
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

CARTRIDGES: Lightweight and general-purpose long context representations via
self-study

Anonymous Authors1

Abstract
Large language models are often used to answer
queries grounded in large text corpora (e.g. code-
bases, legal documents, or chat histories) by plac-
ing the entire corpus in the context window and
leveraging in-context learning (ICL). Although
current models support contexts of 100K–1M to-
kens, this setup is costly to serve because the
memory consumption of the KV cache scales
with input length. We explore an alternative:
training a compressed KV cache offline on each
corpus. At inference time, we load this trained
KV-cache, which we call a CARTRIDGE, and de-
code a response. Critically, the cost of training
a CARTRIDGE can be amortized across all the
queries referencing the same corpus. However,
we find that the naive approach of training the
CARTRIDGE with next-token prediction on the
corpus is not competitive with ICL. Instead, we
propose SELF-STUDY, a training recipe in which
we generate synthetic conversations about the cor-
pus and train the CARTRIDGE with a context-
distillation objective. We find that CARTRIDGES
trained with SELF-STUDY replicate the function-
ality of ICL, while being significantly cheaper to
serve. On challenging long-context benchmarks,
CARTRIDGES trained with SELF-STUDY match
ICL performance while using 38.6× less memory
and enabling 26.4× higher throughput. SELF-
STUDY also extends the model’s effective context
length (e.g. from 128k to 484k tokens on MTOB)
and surprisingly, leads to CARTRIDGES that can
be composed at inference time without retraining.

1. Introduction
A common large language model (LLM) usage pattern in-
volves placing a large corpus into the context window and
querying the model about it. For instance, a user or or-
ganization may use LLMs to understand codebases (Nam
et al., 2024), financial documents (Islam et al., 2023), legal
texts (Guha et al., 2023; Zheng et al., 2025), textbooks (Ouel-
lette et al., 2025), or personal files (Arora & Ré, 2022).

LLMs excel here due to in-context learning (ICL), enabling
accurate responses to diverse queries (e.g., factual Q&A,
summarization, code generation) (Dong et al., 2022).

Despite its flexibility, this usage paradigm is memory-
intensive. ICL requires maintaining a KV cache that grows
linearly with the input length. For example, LLaMA 70B
needs 84 GB of memory (at 16-bit precision) to answer a
single question over a 128k-token context (Dubey et al.,
2024). This severely limits user throughput: on a single
H100 GPU, LLaMA 8B’s peak thoughput (tokens/s) drops
by 77× when increasing the context from 1k to 120k tokens
(Figure 2).

Prior work has thus explored reducing KV cache memory
usage. For instance, prompt compression methods reduce
the number of tokens stored in the cache using summariza-
tion, retrieval, or self-information filtering (Lewis et al.,
2020; Jiang et al., 2023b; Li, 2023; Chuang et al., 2024),
while KV cache compression techniques directly compress
the stored key-value pairs (Ge et al., 2023a; Zhang et al.,
2023; Tang et al., 2024; Oren et al., 2024). Unfortunately,
these methods raise sharp memory-quality tradeoffs: in ex-
periments on challenging long-context tasks, we find that
performance rapidly degrades when applying these methods
with compression ratios greater than 2× (see Figure 3).

Motivated by the observation that the cost of preparing a
corpus-specific representation can be amortized across many
queries, we explore a complementary approach based on
offline training. Given a specific corpus (e.g., a financial
filing) we freeze the LLM and train a compressed KV cache
by backpropagating loss into the key and value vectors,
resembling prefix tuning (Li & Liang, 2021; Lester et al.,
2021). We call the trained representation for the corpus
a “CARTRIDGE.” At inference time, we load the trained
CARTRIDGE for the corpus, append the user’s question,
and decode. As users often ask multiple questions about
the same corpus, each CARTRIDGE can be trained once
and reused. And since practitioners are often interested
in common corpora (e.g., SEC filings, or Wikipedia), a
CARTRIDGE can be distributed online akin to traditional
models. This approach also integrates cleanly with existing
inference servers, which are already designed to manage
per-user KV caches (Kwon et al., 2023; Zheng et al., 2024).

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Problem Setting

😄

In-context learning Cartridges
Document Corpus

Prefill
Cartridge

Self-studyQueries

LLM + KV Cache
Users send many messages grounded

in a single large corpus of text. 💻🤔
LLM + Cartridge

Please, summarize
the documents...

KV Cache

k2
v2

k4
v4

k3
v3

k1
v1

z2z1

🤔

Write a rock song
about the docs...

What is the D&A
margin for FY15...

What is the D&A
margin for FY15...

In FY15, the D&A
margin for... 🤔

What is the D&A
margin for FY15... 💻

In FY15, the D&A
margin for...

💻

💻 ...

...

💻...

Figure 1. Producing CARTRIDGES via self-study. For a given document corpus, we train a CARTRIDGE by distilling the corpus into a
parameterized KV cache representation through a process we call SELF-STUDY. At inference time, this CARTRIDGE may be loaded into
an LLM, which can then be used to answer diverse queries about the corpus, simulating in-context analysis of the corpus while requiring
substantially less memory.

Compressed KV caches reduce memory usage, but achiev-
ing ICL-equivalent functionality requires CARTRIDGES to
satisfy three non-trivial conditions. First, CARTRIDGES
should replicate the generality of ICL, and provide accurate
answers across diverse questions (Dong et al., 2022). The
training procedure to enable this functionality is unclear;
we experimentally find that naive training on corpora allow
for model memorization but do not support ICL-equivalent
general reasoning. Second, a CARTRIDGE should repli-
cate ICL’s structural awareness—its ability to reason over
document structure, and understand how distant parts of a
corpus relate or depend on each other. This is critical for
corpora like codebases or legal agreements, where infor-
mation in one section often affects another (Hron, 2025).
Naïve compression methods may overlook or discard such
long-range and hierarchical dependencies, thus reducing
performance. Third, CARTRIDGES should be composable.
Just as users may flexibly combine different documents in a
LLM context window (via concatenation), they should also
be capable of combining different CARTRIDGES, depending
on which documents are of interest. This kind of knowl-
edge composition in LLMs is recognized as a challenging
problem (Huang et al., 2023).

To address these challenges, we propose SELF-STUDY: a
simple, automated recipe for training general, information-
preserving, and composable CARTRIDGES for any text cor-
pus. SELF-STUDY consists of two steps: (1) generating
synthetic training data by prompting the model to quiz itself
in diverse formats—e.g., Q&A, summarization, hierarchi-
cal structuring—encouraging broad coverage, generality,
and structural understanding; and (2) distilling the corpus
into a compressed cache using a context-distillation objec-
tive (Bhargava et al., 2024; Snell et al., 2022) that aligns
the model’s next-token predictions with and without ac-
cess to the original text. To preserve global dependencies,
SELF-STUDY augments synthetic examples with model-
generated table-of-contents, positional context, and retrieval-
augmented views over distant corpus chunks. This enables
the model to learn long-range relationships during train-
ing. Remarkably, SELF-STUDY also yields CARTRIDGES

that are composable without joint optimization: multiple
CARTRIDGE can be concatenated and queried together, em-
ulating ICL’s ability to flexibly answer queries over multiple
documents concatenated in context.

We evaluate SELF-STUDY on a broad suite of challeng-
ing and popular benchmarks that pair a single long context
(100k-484k tokens) with a diverse set of queries (Islam et al.,
2023; Adams et al., 2024; Tanzer et al., 2023). We make
three findings. First, CARTRIDGES extends the quality-
memory frontier—averaged across the benchmarks, CAR-
TRIDGES produced with SELF-STUDY match ICL quality
while consuming 38.6× less memory, enabling a 26.4×
increase in peak throughput (tokens per second). These
memory reductions and speedups represent an order of mag-
nitude improvement over state-of-the-art cache compression
baselines (e.g. DuoAttention (Xiao et al., 2024b)). Second,
CARTRIDGES enables context length extrapolation. On the
MTOB benchmark (Tanzer et al., 2023), where models must
translate from Kalamang, a low-resource language, into En-
glish, we use SELF-STUDY with LLAMA-8B to construct a
small CARTRIDGE from a 484k token textbook. This CAR-
TRIDGE outperforms ICL over the first 130, 000 tokens of
the textbook by 11.0 chrF points and matches the perfor-
mance ICL over a curated and subset of the textbook in
context. Third, we show that CARTRIDGES can be concate-
nated and used in a single decoding pass, similar to ICL,
and can be used to extrapolate beyond the context length of
ICL in Figure 5.

2. Related work
See Appendix B for a more detailed discussion of prior work.

Parameter Efficient Fine-Tuning Prior work has ex-
plored a range of strategies, prompt distillation (Kujanpää
et al., 2024; Snell et al., 2024), self-instruction (Nayak et al.,
2024), and domain-specific training (Colombo et al., 2024)
for adapting langague models. Variants of this approach
train C into smaller modules (“adapters”) which can be
added to the model, which have parameter efficiency ben-
efits (Su et al., 2025; Hu et al., 2022; Li & Liang, 2021;

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

*Memorization
e.g. “Please complete the rest of the passage...”

Data structuring tasks
e.g. “Please list AMD’s customers in JSON format”

Creative tasks
e.g. “Write a poem about AMD’s Q3 performance.”

Mathematical reasoning
e.g. “Compute AMD FY20 days payable outstanding.”

