding captures speaker timbre while excluding emotional
representations. xadv is obtained from ADV values using an ADV quantizer based on the nonlinear
binning described in Section 3.1.2, and m is the number of bins along each dimension. xlbl is the
emotion label token, and n is the number of label token types. xsem is the speech semantic tokens
enriched with emotional representations, extracted by a novel speech tokenizer shown in Figure 2.

To ensure that xsem captures rich paralinguistic emotional information, we design a supervised multi-
task speech tokenizer inspired by CosyVoice3 (Du et al., 2025). Specifically, the Finite Scalar Quan-
tization (FSQ) module (Mentzer et al., 2024) is inserted into the encoder of the MinMo model (Chen
et al., 2025a), which is then jointly trained on automatic speech recognition (ASR), speech emotion
label recognition (SELR), and speech ADV recognition (SADVR).

3.1.2 EMOTION QUANTIFICATION

In the ADV space, emotions are continuously distributed. For controllability, these continuous vec-
tors are quantized into tokens xadv = [xa, xd, xv] ∈ Z3

[1,m], where xa (arousal) controls the intensity
of the emotion provoked by a stimulus, xd (dominance) controls the level of control exerted by
the stimulus, and xv (valence) controls the positivity or negativity of an emotion. However, due to
imbalanced emotion distributions and limited ADV values in these datasets, the distributions along
the three dimensions exhibit approximately normal patterns, and certain regions of the ADV space
remain underrepresented, as shown in Appendix E. To address these problems, we design an ADV
quantizer by exploring different nonlinear binning algorithms (Garca et al., 2016) for each of the
three dimensions, and finally select the clustering-based binning algorithm to balance uniformity
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and discriminability. Then, to balance control granularity and linearity, the ADV quantizer uses the
central limit theorem (Punhani et al., 2022) to determine the number of bins. Details of the nonlinear
binning algorithm derivation are given in the Appendix E.

We observe that different emotion labels generally form distinct clusters in the ADV space, as shown
in in Appendix D. However, some labels show substantial overlap, indicating ambiguity in their
emotional boundaries. So we unify semantically similar emotion labels in the datasets into a single
token. For example, both happy, amused and laughing are grouped under the happy category and
assigned the same token.

3.1.3 ADV PREDICTOR

We also observe that without control conditions, predicting xlbl and xsem solely from xtext performs
poorly, often yielding speech with neutral emotion. To enhance end-to-end emotional TTS, we
introduce an ADV predictor that first estimates pseudo-ADV advpred from xtext, advpred are then
quantized by the ADV quantizer into pseudo-ADV tokens xadvpred , which are fed into the neural
codec language model together with xtext. The ADV predictor, inspired by Park et al. (2021); Wen
et al. (2021), employs a RoBERTa encoder followed by softmax and norm layers over the pooled
output. It is trained jointly with the LLM and loss function is defined as:

LADV =
∑

x∈{a,d,v}

α||xpred − xtrue||2 +

B∑
b=1

||advpredb − cb||
2, (4)

the first term computes the MSE of advpred across three decoupled dimensions, while the second
term minimizes its distance to the bin center cb of advtrue for each sample.

3.1.4 TRAINING AND INFERENCE

During training, due to the mixture of datasets, each batch may include samples from multiple
sources. For samples with xadv 6= xign in a batch (i.e., from DS,AL or DE,AL, see Eq. 1), their
corresponding xlbl in xoutput can be correctly predicted from the text and ADV, and is therefore not
masked. For samples where xadv = xign, the masking depends on the dataset type: if the sample
comes from DS,L, xlbl in xoutput is not masked, since the text emotion and label are consistent;
but if the sample comes from DE,L, xlbl in xoutput needs to be masked. In spontaneous emotional
datasets DS , many samples exhibit ambiguous emotional expressions and are labeled as Unknown
(see Table 6 in the Appendix). When xlbl = 0 in xinput, the corresponding xlbl in xoutput is masked
during training. We design a label token position-aware smoothing loss function for semi-supervised
training, as defined in follow Eqs. (5,6):

LLLM = − 1

L+ 2

L+2∑
l=1

wemo(l)p(vl) log q(vl) + LADV , (5)

where p(vl) =

{
1− ε, if vl = µl
ε
K , if vl 6= µl

, wemo(l) =


0, if µl = xlbl = xign or 0

5.0, if µl = xlbl 6= xign or 0

1.0, otherwise
, (6)

here, L + 2 is the length of xloss = [xlbl,xsem, xeos] in xoutput. vl and µl denote the predicted token
and the ground-truth token at position l in xloss. wemo(l) is the position-dependent weighting scale.
When the xlbl is xign or 0, indicating that the sample belongs to DE,L or the label is Unknown —
the loss at xlbl position is masked. Otherwise, the loss at xlbl position is up-weighted to accelerate
convergence. p(vl) is used for label smoothing, where K is the vocabulary size and ε is a small
smoothing parameter.

During inference, the LLM operates in three modes, corresponding to three different tasks:

1. The first task controls speech emotion categories using a label: it uses xtext and xlbl, with
the xadv ignored, to generate label-conditioned xsem.

2. The second task controls fine-grained emotions using ADV tokens: it uses xtext and xadv to
predict xlbl and then generates xsem autoregressively.

3. The third task predicts text-adaptive emotions directly from texts: it it uses only xtext to
predict xsem, while xadvpred serve as intermediate tokens predicted from the text.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.2 SEMI-SUPERVISED CONDITIONAL FLOW MATCHING

To synthesize emotional speech, UDDETTS reconstructs the speech semantic tokens xsem into mel-
spectrograms via an OT-CFM module. This module is conditioned on the speaker embedding Espk,
the semantic embeddingEsem and the emotion conditionsEemo. Here,Esem is obtained by encoding
the generated xsem via a Conformer-based semantic encoder, while Eemo is derived from both xlbl
and xadv to enhance the emotional guidance of the synthesized speech.

Figure 3: The emotional mixture encoder of OT-
CFM module to generate the emotion conditions.

To generate Eemo, the OT-CFM module em-
ploys an emotional mixture encoder, as illus-
trated in Figure 3. This encoder fuses the
masked xlbl and xadv. Specifically, the ADV
encoder first encodes xa, xd and xv separately
into Ea, Ed and Ev, which are then concate-
nated and passed through an interaction layer
to obtain the ADV embedding Eadv. The la-
bel encoder directly encodes xlbl into a label
embeddingElbl. A multi-head attention layer
is applied, using Elbl as the query and Eadv
as the key and value. resulting in a label-
attended emotion embeddingEattn

emo. Finally, a
gate layer combined with the semi-supervised
gating algorithm described in Eq. (7) pro-
duces the final emotion conditions Eemo.

