

UDDETTS: UNIFYING DISCRETE AND DIMENSIONAL EMOTIONS FOR CONTROLLABLE EMOTIONAL TEXT-TO-SPEECH

Anonymous authors

Paper under double-blind review

ABSTRACT

Recent large language models (LLMs) have made great progress in the field of text-to-speech (TTS), but they still face major challenges in synthesizing fine-grained emotional speech in an interpretable manner. Traditional methods rely on discrete emotion labels to control emotion categories and intensities, which cannot capture the complexity and continuity of human emotional perception and expression. The lack of large-scale emotional speech datasets with balanced emotion distributions and fine-grained emotional annotations often causes overfitting in synthesis models and impedes effective emotion control. To address these issues, we propose UDDETTS, a universal LLM framework unifying discrete and dimensional emotions for controllable emotional TTS. This model introduces the interpretable Arousal-Dominance-Valence (ADV) space for dimensional emotion description and supports emotion control driven by either discrete emotion labels or nonlinearly quantified ADV values. Furthermore, a semi-supervised training strategy is designed to comprehensively utilize diverse speech datasets with different types of emotional annotations to train the UDDETTS. Experiments show that UDDETTS achieves linear emotion control along three interpretable dimensions, and exhibits superior end-to-end emotional speech synthesis capabilities. Code and demos are available at: <https://anonymous.4open.science/r/UDDETTS>.

1 INTRODUCTION

Figure 1: The overview of UDDETTS. It is designed for large-scale emotional speech datasets and integrates discrete label and dimensional ADV annotations to enable controllable emotional TTS.

Recently, a growing number of LLM-based TTS models, e.g. CosyVoice1-3 (Du et al., 2024a;b; 2025), IndexTTS1-2 (Deng et al., 2025; Zhou et al., 2025), FireRedTTS1-2 (Guo et al., 2025; Xie et al., 2025), VibeVoice (Peng et al., 2025), F5-TTS (Chen et al., 2025c), Seed-TTS (Anastassiou et al., 2024), VALL-E (Chen et al., 2025b), Spark-TTS (Wang et al., 2025), have emerged and heralded a new epoch in the field of TTS. These models leverage the strong language understanding of LLMs to generate speech semantic tokens from text tokens, thereby achieving significant advantages in synthesizing expressive speech. In human-computer interaction, enhancing speech expressiveness has become increasingly important, with controllable emotional TTS as a core element. Current LLM-based methods primarily rely on emotion prompts for supervised fine-tuning. They simplify

054 emotional expression by mapping emotions into predefined discrete categories such as *happy*, *sad*,
 055 *angry*, etc. Although some models employ more detailed prompts such as emotion descriptions,
 056 timbre, age and prosody to fine-grained control, they do not achieve interpretable disentanglement
 057 of speech emotions, so it is still fundamentally constrained by discrete labels in the dataset. Due to
 058 the limited variety and granularity of labels and descriptions, this approach generates speech emotions
 059 with average expressions per category. In reality, Hong et al. (2025) and Chang (2024) have
 060 shown that LLMs can understand complex emotions and exhibit empathy, while Hamann (2012)
 061 suggests that emotions exist as a highly interconnected continuum in a continuous space rather than
 062 isolated categories. Addressing this limitation requires developing continuous emotion modeling
 063 mechanisms in LLM-based TTS models to better capture subtle emotional variations.

064 With the development of affective computing, dimensional emotion theory (Plutchik, 1980; Russell,
 065 1980; Mehrabian & Russell, 1974; Cowie et al., 2001; Bakker et al., 2014; Gunes & Schuller, 2013)
 066 provides a more refined framework for modeling genuine human psychological emotions. Among
 067 these, the Arousal-Dominance-Valence (ADV) space (Mehrabian & Russell, 1974) is a commonly
 068 used three-dimensional emotion disentanglement space. Arousal represents psychological alertness
 069 levels. Low arousal involves being *sleepy* or *bored*, while high arousal involves being *awake* or
 070 *excited*. Dominance measures control over others or being controlled, reflecting emotional expres-
 071 sion desires. Low dominance involves being *aggrieved* or *weak*, while high dominance involves
 072 being *angry* or *amused*. Valence (also known as Pleasure) represents the emotional positivity and
 073 negativity, such as being *sad* or *angry* as low valence, while being *happy* or *excited* as high valence.
 074 Mehrabian & Russell (1974) and Jia et al. (2025) indicate that these three dimensions account for
 075 all variations across 42 emotion scales and cover almost all speech emotion states.

076 Inspired by the strengths of ADV space in decoupling emotions into interpretable and linearly con-
 077 trollable vectors, how to leverage diverse emotional annotations and address the imbalanced and
 078 limited distributions of emotions within the ADV space remains an open challenge. On one hand,
 079 existing speech datasets tend to overrepresent neutral emotions, leading to overfitting during train-
 080 ing. On the other hand, due to the high cost of emotion annotation, most large-scale emotional
 081 speech datasets provide only discrete emotion labels, while only a few offer both discrete labels and
 082 dimensional ADV values. This scarcity of ADV annotations leads to low controllable coverage rate
 083 in the ADV space. Previous studies (Lugger & Yang, 2008; Wang et al., 2023; Liang et al., 2023)
 084 have addressed label-based emotional imbalance. However, none of these methods have explored
 085 solutions within the ADV space. Some recent studies (Luo et al., 2025; Li et al., 2025a; Park &
 086 Caragea, 2024; Qiu et al., 2024; Lian et al., 2025) have employed semi-supervised training in LLMs
 087 to tackle the challenges of diverse annotations. In particular, Luo et al. (2025) shows that semi-
 088 supervised training enables interaction across diverse annotation types, and effectively propagates
 089 knowledge from labeled to unlabeled data, providing a promising way to address these challenges.

090 This paper proposes UDDETTS, a universal LLM framework comprising a neural codec language
 091 model, an optimal-transport conditional flow matching (OT-CFM) module, and a vocoder, as shown
 092 in Figure 1. UDDETTS is the first LLM-based TTS to introduce the interpretable ADV space, en-
 093 abling fine-grained, decoupled emotion control beyond traditional label-based or description-based
 094 methods. It categorizes all datasets into spontaneous emotion datasets and elicited emotion datasets.
 095 To address the low controllable coverage rate of the ADV space, it adopts semi-supervised training
 096 to accommodate different types of emotional speech datasets, and fuses ADV and label annotations
 097 from these datasets. UDDETTS nonlinearily quantizes the ADV space into controllable units as
 098 ADV tokens, and introduces an ADV predictor to enhance end-to-end emotional TTS in the absence
 099 of emotional annotations. The OT-CFM module employs an emotional mixture encoder to integrate
 100 the masked ADV tokens and label token into emotion conditions. We evaluate UDDETTS using ob-
 101 jective and subjective metrics across three tasks: label-controlled, ADV-controlled, and end-to-end
 102 emotional TTS, comparing it with LLM-based TTS models and analyzing its control performance.
 103 Experiments demonstrate UDDETTS achieves more accurate emotional expression while main-
 104 taining high naturalness and low WER, and uniquely supports linear control of decoupled emotions
 105 along three dimensions.

106 In summary, our contributions to the community include:
 107

1. We propose UDDETTS, a unified emotional TTS framework that unifies both discrete and
 dimensional emotions, featuring the first LLM supporting both ADV and label inputs for
 fine-grained emotional speech synthesis.

108 2. We propose a nonlinear binning strategy for the ADV space with semi-supervised training
 109 to address the imbalance and limited distributions within it, and we leverage large-scale
 110 emotional speech datasets to learn a broader range of emotions.
 111 3. UDDETTs disentangles speech emotions in an interpretable manner, enabling linear con-
 112 trol along three dimensions, higher naturalness and emotion similarity under label control,
 113 and text-adaptive emotion synthesis with text input alone.
 114

115 **2 RELATED WORK**

117 Current controllable emotional TTS models can be categorized into label-controlled and space-
 118 controlled approaches.
 119

120 **Label-based control** models learn from discrete emotion categories and intensity levels. For ex-
 121 ample, current LLM-based models (Du et al., 2024a;b; 2025; Anastassiou et al., 2024; Wang et al.,
 122 2025) synthesize emotional speech with specified label prompts, Kang et al. (2023) uses a diffu-
 123 sion model for zero-shot conversion of neutral speech to a target emotional category. To capture
 124 fine-grained emotions, Inoue et al. (2024); Liu et al. (2025) employ hierarchical control conditions
 125 across coarse and fine granularities. Liu et al. (2024) synthesizes emotional speech based on di-
 126 alogue context, including emotion labels and intensities. Others explore relative ranking matrices
 127 (Zhu et al., 2019), interpolation (Guo et al., 2023), or distance-based quantization (Im et al., 2022)
 128 methods to control speech emotional intensity. However, these methods struggle to capture the
 129 continuity of emotion distributions.

130 **Space-based control** models aim to construct a continuous space and capture relationships between
 131 different emotions. For example, Li et al. (2025b) proposes a unified TTS framework that learns
 132 continuous emotional representation spaces from multimodal emotion prompts. Chen et al. (2023)
 133 maps emotions into hyperbolic space to better capture their hierarchical structure. Tang et al. (2023);
 134 Zhou et al. (2023); Oh et al. (2023) use interpolation of the embedding space to synthesis speech
 135 with a mixture of emotions. AffectEcho (Viswanath et al., 2023) uses a vector quantized space to
 136 model fine-grained variations within the same emotion. But these models fail to disentangle the emotion
 137 space interpretably, restricting manual control. Recently, EmoSphere-TTS (Cho et al., 2024)
 138 and EmoSphere++ (Cho et al., 2025) have explored ADV spaces for interpretable control, using
 139 a Cartesian-spherical transformation to control emotion categories and intensities. However, this
 140 distorts original emotion clusters and increases overlap, e.g., failing to capture intermediate emo-
 141 tions along the dominance dimension between *angry* and *sad*. Moreover, limited and imbalanced
 142 emotional annotations hinder their application to LLMs.
 143

3 UDDETTs

144 UDDETTs needs to learn discrete and dimensional emotions and integrate both in large-scale emo-
 145 tional speech datasets. It categorizes these datasets into spontaneous emotion datasets \mathbb{D}_S and
 146 elicited emotion datasets \mathbb{D}_E , and further divides them based on annotation types into four types:
 147 $\mathbb{D}_{S,AL}$ (\mathbb{D}_S w/ label & w/ ADV), $\mathbb{D}_{S,L}$ (\mathbb{D}_S w/ label & w/o ADV), $\mathbb{D}_{E,AL}$ (\mathbb{D}_E w/ label & w/ ADV),
 148 and $\mathbb{D}_{E,L}$ (\mathbb{D}_E w/ label & w/o ADV). \mathbb{D}_S are recorded in natural scenarios such as conversations,
 149 speeches, or performances. In many samples, the emotional representations in speech align with
 150 the textual content, enabling the LLM to learn meaningful emotional mappings from a text to ADV
 151 and label values. In contrast, \mathbb{D}_E are created by asking speakers to express predefined emotions
 152 with varying categories and intensities using the same text. Here, a single text may correspond to
 153 multiple labels that do not match its inherent emotion, making it difficult for the LLM to learn emo-
 154 tional mappings from a text to a label, and requiring the ADV or label to guide speech emotions.
 155 UDDETTs is designed to control speech emotions using either label or ADV inputs. Its core is a
 156 neural codec language model with specially designed token sequences.
 157

158 **3.1 SEMI-SUPERVISED NEURAL CODEC LANGUAGE MODEL**

159 **3.1.1 MODEL ARCHITECTURE**

160 For the neural codec language model as shown in Figure 2, which is based on the Transformer
 161 architecture, the design of input-output sequences is crucial. Inspired by Spark-TTS (Wang et al.,

Figure 2: Left: the supervised multi-task speech tokenizer. Right: the neural codec language model running autoregressively until EOS. During semi-supervised training, ADV tokens in the input and label token in the output are dynamically masked depending on dataset type.