Disjoint reasoning
e.g. “List all the tables in AMD’s FY20 10K document.”

Factual questions
e.g. “Who is on AMD’s board as of FY20?”

Synthesis tasks
e.g. “Please summarize the AMD’s FY20 10K.”

Self-Study
Full ICLNext-token predict.

Cartridges Prompting
Truncated ICL

Generalization to diverse queries Quality-memory tradeoff Peak throughput vs. cache size

Query types
*Memorization is closely related to the

next-token prediction objective.

0.01

Llama 3.2 3B

Llama 3.1 8B

121×

44×
11× 3× 1×

113×

45×
12× 4× 1×

20k

10k

10k

5k

Pe
ak

 t
hr

ou
gh

pu
t

(t
ok

en
s/

s)

Figure 2. CARTRIDGES trained with SELF-STUDY balance the generality and memory consumption tradeoff. We compare four
methods on the GENCONVO dataset: CARTRIDGES trained with next-token prediction over C, CARTRIDGES trained with SELF-STUDY,
full ICL, and truncated ICL, a prompt compression method in which we truncate the C to the first k tokens. (Left) We evaluate on different
slices from the GENCONVO dataset. CARTRIDGES trained with next-token prediction performs well on memorization queries, which
resemble it’s training distribution, but cannot generalize to other queries like the other methods. (Center) The x-axis measures the size of
the KV cache in GB for the different methods. The y-axis shows log-perplexity on the GENCONVO dataset averaged over the query types.
(Right) Peak throughput (tokens/s) measured for different cache sizes for LLAMA-3B and LLAMA-8B with SGLang (Zheng et al., 2024)
on an 1xH100 (See Appendix A).

Lester et al., 2021; Meng et al., 2024). A number of works
have explored the idea of composing multiple different
parameter-efficient adapters through various aggregation
operations (Zhao et al., 2024b; Huang et al., 2023; Xiao
et al., 2024a; Zhao et al., 2024a; Yadav et al., 2024; Wu
et al., 2024; Gou et al., 2023; Li et al., 2024a).

Most similar to our work are recent knowledge injection
methods, which aim to internalize the corpus C into model
weights, allowing models to answer queries from parameter
knowledge as opposed to ICL (Kujanpää et al., 2024) (Mao
et al., 2025) (Su et al., 2025). Recent work like LIFT (Mao
et al., 2025) uses synthetic data to train a per-document
adapter for long-context documents, but does not study the
throughput improvements stemming from the lack of a large
KV cache. Our approach improves quality-memory (and
thus quality-throughput) tradeoff frontier, matching ICL
performance and supporting composability while keeping
the memory footprint small.

Architectures Research has also examined more memory
efficient alternatives to traditional attention (Vaswani et al.,
2017), which leverage sparsity (Beltagy et al., 2020; Child
et al., 2019; Zaheer et al., 2020; Team et al., 2024) or al-
ter the structure of attention (Shazeer, 2019; Ainslie et al.,
2023), among other strategies (Liu et al., 2024a; Zhang et al.,
2025; Arora et al., 2024). Certain variants (i.e., grouped-
query attention) appear in popular models like Llama-3,
which we study in our experiments.

Prompt and KV-cache compression As the size of the
KV cache drives the model memory footprint, research has

examined different strategies for reducing the cache size.
One set of approaches focus on making the prompt smaller—
explicit methods alter the prompt text through summariza-
tion and filtering (Jiang et al., 2023b; Li, 2023; Chuang
et al., 2024; Zhang et al., 2024a; Pan et al., 2024), while
implicit methods compress prompt representations into a
set of “soft” tokens (Chevalier et al., 2023; Yen, 2024; Ge
et al., 2023b; Mu et al., 2023; Qin et al., 2023; Lester et al.,
2021). Another set of approaches exploits observations
about the mathematical structure of the KV cache (Yu et al.,
2024; Chang et al., 2024), often finding that because a small
number of keys dominate the attention scores of subsequent
queries, non-impactful key-value pairs (or tokens) can be
dropped (Ge et al., 2023a; Zhang et al., 2023; Tang et al.,
2024; Oren et al., 2024; Li et al., 2024b) or merged (Wang
et al., 2024; Zhang et al., 2024c; Wan et al., 2024).

3. The CARTRIDGE paradigm
We first formalize our problem and establish preliminaries
(Section 3.1). We then describe the CARTRIDGE paradigm
(Section 3.3). Finally, we describe the training procedure
and provide motivation for SELF-STUDY, our method for
training CARTRIDGES, which we introduce in Section 4.

3.1. Problem setup

We assume a setting in which users issue a stream of diverse
queries about a common corpus of text. We denote the
corpus as C and the query set as Q = {q1, q2, . . . , qm}.
Illustrative examples of C include legal filings, financial
documents, code repositories, chat histories, and medical

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

records.

Example: Financial Analysis

C may correspond to the 2025 Form 10-K filing (U.S.
Securities and Exchange Commission, 2011) for AMD,
which is almost 100k tokens. The queries an analyst
might ask an LLM to answer with respect to this form
are diverse, including: (1) recalling factual information,
(2) performing mathematical reasoning over values, or
(3) even generating creative responses (e.g., a poem)
grounded in the 10-K’s information.

Let R = {r1, r2, . . . , rm} denote the responses the LLM
produces for the queries. Users have two objectives. First,
they wish to maximize the quality of responses R under
some utility function (or alternatively, minimize the loss
under some cost function). Second, they wish to minimize
the LLM’s memory footprint while it is answering questions
with respect to the document. This is because larger mem-
ory footprints decrease throughput and necessitate more
expensive hardware (Figure 2, Right).

3.2. Preliminaries: Language models and KV caches

Let F denote some language model and F(·|x) correspond
to distribution of the language model conditioned on some
text x ∈ Vn.

Recall an LLM F accepts as input a sequence of N tokens
x ∈ VN drawn from a discrete vocabulary V ⊂ Z of tokens,
each represented by a unique integer. F outputs a proba-
bility distribution over V for each token xi ∈ V given the
preceding tokens F(x[i]|x[: i − 1]). Each token xi in x
is embedded into a d-dimensional space, yielding a matrix
u ∈ RN×d. The matrix u is passed through a stack of L
model layers, which each mix the matrix along the N and d
dimensions, with layer ℓ outputting yl ∈ RN×d. The final
yL is mapped to the logits over V .

Most modern language models use the Transformer archi-
tecture based on self-attention (Vaswani et al., 2017). Given
an input u ∈ RN×d for sequence length N and embedding
dimension d, it computes the output yl ∈ RN×d via the
softmax over projections q,k,v = uWq,uWk,uWv:

yi =

i∑
j=1

exp(q⊤
i kj/

√
d)vj∑i

m=1 exp(q
⊤
i km/

√
d)

(1)

where weight matrices Wq , Wk and Wv for each layer are
learned during training. Every new output yn is conditioned
on prior {ki,vi}n−1

i=1 , which grows in n. This is why a long
corpus C produces large memory footprints, as the size of
the KV cache scales linearly in the length of C.

3.3. Formalizing CARTRIDGES

Our goal is to learn a CARTRIDGE for a given corpus C. A
CARTRIDGE is a small set of parameters Z ∈ R∗ (i.e. an
adapter (Li & Liang, 2021; Hu et al., 2022)) that augments
an LLM F and cause it to behave as if it had C in its context
window. Formally, let FZ(·|q) denote the distribution of F
augmented with Z given a query q. For all q ∈ Q, we want
to ensure that samples rZ ∼ FZ(·|q) are as good or better
than the ICL sample rq ∼ F(·|C ⊕ q), according to some
query-specific scoring function. In order for FZ(·|q) to
match or exceed the behavior of F(·|C ⊕ q), three important
criteria should be met.

• Displays generality: Because Q might span a diverse
range of question types (e.g., mathematical reasoning,
factual recall comprehension, summarization, and more),
it is essential that FZ can generalize across different q ∈
Q. This is non-trivial because Q is unknown when
Z is being learned. If FZ does not generalize, then
practitioners may need to learn different Z for different
distributions of queries, which increases the cost of the
CARTRIDGE. Ideally, Z should only need to be learned
once, yet work for multiple types of queries.

• Captures long range dependencies: Z should also cap-
ture long range dependencies contained within C. In many
settings, correctly answering different q ∈ Q requires rea-
soning about the order of information presented in C. It is
not clear how to capture these dependencies in Z.

• Capable of composition: Ideally, the representation of
Z and mechanism by which F utilizes it could allow
for composition, without any particular joint training of
CARTRIDGES. Given Z1 and Z2 corresponding to C1 and
C2, ideally F[Z1,Z2](q) is similar to F(·|C1 ⊕ C2 ⊕ q])

3.4. Parameterizing CARTRIDGES

We parameterize Z using a simplified version of prefix-
tuning (Li & Liang, 2021). Specifically, we allocate a KV
cache composed of trainable key and value vectors zk

i , z
v
i ∈

Rd. The size of the full Z ∈ RL×p×d×2, is controlled by the
hyperparameter p. The memory footprint of Z is equivalent
to a KV cache for a prompt with p tokens.