Eemo =


Eadv if xlbl = 0

(gate+ 1) ·Elbl if xlbl 6= 0 and xadv = xign

gate ·Elbl + (1− gate) ·Eattn
emo if xlbl 6= 0 and xadv 6= xign

(7)

The OT-CFM module defines a time-dependent vector field vt(X) : [0, 1]× RL×D → RL×D, and
uses an ordinary differential equation (Onken et al., 2021) to find the optimal-transport (OT) flow
φOTt . All condition, including Espk, Esem and Eemo, are fed into a U-net neural network Uθ to
match the vector field vt(X) to wt(X) with learnable parameters θ:

vt(φ
OT
t (X0,X1)|θ) = Uθ(φ

OT
t (X0,X1),Espk,Esem,Eemo, t), (8)

wt(φ
OT
t (X0,X1)|X1) = X1 − (1− σ)X0, (9)

whereX0 ∼ N (0, τ−1I),X1 is a learned approximation of the mel-spectrogram distributions, t is
the timestep using a cosine schedule (Nichol & Dhariwal, 2021) to prevent rapid noise accumulation
from linear addition. The conditional flow matching loss function is shown in Eq. (10):

LCFM = EX0,X1 ||wt(φOTt (X0,X1)|X1)− vt(φOTt (X0,X1)|θ)||2. (10)

During inference, xlbl is derived directly from the input in the first task (1), while in the second and
third tasks (2, 3), xlbl is obtained from the label predicted by the LLM.

4 EXPERIMENTS

4.1 DATASETS

To evaluate the UDDETTS model, we collect large-scale English emotional speech datasets, in-
cluding MSP (Lotfian & Busso, 2019), IEMOCAP (Busso et al., 2008), MELD (Poria et al., 2019),
MEAD(Wang et al., 2020), CMU-MOSEI (Bagher Z et al., 2018), ESD (Zhou et al., 2022), EmoV-
DB (Adigwe et al., 2018), Expresso (Nguyen et al., 2023), CREMA-D (Cao et al., 2014), RAVDESS
(Livingstone et al., 2018), EmoTale (Hjuler et al., 2025), EU-Emotion (Lassalle et al., 2018) and
118.6 hours of internally annotated emotional speech. Each dataset is annotated with either emotion
labels or ADV values. We also leverage 49400+ hours English general speech datasets w/o emo-
tional annotations to support early-stage TTS training. All samples undergo preprocessing: emotion
labels, punctuation, numbers, and other special characters are standardized; ADV values are normal-
ized to [1,7]; annotation errors are removed; and speech recordings are resampled to 16 kHz. We
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Table 1: Comparison of subjective and objective evaluation results across LLM-based TTS models.
Models MOS↑ Pm ↑ Rm ↑ UTMOS↑ WER(%)↓ SS↑ ES↑ STOI↑ PESQ-WB↑
UDDETTS 4.29±0.12 0.94 0.90 4.25 2.40 0.702 0.833 0.90 2.80
CosyVoice 4.02±0.08 0.83 0.73 3.87 4.35 0.679 0.635 0.83 2.16
CosyVoice2 4.20±0.10 0.85 0.75 4.10 2.42 0.733 0.720 0.88 2.59
CosyVoice3 4.35±0.10 0.85 0.82 4.48 1.45 0.784 0.790 0.92 2.68
IndexTTS 4.20±0.15 0.83 0.72 3.95 2.45 0.715 0.678 0.89 2.43
IndexTTS2 4.29±0.10 0.87 0.80 4.20 1.69 0.792 0.778 0.94 2.60
FireRedTTS 3.95±0.07 0.74 0.65 3.80 3.85 0.635 0.605 0.86 2.30
FireRedTTS2 4.15±0.06 0.83 0.76 3.85 3.19 0.684 0.723 0.90 2.50
Spark-TTS 4.18±0.13 0.85 0.77 4.04 2.03 0.678 0.680 0.89 2.46
F5-TTS 4.18±0.07 0.88 0.78 4.30 1.82 0.723 0.709 0.92 2.35
VALL-E 3.79±0.15 0.62 0.69 3.58 5.98 0.590 0.594 0.81 1.91
CosyVoice + ADV 4.15±0.05 0.90 0.81 4.10 4.08 0.680 0.815 0.86 2.66
UDDETTS w/o EME 4.20±0.10 0.90 0.87 4.18 2.35 0.682 0.820 0.90 2.71

remove samples with overlapping speakers, instrumental music, excessive noise, other languages,
missing transcriptions, and durations longer than 30 seconds. To reduce speaker timbre confusion,
we remove samples from Unknown speakers and discard speakers with fewer than four utterances.
Appendix D summarizes the statistics of collected datasets after cleaning. In total, 19 emotion labels
are used, with corresponding label tokens [0, 9] and sample counts listed in Table 6 in Appendix.

4.2 IMPLEMENTATION DETAILS

We first train the speech tokenizer on the full training set, which converges within 500k steps. The
trained tokenizer is then used to extract speech semantic tokens. For UDDETTS, the first stage
involves training LLM-0.70B and OT-CFM-0.35B on English speech corpora without emotional an-
notations, with a peak learning rate of 1e-3, 5000 warm-up steps, and 15 epochs until convergence.
In the second stage, we perform semi-supervised training on large-scale English emotional speech
datasets, with the text encoder frozen, a peak learning rate of 1e-4 and 2500 warm-up steps. UD-
DETTS converges within 30 epochs. The generated mel-spectrograms are converted into emotional
speech using a HiFi-GAN (Kong et al., 2020) vocoder, fine-tuned on our datasets for 5 epochs. All
UDDETTS training is conducted on 24 NVIDIA A800-80GB GPUs with 64-core CPUs, using the
Adam optimizer, gradient accumulation of 2, and a maximum total frame length of 5000 per batch.
For evaluation, we collect and design a text corpus as the test set, as shown in Appendix F.

4.3 LABEL-CONTROLLED EMOTIONAL TTS

To evaluate label-controlled synthesis, each neutral text is paired with five emotions (neutral, happy,
angry, disgust, and sleepiness), whose training sample sizes decrease stepwise, and used as con-
trol inputs for UDDETTS under the first task (1). We compare different LLM-based TTS mod-
els, as shown in Appendix C, under label prompts (e.g., “Angry<|endofprompt|>Content Text”).
We conduct both subjective and objective evaluations of the synthesized speech. Subjective eval-
uation involves 12 participants, measuring 5-point Mean Opinion Scores (MOS) for speech natu-
ralness and a five-class emotion confusion matrix to assess the robustness of label-based control,
from which macro-Precision Pm and macro-Recall Rm are computed. Objective evaluation uses
Whisper-large-v3 model (Radford et al., 2023) for Word Error Rate (WER) to assess speech intel-
ligibility, 3D-Speaker speaker verification model (Chen et al., 2024) for Speaker Similarity (SS),
emotion2vec1 model for Emotion Similarity (ES), speechmetrics2 to calculate Short-Time Objec-
tive Intelligibility (STOI) and Perceptual Evaluation of Speech Quality - Wideband (PESQ-WB),
and SpeechMOS3 to calculate UTMOS. The results in Table 1 show that UDDETTS achieves higher
naturalness of synthesized speech compared with CosyVoice1-2, IndexTTS, FireRedTTS1-2, Spark-
TTS, F5-TTS, and VALL-E, while also maintaining low WER and high speaker similarity. More
importantly, UDDETTS obtains the highest scores in both Pm and Rm of the emotion confusion
matrix, as well as in Emotion Similarity and PESQ-WB. We further integrate the proposed ADV
framework—including ADV tokens, quantizer, predictor, speech tokenizer, and emotional mixture

1https://github.com/ddlBoJack/emotion2vec
2https://github.com/aliutkus/speechmetrics
3https://github.com/tarepan/SpeechMOS
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Table 2: Subjective evaluation results of linear emotion control along the three ADV dimensions.
The right side Linear Binning presents the results of ablation experiments.