2025), the LLM separates textual content from speech attribute features, further decoupling speaker timbre from emotional representations within the latter. It integrates the input-output sequences of different dataset types into a unified model, as defined in Eqs. (1-3).

$$\mathbb{D}_{S|E,AL} : \begin{aligned} \mathbf{x}_{\text{input}} &= [x_{\text{sos}}, \mathbf{x}_{\text{text}}, x_{\text{attr}}, x_{\text{spk}}, \mathbf{x}_{\text{adv}} \in \mathbb{Z}_{[1,m]}^3, x_{\text{gen}}, x_{\text{lbl}} \in \mathbb{Z}_{[0,n]}^1, \mathbf{x}_{\text{sem}}] \\ \mathbf{x}_{\text{gen}} &= [\mathbf{x}_{\text{gen}}^1, \mathbf{x}_{\text{gen}}^2 \in \mathbb{Z}_{[0,n]}^1, \mathbf{x}_{\text{gen}}^3, \mathbf{x}_{\text{gen}}^4] \end{aligned} \quad (1)$$

$$\mathbb{D}_{S,L} : \begin{aligned} \mathbf{x}_{\text{input}} &= [x_{\text{sos}}, \mathbf{x}_{\text{text}}, x_{\text{attr}}, x_{\text{spk}}, \mathbf{x}_{\text{sign}} \in \mathbb{Z}^3, x_{\text{gen}}, x_{\text{lbl}} \in \mathbb{Z}_{[0,n]}^1, \mathbf{x}_{\text{sem}}] \\ \mathbf{x}_{\text{output}} &= [\mathbf{x}_{\text{sign}}, x_{\text{lbl}} \in \mathbb{Z}_{[1,n]}^1, \mathbf{x}_{\text{sem}}, x_{\text{eos}}] \end{aligned} \quad (2)$$

$$\mathbb{D}_{E,L} : \begin{aligned} \mathbf{x}_{\text{input}} &= [x_{\text{sos}}, \mathbf{x}_{\text{text}}, x_{\text{attr}}, x_{\text{spk}}, \mathbf{x}_{\text{ign}} \in \mathbb{Z}^3, x_{\text{gen}}, x_{\text{lbl}} \in \mathbb{Z}_{[0,n]}^1, \mathbf{x}_{\text{sem}}] \\ \mathbf{x}_{\text{output}} &= [\mathbf{x}_{\text{ign}}, x_{\text{ign}} \in \mathbb{Z}^1, \mathbf{x}_{\text{sem}}, x_{\text{eos}}] \end{aligned} \quad (3)$$

where x_{input} and x_{output} are the input sequence and output sequence of the neural codec language model. Specifically, x_{sos} , x_{eos} , x_{attr} and x_{gen} represent the start-of-sequence token, end-of-sequence token, attribute-start token, and generation-start token, respectively. All of them are fixed values and belong to \mathbb{Z}^1 . x_{ign} is the ignore tokens, used to mask positions in the x_{output} during training. x_{text} is obtained by processing raw text with a Byte Pair Encoding (BPE)-based tokenizer (Radford et al., 2023). To align semantic information, x_{text} is encoded into text embeddings via a Conformer-based text encoder. x_{spk} is the speaker id, encoded as the speaker embedding computed by averaging timbre vectors extracted from all *neutral* emotional speech samples of this speaker using a voiceprint model (Chen et al., 2024). This embedding captures speaker timbre while excluding emotional representations. x_{adv} is obtained from ADV values using an ADV quantizer based on the nonlinear binning described in Section 3.1.2, and m is the number of bins along each dimension. x_{lbl} is the emotion label token, and n is the number of label token types. x_{sem} is the speech semantic tokens enriched with emotional representations, extracted by a novel speech tokenizer shown in Figure 2.

To ensure that x_{sem} captures rich paralinguistic emotional information, we design a supervised multi-task speech tokenizer inspired by CosyVoice3 (Du et al., 2025). Specifically, the Finite Scalar Quantization (FSQ) module (Mentzer et al., 2024) is inserted into the encoder of the MinMo model (Chen et al., 2025a), which is then jointly trained on automatic speech recognition (ASR), speech emotion label recognition (SELR), and speech ADV recognition (SADVR).

3.1.2 EMOTION QUANTIFICATION

In the ADV space, emotions are continuously distributed. For controllability, these continuous vectors are quantized into tokens $\mathbf{x}_{\text{adv}} = [x_a, x_d, x_v] \in \mathbb{Z}_{[1,m]}^3$, where x_a (arousal) controls the intensity of the emotion provoked by a stimulus, x_d (dominance) controls the level of control exerted by the stimulus, and x_v (valence) controls the positivity or negativity of an emotion. However, due to imbalanced emotion distributions and limited ADV values in these datasets, the distributions along the three dimensions exhibit approximately normal patterns, and certain regions of the ADV space remain underrepresented, as shown in Appendix E. To address these problems, we design an ADV quantizer by exploring different nonlinear binning algorithms (Garca et al., 2016) for each of the three dimensions, and finally select the clustering-based binning algorithm to balance uniformity

216 and discriminability. Then, to balance control granularity and linearity, the ADV quantizer uses the
 217 central limit theorem (Punhani et al., 2022) to determine the number of bins. Details of the nonlinear
 218 binning algorithm derivation are given in the Appendix E.

219 We observe that different emotion labels generally form distinct clusters in the ADV space, as shown
 220 in in Appendix D. However, some labels show substantial overlap, indicating ambiguity in their
 221 emotional boundaries. So we unify semantically similar emotion labels in the datasets into a single
 222 token. For example, both *happy*, *amused* and *laughing* are grouped under the *happy* category and
 223 assigned the same token.

225 3.1.3 ADV PREDICTOR

226 We also observe that without control conditions, predicting x_{lbl} and x_{sem} solely from x_{text} performs
 227 poorly, often yielding speech with *neutral* emotion. To enhance end-to-end emotional TTS, we
 228 introduce an ADV predictor that first estimates pseudo-ADV $\mathbf{adv}_{\text{pred}}$ from x_{text} , $\mathbf{adv}_{\text{pred}}$ are then
 229 quantized by the ADV quantizer into pseudo-ADV tokens $\mathbf{x}_{\text{adv}_{\text{pred}}}$, which are fed into the neural
 230 codec language model together with x_{text} . The ADV predictor, inspired by Park et al. (2021); Wen
 231 et al. (2021), employs a RoBERTa encoder followed by softmax and norm layers over the pooled
 232 output. It is trained jointly with the LLM and loss function is defined as:

$$233 \mathcal{L}_{\text{ADV}} = \sum_{x \in \{a, d, v\}} \alpha \|\mathbf{x}_{\text{pred}} - \mathbf{x}_{\text{true}}\|^2 + \sum_{b=1}^B \|\mathbf{adv}_{\text{pred}_b} - \mathbf{c}_b\|^2, \quad (4)$$

234 the first term computes the MSE of $\mathbf{adv}_{\text{pred}}$ across three decoupled dimensions, while the second
 235 term minimizes its distance to the bin center \mathbf{c}_b of $\mathbf{adv}_{\text{true}}$ for each sample.

236 3.1.4 TRAINING AND INFERENCE

237 During training, due to the mixture of datasets, each batch may include samples from multiple
 238 sources. For samples with $\mathbf{x}_{\text{adv}} \neq \mathbf{x}_{\text{ign}}$ in a batch (i.e., from $\mathbb{D}_{S,AL}$ or $\mathbb{D}_{E,AL}$, see Eq. 1), their
 239 corresponding x_{lbl} in $\mathbf{x}_{\text{output}}$ can be correctly predicted from the text and ADV, and is therefore not
 240 masked. For samples where $\mathbf{x}_{\text{adv}} = \mathbf{x}_{\text{ign}}$, the masking depends on the dataset type: if the sample
 241 comes from $\mathbb{D}_{S,L}$, x_{lbl} in $\mathbf{x}_{\text{output}}$ is not masked, since the text emotion and label are consistent;
 242 but if the sample comes from $\mathbb{D}_{E,L}$, x_{lbl} in $\mathbf{x}_{\text{output}}$ needs to be masked. In spontaneous emotional
 243 datasets \mathbb{D}_S , many samples exhibit ambiguous emotional expressions and are labeled as *Unknown*
 244 (see Table 6 in the Appendix). When $x_{\text{lbl}} = 0$ in $\mathbf{x}_{\text{input}}$, the corresponding x_{lbl} in $\mathbf{x}_{\text{output}}$ is masked
 245 during training. We design a label token position-aware smoothing loss function for semi-supervised
 246 training, as defined in follow Eqs. (5,6):

$$247 \mathcal{L}_{\text{LLM}} = -\frac{1}{L+2} \sum_{l=1}^{L+2} w_{\text{emo}}(l) p(v_l) \log q(v_l) + \mathcal{L}_{\text{ADV}}, \quad (5)$$

$$248 \text{where } p(v_l) = \begin{cases} 1 - \epsilon, & \text{if } v_l = \mu_l \\ \frac{\epsilon}{K}, & \text{if } v_l \neq \mu_l \end{cases}, \quad w_{\text{emo}}(l) = \begin{cases} 0, & \text{if } \mu_l = x_{\text{lbl}} = x_{\text{ign}} \text{ or } 0 \\ 5.0, & \text{if } \mu_l = x_{\text{lbl}} \neq x_{\text{ign}} \text{ or } 0 \\ 1.0, & \text{otherwise} \end{cases}, \quad (6)$$

249 here, $L + 2$ is the length of $\mathbf{x}_{\text{loss}} = [x_{\text{lbl}}, \mathbf{x}_{\text{sem}}, x_{\text{eos}}]$ in $\mathbf{x}_{\text{output}}$. v_l and μ_l denote the predicted token
 250 and the ground-truth token at position l in \mathbf{x}_{loss} . $w_{\text{emo}}(l)$ is the position-dependent weighting scale.
 251 When the x_{lbl} is x_{ign} or 0, indicating that the sample belongs to $\mathbb{D}_{E,L}$ or the label is *Unknown* —
 252 the loss at x_{lbl} position is masked. Otherwise, the loss at x_{lbl} position is up-weighted to accelerate
 253 convergence. $p(v_l)$ is used for label smoothing, where K is the vocabulary size and ϵ is a small
 254 smoothing parameter.

255 During inference, the LLM operates in three modes, corresponding to three different tasks:

- 256 1. The first task controls speech emotion categories using a label: it uses x_{text} and x_{lbl} , with
 257 the \mathbf{x}_{adv} ignored, to generate label-conditioned \mathbf{x}_{sem} .
- 258 2. The second task controls fine-grained emotions using ADV tokens: it uses x_{text} and \mathbf{x}_{adv} to
 259 predict x_{lbl} and then generates \mathbf{x}_{sem} autoregressively.
- 260 3. The third task predicts text-adaptive emotions directly from texts: it it uses only x_{text} to
 261 predict \mathbf{x}_{sem} , while $\mathbf{x}_{\text{adv}_{\text{pred}}}$ serve as intermediate tokens predicted from the text.

270 3.2 SEMI-SUPERVISED CONDITIONAL FLOW MATCHING
271

272 To synthesize emotional speech, UDDETTs reconstructs the speech semantic tokens x_{sem} into mel-
273 spectrograms via an OT-CFM module. This module is conditioned on the speaker embedding E_{spk} ,
274 the semantic embedding E_{sem} and the emotion conditions E_{emo} . Here, E_{sem} is obtained by encoding
275 the generated x_{sem} via a Conformer-based semantic encoder, while E_{emo} is derived from both x_{lbl}
276 and x_{adv} to enhance the emotional guidance of the synthesized speech.