In ICL, the KV cache for FC(q) (where C is of length nC
and Q is of length nQ) would contain nC + nQ key-value
pairs, with the first nC corresponding to C and the last nQ

corresponding to Q:

ICL KV Cache

(k1,v1), . . . , (knC ,vnC)︸ ︷︷ ︸
KV pairs for C

, (knC+1,vnC+1) . . .︸ ︷︷ ︸
KV pairs for q

CARTRIDGE KV Cache

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

(zk
1, z

v
1), . . . , (z

k
p, z

v
p)︸ ︷︷ ︸

Trainable KV pairs in Z

, (knC+1,vnC+1) . . .︸ ︷︷ ︸
KV pairs for q

To train a CARTRIDGE, we substitute the key-value pairs
corresponding to C with Z, and directly optimize them by
back-propagating the loss into the key and value vectors.
Critically, we freeze all parameters of the model, only
training the key and value vectors in Z. We discuss the
choice of loss in Section 4.2.

Initialization Prior work finds that optimizing a randomly
initialized cache ZKV is unstable and leads to degraded per-
formance (Li & Liang, 2021). Instead, these works initialize
the trainable cache with a smaller dimensionality d and then
re-project it to the original dimension with an MLP. In con-
trast, we find that proper initialization of Z allows us to
directly optimize the full cache without reparametrization.
Specifically, we initialize Z to the KV cache corresponding
to the first p tokens of the corpus C. Alternatively, we could
use a summary of the corpus or filter tokens using off-the-
shelf prompt compression strategies (Xiao et al., 2024b). In
Appendix A, we show that our initializations lead to stable
training and faster convergence than the random initializa-
tion used in prior work.

Why this parameterization? We note that the parameter-
efficient fine-tuning literature provides numerous other ways
to augment an LLM with a set of additional parameters (Li
& Liang, 2021; Hu et al., 2022; Lester et al., 2021). In
Appendix A.1, we perform a preliminary comparison of
CARTRIDGES with each parameterization.

3.5. Serving CARTRIDGES

A CARTRIDGE can be served efficiently with minimal
changes to existing LLM inference servers (Zheng et al.,
2024; Kwon et al., 2023). Because a CARTRIDGE is a KV
cache, it can be loaded directly into the KV cache slots using
existing mechanisms for handling cached prefixes. LLM in-
ference servers are heavily optimized for managing distinct
KV-caches for multiple users (Ye et al., 2025), meaning
cartrdiges can be served at high throughputs using existing
inference servers. Decoding tokens with a CARTRIDGE
is identical to serving a request with a prefix of length p.
See Figure 2 for the relationship between prefix length and
throughput. This contrasts with other methods like LoRA,
which require custom infrastructure to serve efficiently to
multiple users (Chen et al., 2024).

4. SELF-STUDY: A self-supervised method for
compressing long contexts

In this section, we describe SELF-STUDY, a simple ap-
proach for training a CARTRIDGE Z on any corpus of text.

The design of SELF-STUDY is motivated by experiments
showing how CARTRIDGES trained with a simpler recipe
fail to generalize to diverse user queries.

Motivating observations The naive method for construct-
ing a CARTRIDGE would be to fine-tune the parameters of
Z with the next token prediction objective on the corpus
text directly. We show results experimenting with this ap-
proach in Figure 2, where we evaluate on a dataset derived
from FinanceBench (Islam et al., 2023), which we refer to
as GENCONVO (see appendix D for details). GENCONVO
contains multiple types of questions (e.g. synthesis, reason-
ing). We find that the naïve next-token prediction approach
can memorize with near perfect perplexity (Figure 2 left),
while consuming 107× less memory than ICL (Figure 2
center). However, generalization to other slices is poor, as
shown in Figure 2. We seek a training objective that allows
the responses from a model that uses the CARTRIDGE to
generalize to a diverse set of user queries, resembling ICL.

Motivated by these observations, we describe our synthetic
data generation in Section 4.1. As we show in Figure 2, fine-
tuning a CARTRIDGE on this synthetic data allows models
to use the CARTRIDGE generate responses to many types
of queries that match the quality of queries generated with
ICL. See Figure 1 for a visualization of the CARTRIDGE
approach.

4.1. Self-supervised synthetic data to avoid overfitting

Towards training general CARTRIDGES, we propose us-
ing LLM generated synthetic data to generate our training
dataset Dtrain.

Overall synthetic data pipeline Our overall pipeline puts
information from the corpus C in context and prompts the
model to have a conversation with itself about the corpus
to generate the synthetic query-response pairs as shown in
Algorithm 1. We represent the concatenation of two vectors
with x⊕ y

The conversation is generated by iteratively sampling gen-
erations from two LLM participants A and B (which are
the same model). We maintain two different conversation
histories: A’s starts with a user message containing a seed
prompt s (e.g. “Please start a conversation by asking a
question about the document above.") followed by alternat-
ing assistant and user messages from A and B, respectively.
B’s conversation history does not include the seed prompt
and contains the same messages as A’s but with the roles
of A and B swapped. Both have the subcorpus c̃ in the
system prompt. To build a training dataset, we sample mtrain
independent conversations and concatenate the messages
from A and B into a single sequence of tokens:

Dtrain = {x(j) = a
(j)
1 ⊕b

(j)
1 ⊕a

(j)
2 ⊕b

(j)
2 ⊕· · ·⊕a

(j)
k ⊕b

(j)
k }

mtrain
j=1

(2)

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

LongHealth MTOB (KE) QASPER

Cartridges ICL Duo AttentionTruncated SummaryICL (Full book)
Prompt Compression KV-cache CompressionOurs Long-context ICL

Figure 3. CARTRIDGES matches ICL quality with lower memory costs. We measure LLAMA-3B response quality (y-axis) against KV
cache memory (x-axis) for different methods, at different KV cache sizes. The dashed line marks the quality of standard ICL.

Algorithm 1 SELF-STUDY: Data Generation
Input: C : Corpus, F : Model
Output: {a1,b1, . . . ,ak,bk} : Convo

1: c̃← chunk(C) ▷ (1) Get a subcorpus of C that fits in
the context window

2: s← get_seed_prompt(c̃) ▷ (2) Get a prompt to
seed the first message from A

3: for i = 1 to k do ▷ (3) Sample a conversation with k
back and forths

4: ai ∼ F(· | c̃⊕ s⊕ a1 ⊕ · · · ⊕ bi−1) ▷ (3.1)
Sample A’s message with c̃ and s in context

5: bi ∼ F(· | c̃⊕ a1 ⊕ · · · ⊕ bi−1 ⊕ ai) ▷ (3.2)
Sample B’s message with c̃ in context

6: end for
7: return {a1,b1, . . . ,ak,bk}

where each x(j) is a concatentation of the messages. Note
that all of the datasets on which we evaluate in the main
paper involve a single-turn. So, we set k = 1, generating
a synthetic conversation with one user message and one
assistant message. In Appendix A, we evaluate the multi-
turn capabilities of CARTRIDGES.

Note that the chunk and get_seed_prompt functions
expose two different ways to control the data distribution
of the synthetic data. We find that these two design deci-
sions are critical for training high quality CARTRIDGES with
SELF-STUDY.

Chunking We use short subcorpora c̃ (between 512 and
4096) tokens to let the LLM focus on different parts of the
corpus when generating data. This is motivated by observa-
tions in prior work (Liu et al., 2024c; Narayan et al., 2025).
Furthermore, chunking also allows us to train CARTRIDGES
on corpora longer than the model’s context window.

Seed prompts Instead of using just one seed prompt, we
curate a list of five different seed prompt types: structuring,
summarization, question, use cases, and creative. The full
list of seed prompts used in our experiments is provided
in Appendix C. Critically, in all our experiments the seed
prompts are generic: they do not mention anything related
to the specifics of the corpora we evaluated (e.g. no mention
of translation for MTOB or medical terms for LongHealth).
We use the same set of seed prompts in all of our main
results. In Section 5.4, we ablate the use of diverse seed
prompts and find that it improves performance over a single
generic seed prompt by up to 4.8 accuracy points (43.6→
48.4 on LONGHEALTH).

4.2. SELF-STUDY context-distillation objective

Given a fine-tuning dataset Dtrain, we adapt standard tech-
niques from the model distillation literature (Kim & Rush,
2016).We letF(·|x) denote the next token distribution given
some input text x. Our teacher is the model with the subcor-
pus, c̃, in context F(·|c̃) and our student is the same model
adapted with a trainable cache FZ(·). We use a classic dis-
tillation objective (Hinton et al., 2015) that minimizes the
KL-divergence between the teacher and student next-token
distributions over a sequence of tokens x ∈ Dtrain:

argmin
Z

∑
x∈Dtrain

|x|∑
i=1

DKL

(
F(·|c̃⊕x[: i]) || FZ(·|x[: i])

)
(3)

In Appendix A, we provide an ablation that using a context-
distillation objective improves accuracy for the (e.g. 3.7
accuracy points on LONGHEALTH).