Dimension Range Nonlinear Binning Linear Binning
SRC KW SRC KW

Arousal [1-14, 7, 7] 0.85 0.70 0.52 0.48
Dominance [14, 1-14, 1] 0.78 0.68 0.48 0.50
Valence [14, 14, 1-14] 0.92 0.83 0.57 0.58

Figure 4: ADV space with 14×14×14 controllable units: linear binning (60.83%) vs. nonlinear
binning (77.89%) vs. after semi-supervised training (89.35%), and spherical coordinate system
(55.40%). Color opacity positively correlates with the sample density within each controllable unit.

encoder—into CosyVoice1 by fine-tuning the CosyVoice-300M on our English emotional speech
datasets. Results in Table 1 show that CosyVoice + ADV outperforms the original CosyVoice in both
speech naturalness and label-based emotion control accuracy. These results indicate that UDDETTS
achieves higher accuracy and demonstrates stronger robustness in label-controlled emotional TTS.

4.4 ADV-CONTROLLED EMOTIONAL TTS

To evaluate UDDETTS’s ability to linearly control emotions along each of three ADV dimensions,
we conduct experiments on the second task (2) by adjusting the values of xadv to control speech
emotions. Using the nonlinear binning algorithm with m = 14 bins, UDDETTS quantizes the ADV
values adv ∈ R3 into controllable units xadv ∈ Z3

[1,14]. In each experiment, two dimensions are
fixed while the third is varied, yielding three test settings: Arousal test xadv=[1-14, 7, 7], Dominance
test under strong negative emotions xadv=[14, 1-14, 1], Valence test under strong expressiveness
xadv=[14, 14, 1-14]. Stronger emotions are assumed to exhibit greater perceptual separability during
ranking. For each test, we synthesize 14 speech samples from 10 neutral texts drawn from the text
corpus and ask participants to rank them using the SAM system as shown in Appendix G. We use
Spearman’s Rank Correlation (SRC) to evaluate the alignment between each participant’s rankings
and ground-truth rankings, and report the average score. And Kendall’s W (KW) is used to evaluate
inter-rater agreement across 12 participants:

SRC = 1− 6
∑
d2i

n(n2 − 1)
, KW =

12S

k2(n3 − n)
, (11)

where di is the rank difference between two rankings, n is the number of samples, S is the variance
of rank sums, and k is 12. As shown in Table 2, SRC values near 1.0 show that perceived emotions
change linearly with the nonlinearly binned xadv. The KW scores above 0.6 reflect strong inter-rater
agreement, confirming the reliability of the results.

To objectively validate the robustness of the nonlinear binning algorithm, we conduct a sensitivity
analysis on the number of bins m using features extracted by emotion2vec1. As shown in Figure
5, emotional control maintains linearity at m = 14, achieving an optimal balance between control
granularity and linearity. When m < 12, emotional transitions become rapid and non-smooth at
extreme ADV values with reduced granularity. When m > 16, insufficient samples per control unit
lead to poor generalization capability and deviations in intermediate emotional transitions.

As shown in Figure 4, nonlinear binning and semi-supervised training significantly expand the con-
trollable coverage of the ADV space. Nonlinear binning produces more uniformly distributed con-
trollable units than linear binning, increasing the coverage rate from 60.83% to 77.89%. while
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Table 3: Subjective preference (%) test and UTMOS results on ADV-controlled mixed emotions.
Mixed emotion UDDETTS UTMOS Similar EmoSphere++ UTMOS p-value
angry-sad 74.50 4.35 20.00 5.50 4.03 0.001
sleepiness-sad 52.40 3.96 28.35 19.25 3.85 0.019
happy-surprise 60.78 4.28 23.42 15.80 3.97 0.010
disgust-angry 43.33 4.18 33.34 23.33 3.90 0.032

Figure 5: Sensitivity analysis of bin count m on granularity and linearity, with t-SNE visualization
of extracted emotion vectors. Each color represents a set of emotion vector samples extracted from
speech synthesized under linearly transformed ADV control.

semi-supervised training further raises it to 89.35%. Red regions in the ADV space highlight areas
capable of synthesizing emotional speech corresponding to unseen ADV values. For example, at
xadv=[14, 1, 1], where no training samples exist, the model can still synthesize reasonable sobbing-
like speech. This indicates that semi-supervised training promotes the transfer of label knowledge
to the ADV space, thereby enabling broader and finer-grained control of emotional TTS.

We also evaluate the robustness of UDDETTS when the label or ADV inputs fall outside the label
and ADV ranges of the training set, as shown in Appendix H. To further evaluate the influence of
each ADV dimension on emotion expression, we also analyze the relationship between ADV and
prosodic features of speech, as detailed in the Appendix I. Together, these results demonstrate that
UDDETTS achieves fine-grained, interpretable, and linear emotion control along three psychologi-
cal dimensions, surpassing the capabilities of traditional label-based methods.

Additionally, to evaluate the performance of UDDETTS in capturing intermediate emotions against
the traditional non-LLM-based EmoSphere++ (Cho et al., 2025), a model that employs an emotion-
adaptive spherical vector (EASV) within a spherical coordinate system where angles control emotion
style and the radius controls intensity, we plot the ADV space of both methods on the same emotional
speech dataset. As shown in Figure 4, UDDETTS (89.35%) exhibits broader coverage compared to
EmoSphere++ (55.40%), with smoother color gradients in control units, indicating a more uniform
sample distribution. We further compare the emotional control accuracy using equivalent ADV
values for four intermediate emotions: angry-sad, sleepiness-sad, happy-surprise, and disgust-angry.
The ADV values are set to the medians between the centers of the corresponding emotion clusters
in Figure 6. ABX test results in Table 3 show that participants significantly prefer UDDETTS-
synthesized intermediate emotions, particularly for angry-sad, demonstrating its superior ability to
mitigate emotional regional overfitting and capture mixed emotions effectively.

4.5 END-TO-END EMOTIONAL TTS

To evaluate the UDDETTS’s ability for text-adaptive emotion synthesis using text input alone,
we conduct experiments on the third task (3) and select the text corpus featuring diverse and
explicit emotional attributes (see Appendix F). We compare UDDETTS with two description-
based baselines, providing each baseline with a neutral reference speech, the target text, and
a natural language description (e.g. “Synthesize the emotional speech that best matches the
text<|endofprompt|>Content Text”). A subjective preference (%) test involving 12 participants
is conducted to evaluate which model generates speech with more appropriate emotions, with the

9
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Table 4: Subjective preference (%) test results on end-to-end emotional TTS.
UDDETTS Similar CosyVoice2 p-value UDDETTS Similar IndexTTS2 p-value

67.33 19.45 13.22 0.001 58.60 29.23 12.17 0.012
w/o ADV predictor Similar CosyVoice2 p-value w/o ADV predictor Similar IndexTTS2 p-value

46.88 24.30 28.82 0.035 28.50 50.40 21.10 0.104

p-value of t-test used to assess significance of differences. As shown in Table 4, participants demon-
strate a clear preference for UDDETTS (p < 0.05).