277 To generate E_{emo} , the OT-CFM module employs an emotional mixture encoder, as illus-
278 trated in Figure 3. This encoder fuses the
279 masked x_{lbl} and x_{adv} . Specifically, the ADV
280 encoder first encodes x_a , x_d and x_v separately
281 into E_a , E_d and E_v , which are then concate-
282 nated and passed through an interaction layer
283 to obtain the ADV embedding E_{adv} . The
284 label encoder directly encodes x_{lbl} into a label
285 embedding E_{lbl} . A multi-head attention layer
286 is applied, using E_{lbl} as the query and E_{adv}
287 as the key and value, resulting in a label-
288 attended emotion embedding $E_{\text{emo}}^{\text{attn}}$. Finally, a
289 gate layer combined with the semi-supervised
290 gating algorithm described in Eq. (7) pro-
291 duces the final emotion conditions E_{emo} .

$$292 \quad 293 \quad 294 \quad 295 \quad 296 \quad 297 \quad 298 \quad 299 \quad 300 \quad 301 \quad 302 \quad 303 \quad 304 \quad 305 \quad 306 \quad 307 \quad 308 \quad 309 \quad 310 \quad 311 \quad 312 \quad 313 \quad 314 \quad 315 \quad 316 \quad 317 \quad 318 \quad 319 \quad 320 \quad 321 \quad 322 \quad 323$$

$$E_{\text{emo}} = \begin{cases} E_{\text{adv}} & \text{if } x_{\text{lbl}} = 0 \\ (gate + 1) \cdot E_{\text{lbl}} & \text{if } x_{\text{lbl}} \neq 0 \text{ and } x_{\text{adv}} = x_{\text{ign}} \\ gate \cdot E_{\text{lbl}} + (1 - gate) \cdot E_{\text{emo}}^{\text{attn}} & \text{if } x_{\text{lbl}} \neq 0 \text{ and } x_{\text{adv}} \neq x_{\text{ign}} \end{cases} \quad (7)$$

The OT-CFM module defines a time-dependent vector field $\mathbf{v}_t(\mathbf{X}) : [0, 1] \times \mathbb{R}^{L \times D} \rightarrow \mathbb{R}^{L \times D}$, and uses an ordinary differential equation (Onken et al., 2021) to find the optimal-transport (OT) flow ϕ_t^{OT} . All condition, including E_{spk} , E_{sem} and E_{emo} , are fed into a U-net neural network \mathbf{U}_θ to match the vector field $\mathbf{v}_t(\mathbf{X})$ to $\mathbf{w}_t(\mathbf{X})$ with learnable parameters θ :

$$\mathbf{v}_t(\phi_t^{OT}(\mathbf{X}_0, \mathbf{X}_1) | \theta) = \mathbf{U}_\theta(\phi_t^{OT}(\mathbf{X}_0, \mathbf{X}_1), E_{\text{spk}}, E_{\text{sem}}, E_{\text{emo}}, t), \quad (8)$$

$$\mathbf{w}_t(\phi_t^{OT}(\mathbf{X}_0, \mathbf{X}_1) | \mathbf{X}_1) = \mathbf{X}_1 - (1 - \sigma) \mathbf{X}_0, \quad (9)$$

where $\mathbf{X}_0 \sim \mathcal{N}(0, \tau^{-1} \mathbf{I})$, \mathbf{X}_1 is a learned approximation of the mel-spectrogram distributions, t is the timestep using a cosine schedule (Nichol & Dhariwal, 2021) to prevent rapid noise accumulation from linear addition. The conditional flow matching loss function is shown in Eq. (10):

$$\mathcal{L}_{\text{CFM}} = \mathbb{E}_{\mathbf{X}_0, \mathbf{X}_1} \|\mathbf{w}_t(\phi_t^{OT}(\mathbf{X}_0, \mathbf{X}_1) | \mathbf{X}_1) - \mathbf{v}_t(\phi_t^{OT}(\mathbf{X}_0, \mathbf{X}_1) | \theta)\|^2. \quad (10)$$

During inference, x_{lbl} is derived directly from the input in the first task (1), while in the second and third tasks (2, 3), x_{lbl} is obtained from the label predicted by the LLM.

4 EXPERIMENTS

4.1 DATASETS

To evaluate the UDDETTs model, we collect large-scale English emotional speech datasets, including MSP (Lotfian & Busso, 2019), IEMOCAP (Busso et al., 2008), MELD (Poria et al., 2019), MEAD(Wang et al., 2020), CMU-MOSEI (Bagher Z et al., 2018), ESD (Zhou et al., 2022), EmoV-DB (Adigwe et al., 2018), Expresso (Nguyen et al., 2023), CREMA-D (Cao et al., 2014), RAVDESS (Livingstone et al., 2018), EmoTale (Hjuler et al., 2025), EU-Emotion (Lassalle et al., 2018) and 118.6 hours of internally annotated emotional speech. Each dataset is annotated with either emotion labels or ADV values. We also leverage 49400+ hours English general speech datasets w/o emotional annotations to support early-stage TTS training. All samples undergo preprocessing: emotion labels, punctuation, numbers, and other special characters are standardized; ADV values are normalized to [1,7]; annotation errors are removed; and speech recordings are resampled to 16 kHz. We

324
325 Table 1: Comparison of subjective and objective evaluation results across LLM-based TTS models.
326

Models	MOS↑	P_m ↑	R_m ↑	UTMOS↑	WER(%)↓	SS↑	ES↑	STOI↑	PESQ-WB↑
UDDETTS	4.29±0.12	0.94	0.90	4.25	2.40	0.702	0.833	0.90	2.80
CosyVoice	4.02±0.08	0.83	0.73	3.87	4.35	0.679	0.635	0.83	2.16
CosyVoice2	4.20±0.10	0.85	0.75	4.10	2.42	0.733	0.720	0.88	2.59
CosyVoice3	4.35±0.10	0.85	0.82	4.48	1.45	0.784	0.790	0.92	2.68
IndexTTS	4.20±0.15	0.83	0.72	3.95	2.45	0.715	0.678	0.89	2.43
IndexTTS2	4.29±0.10	0.87	0.80	4.20	1.69	0.792	0.778	0.94	2.60
FireRedTTS	3.95±0.07	0.74	0.65	3.80	3.85	0.635	0.605	0.86	2.30
FireRedTTS2	4.15±0.06	0.83	0.76	3.85	3.19	0.684	0.723	0.90	2.50
Spark-TTS	4.18±0.13	0.85	0.77	4.04	2.03	0.678	0.680	0.89	2.46
F5-TTS	4.18±0.07	0.88	0.78	4.30	1.82	0.723	0.709	0.92	2.35
VALL-E	3.79±0.15	0.62	0.69	3.58	5.98	0.590	0.594	0.81	1.91
CosyVoice + ADV	4.15±0.05	0.90	0.81	4.10	4.08	0.680	0.815	0.86	2.66
UDDETTS w/o EME	4.20±0.10	0.90	0.87	4.18	2.35	0.682	0.820	0.90	2.71

336
337 remove samples with overlapping speakers, instrumental music, excessive noise, other languages,
338 missing transcriptions, and durations longer than 30 seconds. To reduce speaker timbre confusion,
339 we remove samples from *Unknown* speakers and discard speakers with fewer than four utterances.
340 Appendix D summarizes the statistics of collected datasets after cleaning. In total, 19 emotion labels
341 are used, with corresponding label tokens [0, 9] and sample counts listed in Table 6 in Appendix.
342

343 4.2 IMPLEMENTATION DETAILS

344 We first train the speech tokenizer on the full training set, which converges within 500k steps. The
345 trained tokenizer is then used to extract speech semantic tokens. For UDDETTS, the first stage
346 involves training LLM-0.70B and OT-CFM-0.35B on English speech corpora without emotional an-
347 notations, with a peak learning rate of 1e-3, 5000 warm-up steps, and 15 epochs until convergence.
348 In the second stage, we perform semi-supervised training on large-scale English emotional speech
349 datasets, with the text encoder frozen, a peak learning rate of 1e-4 and 2500 warm-up steps. UD-
350 DETTS converges within 30 epochs. The generated mel-spectrograms are converted into emotional
351 speech using a HiFi-GAN (Kong et al., 2020) vocoder, fine-tuned on our datasets for 5 epochs. All
352 UDDETTS training is conducted on 24 NVIDIA A800-80GB GPUs with 64-core CPUs, using the
353 Adam optimizer, gradient accumulation of 2, and a maximum total frame length of 5000 per batch.
354 For evaluation, we collect and design a text corpus as the test set, as shown in Appendix F.
355

356 4.3 LABEL-CONTROLLED EMOTIONAL TTS

357 To evaluate label-controlled synthesis, each *neutral* text is paired with five emotions (*neutral*, *happy*,
358 *angry*, *disgust*, and *sleepiness*), whose training sample sizes decrease stepwise, and used as
359 control inputs for UDDETTS under the first task (1). We compare different LLM-based TTS
360 models, as shown in Appendix C, under label prompts (e.g., “Angry<|endofprompt|>Content Text”).
361 We conduct both subjective and objective evaluations of the synthesized speech. Subjective eval-
362 uation involves 12 participants, measuring 5-point Mean Opinion Scores (MOS) for speech nat-
363 urality and a five-class emotion confusion matrix to assess the robustness of label-based control,
364 from which macro-Precision P_m and macro-Recall R_m are computed. Objective evaluation uses
365 Whisper-large-v3 model (Radford et al., 2023) for Word Error Rate (WER) to assess speech intel-
366 ligibility, 3D-Speaker speaker verification model (Chen et al., 2024) for Speaker Similarity (SS),
367 emotion2vec¹ model for Emotion Similarity (ES), speechmetrics² to calculate Short-Time Objec-
368 tive Intelligibility (STOI) and Perceptual Evaluation of Speech Quality - Wideband (PESQ-WB),
369 and SpeechMOS³ to calculate UTMOS. The results in Table 1 show that UDDETTS achieves higher
370 naturalness of synthesized speech compared with CosyVoice1-2, IndexTTS, FireRedTTS1-2, Spark-
371 TTS, F5-TTS, and VALL-E, while also maintaining low WER and high speaker similarity. More
372 importantly, UDDETTS obtains the highest scores in both P_m and R_m of the emotion confusion
373 matrix, as well as in Emotion Similarity and PESQ-WB. We further integrate the proposed ADV
374 framework—including ADV tokens, quantizer, predictor, speech tokenizer, and emotional mixture
375

¹<https://github.com/ddlBoJack/emotion2vec>

²<https://github.com/aliutkus/speechmetrics>

³<https://github.com/tarepan/SpeechMOS>

378

379
380
Table 2: Subjective evaluation results of linear emotion control along the three ADV dimensions.
The right side *Linear Binning* presents the results of ablation experiments.

Dimension	Range	Nonlinear Binning		Linear Binning	
		SRC	KW	SRC	KW
Arousal	[1-14, 7, 7]	0.85	0.70	0.52	0.48
Dominance	[14, 1-14, 1]	0.78	0.68	0.48	0.50
Valence	[14, 14, 1-14]	0.92	0.83	0.57	0.58

394
395
396
397
398
Figure 4: ADV space with $14 \times 14 \times 14$ controllable units: **linear binning (60.83%)** vs. **nonlinear binning (77.89%)** vs. **after semi-supervised training (89.35%)**, and **spherical coordinate system (55.40%)**. Color opacity positively correlates with the sample density within each controllable unit.399
400
401
402
encoder—into CosyVoice1 by fine-tuning the CosyVoice-300M on our English emotional speech
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2089
2090
2091
2092
2093
2094
20

432

433 Table 3: Subjective preference (%) test and UTMOS results on ADV-controlled mixed emotions.

434

Mixed emotion	UDDETTS	UTMOS	Similar	EmoSphere++	UTMOS	p-value
angry-sad	74.50	4.35	20.00	5.50	4.03	0.001
sleepiness-sad	52.40	3.96	28.35	19.25	3.85	0.019
happy-surprise	60.78	4.28	23.42	15.80	3.97	0.010
disgust-angry	43.33	4.18	33.34	23.33	3.90	0.032

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450 Figure 5: Sensitivity analysis of bin count m on granularity and linearity, with t-SNE visualization
451 of extracted emotion vectors. Each color represents a set of emotion vector samples extracted from
452 speech synthesized under linearly transformed ADV control.

453

454

455 semi-supervised training further raises it to 89.35%. Red regions in the ADV space highlight areas
456 capable of synthesizing emotional speech corresponding to unseen ADV values. For example, at
457 $\mathbf{x}_{\text{adv}} = [14, 1, 1]$, where no training samples exist, the model can still synthesize reasonable *sobbing-like*
458 speech. This indicates that semi-supervised training promotes the transfer of label knowledge
459 to the ADV space, thereby enabling broader and finer-grained control of emotional TTS.