5. Results
We describe experiments evaluating the effectiveness of
CARTRIDGES trained with SELF-STUDY in various long-

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Cartridges ICL Summary
Constant Compute Baselines

LongHealth MTOB (KE) QASPER

with different sizes

OursSelf-study duration
(# of training steps)

Self-study duration
(# of training steps)

Figure 4. Scaling SELF-STUDY compute. These plots show how quality improves as we scale the training compute with SELF-STUDY.
In all plots, the x-axis shows the total number of global training steps with batch size 64 and maximum sequence length 1024. No
synthetically generated data is reused (i.e. training proceeds for one epoch). Curves are provided for CARTRIDGES of varying sizes
(p ∈ {128, 512, 2048, 8192}). (Left) The y-axis shows accuracy on LONGHEALTH (Adams et al., 2024) with LLAMA-8B. (Middle)
The y-axis shows the chrF on MTOB (Tanzer et al., 2023) with LLAMA-3B. (Right) The y-axis shows log-perplexity (lower is better) on
QASPER (Dasigi et al., 2021) with LLAMA-3B.

context scenarios. Our results support the following claims.
First, CARTRIDGES trained with SELF-STUDY can match
or outperform ICL while maintaining generality and reduc-
ing serving costs (Section 5.1). Second, SELF-STUDY is
effective on corpora longer than the context window of the
LLM (Section 5.2). Third, when we concatenate two differ-
ent CARTRIDGES without any joint training, the model can
respond to queries requiring information from both CAR-
TRIDGES (Section 5.3). Finally, we include ablations to
assess the relative benefits of different aspects of SELF-
STUDY and CARTRIDGES (Section 5.4).

Datasets We study datasets consisting of diverse (q, r)
pairs about a single long document. Across datasets, C
ranges between 100k and 484k tokens. Our datasets are
drawn from popular long-context benchmarks, with some
used as-released and others modified to meet this struc-
ture. These include: LONGHEALTH (Adams et al., 2024),
MTOB (Tanzer et al., 2023), and QASPER (Dasigi et al.,
2021). We evaluate LLM response quality using accuracy
for LONGHEALTH, log perplexity for QASPER, and char-
acter n-gram f-score (chrF) for MTOB (Tanzer et al., 2023;
Popović, 2015). Because each dataset effectively consists
of a “single” document, we train a single CARTRIDGE per
dataset at a given hyperparameter setting. Appendix D pro-
vides further details.

5.1. Pushing the quality/cost tradeoff frontier

We assess how CARTRIDGES produced with SELF-STUDY
fare in quality and cost against baselines for LONGHEALTH
and QASPER on LLAMA-3B. For both datasets, C fits
within the model context window (128k tokens). We com-
pare to traditional ICL, two prompt compression baselines
(prompt truncation and prompt summarization using GPT-

4o (OpenAI, 2024)), and a state-of-the-art KV cache com-
pression baseline (Duo Attention (Jiang et al., 2023a; Xiao
et al., 2024b)). We evaluate memory use in terms of KV
cache size: the size of the KV cache for the ICL model and
prompt compression methods, the size of the CARTRIDGE,
and the size of the compressed KV cache for KV cache
compression methods like DuoAttention.

Figure 3 presents our main results. On both LONGHEALTH
and QASPER, we find cache sizes at which CARTRIDGES
outperforms ICL. Compared against ICL, CARTRIDGES of-
fers substantial memory savings at comparable performance:
up to 10× for LONGHEALTH, and up to 100× for QASPER.
In contrast, compression baseline methods see performance
degradations at compression factors as low as 2×. Cru-
cially, the small memory footprint of CARTRIDGES allows
for much higher peak throughput (tokens/s). As Figure 2
(right) shows, cache sizes which match performance of ICL
allow for almost 26× higher throughput.

We also observe that CARTRIDGE performance scales as
we increase the amount of compute used in self-study: the
longer an CARTRIDGE is trained, the greater task perfor-
mance. Figure 4 plots the performance for differentially
sized CARTRIDGES as a function of the number of train-
ing steps. Across all sizes, we observe a steady positive
correlation between performance and compute.

5.2. Extending the effective context window

We evaluate whether SELF-STUDY allows us to accurately
process corpora that exceed the context window length. To
study this, we consider the MTOB dataset, and LLAMA-
8B, which has a context window of 128k tokens. MTOB
provides two different long documents: a full 484k token
latex textbook and a shorter 60k token version, which was

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

🤔
Cartridge Composition

Boeing Cartridge
Self-study

LLM + Cartridges

One Cartridge

Truncated ICL

Composed Cartridges

39.8 GB

0.6 GB
💻

Who audited the
Boeing and AMD
statements, respectively?

 The audit of the
 consolidated financial
statements of AMD was
performed by Ernst & Young LLP,
while the audit of the
consolidated financial statements
of Boeing was performed by
Deloitte & Touche LLP.

🤔

💻

List a few competitors
for each of PepsiCo and
AMD as stated in each10K."

 Here are some competitors
 for PepsiCo and AMD:
PepsiCo:
* Unilever (as a competitor) ...
* Red Bull (as a competitor in
the energy drink market)
AMD:
* Intel (as a competitor in the ...

1.2 GB

Multi-doc Question Answering

Boeing AMD

Self-study
AMD Cartridge

AMD 10k

Pepsi 10k

Method (Cache Size) 1.5 2.01.75
log(perplexity)💻

In FY15, the
D&A margins...🤔

Compare the
D&A margins...

Figure 5. CARTRIDGE Composition. (Left) Illustration of CARTRIDGE composition, where two independently trained CARTRIDGES

(one for a PepsiCo 10k and one for an AMD 10k) are concatenated without any additional training. (Middle) We evaluate composition
on a dataset of multi-document questions requiring information in two different approx100k token documents with LLAMA-3B (see
Appendix D). The x-axis shows log-perplexity (lower is better) on gold-standard answers. We compare CARTRIDGE composition with
an (a) ICL baseline where we truncate the document to fit in the 128k token context length and (b) an CARTRIDGE baseline where we
only include the CARTRIDGE for one of the documents. (Right) Examples of responses to multi-document questions using composed
cartridges.

manually-curated by the dataset authors to exclude content
not relevant to the translation task. Even though the 484k
textbook is 356k tokens longer than LLAMA-8B’s context
window length, we can produce an CARTRIDGE for the full
textbook thanks to the chunking strategy of SELF-STUDY.

Figure 3 (middle plot) shows the performance of CAR-
TRIDGES of various sizes trained with SELF-STUDY. We
show that As a point of comparison, we provide the results
for KV cache baseline methods on the smaller 60k token
textbook, and also include ICL on a truncated version of the
long textbook. Like above, we observe that CARTRIDGE can
match the performance of ICL while requiring substantially
less memory. CARTRIDGES also outperform competitive
baselines at every KV cache size, by up to 11.0 chrF points.

5.3. Composing CARTRIDGES

We evaluate if independently trained CARTRIDGES can be
composed in order to serve queries about multiple different
(see Figure 5, Left). We train CARTRIDGES across sizes
{512, 1024, 2048, 4096} and long 10k documents from
AMD, Pepsi, AMEX, and Boeing (Islam et al., 2023). For
each pair of CARTRIDGES pairwise (6 pairs per cache size),
we evaluate using a dataset of multi-document questions, i.e.,
requiring information from both 10-ks. Surprisingly, we find
composition not only leads to coherent LLM generations off-
the-shelf without any re-training (Figure 5, Right), but also
substantially outperforms the use of a single CARTRIDGE
(i.e. for only AMD) or ICL (which struggles due to con-
text length limits) (Figure 5, Center) on the multi-document
questions.

5.4. Ablating SELF-STUDY design choices

We perform ablations to study different aspects of SELF-
STUDY and CARTRIDGE parameterization. We provide full
results in Appendix A and highlight key findings here.

First, we ablate the SELF-STUDY design choices discussed

in Section 4. We show that using a context distillation objec-
tive (defined in Section 4.2) on the synthetic conversation
data improves accuracy by 3.7 points (47.6 → 51.3 on
LONGHEALTH) over a next-token prediction objective on
the same synthetic data. See Appendix A for details on
these results. Furthermore, we demonstrate how training
with SELF-STUDY, as opposed to a simpler next-token-
prediction objective on the raw corpus C, improves the gen-
erality of the CARTRIDGES in Figure 2. We also confirm
that using a small set of diverse seed prompts (defined in
Section 4.1) improves over a single generic seed prompt by
up to 4.8 accuracy points (43.6→ 48.4 on LONGHEALTH).

Next, we evaluate the parameterization and initialization
choices discussed in Section 3. We show that initializing
the CARTRIDGE to a KV cache of the first p tokens of the
corpus improves training stability and convergence. We also
compare a prefix/ parameterization, like the one we use,
with LoRA. We observe differences in the generalization
on tasks unrelated to the document like MMLU (Hendrycks
et al., 2020). Appendix A gives a detailed analysis of the
parameterizations.

6. Discussion and conclusion
We propose CARTRIDGES as an alternative to ICL for set-
tings where many different user messages reference the
same corpus of text. We demonstrate across diverse set of
language model workloads that, when trained via SELF-
STUDY, they match ICL’s response quality while substan-
tially reducing memory consumption (38.6×memory reduc-
tion across our evaluations) and increasing peak throughput
(26.4× higher tokens per second). CARTRIDGES are simple
to train, composable, and compatible with existing LLM
serving infrastructure.

However, compared with ICL, SELF-STUDY is not without
limitations. Using SELF-STUDY to produce a KV-cache
is much more costly than simply running standard ICL

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

pre-fill. With our unoptimized implementation, training
an ICL-quality CARTRIDGE takes ∼ 30 minutes on a sin-
gle 8×H100 node (for Llama 8B). So our work does not
provide a drop-in replacement for ICL, but rather demon-
strates one way to tradeoff increased compute for reduced
memory when constructing a KV-cache. This tradeoff is
extremely advantageous in many settings: users often issue
many queries over the same corpus and SELF-STUDY can
be trained offline on idle or underutilized compute (e.g. at
night when user load is low (Jaiswal et al., 2025; Goel et al.,
2025)). Furthermore, there is ample room for optimiza-
tions (e.g. improved shared-prefix attention kernels (Dao
et al., 2022; Ye et al., 2025)) that would make SELF-STUDY
training procedure faster and more data-efficient.