To quantify the emotional consistency between text semantics and synthesized speech, and to val-
idate the ADV predictor (trained with an RMSE of 1.25), we extract pseudo-ADV values from in-
termediate text predictions and speech-based ADV values through the SADVR task using the multi-
task speech tokenizer (trained with an RMSE of 0.68). These text-derived and speech-derived ADV
values are visualized in the ADV space, as shown in Figure 8 in Appendix F. The close alignment
between them demonstrates that UDDETTS effectively maps fine-grained emotional representations
from text to speech.

Overall, these results confirm that UDDETTS exhibits superior end-to-end capabilities in text-
adaptive emotion understanding and emotional TTS.

4.6 ABLATION STUDIES

We conduct four ablation studies to evaluate the effectiveness of key components in UDDETTS.
First, removing the ADV predictor in the third task biases the synthesized speech toward neutral
and lowers the scores, as shown in Table 4, indicating that the pseudo-ADV predicted by the ADV
predictor helps the LLM capture intrinsic emotions from the text. Second, we remove the emotional
mixture encoder and Eemo from the OT-CFM module and rely solely on Esem to reconstruct mel-
spectrograms. This modification leads to a reduction in emotional expressiveness, as seen in the last
row (w/o EME) of Table 1. Third, we replace nonlinear binning algorithm in the ADV quantizer
with a linear one. Both SRC and KW scores drop significantly in Table 2, indicating that imbalanced
emotion distributions lead the model to overfit dense ADV regions, thereby impeding linear control.
Finally, training only on DS,AL without semi-supervised learning reduces the controllable coverage
rate of the ADV space to 70%, and fails to synthesize the sobbing-like emotion at xadv=[14, 1, 1]
and other unseen emotions. This highlights the pivotal role of unlabeled ADV data in transferring
discrete emotion knowledge into the ADV space and expanding control coverage.

5 LIMITATIONS AND FUTURE WORK

The performance of UDDETTS is limited by the quality of ADV annotations in the datasets. Sub-
jective variation among annotators can produce inconsistent ADV labels, which negatively impacts
the model’s ability for linear emotional control; increasing dataset size and selecting samples with
consistent annotations are the primary way to mitigate this issue. Additionally, for texts with am-
biguous emotional attributes, the ADV predictor often struggles to infer appropriate ADV values.
Since the same text can express different emotions in different contexts, incorporating multimodal
information is necessary for more accurate emotion understanding. In future work, we plan to ex-
tract emotional representations from multimodal sources and dialogue context, mapping them into
the ADV space to better capture emotions.

6 CONCLUSION

In this paper, we introduce a universal LLM framework named UDDETTS that 1) integrates both
ADV and label annotations for the first time, enabling compatibility with diverse types of emotional
speech datasets; 2) disentangles complex emotions into the ADV space while addressing sparsity
and imbalance issues; 3) provides an interpretable approach for fine-grained emotional TTS control,
distinct from traditional label- or description-based prompts. Our work can assist developers in
building emotional TTS systems based on large-scale emotional datasets, ultimately enhancing the
expressiveness of emotional expression in human-computer interaction.
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ETHICS STATEMENT

This research complies with the ICLR Code of Ethics and upholds rigorous standards of academic
integrity, legal compliance, and research ethics. All datasets sourced from third-party repositories
are used under verified licensing agreements, with explicit documentation provided in Appendix B.
Data processing pipelines adhere to privacy-preserving principles and secure storage protocols. For
subjective experiments involving human participants, informed consent is obtained and fair com-
pensation is provided. Participant confidentiality is strictly maintained throughout the study. The
methodologies and findings reported in this work do not pose significant risks of harm, bias, or mis-
use. This research is conducted solely for academic purposes, without commercial application, and
no conflicts of interest or sponsorship-related influences affect the design, execution, or interpreta-
tion of the results.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our findings, we take the following measures:

1. Datasets and baselines. All datasets and baseline models used in our experiments are listed
in Appendix B, C. Fine-tuning strategies and other implementation details for the baselines
are also stated in Section 4.3 and 4.5, and all experiments follow the official open-source
code and configurations to ensure fairness.

2. Code availability. The full implementation of our proposed model, together with con-
figuration files, training scripts, and demos is available at the anonymous repository
link: https://anonymous.4open.science/w/UDDETTS, ensuring reproducibil-
ity and preserving anonymity during the review process.

3. Experimental details. Training configurations, evaluation metrics, hardware specifica-
tions, and runtime environments are summarized in Section 4.2, with implementation
scripts documented in the released code repository.

4. Theoretical verification. The algorithmic processes, which require additional explana-
tion, are provided in Appendix E, with step-by-step derivations and explicit clarification of
assumptions.

These resources enable independent replication of our experiments and validation of the contribu-
tions presented in this paper.
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har Tal, Sigrid Elfström, Anna Råde, Ofer Golan, Sven Bölte, Simon Baron-Cohen, and Daniel
Lundqvist. The eu-emotion voice database. Behavior Research Methods, 51, 04 2018.

Juanhui Li, Sreyashi Nag, Hui Liu, Xianfeng Tang, Sheikh Muhammad Sarwar, Limeng Cui, Hansu
Gu, Suhang Wang, Qi He, and Jiliang Tang. Learning with less: Knowledge distillation from large
language models via unlabeled data. In Findings of the Association for Computational Linguistics:
NAACL 2025, pp. 2627–2641. Association for Computational Linguistics, April 2025a.

Xiang Li, Zhi-Qi Cheng, Jun-Yan He, Junyao Chen, Xiaomao Fan, Xiaojiang Peng, and Alexan-
der G. Hauptmann. UMETTS: A unified framework for emotional text-to-speech synthesis with
multimodal prompts. In ICASSP 2025 - 2025 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 1–5, 2025b.

Zheng Lian, Rui Liu, Kele Xu, Bin Liu, Xuefei Liu, Yazhou Zhang, Xin Liu, Yong Li, Zebang
Cheng, Haolin Zuo, Ziyang Ma, Xiaojiang Peng, Xie Chen, Ya Li, Erik Cambria, Guoying Zhao,
Björn W. Schuller, and Jianhua Tao. Mer 2025: When affective computing meets large language
models. arXiv preprint arXiv:2504.19423, 2025.

Xuefeng Liang, Hexin Jiang, Wenxin Xu, and Ying Zhou. Gaussian-smoothed imbalance data im-
proves speech emotion recognition. CoRR, abs/2302.08650, 2023.

Jiaxuan Liu, Zhaoci Liu, Yajun Hu, Yingying Gao, Shilei Zhang, and Zhenhua Ling. DiffStyleTTS:
Diffusion-based hierarchical prosody modeling for text-to-speech with diverse and controllable
styles. In Proceedings of the 31st International Conference on Computational Linguistics, pp.
5265–5272. Association for Computational Linguistics, January 2025.