460

461

462

463

464

465

466 We also evaluate the robustness of UDDETTS when the label or ADV inputs fall outside the label
467 and ADV ranges of the training set, as shown in Appendix H. To further evaluate the influence of
468 each ADV dimension on emotion expression, we also analyze the relationship between ADV and
469 prosodic features of speech, as detailed in the Appendix I. Together, these results demonstrate that
470 UDDETTS achieves fine-grained, interpretable, and linear emotion control along three psychological
471 dimensions, surpassing the capabilities of traditional label-based methods.

472

473

474

475

476

477

478 Additionally, to evaluate the performance of UDDETTS in capturing intermediate emotions against
479 the traditional non-LLM-based EmoSphere++ (Cho et al., 2025), a model that employs an emotion-
480 adaptive spherical vector (EASV) within a spherical coordinate system where angles control emotion
481 style and the radius controls intensity, we plot the ADV space of both methods on the same emotional
482 speech dataset. As shown in Figure 4, UDDETTS (89.35%) exhibits broader coverage compared to
483 EmoSphere++ (55.40%), with smoother color gradients in control units, indicating a more uniform
484 sample distribution. We further compare the emotional control accuracy using equivalent ADV
485 values for four intermediate emotions: angry-sad, sleepiness-sad, happy-surprise, and disgust-angry.
486 The ADV values are set to the medians between the centers of the corresponding emotion clusters
487 in Figure 6. ABX test results in Table 3 show that participants significantly prefer UDDETTS-
488 synthesized intermediate emotions, particularly for angry-sad, demonstrating its superior ability to
489 mitigate emotional regional overfitting and capture mixed emotions effectively.

490

491

492 4.5 END-TO-END EMOTIONAL TTS

493

494

495

496

497

498

499

500 To evaluate the UDDETTS’s ability for text-adaptive emotion synthesis using text input alone,
501 we conduct experiments on the third task (3) and select the text corpus featuring diverse and
502 explicit emotional attributes (see Appendix F). We compare UDDETTS with two description-
503 based baselines, providing each baseline with a neutral reference speech, the target text, and
504 a natural language description (e.g. “Synthesize the emotional speech that best matches the
505 text<|endofprompt|>Content Text”). A subjective preference (%) test involving 12 participants
506 is conducted to evaluate which model generates speech with more appropriate emotions, with the

486

487

Table 4: Subjective preference (%) test results on end-to-end emotional TTS.

488

489

UDDETTS	Similar	CosyVoice2	p-value	UDDETTS	Similar	IndexTTS2	p-value
67.33	19.45	13.22	0.001	58.60	29.23	12.17	0.012
w/o ADV predictor	Similar	CosyVoice2	p-value	w/o ADV predictor	Similar	IndexTTS2	p-value
46.88	24.30	28.82	0.035	28.50	50.40	21.10	0.104

490

491

492

493

p-value of t-test used to assess significance of differences. As shown in Table 4, participants demonstrate a clear preference for UDDETTS ($p < 0.05$).

494

495

496

497

498

499

500

501

To quantify the emotional consistency between text semantics and synthesized speech, and to validate the ADV predictor (trained with an RMSE of 1.25), we extract pseudo-ADV values from intermediate text predictions and speech-based ADV values through the SADVR task using the multi-task speech tokenizer (trained with an RMSE of 0.68). These text-derived and speech-derived ADV values are visualized in the ADV space, as shown in Figure 8 in Appendix F. The close alignment between them demonstrates that UDDETTS effectively maps fine-grained emotional representations from text to speech.

502

503

504

Overall, these results confirm that UDDETTS exhibits superior end-to-end capabilities in text-adaptive emotion understanding and emotional TTS.

505

506

4.6 ABLATION STUDIES

507

508

509

510

511

512

513

514

515

516

517

518

We conduct four ablation studies to evaluate the effectiveness of key components in UDDETTS. First, removing the ADV predictor in the third task biases the synthesized speech toward neutral and lowers the scores, as shown in Table 4, indicating that the pseudo-ADV predicted by the ADV predictor helps the LLM capture intrinsic emotions from the text. Second, we remove the emotional mixture encoder and E_{emo} from the OT-CFM module and rely solely on E_{sem} to reconstruct mel-spectrograms. This modification leads to a reduction in emotional expressiveness, as seen in the last row (w/o EME) of Table 1. Third, we replace nonlinear binning algorithm in the ADV quantizer with a linear one. Both SRC and KW scores drop significantly in Table 2, indicating that imbalanced emotion distributions lead the model to overfit dense ADV regions, thereby impeding linear control. Finally, training only on $\mathbb{D}_{S, AL}$ without semi-supervised learning reduces the controllable coverage rate of the ADV space to 70%, and fails to synthesize the *sobbing-like* emotion at $x_{\text{adv}}=[14, 1, 1]$ and other unseen emotions. This highlights the pivotal role of unlabeled ADV data in transferring discrete emotion knowledge into the ADV space and expanding control coverage.

519

520

521

5 LIMITATIONS AND FUTURE WORK

522

523

524

525

526

527

528

529

530

The performance of UDDETTS is limited by the quality of ADV annotations in the datasets. Subjective variation among annotators can produce inconsistent ADV labels, which negatively impacts the model’s ability for linear emotional control; increasing dataset size and selecting samples with consistent annotations are the primary way to mitigate this issue. Additionally, for texts with ambiguous emotional attributes, the ADV predictor often struggles to infer appropriate ADV values. Since the same text can express different emotions in different contexts, incorporating multimodal information is necessary for more accurate emotion understanding. In future work, we plan to extract emotional representations from multimodal sources and dialogue context, mapping them into the ADV space to better capture emotions.

531

532

533

6 CONCLUSION

534

535

536

537

538

539

In this paper, we introduce a universal LLM framework named UDDETTS that 1) integrates both ADV and label annotations for the first time, enabling compatibility with diverse types of emotional speech datasets; 2) disentangles complex emotions into the ADV space while addressing sparsity and imbalance issues; 3) provides an interpretable approach for fine-grained emotional TTS control, distinct from traditional label- or description-based prompts. Our work can assist developers in building emotional TTS systems based on large-scale emotional datasets, ultimately enhancing the expressiveness of emotional expression in human-computer interaction.

540
541
ETHICS STATEMENT

542 This research complies with the ICLR Code of Ethics and upholds rigorous standards of academic
 543 integrity, legal compliance, and research ethics. All datasets sourced from third-party repositories
 544 are used under verified licensing agreements, with explicit documentation provided in Appendix B.
 545 Data processing pipelines adhere to privacy-preserving principles and secure storage protocols. For
 546 subjective experiments involving human participants, informed consent is obtained and fair com-
 547 pensation is provided. Participant confidentiality is strictly maintained throughout the study. The
 548 methodologies and findings reported in this work do not pose significant risks of harm, bias, or mis-
 549 use. This research is conducted solely for academic purposes, without commercial application, and
 550 no conflicts of interest or sponsorship-related influences affect the design, execution, or interpreta-
 551 tion of the results.

552
553 **REPRODUCIBILITY STATEMENT**

554 To ensure the reproducibility of our findings, we take the following measures:

- 556 1. **Datasets and baselines.** All datasets and baseline models used in our experiments are listed
 557 in Appendix B, C. Fine-tuning strategies and other implementation details for the baselines
 558 are also stated in Section 4.3 and 4.5, and all experiments follow the official open-source
 559 code and configurations to ensure fairness.
- 560 2. **Code availability.** The full implementation of our proposed model, together with con-
 561 figuration files, training scripts, and demos is available at the anonymous repository
 562 link: <https://anonymous.4open.science/w/UDDETTS>, ensuring reproducibil-
 563 ity and preserving anonymity during the review process.
- 564 3. **Experimental details.** Training configurations, evaluation metrics, hardware specifica-
 565 tions, and runtime environments are summarized in Section 4.2, with implementation
 566 scripts documented in the released code repository.
- 567 4. **Theoretical verification.** The algorithmic processes, which require additional explana-
 568 tion, are provided in Appendix E, with step-by-step derivations and explicit clarification of
 569 assumptions.

570 These resources enable independent replication of our experiments and validation of the contribu-
 571 tions presented in this paper.

573
574 **REFERENCES**

575 Adaeze Adigwe, Noé Tits, Kevin El Haddad, Sarah Ostadabbas, and Thierry Dutoit. The emotional
 576 voices database: Towards controlling the emotion dimension in voice generation systems. *arXiv*
 577 *preprint arXiv:1806.09514*, 06 2018.

578 Philip Anastassiou, Jiawei Chen, Jitong Chen, Yuanzhe Chen, Zhuo Chen, Ziyi Chen, Jian Cong,
 579 Lelai Deng, Chuang Ding, Lu Gao, Mingqing Gong, Peisong Huang, Qingqing Huang, Zhiying
 580 Huang, Yuanyuan Huo, Dongya Jia, Chumin Li, Feiya Li, Hui Li, Jiaxin Li, Xiaoyang Li, Xingx-
 581 ing Li, Lin Liu, Shouda Liu, Sichao Liu, Xudong Liu, Yuchen Liu, Zhengxi Liu, Lu Lu, Junjie
 582 Pan, Xin Wang, Yuping Wang, Yuxuan Wang, Zhen Wei, Jian Wu, Chao Yao, Yifeng Yang, Yuan-
 583 hao Yi, Junteng Zhang, Qidi Zhang, Shuo Zhang, Wenjie Zhang, Yang Zhang, Zilin Zhao, Dejian
 584 Zhong, and Xiaobin Zhuang. Seed-TTS: A family of high-quality versatile speech generation
 585 models. *CoRR*, abs/2406.02430, 2024.

586 Rosana Ardila, Megan Branson, Kelly Davis, Michael Henretty, Michael Kohler, Josh Meyer,
 587 Reuben Morais, Lindsay Saunders, Francis M. Tyers, and Gregor Weber. Common voice: A
 588 massively-multilingual speech corpus. *arXiv preprint arXiv:1912.06670*, 2020.

589 AmirAli Bagher Z, Paul Pu Liang, Soujanya Poria, Erik Cambria, and Louis-Philippe Morency.
 590 Multimodal language analysis in the wild: CMU-MOSEI dataset and interpretable dynamic fu-
 591 sion graph. In *Proceedings of the 56th Annual Meeting of the Association for Computational*
 592 *Linguistics (Volume 1: Long Papers)*, pp. 2236–2246. Association for Computational Linguistics,
 593 July 2018.

594 Evelina Bakhturina, Vitaly Lavrukhin, Boris Ginsburg, and Yang Zhang. Hi-Fi multi-speaker english
 595 tts dataset. *arXiv preprint arXiv:2104.01497*, 2021.
 596

597 Iris Bakker, Theo Van der Voordt, Jan Boon, and Peter Vink. Pleasure, arousal, dominance: Mehrabian
 598 and russell revisited. *Current Psychology*, 33:405–421, 10 2014.

599 M. Borchert and A. Dusterhoff. Emotions in speech - experiments with prosody and quality features
 600 in speech for use in categorical and dimensional emotion recognition environments. In *2005*
 601 *International Conference on Natural Language Processing and Knowledge Engineering*, pp. 147–
 602 151, 2005.

603 Carlos Busso, Murtaza Bulut, Chi-Chun Lee, Abe Kazemzadeh, Emily Mower, Samuel Kim, Jean-
 604 nette N. Chang, Sungbok Lee, and Shrikanth S. Narayanan. IEMOCAP: Interactive emotional
 605 dyadic motion capture database. *Journal of Language Resources and Evaluation*, 42(4):335–359,
 606 December 2008.

607 Houwei Cao, David G. Cooper, Michael K. Keutmann, Ruben C. Gur, Ani Nenkova, and Ragini
 608 Verma. CREMA-D: Crowd-sourced emotional multimodal actors dataset. *IEEE transactions on
 609 affective computing*, 5(4):377–390, 2014.

610 Edward Y. Chang. Behavioral emotion analysis model for large language models. In *2024 IEEE
 611 7th International Conference on Multimedia Information Processing and Retrieval (MIPR)*, pp.
 612 549–556. IEEE Computer Society, August 2024.