Looking forward, we envision CARTRIDGES enabling a
broad class of context-aware AI applications that are in-
tractablewith ICL today, from medical assistants that know
a patient’s full medical history to LLM-powered IDEs that
understand entire codebases.

References
Abdin, M., Aneja, J., Behl, H., Bubeck, S., Eldan, R.,

Gunasekar, S., Harrison, M., Hewett, R. J., Javaheripi,
M., Kauffmann, P., et al. Phi-4 technical report. arXiv
preprint arXiv:2412.08905, 2024.

Adams, L., Busch, F., Han, T., Excoffier, J.-B., Ortala,
M., Löser, A., Aerts, H. J., Kather, J. N., Truhn, D.,
and Bressem, K. Longhealth: A question answering
benchmark with long clinical documents. arXiv preprint
arXiv:2401.14490, 2024.

Ainslie, J., Lee-Thorp, J., De Jong, M., Zemlyanskiy, Y.,
Lebrón, F., and Sanghai, S. Gqa: Training generalized
multi-query transformer models from multi-head check-
points. arXiv preprint arXiv:2305.13245, 2023.

Anthropic. The Claude 3 Model Fam-
ily: Opus, Sonnet, Haiku. 2024. URL
https://www-cdn.anthropic.com/
de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/
Model_Card_Claude_3.pdf.

Arora, S. and Ré, C. Can foundation models help us achieve
perfect secrecy? arXiv preprint arXiv:2205.13722, 2022.

Arora, S., Eyuboglu, S., Zhang, M., Timalsina, A., Alberti,
S., Zinsley, D., Zou, J., Rudra, A., and Ré, C. Sim-
ple linear attention language models balance the recall-
throughput tradeoff. arXiv preprint arXiv:2402.18668,
2024.

Beck, M., Pöppel, K., Spanring, M., Auer, A., Prudnikova,
O., Kopp, M., Klambauer, G., Brandstetter, J., and

Hochreiter, S. xlstm: Extended long short-term mem-
ory. arXiv preprint arXiv:2405.04517, 2024.

Beltagy, I., Peters, M. E., and Cohan, A. Long-
former: The long-document transformer. arXiv preprint
arXiv:2004.05150, 2020.

Bhargava, A., Witkowski, C., Detkov, A., and Thomson, M.
Prompt baking. arXiv preprint arXiv:2409.13697, 2024.

Chang, C.-C., Lin, W.-C., Lin, C.-Y., Chen, C.-Y., Hu, Y.-F.,
Wang, P.-S., Huang, N.-C., Ceze, L., Abdelfattah, M. S.,
and Wu, K.-C. Palu: Compressing kv-cache with low-
rank projection. arXiv preprint arXiv:2407.21118, 2024.

Chari, V., Qin, G., and Van Durme, B. Kv-distill: Nearly
lossless learnable context compression for llms. arXiv
preprint arXiv:2503.10337, 2025.

Chen, L., Ye, Z., Wu, Y., Zhuo, D., Ceze, L., and Krishna-
murthy, A. Punica: Multi-tenant lora serving. Proceed-
ings of Machine Learning and Systems, 6:1–13, 2024.

Chevalier, A., Wettig, A., Ajith, A., and Chen, D. Adapting
language models to compress contexts. arXiv preprint
arXiv:2305.14788, 2023.

Child, R., Gray, S., Radford, A., and Sutskever, I. Gen-
erating long sequences with sparse transformers. arXiv
preprint arXiv:1904.10509, 2019.

Chuang, Y.-N., Xing, T., Chang, C.-Y., Liu, Z., Chen, X.,
and Hu, X. Learning to compress prompt in natural lan-
guage formats. arXiv preprint arXiv:2402.18700, 2024.

Colombo, P., Pires, T. P., Boudiaf, M., Culver, D., Melo,
R., Corro, C., Martins, A. F., Esposito, F., Raposo, V. L.,
Morgado, S., et al. Saullm-7b: A pioneering large lan-
guage model for law. arXiv preprint arXiv:2403.03883,
2024.

Dao, T., Fu, D., Ermon, S., Rudra, A., and Ré, C. Flashat-
tention: Fast and memory-efficient exact attention with
io-awareness. Advances in neural information processing
systems, 35:16344–16359, 2022.

Dasigi, P., Lo, K., Beltagy, I., Cohan, A., Smith, N. A., and
Gardner, M. A dataset of information-seeking questions
and answers anchored in research papers. arXiv preprint
arXiv:2105.03011, 2021.

Dong, Q., Li, L., Dai, D., Zheng, C., Ma, J., Li, R., Xia,
H., Xu, J., Wu, Z., Liu, T., et al. A survey on in-context
learning. arXiv preprint arXiv:2301.00234, 2022.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A.,
Fan, A., et al. The Llama 3 Herd of Models. arXiv
preprint arXiv:2407.21783, 2024. URL https://
arxiv.org/abs/2407.21783.

9

https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Gandhi, S., Gala, R., Viswanathan, V., Wu, T., and Neubig,
G. Better synthetic data by retrieving and transforming
existing datasets. arXiv preprint arXiv:2404.14361, 2024.

Ge, S., Zhang, Y., Liu, L., Zhang, M., Han, J., and Gao,
J. Model tells you what to discard: Adaptive kv cache
compression for llms. arXiv preprint arXiv:2310.01801,
2023a.

Ge, T., Hu, J., Wang, L., Wang, X., Chen, S.-Q., and Wei,
F. In-context autoencoder for context compression in a
large language model. arXiv preprint arXiv:2307.06945,
2023b.

Goel, K., Mohan, J., Kwatra, N., Anupindi, R. S., and
Ramjee, R. Niyama: Breaking the silos of llm inference
serving. arXiv preprint arXiv:2503.22562, 2025.

Gou, Y., Liu, Z., Chen, K., Hong, L., Xu, H., Li, A., Yeung,
D.-Y., Kwok, J. T., and Zhang, Y. Mixture of cluster-
conditional lora experts for vision-language instruction
tuning. arXiv preprint arXiv:2312.12379, 2023.

Gu, A. and Dao, T. Mamba: Linear-time sequence
modeling with selective state spaces. arXiv preprint
arXiv:2312.00752, 2023.

Guha, N., Nyarko, J., Ho, D., Ré, C., Chilton, A., Chohlas-
Wood, A., Peters, A., Waldon, B., Rockmore, D., Zam-
brano, D., et al. Legalbench: A collaboratively built
benchmark for measuring legal reasoning in large lan-
guage models. Advances in Neural Information Process-
ing Systems, 36:44123–44279, 2023.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika,
M., Song, D., and Steinhardt, J. Measuring mas-
sive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Hinton, G., Vinyals, O., and Dean, J. Distilling
the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

Hron, J. Legal ai benchmarking: Eval-
uating long context performance for
llms. https://www.thomsonreuters.com/en-
us/posts/innovation/legal-ai-benchmarking-evaluating-
long-context-performance-for-llms/, 2025.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., Chen, W., et al. Lora: Low-rank adaptation
of large language models. ICLR, 1(2):3, 2022.

Huang, C., Liu, Q., Lin, B. Y., Pang, T., Du, C., and Lin, M.
Lorahub: Efficient cross-task generalization via dynamic
lora composition. arXiv preprint arXiv:2307.13269,
2023.

Islam, P., Kannappan, A., Kiela, D., Qian, R., Scher-
rer, N., and Vidgen, B. Financebench: A new bench-
mark for financial question answering. arXiv preprint
arXiv:2311.11944, 2023.

Jaiswal, S., Jain, K., Simmhan, Y., Parayil, A., Mallick, A.,
Wang, R., Amant, R. S., Bansal, C., Rühle, V., Kulkarni,
A., et al. Serving models, fast and slow: optimizing
heterogeneous llm inferencing workloads at scale. arXiv
preprint arXiv:2502.14617, 2025.

Jayalath, D., Wendt, J. B., Monath, N., Tata, S., and Gunel,
B. Long-range tasks using short-context llms: Incremen-
tal reasoning with structured memories. arXiv preprint
arXiv:2412.18914, 2024.

Jiang, F. Identifying and mitigating vulnerabilities in llm-
integrated applications. Master’s thesis, University of
Washington, 2024.

Jiang, H., Wu, Q., Lin, C.-Y., Yang, Y., and Qiu, L. LLM-
Lingua: Compressing prompts for accelerated inference
of large language models. In Bouamor, H., Pino, J., and
Bali, K. (eds.), Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, pp.
13358–13376, Singapore, December 2023a. Association
for Computational Linguistics. doi: 10.18653/v1/2023.
emnlp-main.825. URL https://aclanthology.
org/2023.emnlp-main.825/.

Jiang, H., Wu, Q., Lin, C.-Y., Yang, Y., and Qiu, L. Llmlin-
gua: Compressing prompts for accelerated inference of
large language models. arXiv preprint arXiv:2310.05736,
2023b.