Rui Liu, Yifan Hu, Yi Ren, Xiang Yin, and Haizhou Li. Emotion rendering for conversational speech
synthesis with heterogeneous graph-based context modeling. In Proceedings of the Thirty-Eighth
AAAI Conference on Artificial Intelligence. AAAI Press, 2024.

Livingstone, Steven R., and Frank A. Russo. The ryerson audio-visual database of emotional speech
and song (RAVDESS): A dynamic, multimodal set of facial and vocal expressions in north amer-
ican english. PLOS ONE, 13(5):1–35, 05 2018.

Reza Lotfian and Carlos Busso. Building naturalistic emotionally balanced speech corpus by retriev-
ing emotional speech from existing podcast recordings. IEEE Transactions on Affective Comput-
ing, 10(4):471–483, 2019.

Marko Lugger and Bin Yang. Cascaded emotion classification via psychological emotion dimen-
sions using a large set of voice quality parameters. In 2008 IEEE International Conference on
Acoustics, Speech and Signal Processing, pp. 4945–4948, 2008.

Junyu Luo, Xiao Luo, Xiusi Chen, Zhiping Xiao, Wei Ju, and Ming Zhang. Semi-supervised fine-
tuning for large language models. In Findings of the Association for Computational Linguistics:
NAACL 2025, pp. 2795–2808. Association for Computational Linguistics, April 2025.

Albert Mehrabian and James A. Russell. An approach to environmental psychology. The MIT Press,
1974.

Fabian Mentzer, David Minnen, Eirikur Agustsson, and Michael Tschannen. Finite scalar quantiza-
tion: VQ-VAE made simple. In The Twelfth International Conference on Learning Representa-
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024.

Jon D. Morris. Observations: SAM: The self-assessment manikin an efficient cross-cultural mea-
surement of emotional response. Journal of Advertising Research, 35(6):63–65, 1995.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Tu Anh Nguyen, Wei-Ning Hsu, Antony D’Avirro, Bowen Shi, Itai Gat, Maryam Fazel-Zarani, Tal
Remez, Jade Copet, Gabriel Synnaeve, Michael Hassid, Felix Kreuk, Yossi Adi, and Emmanuel
Dupoux. Expresso: A benchmark and analysis of discrete expressive speech resynthesis. In
Interspeech 2023, pp. 4823–4827, 2023.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In Proc. ICML, volume 139, pp. 8162–8171. PMLR, 2021.

Yoori Oh, Juheon Lee, Yoseob Han, and Kyogu Lee. Semi-supervised learning for continuous emo-
tional intensity controllable speech synthesis with disentangled representations. In Interspeech
2023, pp. 4818–4822, 2023.

Derek Onken, Samy Wu Fung, Xingjian Li, and Lars Ruthotto. OT-Flow: Fast and accurate contin-
uous normalizing flows via optimal transport. Proceedings of the AAAI Conference on Artificial
Intelligence, 35(10):9223–9232, May 2021.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: an asr corpus
based on public domain audio books. In Acoustics, Speech and Signal Processing (ICASSP), 2015
IEEE International Conference on, pp. 5206–5210. IEEE, 2015.

Seo Yeon Park and Cornelia Caragea. VerifyMatch: A semi-supervised learning paradigm for natu-
ral language inference with confidence-aware MixUp. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing, pp. 19319–19335. Association for Compu-
tational Linguistics, November 2024.

Sungjoon Park, Jiseon Kim, Seonghyeon Ye, Jaeyeol Jeon, Hee Young Park, and Alice Oh. Dimen-
sional emotion detection from categorical emotion. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, pp. 4367–4380. Association for Computa-
tional Linguistics, November 2021.

Zhiliang Peng, Jianwei Yu, Wenhui Wang, Yaoyao Chang, Yutao Sun, Li Dong, Yi Zhu, Weijiang
Xu, Hangbo Bao, Zehua Wang, Shaohan Huang, Yan Xia, and Furu Wei. Vibevoice technical
report. arXiv preprint arXiv:2508.19205, 2025.

R. Plutchik. Emotion: A Psycho-evolutionary Synthesis. Harper and Row, 1980.

Soujanya Poria, Devamanyu Hazarika, Navonil Majumder, Gautam Naik, Erik Cambria, and Rada
Mihalcea. MELD: A multimodal multi-party dataset for emotion recognition in conversations.
In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp.
527–536. Association for Computational Linguistics, July 2019.

Akash Punhani, Neetu Faujdar, Krishna Kumar Mishra, and Manoharan Subramanian. Binning-
based silhouette approach to find the optimal cluster using k-means. IEEE Access, 10:115025–
115032, 2022.

Lina Qiu, Liangquan Zhong, Jianping Li, Weisen Feng, Chengju Zhou, and Jiahui Pan. SFT-SGAT:
A semi-supervised fine-tuning self-supervised graph attention network for emotion recognition
and consciousness detection. Neural Networks, 180:106643, 2024.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
Robust speech recognition via large-scale weak supervision. In Proceedings of the 40th Interna-
tional Conference on Machine Learning, ICML’23. JMLR.org, 2023.

James Russell. A circumplex model of affect. Journal of Personality and Social Psychology, 39:
1161–1178, 12 1980.

Haobin Tang, Xulong Zhang, Jianzong Wang, Ning Cheng, and Jing Xiao. EmoMix:emotion mixing
via diffusion models for emotional speech synthesis. In Interspeech 2023, pp. 12–16, 2023.

Hrishikesh Viswanath, Aneesh Bhattacharya, Pascal Jutras-Dubé, Prerit Gupta, Mridu Prashanth,
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A THE USE OF LLMS

We confirm that large language models (LLMs), are used exclusively as auxiliary tools for
manuscript preparation and refinement. Specifically, LLMs assist in:

1. Language editing. Conducting grammar checking, vocabulary optimization, and sentence
refinement to enhance clarity and readability.

2. Visual suggestions. Providing recommendations for figure preparation, table formatting,
and visual coherence to improve presentation quality.

3. Information retrieval and troubleshooting. Supporting the search for large-scale English
speech datasets, relevant work and literature, and suggesting possible solutions for coding
errors.
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The design, methodology, original contributions, and code implementation are entirely developed
by the human authors. We affirm that all core ideas, theoretical analyses, experimental frameworks,
and conclusions reflect human intellectual effort and strictly adhere to academic integrity standards.
This statement ensures transparency in AI tool usage while emphasizing the human-led nature of
the scientific inquiry.

B DATASETS

For single-language English, we collect various open-source speech datasets. For general speech
datasets, we prioritize samples with human-verified transcriptions to ensure high quality, which
helps the model acquire robust TTS capabilities during the first stage training. Due to the high cost
of manual annotation, emotional speech datasets are limited in size. We therefore gather diverse
types of emotional speech datasets and adapt them to our model using semi-supervised training.
Below, we provide a detailed introduction to the datasets used in this paper.