613 Chih Yao Chen, Tun Min Hung, Yi-Li Hsu, and Lun-Wei Ku. Label-aware hyperbolic embeddings
 614 for fine-grained emotion classification. In *Proceedings of the 61st Annual Meeting of the Association
 615 for Computational Linguistics (Volume 1: Long Papers)*, pp. 10947–10958. Association for
 616 Computational Linguistics, July 2023.

617 Qian Chen, Yafeng Chen, Yanni Chen, Mengzhe Chen, Yingda Chen, Chong Deng, Zhihao Du,
 618 Ruize Gao, Changfeng Gao, Zhifu Gao, Yabin Li, Xiang Lv, Jiaqing Liu, Haoneng Luo, Bin Ma,
 619 Chongjia Ni, Xian Shi, Jialong Tang, Hui Wang, Hao Wang, Wen Wang, Yuxuan Wang, Yunlan
 620 Xu, Fan Yu, Zhijie Yan, Yexin Yang, Baosong Yang, Xian Yang, Guanrou Yang, Tianyu Zhao,
 621 Qinglin Zhang, Shiliang Zhang, Nan Zhao, Pei Zhang, Chong Zhang, and Jinren Zhou. MinMo: A
 622 multimodal large language model for seamless voice interaction. *CoRR*, abs/2501.06282, January
 623 2025a.

624 Sanyuan Chen, Chengyi Wang, Yu Wu, Ziqiang Zhang, Long Zhou, Shujie Liu, Zhuo Chen, Yanqing
 625 Liu, Huaming Wang, Jinyu Li, Lei He, Sheng Zhao, and Furu Wei. Neural codec language models
 626 are zero-shot text to speech synthesizers. *IEEE Transactions on Audio, Speech and Language
 627 Processing*, 33:705–718, 2025b.

628 Yafeng Chen, Siqi Zheng, Hui Wang, Luyao Cheng, Tinglong Zhu, Changhe Song, Rongjie Huang,
 629 Ziyang Ma, Qian Chen, Shiliang Zhang, and Xihao Li. 3d-speaker-toolkit: An open-source toolkit
 630 for multimodal speaker verification and diarization. In *IEEE International Conference on Acous-
 631 tics, Speech, and Signal Processing*, 2024.

632 Yushen Chen, Zhikang Niu, Ziyang Ma, Keqi Deng, Chunhui Wang, JianZhao JianZhao, Kai Yu,
 633 and Xie Chen. F5-TTS: A fairytaler that fakes fluent and faithful speech with flow matching.
 634 In *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics
 635 (Volume 1: Long Papers)*, pp. 6255–6271. Association for Computational Linguistics, July 2025c.

636 Deok-Hyeon Cho, Hyung-Seok Oh, Seung-Bin Kim, Sang-Hoon Lee, and Seong-Whan Lee.
 637 EmoSphere-TTS: Emotional style and intensity modeling via spherical emotion vector for con-
 638 trollable emotional text-to-speech. In *Interspeech 2024*, pp. 1810–1814, 2024.

639 Deok-Hyeon Cho, Hyung-Seok Oh, Seung-Bin Kim, and Seong-Whan Lee. EmoSphere++:
 640 Emotion-controllable zero-shot text-to-speech via emotion-adaptive spherical vector. *IEEE Trans-
 641 actions on Affective Computing*, pp. 1–16, 2025.

642 R. Cowie, E. Douglas-Cowie, N. Tsapatsoulis, G. Votsis, S. Kollias, W. Fellenz, and J.G. Taylor.
 643 Emotion recognition in human-computer interaction. *IEEE Signal Processing Magazine*, 18(1):
 644 32–80, 2001.

648 Wei Deng, Siyi Zhou, Jingchen Shu, Jinchao Wang, and Lu Wang. IndexTTS: An industrial-
 649 level controllable and efficient zero-shot text-to-speech system. *arXiv preprint arXiv:2502.05512*,
 650 2025.

651 Zhihao Du, Qian Chen, Shiliang Zhang, Kai Hu, Heng Lu, Yexin Yang, Hangrui Hu, Siqi Zheng,
 652 Yue Gu, Ziyang Ma, Zhifu Gao, and Zhijie Yan. CosyVoice: A scalable multilingual zero-shot
 653 text-to-speech synthesizer based on supervised semantic tokens. *CoRR*, abs/2407.05407, 2024a.

654 Zhihao Du, Yuxuan Wang, Qian Chen, Xian Shi, Xiang Lv, Tianyu Zhao, Zhifu Gao, Yexin Yang,
 655 Changfeng Gao, Hui Wang, Fan Yu, Huadai Liu, Zhengyan Sheng, Yue Gu, Chong Deng, Wen
 656 Wang, Shiliang Zhang, Zhijie Yan, and Jing-Ru Zhou. CosyVoice 2: Scalable streaming speech
 657 synthesis with large language models. *arXiv preprint arXiv:2412.10117*, 2024b.

658 Zhihao Du, Changfeng Gao, Yuxuan Wang, Fan Yu, Tianyu Zhao, Hao Wang, Xiang Lv, Hui
 659 Wang, Chongjia Ni, Xian Shi, Keyu An, Guanrou Yang, Yabin Li, Yanni Chen, Zhifu Gao,
 660 Qian Chen, Yue Gu, Mengzhe Chen, Yafeng Chen, Shiliang Zhang, Wen Wang, and Jieping
 661 Ye. CosyVoice 3: Towards in-the-wild speech generation via scaling-up and post-training. *arXiv
 662 preprint arXiv:2505.17589*, 2025.

663 Salvador Garca, Julin Luengo, and Francisco Herrera. *Data Preprocessing in Data Mining*. Springer
 664 Publishing Company, Incorporated, 1st edition, 2016. ISBN 3319377310.

665 Hatice Gunes and Björn Schuller. Categorical and dimensional affect analysis in continuous input:
 666 Current trends and future directions. *Image and Vision Computing*, 31(2):120–136, 2013.

667 Hao-Han Guo, Yao Hu, Kun Liu, Fei-Yu Shen, Xu Tang, Yi-Chen Wu, Feng-Long Xie, Kun Xie,
 668 and Kai-Tuo Xu. Fireredtts: A foundation text-to-speech framework for industry-level generative
 669 speech applications. *arXiv preprint arXiv:2409.03283*, 2025.

670 Yiwei Guo, Chenpeng Du, Xie Chen, and Kai Yu. EmoDiff: Intensity controllable emotional text-
 671 to-speech with soft-label guidance. In *ICASSP 2023 - 2023 IEEE International Conference on
 672 Acoustics, Speech and Signal Processing (ICASSP)*, pp. 1–5, 2023.

673 Stephan Hamann. Mapping discrete and dimensional emotions onto the brain: controversies and
 674 consensus. *Trends in Cognitive Sciences*, 16(9):458–466, 2012.

675 Maja J. Hjuler, Harald V. Skat-Rørdam, Line H. Clemmensen, and Sneha Das. Emotale: An enacted
 676 speech-emotion dataset in danish. *arXiv preprint arXiv:2508.14548*, 2025.

677 Xin Hong, Yuan Gong, Vidhyasaharan Sethu, and Ting Dang. AER-LLM: Ambiguity-aware emo-
 678 tion recognition leveraging large language models. In *ICASSP 2025 - 2025 IEEE International
 679 Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 1–5, 2025.

680 Chae-Bin Im, Sang-Hoon Lee, Seung-Bin Kim, and Seong-Whan Lee. EMOQ-TTS: Emotion in-
 681 tensity quantization for fine-grained controllable emotional text-to-speech. In *ICASSP 2022 -
 682 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp.
 683 6317–6321, 2022.

684 Sho Inoue, Kun Zhou, Shuai Wang, and Haizhou Li. Hierarchical emotion prediction and control
 685 in text-to-speech synthesis. *ICASSP 2024 - 2024 IEEE International Conference on Acoustics,
 686 Speech and Signal Processing (ICASSP)*, pp. 10601–10605, 2024.

687 Keith Ito. The LJ speech dataset. <https://keithito.com/LJ-Speech-Dataset/>, 2017.

688 Jiehui Jia, Huan Zhang, and Jinhua Liang. Bridging discrete and continuous: A multimodal strategy
 689 for complex emotion detection. *arXiv preprint arXiv:2409.07901*, 2025.

690 Minki Kang, Wooseok Han, Sung Ju Hwang, and Eunho Yang. ZET-Speech: Zero-shot adaptive
 691 emotion-controllable text-to-speech synthesis with diffusion and style-based models. In *Inter-
 692 speech 2023*, pp. 4339–4343, 2023.

693 Yuma Koizumi, Heiga Zen, Shigeki Karita, Yifan Ding, Kohei Yatabe, Nobuyuki Morioka, Michiel
 694 Bacchiani, Yu Zhang, Wei Han, and Ankur Bapna. LibriTTS-R: A restored multi-speaker text-to-
 695 speech corpus. *arXiv preprint arXiv:2305.18802*, 2023.

702 Jungil Kong, Jaehyeon Kim, and Jaekyoung Bae. HiFi-GAN: Generative adversarial networks for
 703 efficient and high fidelity speech synthesis. In *Proc. NeurIPS*, 2020.

704

705 Ryan Langman, Xuesong Yang, Paarth Neekhara, Shehzeen Hussain, Edresson Casanova, Evelina
 706 Bakhturina, and Jason Li. Hifits-2: A large-scale high bandwidth speech dataset. *arXiv preprint*
 707 *arXiv:2506.04152*, 2025.

708

709 Amandine Lassalle, Delia Pigat, Helen O'Reilly, Steve Berggren, Shimrit Fridenson-Hayo, Sha-
 710 har Tal, Sigrid Elfström, Anna Råde, Ofer Golan, Sven Bölte, Simon Baron-Cohen, and Daniel
 711 Lundqvist. The eu-emotion voice database. *Behavior Research Methods*, 51, 04 2018.

712

713 Juanhui Li, Sreyashi Nag, Hui Liu, Xianfeng Tang, Sheikh Muhammad Sarwar, Limeng Cui, Hansu
 714 Gu, Suhang Wang, Qi He, and Jiliang Tang. Learning with less: Knowledge distillation from large
 715 language models via unlabeled data. In *Findings of the Association for Computational Linguistics: NAACL 2025*, pp. 2627–2641. Association for Computational Linguistics, April 2025a.

716

717 Xiang Li, Zhi-Qi Cheng, Jun-Yan He, Junyao Chen, Xiaomao Fan, Xiaojiang Peng, and Alexander G. Hauptmann. UMETTS: A unified framework for emotional text-to-speech synthesis with
 718 multimodal prompts. In *ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 1–5, 2025b.

719

720 Zheng Lian, Rui Liu, Kele Xu, Bin Liu, Xuefei Liu, Yazhou Zhang, Xin Liu, Yong Li, Zebang
 721 Cheng, Haolin Zuo, Ziyang Ma, Xiaojiang Peng, Xie Chen, Ya Li, Erik Cambria, Guoying Zhao,
 722 Björn W. Schuller, and Jianhua Tao. Mer 2025: When affective computing meets large language
 723 models. *arXiv preprint arXiv:2504.19423*, 2025.

724

725 Xuefeng Liang, Hexin Jiang, Wenxin Xu, and Ying Zhou. Gaussian-smoothed imbalance data im-
 726 proves speech emotion recognition. *CoRR*, abs/2302.08650, 2023.

727

728 Jiaxuan Liu, Zhaoci Liu, Yajun Hu, Yingying Gao, Shilei Zhang, and Zhenhua Ling. DiffStyleTTS:
 729 Diffusion-based hierarchical prosody modeling for text-to-speech with diverse and controllable
 730 styles. In *Proceedings of the 31st International Conference on Computational Linguistics*, pp.
 731 5265–5272. Association for Computational Linguistics, January 2025.

732

733 Rui Liu, Yifan Hu, Yi Ren, Xiang Yin, and Haizhou Li. Emotion rendering for conversational speech
 734 synthesis with heterogeneous graph-based context modeling. In *Proceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence*. AAAI Press, 2024.

735

736 Livingstone, Steven R., and Frank A. Russo. The ryerson audio-visual database of emotional speech
 737 and song (RAVDESS): A dynamic, multimodal set of facial and vocal expressions in north american
 738 english. *PLOS ONE*, 13(5):1–35, 05 2018.