Kim, Y. and Rush, A. M. Sequence-level knowledge distilla-
tion. In Proceedings of the 2016 conference on empirical
methods in natural language processing, pp. 1317–1327,
2016.

Kujanpää, K., Valpola, H., and Ilin, A. Knowledge injection
via prompt distillation. arXiv preprint arXiv:2412.14964,
2024.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving
with pagedattention. In Proceedings of the 29th Sym-
posium on Operating Systems Principles, pp. 611–626,
2023.

Lester, B., Al-Rfou, R., and Constant, N. The power of scale
for parameter-efficient prompt tuning. arXiv preprint
arXiv:2104.08691, 2021.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V.,
Goyal, N., Küttler, H., Lewis, M., Yih, W.-t., Rocktäschel,

10

https://aclanthology.org/2023.emnlp-main.825/
https://aclanthology.org/2023.emnlp-main.825/

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

T., et al. Retrieval-augmented generation for knowledge-
intensive nlp tasks. Advances in Neural Information Pro-
cessing Systems, 33:9459–9474, 2020.

Li, D., Ma, Y., Wang, N., Ye, Z., Cheng, Z., Tang, Y., Zhang,
Y., Duan, L., Zuo, J., Yang, C., et al. Mixlora: Enhanc-
ing large language models fine-tuning with lora-based
mixture of experts. arXiv preprint arXiv:2404.15159,
2024a.

Li, X. L. and Liang, P. Prefix-tuning: Optimizing continu-
ous prompts for generation. In Zong, C., Xia, F., Li, W.,
and Navigli, R. (eds.), Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers), pp.
4582–4597, Online, August 2021. Association for Com-
putational Linguistics. doi: 10.18653/v1/2021.acl-long.
353. URL https://aclanthology.org/2021.
acl-long.353/.

Li, Y. Unlocking context constraints of llms: Enhancing
context efficiency of llms with self-information-based
content filtering. arXiv preprint arXiv:2304.12102, 2023.

Li, Y., Huang, Y., Yang, B., Venkitesh, B., Locatelli, A., Ye,
H., Cai, T., Lewis, P., and Chen, D. Snapkv: Llm knows
what you are looking for before generation. Advances
in Neural Information Processing Systems, 37:22947–
22970, 2024b.

Liu, A., Feng, B., Wang, B., Wang, B., Liu, B., Zhao, C.,
Dengr, C., Ruan, C., Dai, D., Guo, D., et al. Deepseek-v2:
A strong, economical, and efficient mixture-of-experts
language model. arXiv preprint arXiv:2405.04434,
2024a.

Liu, A., Liu, J., Pan, Z., He, Y., Haffari, G., and Zhuang, B.
Minicache: Kv cache compression in depth dimension for
large language models. Advances in Neural Information
Processing Systems, 37, 2024b.

Liu, N. F., Lin, K., Hewitt, J., Paranjape, A., Bevilacqua,
M., Petroni, F., and Liang, P. Lost in the middle: How
language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157–173,
2024c.

Mao, Y., Xu, Y., Li, J., Meng, F., Yang, H., Zheng, Z., Wang,
X., and Zhang, M. Lift: Improving long context under-
standing of large language models through long input
fine-tuning. arXiv preprint arXiv:2502.14644, 2025.

Meng, F., Wang, Z., and Zhang, M. Pissa: Principal singular
values and singular vectors adaptation of large language
models. Advances in Neural Information Processing
Systems, 37:121038–121072, 2024.

Mu, J., Li, X., and Goodman, N. Learning to compress
prompts with gist tokens. Advances in Neural Information
Processing Systems, 36:19327–19352, 2023.

Nam, D., Macvean, A., Hellendoorn, V., Vasilescu, B., and
Myers, B. Using an llm to help with code understand-
ing. In Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering, pp. 1–13, 2024.

Narayan, A., Biderman, D., Eyuboglu, S., May, A., Linder-
man, S., Zou, J., and Re, C. Minions: Cost-efficient col-
laboration between on-device and cloud language models.
arXiv preprint arXiv:2502.15964, 2025.

Nayak, N. V., Nan, Y., Trost, A., and Bach, S. H. Learning
to generate instruction tuning datasets for zero-shot task
adaptation. arXiv preprint arXiv:2402.18334, 2024.

OpenAI. Gpt-4o system card, 2024. URL https://
arxiv.org/abs/2410.21276.

Oren, M., Hassid, M., Yarden, N., Adi, Y., and Schwartz,
R. Transformers are multi-state rnns. arXiv preprint
arXiv:2401.06104, 2024.

Ouellette, L. L., Motomura, A., Reinecke, J., and Masur, J. S.
Can ai hold office hours? Available at SSRN 5166938,
2025.

Packer, C., Wooders, S., Lin, K., Fang, V., Patil, S. G.,
Stoica, I., and Gonzalez, J. E. Memgpt: Towards llms
as operating systems. arXiv preprint arXiv:2310.08560,
2023.

Pan, Z., Wu, Q., Jiang, H., Xia, M., Luo, X., Zhang, J., Lin,
Q., Rühle, V., Yang, Y., Lin, C.-Y., et al. Llmlingua-2:
Data distillation for efficient and faithful task-agnostic
prompt compression. arXiv preprint arXiv:2403.12968,
2024.

Popović, M. chrf: character n-gram f-score for automatic
mt evaluation. In Proceedings of the tenth workshop on
statistical machine translation, pp. 392–395, 2015.

Qin, G., Rosset, C., Chau, E. C., Rao, N., and Van Durme, B.
Dodo: Dynamic contextual compression for decoder-only
lms. arXiv preprint arXiv:2310.02409, 2023.

Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. Squad:
100,000+ questions for machine comprehension of text.
arXiv preprint arXiv:1606.05250, 2016.

Riaz, H., Bhabesh, S., Arannil, V., Ballesteros, M., and
Horwood, G. Metasynth: Meta-prompting-driven agentic
scaffolds for diverse synthetic data generation. arXiv
preprint arXiv:2504.12563, 2025.

11

https://aclanthology.org/2021.acl-long.353/
https://aclanthology.org/2021.acl-long.353/
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2410.21276

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Ribar, L., Chelombiev, I., Hudlass-Galley, L., Blake, C.,
Luschi, C., and Orr, D. Sparq attention: Bandwidth-
efficient llm inference. arXiv preprint arXiv:2312.04985,
2023.

Russak, M., Jamil, U., Bryant, C., Kamble, K., Magnuson,
A., Russak, M., and AlShikh, W. Writing in the margins:
Better inference pattern for long context retrieval. arXiv
preprint arXiv:2408.14906, 2024.

Saxena, U., Saha, G., Choudhary, S., and Roy, K. Eigen
attention: Attention in low-rank space for kv cache com-
pression. arXiv preprint arXiv:2408.05646, 2024.

Shazeer, N. Fast transformer decoding: One write-head is
all you need. arXiv preprint arXiv:1911.02150, 2019.

Snell, C., Klein, D., and Zhong, R. Learning by distilling
context. arXiv preprint arXiv:2209.15189, 2022.

Snell, C., Lee, J., Xu, K., and Kumar, A. Scaling llm test-
time compute optimally can be more effective than scal-
ing model parameters. arXiv preprint arXiv:2408.03314,
2024.

Su, W., Tang, Y., Ai, Q., Yan, J., Wang, C., Wang, H., Ye,
Z., Zhou, Y., and Liu, Y. Parametric retrieval augmented
generation. arXiv preprint arXiv:2501.15915, 2025.

Tang, J., Zhao, Y., Zhu, K., Xiao, G., Kasikci, B., and Han,
S. Quest: Query-aware sparsity for efficient long-context
llm inference. arXiv preprint arXiv:2406.10774, 2024.

Tanzer, G., Suzgun, M., Visser, E., Jurafsky, D., and Melas-
Kyriazi, L. A benchmark for learning to translate a
new language from one grammar book. arXiv preprint
arXiv:2309.16575, 2023.

Team, G., Riviere, M., Pathak, S., Sessa, P. G., Hardin,
C., Bhupatiraju, S., Hussenot, L., Mesnard, T., Shahri-
ari, B., Ramé, A., et al. Gemma 2: Improving open
language models at a practical size. arXiv preprint
arXiv:2408.00118, 2024.

U.S. Securities and Exchange Commission. How to
read a 10-k, 2011. URL https://www.sec.gov/
answers/reada10k.htm. Accessed: 2025-05-14.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Wan, Z., Wu, X., Zhang, Y., Xin, Y., Tao, C., Zhu, Z., Wang,
X., Luo, S., Xiong, J., and Zhang, M. D2o: Dynamic dis-
criminative operations for efficient generative inference of
large language models. arXiv preprint arXiv:2406.13035,
2024.

Wang, Z., Jin, B., Yu, Z., and Zhang, M. Model tells you
where to merge: Adaptive kv cache merging for llms
on long-context tasks. arXiv preprint arXiv:2407.08454,
2024.

Wu, X., Huang, S., and Wei, F. Mixture of lora experts.
arXiv preprint arXiv:2404.13628, 2024.

Xiao, C., Zhang, Z., Song, C., Jiang, D., Yao, F., Han, X.,
Wang, X., Wang, S., Huang, Y., Lin, G., et al. Config-
urable foundation models: Building llms from a modular
perspective. arXiv preprint arXiv:2409.02877, 2024a.