Table 5: Statistics of cleaned speech datasets used in UDDETTS.
Datasets #Hours Type #Emos Description
MSP (Lotfian & Busso, 2019) 258.12 DS,AL 8 Large-scale podcast corpus
IEMOCAP (Busso et al., 2008) 12.28 DS,AL 9 Acted dialogues in lab
CMU-MOSEI (Bagher Z et al., 2018) 64.23 DS,L 6 Dialogues from YouTube speakers
Expresso (Nguyen et al., 2023) 1.40 DS,L 13 Readings and improvisations
MELD (Poria et al., 2019) 8.86 DS,L 7 TV show dialogues
EmoTale (Hjuler et al., 2025) 0.58 DE,AL 5 Controlled emotional expressions
EU-Emotion (Lassalle et al., 2018) 11.62 DE,AL 15 Controlled emotional expressions
ESD (Zhou et al., 2022) 29.07 DE,L 5 Emotional voice conversion corpus
CREMA-D (Cao et al., 2014) 5.30 DE,L 6 Controlled emotional expressions
EmoV-DB (Adigwe et al., 2018) 9.48 DE,L 5 Controlled emotional expressions
MEAD (Wang et al., 2020) 30.12 DE,L 8 Controlled emotional expressions
RAVDESS (Livingstone et al., 2018) 1.47 DE,L 8 Controlled emotional expressions
Ours 18.2 DS,AL 6 Movie dialogues
Ours 83.5 DS,L 9 Movie dialogues
Ours 1.6 DE,AL 6 Controlled emotional expressions
Ours 15.3 DE,L 8 Controlled emotional expressions
Total 551.13 - 19 English emotional speech datasets
Datasets #Hours Type #Emos Description
LibriSpeech (Panayotov et al., 2015) 987.95 - - Large-scale audiobooks
LibriTTS-R (Koizumi et al., 2023) 578.52 - - Large-scale audiobooks
LJSpeech (Ito, 2017) 23.57 - - Non-fiction books
VCTK (Yamagishi et al., 2019) 43.50 - - Newspaper article readings
HiFi-TTS (Bakhturina et al., 2021) 289.45 - - Large-scale audiobooks
HiFiTTS-2 (Langman et al., 2025) 30000+ - - LibriVox audiobooks
Common Voice (Ardila et al., 2020) 7500+ - - General English Recordings
GigaSpeech (Yang et al., 2025) 10000 - - YouTube, audiobooks, podcasts
Total 49400+ - - English general speech datasets

C BASELINES

Here we introduce the ten baselines employed in our experiments. For hyperparameter settings,
we follow the official implementations released with the respective papers to reproduce the results.
To ensure fairness, all baselines with publicly available pretrained checkpoints and codes are fine-
tuned for 10 epochs until convergence solely on our emotional speech datasets, using label prompts
as training inputs (e.g., “Angry<|endofprompt|>Content Text”). It is worth noting that, since the
training codes for CosyVoice3 and FireRedTTS2 are not publicly available, we do not fine-tune them
on our datasets. Instead, we directly perform inference using CosyVoice3-1.5B-RL (plus version
api) and FireRedTTS2 checkpoint.

1. CosyVoice (Du et al., 2024a) is a scalable multilingual zero-shot TTS model that introduces
supervised semantic tokens derived from a speech recognition model. CosyVoice generates
semantically aligned speech tokens, enabling improved content consistency and speaker
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similarity in synthesized speech. It allows for high-quality, zero-shot voice cloning across
multiple languages, while maintaining natural prosody and low-latency synthesis.

2. CosyVoice2 (Du et al., 2024b) is an advanced TTS model that integrates the LLM with a
unified streaming and non-streaming framework. It introduces FSQ for efficient tokens and
a chunk-aware causal flow matching model to support diverse synthesis scenarios. These
enable it to achieve ultra-low latency synthesis with the first packet latency as low as 150ms,
while maintaining high-quality audio output.

3. CosyVoice3 (Du et al., 2025) is designed for real-world applications, surpassing its pre-
decessor in naturalness, content consistency, speaker similarity, and emotional expressive-
ness. It introduces a novel speech tokenizer developed by supervised multi-task training,
encompassing automatic speech recognition (ASR), language identification (LID), speech
emotion recognition (SER), audio event detection (AED), and speaker analysis (SA). It
incorporates a differentiable reward model for post-training, enhancing the quality of syn-
thesized speech. It is training data has been expanded from 10,000 hours to 1 million hours.

4. IndexTTS (Deng et al., 2025) is an industrial-grade, zero-shot TTS model that enables
precise pause control via punctuation marks. while maintaining high-quality audio out-
put. It employs a Conformer-based speech conditional encoder and utilizes BigVGAN2 for
speech decoding, achieving high naturalness and speaker similarity. Compared to XTTS,
CosyVoice2, F5-TTS, etc., it offers a simpler training process and faster inference speed.

5. IndexTTS2 (Zhou et al., 2025) is an autoregressive zero-shot TTS model that introduces
precise duration control and emotional expressiveness. It supports two generation modes:
one that explicitly specifies token counts for accurate duration, and another that gener-
ates speech freely while preserving prosody. The model decouples timbre and emotion,
enabling independent control over both aspects. Additionally, it incorporates GPT latent
representations and a three-stage training paradigm to enhance speech clarity. IndexTTS2
outperforms existing models in word error rate, speaker similarity, and emotional fidelity.

6. FireRedTTS (Guo et al., 2025) comprises three main components: a data processing
pipeline that transforms massive raw audio into high-quality TTS datasets with rich an-
notations; a LLM-based TTS model that compresses speech signals into discrete semantic
tokens via a semantic-aware speech tokenizer; and a two-stage waveform generator that
decodes the semantic tokens into waveforms. FireRedTTS demonstrates solid in-context
learning capabilities, achieving zero-shot voice cloning and few-shot adaptation.

7. FireRedTTS2 (Xie et al., 2025) is a long-form streaming TTS model developed for multi-
speaker dialogue generation, addressing limitations in existing models regarding stability,
speaker switching, and prosody coherence. It introduces a 12.5Hz streaming speech tok-
enizer that accelerates inference, extends maximum dialogue length.

8. Spark-TTS (Wang et al., 2025) leverages the LLM for high-quality TTS. It employs Bi-
Codec, a single-stream speech codec that decomposes speech into two complementary to-
ken types: low-bitrate semantic tokens for linguistic content and fixed-length global tokens
for speaker-specific attributes. It allows for controllable speech generation through ad-
justable parameters such as gender, pitch, and speaking rate.

9. F5-TTS (Chen et al., 2025c) utilizes flow matching with a Diffusion Transformer (DiT)
backbone. It pads the input text with filler tokens to match the length of the target speech.
It integrates ConvNeXt for refining text representations and introduces an inference-time
Sway Sampling strategy, which improves model efficiency and output quality.

10. VALL-E (Chen et al., 2025b) is the first neural codec language model developed by Mi-
crosoft for zero-shot TTS. It utilizes discrete tokens derived from a neural codec model
and frames TTS as a conditional language modeling task. It can synthesize high-quality
personalized speech from a 3-second acoustic prompt.