739

740 Reza Lotfian and Carlos Busso. Building naturalistic emotionally balanced speech corpus by retriev-
 741 ing emotional speech from existing podcast recordings. *IEEE Transactions on Affective Comput-
 742 ing*, 10(4):471–483, 2019.

743

744 Marko Lugger and Bin Yang. Cascaded emotion classification via psychological emotion dimen-
 745 sions using a large set of voice quality parameters. In *2008 IEEE International Conference on Acoustics, Speech and Signal Processing*, pp. 4945–4948, 2008.

746

747 Junyu Luo, Xiao Luo, Xiusi Chen, Zhiping Xiao, Wei Ju, and Ming Zhang. Semi-supervised fine-
 748 tuning for large language models. In *Findings of the Association for Computational Linguistics: NAACL 2025*, pp. 2795–2808. Association for Computational Linguistics, April 2025.

749

750 Albert Mehrabian and James A. Russell. *An approach to environmental psychology*. The MIT Press,
 751 1974.

752

753 Fabian Mentzer, David Minnen, Eirikur Agustsson, and Michael Tschannen. Finite scalar quantiza-
 754 tion: VQ-VAE made simple. In *The Twelfth International Conference on Learning Representa-
 755 tions, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024.

756

757 Jon D. Morris. Observations: SAM: The self-assessment manikin an efficient cross-cultural mea-
 758 surement of emotional response. *Journal of Advertising Research*, 35(6):63–65, 1995.

756 Tu Anh Nguyen, Wei-Ning Hsu, Antony D’Avirro, Bowen Shi, Itai Gat, Maryam Fazel-Zarani, Tal
 757 Remez, Jade Copet, Gabriel Synnaeve, Michael Hassid, Felix Kreuk, Yossi Adi, and Emmanuel
 758 Dupoux. Expresso: A benchmark and analysis of discrete expressive speech resynthesis. In
759 Interspeech 2023, pp. 4823–4827, 2023.

760 Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
 761 In *Proc. ICML*, volume 139, pp. 8162–8171. PMLR, 2021.

763 Yoori Oh, Juheon Lee, Yoseob Han, and Kyogu Lee. Semi-supervised learning for continuous emo-
 764 tional intensity controllable speech synthesis with disentangled representations. In *Interspeech*
 765 2023, pp. 4818–4822, 2023.

766 Derek Onken, Samy Wu Fung, Xingjian Li, and Lars Ruthotto. OT-Flow: Fast and accurate contin-
 767 uous normalizing flows via optimal transport. *Proceedings of the AAAI Conference on Artificial*
768 Intelligence, 35(10):9223–9232, May 2021.

769 Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: an asr corpus
 770 based on public domain audio books. In *Acoustics, Speech and Signal Processing (ICASSP), 2015*
771 IEEE International Conference on, pp. 5206–5210. IEEE, 2015.

772 Seo Yeon Park and Cornelia Caragea. VerifyMatch: A semi-supervised learning paradigm for natu-
 773 ral language inference with confidence-aware MixUp. In *Proceedings of the 2024 Conference on*
774 Empirical Methods in Natural Language Processing, pp. 19319–19335. Association for Compu-
 775 tational Linguistics, November 2024.

776 Sungjoon Park, Jiseon Kim, Seonghyeon Ye, Jaeyeol Jeon, Hee Young Park, and Alice Oh. Dimen-
 777 sional emotion detection from categorical emotion. In *Proceedings of the 2021 Conference on*
778 Empirical Methods in Natural Language Processing, pp. 4367–4380. Association for Compu-
 779 tational Linguistics, November 2021.

780 Zhiliang Peng, Jianwei Yu, Wenhui Wang, Yaoyao Chang, Yutao Sun, Li Dong, Yi Zhu, Weijiang
 781 Xu, Hangbo Bao, Zehua Wang, Shaohan Huang, Yan Xia, and Furu Wei. Vibevoice technical
 782 report. *arXiv preprint arXiv:2508.19205*, 2025.

783 R. Plutchik. *Emotion: A Psycho-evolutionary Synthesis*. Harper and Row, 1980.

784 Soujanya Poria, Devamanyu Hazarika, Navonil Majumder, Gautam Naik, Erik Cambria, and Rada
 785 Mihalcea. MELD: A multimodal multi-party dataset for emotion recognition in conversations.
 786 In *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, pp.
 787 527–536. Association for Computational Linguistics, July 2019.

788 Akash Punhani, Neetu Faujdar, Krishna Kumar Mishra, and Manoharan Subramanian. Binning-
 789 based silhouette approach to find the optimal cluster using k-means. *IEEE Access*, 10:115025–
 790 115032, 2022.

791 Lina Qiu, Liangquan Zhong, Jianping Li, Weisen Feng, Chengju Zhou, and Jiahui Pan. SFT-SGAT:
 792 A semi-supervised fine-tuning self-supervised graph attention network for emotion recognition
 793 and consciousness detection. *Neural Networks*, 180:106643, 2024.

794 Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
 795 Robust speech recognition via large-scale weak supervision. In *Proceedings of the 40th Interna-
 796 tional Conference on Machine Learning*, ICML’23. JMLR.org, 2023.

797 James Russell. A circumplex model of affect. *Journal of Personality and Social Psychology*, 39:
 798 1161–1178, 12 1980.

799 Haobin Tang, Xulong Zhang, Jianzong Wang, Ning Cheng, and Jing Xiao. EmoMix:emotion mixing
 800 via diffusion models for emotional speech synthesis. In *Interspeech 2023*, pp. 12–16, 2023.

801 Hrishikesh Viswanath, Aneesh Bhattacharya, Pascal Jutras-Dubé, Prerit Gupta, Mridu Prashanth,
 802 Yashvardhan Khaitan, and Aniket Bera. AffectEcho: Speaker independent and language-agnostic
 803 emotion and affect transfer for speech synthesis. *CoRR*, abs/2308.08577, 2023.

810 Kaisiyuan Wang, Qianyi Wu, Linsen Song, Zhuoqian Yang, Wayne Wu, Chen Qian, Ran He,
 811 Yu Qiao, and Chen Change Loy. Mead: A large-scale audio-visual dataset for emotional talking-
 812 face generation. In *ECCV*, August 2020.

813

814 Shijun Wang, Jon Guonason, and Damian Borth. Learning emotional representations from imbal-
 815 anced speech data for speech emotion recognition and emotional text-to-speech. In *Interspeech*
 816 2023, pp. 351–355, 2023.

817

818 Xinsheng Wang, Mingqi Jiang, Ziyang Ma, Ziyu Zhang, Songxiang Liu, Linqin Li, Zheng Liang,
 819 Qixi Zheng, Rui Wang, Xiaoqin Feng, Weizhen Bian, Zhen Ye, Sitong Cheng, Ruibin Yuan,
 820 Zhixian Zhao, Xinfu Zhu, Jiahao Pan, Liumeng Xue, Pengcheng Zhu, Yunlin Chen, Zhifei Li,
 821 Xie Chen, Lei Xie, Yike Guo, and Wei Xue. Spark-TTS: An efficient LLM-based text-to-speech
 822 model with single-stream decoupled speech tokens. *arXiv preprint arXiv:2503.01710*, 2025.

823

824 Zhiyuan Wen, Jiannong Cao, Ruosong Yang, Shuaiqi Liu, and Jiaxing Shen. Automatically select
 825 emotion for response via personality-affected emotion transition. In *Findings of the Association*
 826 for Computational Linguistics: ACL-IJCNLP 2021, pp. 5010–5020. Association for Computa-
 827 tional Linguistics, August 2021.

828

829 Kun Xie, Feiyu Shen, Junjie Li, Fenglong Xie, Xu Tang, and Yao Hu. Fireredtts-2:towards long con-
 830 versational speech generation for podcast and chatbot. *arXiv preprint arXiv:2509.02020*, 2025.

831

832 Junichi Yamagishi, Christophe Veaux, and Kirsten MacDonald. CSTR VCTK Corpus: English
 833 multi-speaker corpus for cstr voice cloning toolkit (version 0.92). In *University of Edinburgh.*
 834 *The Centre for Speech Technology Research (CSTR)*, 2019.

835

836 Yifan Yang, Zheshu Song, Jianheng Zhuo, Mingyu Cui, Jinpeng Li, Bo Yang, Yexing Du, Ziyang
 837 Ma, Xunying Liu, Ziyuan Wang, Ke Li, Shuai Fan, Kai Yu, Wei-Qiang Zhang, Guoguo Chen,
 838 and Xie Chen. GigaSpeech 2: An evolving, large-scale and multi-domain ASR corpus for low-
 839 resource languages with automated crawling, transcription and refinement. In *Proceedings of the*
 840 *63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*,
 841 pp. 2673–2686. Association for Computational Linguistics, July 2025.

842

843 Kun Zhou, Berrak Sisman, Rui Liu, and Haizhou Li. Emotional voice conversion: Theory, databases
 844 and ESD. *Speech Communication*, 137:1–18, 2022. ISSN 0167-6393.

845

846 Kun Zhou, Berrak Sisman, Rajib Rana, Björn W. Schuller, and Haizhou Li. Speech synthesis with
 847 mixed emotions. *IEEE Transactions on Affective Computing*, 14(4):3120–3134, 2023.

848

849 Siyi Zhou, Yiquan Zhou, Yi He, Xun Zhou, Jinchao Wang, Wei Deng, and Jingchen Shu. Indextts2:
 850 A breakthrough in emotionally expressive and duration-controlled auto-regressive zero-shot text-
 851 to-speech. *arXiv preprint arXiv:2506.21619*, 2025.

852

853 Xiaolian Zhu, Shan Yang, Geng Yang, and Lei Xie. Controlling emotion strength with relative
 854 attribute for end-to-end speech synthesis. In *2019 IEEE Automatic Speech Recognition and Un-
 855 derstanding Workshop (ASRU)*, pp. 192–199, 2019.

856

A THE USE OF LLMs

857 We confirm that large language models (LLMs), are used exclusively as auxiliary tools for
 858 manuscript preparation and refinement. Specifically, LLMs assist in:

- 859 1. **Language editing.** Conducting grammar checking, vocabulary optimization, and sentence
 860 refinement to enhance clarity and readability.
- 861 2. **Visual suggestions.** Providing recommendations for figure preparation, table formatting,
 862 and visual coherence to improve presentation quality.
- 863 3. **Information retrieval and troubleshooting.** Supporting the search for large-scale English
 864 speech datasets, relevant work and literature, and suggesting possible solutions for coding
 865 errors.

864 The design, methodology, original contributions, and code implementation are entirely developed
 865 by the human authors. We affirm that all core ideas, theoretical analyses, experimental frameworks,
 866 and conclusions reflect human intellectual effort and strictly adhere to academic integrity standards.
 867 This statement ensures transparency in AI tool usage while emphasizing the human-led nature of
 868 the scientific inquiry.

870 B DATASETS

872 For single-language English, we collect various open-source speech datasets. For general speech
 873 datasets, we prioritize samples with human-verified transcriptions to ensure high quality, which
 874 helps the model acquire robust TTS capabilities during the first stage training. Due to the high cost
 875 of manual annotation, emotional speech datasets are limited in size. We therefore gather diverse
 876 types of emotional speech datasets and adapt them to our model using semi-supervised training.
 877 Below, we provide a detailed introduction to the datasets used in this paper.