Xiao, G., Tang, J., Zuo, J., Guo, J., Yang, S., Tang, H.,
Fu, Y., and Han, S. Duoattention: Efficient long-context
llm inference with retrieval and streaming heads. arXiv
preprint arXiv:2410.10819, 2024b.

Xiao, G., Tian, Y., Chen, B., Han, S., and Lewis, M. Effi-
cient streaming language models with attention sinks,
2024c. URL https://arxiv.org/abs/2309.
17453.

Yadav, P., Raffel, C., Muqeeth, M., Caccia, L., Liu, H., Chen,
T., Bansal, M., Choshen, L., and Sordoni, A. A survey
on model moerging: Recycling and routing among spe-
cialized experts for collaborative learning. arXiv preprint
arXiv:2408.07057, 2024.

Yang, A., Yang, B., Zhang, B., Hui, B., Zheng, B., Yu, B., Li,
C., Liu, D., Huang, F., Wei, H., et al. Qwen2. 5 technical
report. arXiv preprint arXiv:2412.15115, 2024a.

Yang, S., Wang, B., Zhang, Y., Shen, Y., and Kim, Y. Par-
allelizing linear transformers with the delta rule over se-
quence length. arXiv preprint arXiv:2406.06484, 2024b.

Ye, Z., Chen, L., Lai, R., Lin, W., Zhang, Y., Wang,
S., Chen, T., Kasikci, B., Grover, V., Krishnamurthy,
A., and Ceze, L. Flashinfer: Efficient and customiz-
able attention engine for llm inference serving. arXiv
preprint arXiv:2501.01005, 2025. URL https://
arxiv.org/abs/2501.01005.

Yen, H. Long-context language modeling with parallel
context encoding. Master’s thesis, Princeton University,
2024.

Yu, H., Yang, Z., Li, S., Li, Y., and Wu, J. Effectively com-
press kv heads for llm. arXiv preprint arXiv:2406.07056,
2024.

Zaheer, M., Guruganesh, G., Dubey, K. A., Ainslie, J., Al-
berti, C., Ontanon, S., Pham, P., Ravula, A., Wang, Q.,
Yang, L., et al. Big bird: Transformers for longer se-
quences. Advances in neural information processing
systems, 33:17283–17297, 2020.

12

https://www.sec.gov/answers/reada10k.htm
https://www.sec.gov/answers/reada10k.htm
https://arxiv.org/abs/2309.17453
https://arxiv.org/abs/2309.17453
https://arxiv.org/abs/2501.01005
https://arxiv.org/abs/2501.01005

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Zhang, Q., Zhang, H., Pang, L., Zheng, H., and Zheng, Z.
Adacomp: Extractive context compression with adaptive
predictor for retrieval-augmented large language models.
arXiv preprint arXiv:2409.01579, 2024a.

Zhang, R., Wang, K., Liu, L., Wang, S., Cheng, H., Zhang,
C., and Shen, Y. Lorc: Low-rank compression for llms
kv cache with a progressive compression strategy. arXiv
preprint arXiv:2410.03111, 2024b.

Zhang, Y., Du, Y., Luo, G., Zhong, Y., Zhang, Z., Liu, S.,
and Ji, R. Cam: Cache merging for memory-efficient
llms inference. In Forty-first International Conference on
Machine Learning, 2024c.

Zhang, Y., Liu, Y., Yuan, H., Qin, Z., Yuan, Y., Gu, Q., and
Yao, A. C.-C. Tensor product attention is all you need.
arXiv preprint arXiv:2501.06425, 2025.

Zhang, Z., Sheng, Y., Zhou, T., Chen, T., Zheng, L., Cai,
R., Song, Z., Tian, Y., Ré, C., Barrett, C., et al. H2o:
Heavy-hitter oracle for efficient generative inference of
large language models. Advances in Neural Information
Processing Systems, 36:34661–34710, 2023.

Zhao, Z., Gan, L., Wang, G., Zhou, W., Yang, H., Kuang, K.,
and Wu, F. Loraretriever: Input-aware lora retrieval and
composition for mixed tasks in the wild. arXiv preprint
arXiv:2402.09997, 2024a.

Zhao, Z., Shen, T., Zhu, D., Li, Z., Su, J., Wang, X., Kuang,
K., and Wu, F. Merging loras like playing lego: Pushing
the modularity of lora to extremes through rank-wise
clustering. arXiv preprint arXiv:2409.16167, 2024b.

Zheng, L., Yin, L., Xie, Z., Sun, C. L., Huang, J., Yu, C. H.,
Cao, S., Kozyrakis, C., Stoica, I., Gonzalez, J. E., et al.
Sglang: Efficient execution of structured language model
programs. Advances in Neural Information Processing
Systems, 37:62557–62583, 2024.

Zheng, L., Guha, N., Arifov, J., Zhang, S., Skreta, M., Man-
ning, C. D., Henderson, P., and Ho, D. E. A reasoning-
focused legal retrieval benchmark. In Proceedings of
the 2025 Symposium on Computer Science and Law, pp.
169–193, 2025.

Zhou, Y., Song, S., Liu, B., Xi, Z., Jin, S., Fan, X., Zhang,
Z., Li, W., and Huang, X. Elitekv: Scalable kv cache
compression via rope frequency selection and joint low-
rank projection. arXiv preprint arXiv:2503.01586, 2025.

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

A. Extended Results
In this section, we ablate the main design choices of CAR-
TRIDGES and SELF-STUDY.

A.1. CARTRIDGE design choices: parameterization and
initialization

In our experiments, we parameterize the CARTRIDGE with
a simplified version of prefix-tuning and initialize with a
truncated KV-cache (see Section 3.4). In this section, we de-
scribe ablation experiments motivating these design choices.
First, we compare two different CARTRIDGE parameteriza-
tions (Figure 6): simplified prefix-tuning (Li & Liang, 2021)
and low-rank adaptation (LoRA) (Hu et al., 2022). Then,
we demonstrate the importance of proper CARTRIDGE ini-
tialization (Figure 7).

Parameterization We evaluate CARTRIDGES trained on
corpora from LONGHEALTH or QASPER on both in-
domain (i.e. questions from LONGHEALTH or QASPER)
and out-of-domain (i.e. questions from an unrelated bench-
mark, MMLU (Hendrycks et al., 2020)) queries.

We find that the prefix-tuning parameterization is more ef-
fective than a memory-matched LoRA parameterization on
both in-domain and out-of-domain queries. This is illus-
trated in Figure 6 (Left), where we see that prefix-tuning
occupies the top-right corner of the plot (high accuracy on
both MMLU and the target dataset).

Notably, we find that as we increase the CARTRIDGE size
with LoRA tuning, performance on out-of-domain queries
(MMLU) drops significantly. At 1.06 GB (LoRA rank 1632),
MMLU accuracy drops from 60.0% to 45.3%. This drop in
performance is highly correlated with the size of the CAR-
TRIDGE, suggesting that LoRA is not well-suited to large
Cartridges, which we show in Figure 3 are important for
recovering ICL performance. In contrast, with prefix-tuning
the accuracy only drops to 54.3% at 1.06 GB. This degra-
dation is mostly invariant to the size of the CARTRIDGE
(54.7% at 0.15 GB), demonstrating that out-of-domain per-
formance is robust across CARTRIDGE sizes.

On in-domain queries, prefix-tuning also outperforms
LoRA, but the gap is smaller. Across all CARTRIDGE sizes,
the best LONGHEALTH accuracy prefix-tuning achieves is
55.6% at 0.96 GB, while the best LoRA accuracy is 47.25%
at 0.26 GB. Interestingly, LoRA accuracy at the largest CAR-
TRIDGE sizes is lower; 41.3% at 0.96. It is possible that
this is due to the out-of-domain degradation of LoRA we
discussed above. Since queries in LONGHEALTH test set
are quite different from the synthetic queries generated by
SELF-STUDY (e.g. they are multiple choice and require
some complicated reasoning traces), out-of-domain robust-
ness may be also important for “in-domain” performance.

It isn’t clear why prefix-tuning is so much more robust
than LoRA to out-of-domain performance degradation. It is
surprising given the similarity between a KV-cache and an
MLP – both are linear transformations separated by a non-
linearity. It is possible that this is due to the difference in the
activation function (SiLU vs. Softmax). We leave a more
detailed investigation into the root cause of this difference
for future work.

Initialization The standard way of initializing a k token
CARTRIDGE in our main paper is using the KV cache from
the first k tokens of the source document. In Figure 7, we
ablate different initialization source. We try two additional
initalizations: random vectors and random tokens.

For random vectors, we simply initialize the parameters of
the CARTRIDGE from a component-wise standard normal
distribution. For random tokens, we initialize the CAR-
TRIDGE as the KV cache of the first k tokens of arbitrary
text (specifically, the Wikipedia page for gradient). The
important difference between the these two strategies is that
for random tokens the initial CARTRIDGE is "valid" KV
cache produced by the model, while for random vectors it
is not.

Freezing the attention sink A small yet important detail
of training a CARTRIDGE is that we do not let the first
token’s key and value vectors to be trainable. As studied in
(Xiao et al., 2024c), the first key vector, which corresponds
to the beginning of sequence token and is thus the same for
every sequence, acts as an "attention sink". We observed
that when training a CARTRIDGE, allowing those key and
value vectors to be trainable led to training instability (see
Figure 8). For example, on some runs the MMLU accuracy
would dip to below 30%.