D LABEL STATISTICS

We collect emotion label statistics in all datasets and map them to individual label tokens. Table 6
shows the sample count for each label, and Figure 6 shows the distribution of some emotion samples
in the ADV space.
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Table 6: Emotion labels, corresponding label tokens, and sample counts used in UDDETTS.
Token Emotion(s) Samples Token Emotion(s) Samples

0 Unknown 42235 5 Fearful 6654
1 Sad, Frustrated, Hurt 27135 6 Sleepiness, Bored 4331
2 Angry 35258 7 Neutral, Narration 68042
3 Confused, Worried 7149 8 Surprise, Excited 10214
4 Disgust, Contempt 14972 9 Happy, Amused, Laughing 57433

Figure 6: The distribution of some emotional samples in the ADV space. Each emotion tends to
form a distinct cluster.

E ADV STATISTICS AND NONLINEAR BINNING ALGORITHM

We perform distribution statistics of the ADV values across all DS,AL and DE,AL datasets. The
nonlinear binning algorithm is then applied along the three dimensions, and the resulting binning
scheme is illustrated in Figure 7. The detailed clustering-based nonlinear binning procedure of the
ADV quantizer is provided in Table 7.

Figure 7: The histograms and kernel density estimations of all training samples along the three
dimensions of the ADV space are shown, with the x-axis representing the continuous ADV values.
Red dashed lines indicate the division of each dimension into 14 bins.
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Table 7: Clustering-based nonlinear binning algorithm for the ADV space.
Step Description & Formula
Mapping Merged dataset DS|E,AL = {xi}Ni=1, xi = (ai, di, vi) ∈ R3. Linear map

f : [min
c
,max

c
]→ [1, 7]: xc,i = f(xc,i), c ∈ {a, d, v}.

#ClustersK Step 1: N = |DS|E,AL|, the maximumKmax ≤ b 3
√
Nc to probe. Initialize

hash-mapH : k 7→ (k, s̄k, σ̂k, Rk).
Step 2: For k = 2 to Kmax with step s: run k-means R times, compute
silhouette score s(r)k , s̄k = 1

R

∑R
r=1 s

(r)
k , and σ̂k, store (k, s̄k, σ̂k, R) inH.

Step 3: SortH by decreasing s̄k. For topM=d|H|/4e candidates C = {k1,
k2,. . . ,kM}. For each k ∈ C, refine by evaluating neighbors k−1 and k+1,
and insert intoH. Report:

K = arg max
k∈keys(H)

(̄sk − λσ̂k).

Clustering Run k-means in R3 with selected K, obtain clusters C1, . . . ,CK and cen-
troids {µj}Kj=1, µj = (µj,a, µj,d, µj,v). Objective:

min
C1,...,CK

J =

K∑
j=1

∑
xi∈Cj

||xi − µj ||2,

Boundaries For each axis c ∈ {a, d, v} take the set of center coordinates: Mc =
{µ1,c, µ2,c, . . . , µK,c}, sort Mc: mc,(1) ≤ mc,(2) ≤ · · · ≤ mc,(K).
Midpoint Boundaries: tmid

c,i = 1
2 (mc,(i) +mc,(i+1)); weighted Boundaries:

twc,i =
|Cπc(i)|mc,(i) + |Cπc(i+1)|mc,(i+1)

|Cπc(i)|+ |Cπc(i+1)|
, i = 1, . . . ,K − 1.

ni = |Ci|, σ2
i = Var(xc;x ∈ Ci), ri = max(σ2

i , σ
2
i+1)/min(σ2

i , σ
2
i+1),

tc,i = tmid
c,i + 1{ri>2}(t

w
c,i − tmid

c,i ).
Tokens Given bins {tc,i}, map xc to tokens by:

τc = 1 +

K−1∑
i=1

1{xc>tc,i}, c ∈ {a, d, v}.

F THE TEST SET

Table 8: Some examples of test text corpus with emotional content.
Emotion Text
Neutral For the twentieth time that evening the two men shook hands.
Neutral She open the door and walk into the room.
Neutral The meeting start promptly at nine in the morning.
Happy I’m so happy to be friends with you.
Angry I’m very angry now because you did not arrive on time!

Sad Lost wallet, missed last bus, tears drown my voiceless night.
Sleepiness I’m tired because I had to work overtime until evening.

Mixed I love you so much, I can’t live without you!

We construct a test text corpus comprising two standard test sets, LibriSpeech-test-clean4 and
SeedTTS-test-en5, which are used for evaluating objective metrics such as WER, SS, and ES, STOI

4https://www.openslr.org/12/
5https://github.com/BytedanceSpeech/seed-tts-eval
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Figure 8: Text-derived (blue) and speech-derived (red) ADV values within their control units for ten
emotionally-biased sentences.

and PESQ-WB. For subjective evaluation, we design a separate corpus comprising 20 neutral sen-
tences for controllable synthesis and 10 emotionally-biased sentences for end-to-end emotional TTS.
The neutral texts are randomly sampled and filtered using the Senta model6, retaining only those
with over 90% confidence as neutral. The emotionally-biased sentences are generated by GPT-5
and manually selected by three evaluators from 50 candidates. These texts are semantically unam-
biguous and contain inherent emotional cues, avoiding interpretive ambiguity. All texts are unseen
during training, eliminating overfitting concerns. Examples from the corpus are shown in Table 8.

G SAM SYSTEM

Figure 9: Visualization of the three ADV dimensions using the SAM system.
6https://github.com/baidu/Senta
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Inspired by Morris (1995), we use the Self-Assessment Manikin (SAM) system to visually and intu-
itively manipulate xadv, enabling fine-grained control and helping evaluators intuitively understand
the decoupled emotional dimensions for accurate ranking. Each ADV dimension is represented by
a graphic character arrayed along a continuous scale, as shown in Figure 9.

H ROBUSTNESS ANALYSIS

To further validate the robustness of UDDETTS under control, we conduct evaluations from the
following perspectives:

1. Label robustness under varying data resources. We examine whether labels with sparse
training samples can still be controlled effectively. In the first experiment, we select five
emotions with stepwise decreasing sample sizes to test the model’s performance under both
high-resource and low-resource conditions. As shown in Table 1, UDDETTS achieves
more accurate overall emotional expression compared with baselines. Table 9 further de-
tails the results across the five emotions, demonstrating that UDDETTS performs particu-
larly well on low-resource categories.

2. Robustness to unseen emotion labels. For emotions absent in the training set, we assess
whether the synthesized speech aligns with the label using an emotion confusion matrix.
Table 9 reports results for two such labels.

3. Robustness to unseen ADV regions. Although the nonlinear binning algorithm and semi-
supervised training expand the soft coverage of the ADV space (regions close to training
samples), certain hard unseen regions (far from all training distributions) remain challeng-
ing for high-quality synthesis. Table 10 presents MOS and UTMOS results in some of
these unseen ADV regions.