879 **Table 5: Statistics of cleaned speech datasets used in UDDETTs.**

Datasets	#Hours	Type	#Emos	Description
MSP (Lotfian & Busso, 2019)	258.12	$\mathbb{D}_{S,AL}$	8	Large-scale podcast corpus
IEMOCAP (Busso et al., 2008)	12.28	$\mathbb{D}_{S,AL}$	9	Acted dialogues in lab
CMU-MOSEI (Bagher Z et al., 2018)	64.23	$\mathbb{D}_{S,L}$	6	Dialogues from YouTube speakers
Expresso (Nguyen et al., 2023)	1.40	$\mathbb{D}_{S,L}$	13	Readings and improvisations
MELD (Poria et al., 2019)	8.86	$\mathbb{D}_{S,L}$	7	TV show dialogues
EmoTale (Hjuler et al., 2025)	0.58	$\mathbb{D}_{E,AL}$	5	Controlled emotional expressions
EU-Emotion (Lassalle et al., 2018)	11.62	$\mathbb{D}_{E,AL}$	15	Controlled emotional expressions
ESD (Zhou et al., 2022)	29.07	$\mathbb{D}_{E,L}$	5	Emotional voice conversion corpus
CREMA-D (Cao et al., 2014)	5.30	$\mathbb{D}_{E,L}$	6	Controlled emotional expressions
EmoV-DB (Adigwe et al., 2018)	9.48	$\mathbb{D}_{E,L}$	5	Controlled emotional expressions
MEAD (Wang et al., 2020)	30.12	$\mathbb{D}_{E,L}$	8	Controlled emotional expressions
RAVDESS (Livingstone et al., 2018)	1.47	$\mathbb{D}_{E,L}$	8	Controlled emotional expressions
Ours	18.2	$\mathbb{D}_{S,AL}$	6	Movie dialogues
Ours	83.5	$\mathbb{D}_{S,L}$	9	Movie dialogues
Ours	1.6	$\mathbb{D}_{E,AL}$	6	Controlled emotional expressions
Ours	15.3	$\mathbb{D}_{E,L}$	8	Controlled emotional expressions
Total	551.13	-	19	English emotional speech datasets
Datasets	#Hours	Type	#Emos	Description
LibriSpeech (Panayotov et al., 2015)	987.95	-	-	Large-scale audiobooks
LibriTTS-R (Koizumi et al., 2023)	578.52	-	-	Large-scale audiobooks
LJSpeech (Ito, 2017)	23.57	-	-	Non-fiction books
VCTK (Yamagishi et al., 2019)	43.50	-	-	Newspaper article readings
HiFi-TTS (Bakhturina et al., 2021)	289.45	-	-	Large-scale audiobooks
HiFiTTS-2 (Langman et al., 2025)	30000+	-	-	LibriVox audiobooks
Common Voice (Ardila et al., 2020)	7500+	-	-	General English Recordings
GigaSpeech (Yang et al., 2025)	10000	-	-	YouTube, audiobooks, podcasts
Total	49400+	-	-	English general speech datasets

905 C BASELINES

907 Here we introduce the ten baselines employed in our experiments. For hyperparameter settings,
 908 we follow the official implementations released with the respective papers to reproduce the results.
 909 To ensure fairness, all baselines with publicly available pretrained checkpoints and codes are fine-
 910 tuned for 10 epochs until convergence solely on our emotional speech datasets, using label prompts
 911 as training inputs (e.g., “Angry<|endofprompt|>Content Text”). It is worth noting that, since the
 912 training codes for CosyVoice3 and FireRedTTS2 are not publicly available, we do not fine-tune them
 913 on our datasets. Instead, we directly perform inference using CosyVoice3-1.5B-RL (plus version
 914 api) and FireRedTTS2 checkpoint.

916 1. **CosyVoice** (Du et al., 2024a) is a scalable multilingual zero-shot TTS model that introduces
 917 supervised semantic tokens derived from a speech recognition model. CosyVoice generates
 918 semantically aligned speech tokens, enabling improved content consistency and speaker

918 similarity in synthesized speech. It allows for high-quality, zero-shot voice cloning across
 919 multiple languages, while maintaining natural prosody and low-latency synthesis.
 920

921 2. **CosyVoice2** (Du et al., 2024b) is an advanced TTS model that integrates the LLM with a
 922 unified streaming and non-streaming framework. It introduces FSQ for efficient tokens and
 923 a chunk-aware causal flow matching model to support diverse synthesis scenarios. These
 924 enable it to achieve ultra-low latency synthesis with the first packet latency as low as 150ms,
 925 while maintaining high-quality audio output.
 926

927 3. **CosyVoice3** (Du et al., 2025) is designed for real-world applications, surpassing its pre-
 928 decessor in naturalness, content consistency, speaker similarity, and emotional expressiveness.
 929 It introduces a novel speech tokenizer developed by supervised multi-task training,
 930 encompassing automatic speech recognition (ASR), language identification (LID), speech
 931 emotion recognition (SER), audio event detection (AED), and speaker analysis (SA). It
 932 incorporates a differentiable reward model for post-training, enhancing the quality of syn-
 933 thesized speech. It is training data has been expanded from 10,000 hours to 1 million hours.
 934

935 4. **IndexTTS** (Deng et al., 2025) is an industrial-grade, zero-shot TTS model that enables
 936 precise pause control via punctuation marks. while maintaining high-quality audio out-
 937 put. It employs a Conformer-based speech conditional encoder and utilizes BigVGAN2 for
 938 speech decoding, achieving high naturalness and speaker similarity. Compared to XTTS,
 939 CosyVoice2, F5-TTS, etc., it offers a simpler training process and faster inference speed.
 940

941 5. **IndexTTS2** (Zhou et al., 2025) is an autoregressive zero-shot TTS model that introduces
 942 precise duration control and emotional expressiveness. It supports two generation modes:
 943 one that explicitly specifies token counts for accurate duration, and another that gener-
 944 ates speech freely while preserving prosody. The model decouples timbre and emotion,
 945 enabling independent control over both aspects. Additionally, it incorporates GPT latent
 946 representations and a three-stage training paradigm to enhance speech clarity. IndexTTS2
 947 outperforms existing models in word error rate, speaker similarity, and emotional fidelity.
 948

949 6. **FireRedTTS** (Guo et al., 2025) comprises three main components: a data processing
 950 pipeline that transforms massive raw audio into high-quality TTS datasets with rich an-
 951 notations; a LLM-based TTS model that compresses speech signals into discrete semantic
 952 tokens via a semantic-aware speech tokenizer; and a two-stage waveform generator that
 953 decodes the semantic tokens into waveforms. FireRedTTS demonstrates solid in-context
 954 learning capabilities, achieving zero-shot voice cloning and few-shot adaptation.
 955

956 7. **FireRedTTS2** (Xie et al., 2025) is a long-form streaming TTS model developed for multi-
 957 speaker dialogue generation, addressing limitations in existing models regarding stability,
 958 speaker switching, and prosody coherence. It introduces a 12.5Hz streaming speech tok-
 959 enizer that accelerates inference, extends maximum dialogue length.
 960

961 8. **Spark-TTS** (Wang et al., 2025) leverages the LLM for high-quality TTS. It employs Bi-
 962 Codec, a single-stream speech codec that decomposes speech into two complementary to-
 963 ken types: low-bitrate semantic tokens for linguistic content and fixed-length global tokens
 964 for speaker-specific attributes. It allows for controllable speech generation through ad-
 965 justable parameters such as gender, pitch, and speaking rate.
 966

967 9. **F5-TTS** (Chen et al., 2025c) utilizes flow matching with a Diffusion Transformer (DiT)
 968 backbone. It pads the input text with filler tokens to match the length of the target speech.
 969 It integrates ConvNeXt for refining text representations and introduces an inference-time
 970 Sway Sampling strategy, which improves model efficiency and output quality.
 971

972 10. **VALL-E** (Chen et al., 2025b) is the first neural codec language model developed by Mi-
 973 crosoft for zero-shot TTS. It utilizes discrete tokens derived from a neural codec model
 974 and frames TTS as a conditional language modeling task. It can synthesize high-quality
 975 personalized speech from a 3-second acoustic prompt.
 976

977 D LABEL STATISTICS

978 We collect emotion label statistics in all datasets and map them to individual label tokens. Table 6
 979 shows the sample count for each label, and Figure 6 shows the distribution of some emotion samples
 980 in the ADV space.

972

973

Table 6: Emotion labels, corresponding label tokens, and sample counts used in UDDETTS.

974

Token	Emotion(s)	Samples	Token	Emotion(s)	Samples
0	Unknown	42235	5	Fearful	6654
1	Sad, Frustrated, Hurt	27135	6	Sleepiness, Bored	4331
2	Angry	35258	7	Neutral, Narration	68042
3	Confused, Worried	7149	8	Surprise, Excited	10214
4	Disgust, Contempt	14972	9	Happy, Amused, Laughing	57433

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

Figure 6: The distribution of some emotional samples in the ADV space. Each emotion tends to form a distinct cluster.

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

E ADV STATISTICS AND NONLINEAR BINNING ALGORITHM

We perform distribution statistics of the ADV values across all $\mathbb{D}_{S,AL}$ and $\mathbb{D}_{E,AL}$ datasets. The nonlinear binning algorithm is then applied along the three dimensions, and the resulting binning scheme is illustrated in Figure 7. The detailed clustering-based nonlinear binning procedure of the ADV quantizer is provided in Table 7.

1024

1025

Figure 7: The histograms and kernel density estimations of all training samples along the three dimensions of the ADV space are shown, with the x-axis representing the continuous ADV values. Red dashed lines indicate the division of each dimension into 14 bins.

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Table 7: Clustering-based nonlinear binning algorithm for the ADV space.

Step	Description & Formula
Mapping	Merged dataset $\mathbb{D}_{S E, AL} = \{\mathbf{x}_i\}_{i=1}^N$, $\mathbf{x}_i = (a_i, d_i, v_i) \in \mathbb{R}^3$. Linear map $f : [\min_c, \max_c] \rightarrow [1, 7]$: $\mathbf{x}_{c,i} = f(\mathbf{x}_{c,i})$, $c \in \{a, d, v\}$.
#Clusters K	<p>Step 1: $N = \mathbb{D}_{S E, AL}$, the maximum $K_{\max} \leq \lfloor \sqrt[3]{N} \rfloor$ to probe. Initialize hash-map $\mathcal{H} : k \mapsto (k, \bar{s}_k, \hat{\sigma}_k, R_k)$.</p> <p>Step 2: For $k = 2$ to K_{\max} with step s: run k-means R times, compute silhouette score $s_k^{(r)}$, $\bar{s}_k = \frac{1}{R} \sum_{r=1}^R s_k^{(r)}$, and $\hat{\sigma}_k$, store $(k, \bar{s}_k, \hat{\sigma}_k, R)$ in \mathcal{H}.</p> <p>Step 3: Sort \mathcal{H} by decreasing \bar{s}_k. For top $M = \lceil \mathcal{H} /4 \rceil$ candidates $\mathbb{C} = \{k_1, k_2, \dots, k_M\}$. For each $k \in \mathbb{C}$, refine by evaluating neighbors $k-1$ and $k+1$, and insert into \mathcal{H}. Report:</p> $K = \arg \max_{k \in \text{keys}(\mathcal{H})} (\bar{s}_k - \lambda \hat{\sigma}_k).$
Clustering	Run k-means in \mathbb{R}^3 with selected K , obtain clusters $\mathbf{C}_1, \dots, \mathbf{C}_K$ and centroids $\{\boldsymbol{\mu}_j\}_{j=1}^K$, $\boldsymbol{\mu}_j = (\mu_{j,a}, \mu_{j,d}, \mu_{j,v})$. Objective:
	$\min_{C_1, \dots, C_K} J = \sum_{j=1}^K \sum_{x_i \in C_j} \ x_i - \boldsymbol{\mu}_j\ ^2,$
Boundaries	For each axis $c \in \{a, d, v\}$ take the set of center coordinates: $\mathbb{M}_c = \{\mu_{1,c}, \mu_{2,c}, \dots, \mu_{K,c}\}$, sort \mathbb{M}_c : $m_{c,(1)} \leq m_{c,(2)} \leq \dots \leq m_{c,(K)}$. Midpoint Boundaries: $t_{c,i}^{\text{mid}} = \frac{1}{2}(m_{c,(i)} + m_{c,(i+1)})$; weighted Boundaries: $t_{c,i}^w = \frac{ \mathbf{C}_{\pi_c(i)} m_{c,(i)} + \mathbf{C}_{\pi_c(i+1)} m_{c,(i+1)}}{ \mathbf{C}_{\pi_c(i)} + \mathbf{C}_{\pi_c(i+1)} }, i = 1, \dots, K-1.$ $n_i = \mathbf{C}_i $, $\sigma_i^2 = \text{Var}(x_c; x \in \mathbf{C}_i)$, $r_i = \max(\sigma_i^2, \sigma_{i+1}^2) / \min(\sigma_i^2, \sigma_{i+1}^2)$, $t_{c,i} = t_{c,i}^{\text{mid}} + 1_{\{r_i > 2\}} (t_{c,i}^w - t_{c,i}^{\text{mid}})$.
Tokens	Given bins $\{t_{c,i}\}$, map x_c to tokens by: $\tau_c = 1 + \sum_{i=1}^{K-1} 1_{\{x_c > t_{c,i}\}}, c \in \{a, d, v\}.$

F THE TEST SET

Table 8: Some examples of test text corpus with emotional content.