4. ADV-label conflict robustness test. For mixed emotions in overlapping cluster regions,
a single ADV value may correspond to multiple potential emotion labels. We test this by
controlling label tokens (angry, sad, happy, neutral) while fixing the ADV value in angry-
sad overlapping regions. Results show minimal perceptual differences between angry, sad,
and neutral labels. With the happy token, speech retains the angry-sad style but exhibits
higher pitch and sporadic laughter, revealing inherent conflict between this ADV value and
the happy label. It is noteworthy that the autoregressively predicted labels from ADV inputs
remain within emotionally consistent categories, confirming the dominant role of ADV in
emotion control.

Table 9: Robustness test results of five labels and some unseen labels.

Models

Acc. Emotions
Neutral Happy Angry Disgust Sleepiness loving anxious

UDDETTS 1.000 1.000 0.975 0.840 0.890 0.775 0.605
CosyVoice 1.000 0.975 0.900 0.635 0.695 0.375 0.310

CosyVoice2 1.000 1.000 0.975 0.650 0.700 0.405 0.330
CosyVoice3 1.000 1.000 1.000 0.795 0.790 0.620 0.550
IndexTTS 1.000 1.000 0.910 0.675 0.705 0.320 0.545

IndexTTS2 1.000 1.000 0.945 0.770 0.795 0.410 0.580
FireRedTTS 1.000 0.985 0.875 0.665 0.720 0.375 0.315

FireRedTTS2 1.000 0.780 0.880 0.670 0.725 0.560 0.565
Spark-TTS 1.000 1.000 0.950 0.805 0.855 0.600 0.520

F5-TTS 1.000 1.000 1.000 0.785 0.875 0.575 0.495
VALL-E 1.000 0.975 0.810 0.450 0.570 0.250 0.300

Table 10: Evaluation on unseen soft and hard ADV values
UDDETTS Soft Hard

[14,1,1] [6,1,1] [3,4,10] [1,7,14] [1,14,14] [1,14,7]
MOS 4.30 4.10 4.08 3.65 3.56 3.60

UTMOS 4.20 3.98 4.15 3.85 3.20 3.43
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I IMPACT OF ADV CONTROL ON PROSODIC FEATURES

Figure 10: The Pearson correlation coefficient matrix showing the relationship between each ADV
dimension and prosodic statistics.

To study the impact of ADV control on emotional representations, we vary all values of xadv ∈
Z3
[1,14] to synthesize emotional speech and extract their prosodic features, including the mean and

variance of log F0 and energy, as well as duration and harmonic-to-noise ratio (HNR). We compute
the Pearson correlation between each ADV dimension and these prosodic statistics. The results in
Figure 10 show that Arousal and Dominance are significantly correlated with log F0 and energy, in-
dicating their role in controlling the excitement and intensity of emotion. Valence is correlated with
HNR, which reflects voice quality variations linked to emotional changes (Borchert & Dusterhoft,
2005), and it also affects the shape of the mel-spectrogram in Figure 11, indicating its influence on
emotional polarity. Its correlation with duration is likely due to laughter in high-valence speech. To
further analyze the variation of emotional speech along the ADV axes, Table 11 reports the changes
in prosodic features when slightly perturbing the ADV values around eight emotion cluster centers.
Specifically, we adjust each dimension of ADV by ±4 (denoted as ”+” for upward shift and “–”
for downward shift), and measure the corresponding changes in average log F0, energy, duration,
and HNR. We observe that positive arousal is associated with higher pitch and energy. Similarly,
positive dominance not only increases pitch and energy but also narrows their variation ranges, and
it is further associated with longer durations. In contrast, valence has little effect on pitch and energy
but tends to reduce HNR variations, influencing emotional polarity. Overall, the results align with
the intrinsic characteristics of each ADV dimension, supporting the effectiveness of our approach in
capturing and interpreting emotional variations in speech.

Figure 11: The patterns of F0 contours observed in the mel-spectrogram vary as a function of va-
lence.
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Table 11: Comparisons of F0, energy, duration, and HNR for eight emotions across different ADV
patterns.

Emotions Patterns F0 (mean) Energy (mean) Duration (mean) HNR

Happy

+A +D +V +8.0 +0.038 +1.2 -2.4
-A +D +V -2.6 +0.028 +0.4 -2.3
+A -D +V +6.7 +0.003 +0.6 -2.3
+A +D -V +7.9 +0.031 -1.2 +1.7
-A -D +V -7.6 -0.032 +0.3 -2.0
-A -D -V -7.8 -0.040 -2.0 +1.9

Angry

+A +D +V +6.5 +0.040 -0.1 -2.0
-A +D +V -2.4 +0.032 +0.4 -1.8
+A -D +V +5.2 -0.015 -0.3 -1.7
+A +D -V +6.0 +0.045 -0.5 +1.5
-A -D +V -6.4 -0.033 +0.6 -1.7
-A -D -V -6.7 -0.036 -0.1 +1.6

Sad

+A +D +V +5.8 +0.033 +0.2 -2.3
-A +D +V +1.8 -0.012 +0.3 -1.4
+A -D +V +3.4 +0.028 -0.2 -1.5
+A +D -V +5.1 +0.043 -0.4 +1.5
-A -D +V -4.9 -0.028 +0.3 -0.9
-A -D -V -5.2 -0.024 -0.3 +2.2

Disgust

+A +D +V +4.8 +0.023 +0.2 -1.7
-A +D +V -0.9 -0.012 +0.1 -0.9
+A -D +V +3.4 -0.005 -0.0 -0.4
+A +D -V +4.6 +0.026 -0.4 +0.4
-A -D +V -5.0 -0.026 -0.2 -0.1
-A -D -V -5.1 -0.023 -0.3 +1.2

Surprise

+A +D +V +5.2 +0.045 +0.8 -2.1
-A +D +V -3.4 +0.010 +0.5 -1.8
+A -D +V +4.7 +0.007 +0.2 -1.7
+A +D -V +5.0 +0.040 -0.1 +1.5
-A -D +V -5.3 -0.039 -0.3 -1.0
-A -D -V -5.6 -0.042 -0.3 +2.3

Fearful

+A +D +V +3.5 +0.031 +0.3 -1.0
-A +D +V -1.8 -0.025 +0.1 -0.3
+A -D +V -0.6 -0.005 -0.1 -0.1
+A +D -V +2.5 +0.034 -0.3 +0.2
-A -D +V -3.4 -0.034 +0.1 +0.2
-A -D -V -3.8 -0.032 -0.2 +0.5

Confused

+A +D +V +5.2 +0.040 -0.1 -1.8
-A +D +V -3.8 -0.020 +0.3 -1.2
+A -D +V +4.2 +0.003 -0.2 -1.3
+A +D -V +4.9 +0.005 -0.4 +1.2
-A -D +V -5.7 -0.029 +0.1 -0.9
-A -D -V -5.4 -0.030 -0.3 +1.5

Sleepiness

+A +D +V +2.1 +0.010 +0.0 -2.9
-A +D +V -0.9 -0.007 +0.2 -2.2
+A -D +V +1.1 +0.002 -0.1 -2.0
+A +D -V +2.2 +0.010 +0.1 +0.4
-A -D +V -2.4 -0.013 -0.1 -1.5
-A -D -V -2.6 -0.012 -0.2 +1.8
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