Emotion	Text
Neutral	For the twentieth time that evening the two men shook hands.
Neutral	She open the door and walk into the room.
Neutral	The meeting start promptly at nine in the morning.
Happy	I'm so happy to be friends with you.
Angry	I'm very angry now because you did not arrive on time!
Sad	Lost wallet, missed last bus, tears drown my voiceless night.
Sleepiness	I'm tired because I had to work overtime until evening.
Mixed	I love you so much, I can't live without you!

We construct a test text corpus comprising two standard test sets, LibriSpeech-test-clean⁴ and SeedTTS-test-en⁵, which are used for evaluating objective metrics such as WER, SS, and ES, STOI

⁴<https://www.openslr.org/12/>⁵<https://github.com/BytedanceSpeech/seed-tts-eval>

Figure 8: Text-derived (blue) and speech-derived (red) ADV values within their control units for ten emotionally-biased sentences.

and PESQ-WB. For subjective evaluation, we design a separate corpus comprising 20 neutral sentences for controllable synthesis and 10 emotionally-biased sentences for end-to-end emotional TTS. The neutral texts are randomly sampled and filtered using the Senta model⁶, retaining only those with over 90% confidence as neutral. The emotionally-biased sentences are generated by GPT-5 and manually selected by three evaluators from 50 candidates. These texts are semantically unambiguous and contain inherent emotional cues, avoiding interpretive ambiguity. All texts are unseen during training, eliminating overfitting concerns. Examples from the corpus are shown in Table 8.

G SAM SYSTEM

Figure 9: Visualization of the three ADV dimensions using the SAM system.

⁶<https://github.com/baidu/Senta>

1134 Inspired by Morris (1995), we use the Self-Assessment Manikin (SAM) system to visually and intuitively manipulate x_{adv} , enabling fine-grained control and helping evaluators intuitively understand 1135 the decoupled emotional dimensions for accurate ranking. Each ADV dimension is represented by 1136 a graphic character arrayed along a continuous scale, as shown in Figure 9.
 1137

1139 H ROBUSTNESS ANALYSIS

1141 To further validate the robustness of UDDETTs under control, we conduct evaluations from the
 1142 following perspectives:
 1143

- 1144 **1. Label robustness under varying data resources.** We examine whether labels with sparse
 1145 training samples can still be controlled effectively. In the first experiment, we select five
 1146 emotions with stepwise decreasing sample sizes to test the model’s performance under both
 1147 high-resource and low-resource conditions. As shown in Table 1, UDDETTs achieves
 1148 more accurate overall emotional expression compared with baselines. Table 9 further
 1149 details the results across the five emotions, demonstrating that UDDETTs performs particu-
 1150 larly well on low-resource categories.
- 1151 **2. Robustness to unseen emotion labels.** For emotions absent in the training set, we assess
 1152 whether the synthesized speech aligns with the label using an emotion confusion matrix.
 1153 Table 9 reports results for two such labels.
- 1154 **3. Robustness to unseen ADV regions.** Although the nonlinear binning algorithm and semi-
 1155 supervised training expand the soft coverage of the ADV space (regions close to training
 1156 samples), certain hard unseen regions (far from all training distributions) remain challeng-
 1157 ing for high-quality synthesis. Table 10 presents MOS and UTMOS results in some of
 1158 these unseen ADV regions.
- 1159 **4. ADV-label conflict robustness test.** For mixed emotions in overlapping cluster regions,
 1160 a single ADV value may correspond to multiple potential emotion labels. We test this by
 1161 controlling label tokens (angry, sad, happy, neutral) while fixing the ADV value in angry-
 1162 sad overlapping regions. Results show minimal perceptual differences between angry, sad,
 1163 and neutral labels. With the happy token, speech retains the angry-sad style but exhibits
 1164 higher pitch and sporadic laughter, revealing inherent conflict between this ADV value and
 1165 the happy label. It is noteworthy that the autoregressively predicted labels from ADV inputs
 1166 remain within emotionally consistent categories, confirming the dominant role of ADV in
 1167 emotion control.

1168 Table 9: Robustness test results of five labels and some unseen labels.

1169 Acc.	1170 Emotions	1171 Neutral	1172 Happy	1173 Angry	1174 Disgust	1175 Sleepiness	1176 loving	1177 anxious
1178 Models								
1179 UDDETTs	1180	1.000	1.000	0.975	0.840	0.890	0.775	0.605
1181 CosyVoice	1182	1.000	0.975	0.900	0.635	0.695	0.375	0.310
1183 CosyVoice2	1184	1.000	1.000	0.975	0.650	0.700	0.405	0.330
1185 CosyVoice3	1186	1.000	1.000	1.000	0.795	0.790	0.620	0.550
1187 IndexTTS	1188	1.000	1.000	0.910	0.675	0.705	0.320	0.545
1189 IndexTTS2	1190	1.000	1.000	0.945	0.770	0.795	0.410	0.580
1191 FireRedTTS	1192	1.000	0.985	0.875	0.665	0.720	0.375	0.315
1193 FireRedTTS2	1194	1.000	0.780	0.880	0.670	0.725	0.560	0.565
1195 Spark-TTS	1196	1.000	1.000	0.950	0.805	0.855	0.600	0.520
1197 F5-TTS	1198	1.000	1.000	1.000	0.785	0.875	0.575	0.495
1199 VALL-E	1200	1.000	0.975	0.810	0.450	0.570	0.250	0.300

1201 Table 10: Evaluation on unseen soft and hard ADV values

1202 UDDETTs	1203 Soft			1204 Hard		
	1205 [14,1,1]	1206 [6,1,1]	1207 [3,4,10]	1208 [1,7,14]	1209 [1,14,14]	1210 [1,14,7]
1211 MOS	1212 4.30	1213 4.10	1214 4.08	1215 3.65	1216 3.56	1217 3.60
1218 UTMOS	1219 4.20	1220 3.98	1221 4.15	1222 3.85	1223 3.20	1224 3.43

1188 I IMPACT OF ADV CONTROL ON PROSODIC FEATURES
1189
11901204 Figure 10: The Pearson correlation coefficient matrix showing the relationship between each ADV
1205 dimensions and prosodic statistics.

1206
1207 To study the impact of ADV control on emotional representations, we vary all values of $x_{\text{adv}} \in \mathbb{Z}_{[1,14]}^3$ to synthesize emotional speech and extract their prosodic features, including the mean and
1208 variance of *log F0* and energy, as well as duration and harmonic-to-noise ratio (HNR). We compute
1209 the Pearson correlation between each ADV dimension and these prosodic statistics. The results in
1210 Figure 10 show that Arousal and Dominance are significantly correlated with *log F0* and energy, in-
1211 dicating their role in controlling the excitement and intensity of emotion. Valence is correlated with
1212 HNR, which reflects voice quality variations linked to emotional changes (Borchert & Dusterhoft,
1213 2005), and it also affects the shape of the mel-spectrogram in Figure 11, indicating its influence on
1214 emotional polarity. Its correlation with duration is likely due to laughter in high-valence speech. To
1215 further analyze the variation of emotional speech along the ADV axes, Table 11 reports the changes
1216 in prosodic features when slightly perturbing the ADV values around eight emotion cluster centers.
1217 Specifically, we adjust each dimension of ADV by ± 4 (denoted as "+" for upward shift and "-"
1218 for downward shift), and measure the corresponding changes in average *log F0*, energy, duration,
1219 and HNR. We observe that positive arousal is associated with higher pitch and energy. Similarly,
1220 positive dominance not only increases pitch and energy but also narrows their variation ranges, and
1221 it is further associated with longer durations. In contrast, valence has little effect on pitch and energy
1222 but tends to reduce HNR variations, influencing emotional polarity. Overall, the results align with
1223 the intrinsic characteristics of each ADV dimension, supporting the effectiveness of our approach in
1224 capturing and interpreting emotional variations in speech.

1233 Figure 11: The patterns of F0 contours observed in the mel-spectrogram vary as a function of va-
1234 lence.1235
1236
1237
1238
1239
1240
1241

1242
1243
1244
1245
1246
1247
1248
1249

Table 11: Comparisons of F0, energy, duration, and HNR for eight emotions across different ADV patterns.

Emotions	Patterns	F0 (mean)	Energy (mean)	Duration (mean)	HNR
Happy	+A +D +V	+8.0	+0.038	+1.2	-2.4
	-A +D +V	-2.6	+0.028	+0.4	-2.3
	+A -D +V	+6.7	+0.003	+0.6	-2.3
	+A +D -V	+7.9	+0.031	-1.2	+1.7
	-A -D +V	-7.6	-0.032	+0.3	-2.0
	-A -D -V	-7.8	-0.040	-2.0	+1.9
Angry	+A +D +V	+6.5	+0.040	-0.1	-2.0
	-A +D +V	-2.4	+0.032	+0.4	-1.8
	+A -D +V	+5.2	-0.015	-0.3	-1.7
	+A +D -V	+6.0	+0.045	-0.5	+1.5
	-A -D +V	-6.4	-0.033	+0.6	-1.7
	-A -D -V	-6.7	-0.036	-0.1	+1.6
Sad	+A +D +V	+5.8	+0.033	+0.2	-2.3
	-A +D +V	+1.8	-0.012	+0.3	-1.4
	+A -D +V	+3.4	+0.028	-0.2	-1.5
	+A +D -V	+5.1	+0.043	-0.4	+1.5
	-A -D +V	-4.9	-0.028	+0.3	-0.9
	-A -D -V	-5.2	-0.024	-0.3	+2.2
Disgust	+A +D +V	+4.8	+0.023	+0.2	-1.7
	-A +D +V	-0.9	-0.012	+0.1	-0.9
	+A -D +V	+3.4	-0.005	-0.0	-0.4
	+A +D -V	+4.6	+0.026	-0.4	+0.4
	-A -D +V	-5.0	-0.026	-0.2	-0.1
	-A -D -V	-5.1	-0.023	-0.3	+1.2
Surprise	+A +D +V	+5.2	+0.045	+0.8	-2.1
	-A +D +V	-3.4	+0.010	+0.5	-1.8
	+A -D +V	+4.7	+0.007	+0.2	-1.7
	+A +D -V	+5.0	+0.040	-0.1	+1.5
	-A -D +V	-5.3	-0.039	-0.3	-1.0
	-A -D -V	-5.6	-0.042	-0.3	+2.3
Fearful	+A +D +V	+3.5	+0.031	+0.3	-1.0
	-A +D +V	-1.8	-0.025	+0.1	-0.3
	+A -D +V	-0.6	-0.005	-0.1	-0.1
	+A +D -V	+2.5	+0.034	-0.3	+0.2
	-A -D +V	-3.4	-0.034	+0.1	+0.2
	-A -D -V	-3.8	-0.032	-0.2	+0.5
Confused	+A +D +V	+5.2	+0.040	-0.1	-1.8
	-A +D +V	-3.8	-0.020	+0.3	-1.2
	+A -D +V	+4.2	+0.003	-0.2	-1.3
	+A +D -V	+4.9	+0.005	-0.4	+1.2
	-A -D +V	-5.7	-0.029	+0.1	-0.9
	-A -D -V	-5.4	-0.030	-0.3	+1.5
Sleepiness	+A +D +V	+2.1	+0.010	+0.0	-2.9
	-A +D +V	-0.9	-0.007	+0.2	-2.2
	+A -D +V	+1.1	+0.002	-0.1	-2.0
	+A +D -V	+2.2	+0.010	+0.1	+0.4
	-A -D +V	-2.4	-0.013	-0.1	-1.5
	-A -D -V	-2.6	-0.012	-0.2	+1.8

1291
1292
1293
1294
1295