A.2. SELF-STUDY design choices: data-generation and
objective

In SELF-STUDY training, we use a multi-turn, seeded data-
generation process and a context-distillation training ob-
jective (see Section 4). In this section, we ablate these
design choices, comparing against the performance of SELF-
STUDY with simpler data-generation and objectives.

Data Generation In Section 4.1, we describe how we use
five different seed prompt types when generating data with
Algorithm 1. These prompt types, structuring, summariza-
tion, question, use cases, and creative, are described in more
detail in Appendix C.1.

In this section, we compare the performance of SELF-
STUDY with these five prompt types against SELF-STUDY
with a single prompt: “Please generate a single chat mes-
sage to begin a conversation about the information in the

14

https://en.wikipedia.org/wiki/Gradient

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Prefix-Tuning
Cartridge Parameterization

Self-study duration
(# of training steps)

Ac
cu

ra
cy

(M
M

LU
)

Cartridge Size
(GB)

Ac
cu

ra
cy

(M

M
LU

)
Accuracy

(LongHealth)

LoRA

LongHealth vs. MMLU MMLU vs. Cartridge Size MMLU vs. Self-study duration

log(perplexity)
(QASPER)

Ac
cu

ra
cy

(M

M
LU

)

Self-study duration
(# of training steps)

QASPER vs. MMLU MMLU vs. Cartridge Size MMLU vs. Self-study duration

Ac
cu

ra
cy

(M
M

LU
)

Cartridge Size
(GB)

with increasing tokens with increasing rank
ICL

with full corpus

Baselines

MTOB vs. MMLU MMLU vs. Cartridge Size MMLU vs. Self-study duration

ChRF
(MTOB)

Ac
cu

ra
cy

(M

M
LU

)

Self-study duration
(# of training steps)

Ac
cu

ra
cy

(M
M

LU
)

Cartridge Size
(GB)

Ac
cu

ra
cy

(M

M
LU

)
Ac

cu
ra

cy

(M
M

LU
)

Ac
cu

ra
cy

(M

M
LU

)

ICL
with empty context

Figure 6. Comparing CARTRIDGE parameterizations. We train CARTRIDGES using SELF-STUDY on the corpora from LONGHEALTH

(Top), QASPER (Middle), and MTOB (Bottom) using two different parameterizations: simplified prefix-tuning (as described in
Section 3.4) and low-rank adaptation (LoRA) (Hu et al., 2022). We experiment with different CARTRIDGE sizes and choose LoRA rank
and prefix-tuning cache size to align on memory consumption. We evaluate the performance of the CARTRIDGES on questions from
the target dataset (LONGHEALTH or QASPER) using the same protocol as in Figure 3 and also on questions from MMLU (Hendrycks
et al., 2020) that are unrelated to the corpora. (Left) The x-axis shows accuracy on MMLU and the y-axis shows accuracy on the target
dataset. Each point represents a different CARTRIDGE size. (Center Left) The x-axis shows CARTRIDGE size in GB, and the y-axis
shows accuracy on MMLU. (Center Right) The x-axis shows self-study duration in training steps, and the y-axis shows accuracy on
MMLU. The shade of the points represents the size of the CARTRIDGE. (Right) The x-axis shows self-study duration in training steps,
and the y-axis shows accuracy on the target dataset.

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

First k tokens of corpus
8192

Self-study duration
(# of training steps)

2048

Random vectors
with different size Cartridges

Random tokens
with different size Cartridges

with different size Cartridges

81922048

81922048

Figure 7. Ablating CARTRIDGE initalization. We train a CARTRIDGES using SELF-STUDY on the corpora from LONGHEALTH with 3
different initialization strategies. The x axis is the number of training steps and the y axis is the accuracy on longhealth. The blue lines are
the results when initializing the CARTRIDGE using the KV cache from the first k tokens of the document. The purple lines are initializing
the CARTRIDGE from the KV cache of unrelated text. The green lines is initializing the CARTRIDGE with random vectors. Initializing
from the first k tokens leads to slightly stronger results than initializing from the KV cache of random text. This difference may be more
prominent on other corpora where the first k tokens are more relevant to solving the downstream task.

corpus. Ask a question about the corpus or make a request."

Across three datasets, we find that using the five different
prompt types during SELF-STUDY leads to higher qual-
ity CARTRIDGES (see Figure 10). On MTOB with CAR-
TRIDGES of size 1024 tokens, we see a 7.9 point ChRF
improvement (24.1 → 32.0). On LONGHEALTH, the im-
provement is 5.5 accuracy points (45.8→ 51.3).

Interestingly, on QASPER, we see no benefit from using the
five different prompt types. It is possible this is because the
queries in the QASPER dataset are mostly factual questions
that do not require complex reasoning like LONGHEALTH
and MTOB do.

Training Objective In Section 4, we describe the context-
distillation objective we use (Snell et al., 2022; Kim & Rush,
2016; Bhargava et al., 2024). This approach requires that we
collect top output probabilities from the in-context model’s
output distribution during data generation. A simpler alter-
native would be to just use a next-token prediction objective
with cross-entropy.

In our comparison we find that this simpler objective under-
performs the context-distillation objective (see Figure 10).
Most notably, on MTOB with 2048 token CARTRIDGES,
context-distillation outperforms next-token prediction by
8.3 ChRF points (24.9→ 33.2). On LongHealth, the gap is
3.7 accuracy points (47.6→ 51.3).

As shown in Figure 10, quality seems to be consistently
improving with more SELF-STUDY compute. It is possible,
therefore, that by spending more during SELF-STUDY with

the next-token prediction objective, we could close the gap.
However, for a fixed amount of SELF-STUDY compute,
context-distillation is considerably more effective.

These results demonstrate how context-distillation plays an
important role in efficiently recovering ICL performance
with SELF-STUDY.

A.3. Throughput measurement details

We provide details for the throughput measurements in Fig-
ure 2. We use the state-of-the-art SGLang inference system,
with default parameters (Zheng et al., 2024). We measure
timings using an H100 GPU.

We first determine the largest batch size b that fits in GPU
memory, given a cache of size k tokens. We then randomly
initialize b CARTRIDGES of size k and pre-load the CAR-
TRIDGES into GPU memory. We finally measure the time
taken to decode 128 tokens per sequence. The CARTRIDGES
and decoded tokens are appended to a KV-cache during gen-
eration. We report the average of 5 iterations after using 3
warm-up iterations.

B. Extended Related Work
In this section, we provide a more in-depth discussion of
the place our work occupies in the broader literature. The
structure below mirrors the structure of our paper: first we
discuss work related to the parameterization and initializa-
tion of CARTRIDGES (Appendix B.1), then we cover work
that inspired the design of SELF-STUDY (Appendix B.2),

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Frozen first token

with 4096 token Cartridge
trained on LongHealth with

Self-study

Trained first token

Self-study duration
(# of training steps)

Self-study duration
(# of training steps)

LongHealthMMLU

Figure 8. Freezing the attention sink. In both plots, the y-axis is accuracy the x-axis is training step. The left plot is MMLU accuracy
and the right plot is LONGHEALTH accuracy. The green line is an exemplifies the phenomenon we observed where if the key and value
vectors for the first token were trainable, we would often see training instability. In the plot on the left, the MMLU score dips to below
30% before recovering.

and finally we describe other approaches aimed at reduc-
ing the size of the KV-cache, many of which we compare
against in our experiments(Appendix B.3).

B.1. Prior work related to the parameterization of
CARTRIDGES

Below we discuss prior work from the parameter-efficient
fine-tuning literature that inform the way we parameterize
CARTRIDGES in our work.

B.1.1. PARAMETER-EFFICIENT FINE-TUNING (PEFT)

In order to adapt large language models (LLMs) to par-
ticular domains or tasks in a more compute and memory-
efficient manner, several parameter-efficient fine-tuning
(PEFT) methods have been developed. Some of the most
widely used PEFT methods include Low-Rank Adaptation
(LoRA) (Hu et al., 2022), prefix-tuning (Li & Liang, 2021),
and prompt-tuning (Lester et al., 2021).

Leveraging prior observations that fine-tuned language mod-
els exhibit an intrinsic low rank structure, Hu et al. pro-
pose LoRA, which freezes model parameters and injects
trainable rank decomposition matrices between each trans-
former layer. LoRA exhibits on-par or better fine-tuning
quality while reducing the number of trainable parameters
by 10,000 times and the GPU memory requirement by 3
times (Hu et al., 2022).

Li et al. and Lester et al. both take a different approach to
lightweight fine-tuning, proposing tunable "prefixes" and
"soft prompts" respectively to prepend to queries in order to
steer the model to desired outputs. Li et al. proposes prefix-
tuning, which learns a continuous representation for the acti-

vation of the prefix at each transformer layer. These learned
activations are then prepended to activations obtained by
passing the input prompt through the frozen transformer.
In contrast, Lester et al. proposes prompt-tuning, which
optimizes at the discrete token level and prepends a series
of learnable tokens to the input prompt. Both methods show
strong performance while greatly reducing the number of
learnable parameters and improving compute and memory
efficiency for language model adaptation.

Principal Singular values and Singular vectors Adaptation
(PiSSA) (Meng et al., 2024) is another more recent PEFT
method that attempts to ameliorate the slow convergence
problems of LoRA. PiSSA initializes the LoRA rank de-
composition matrices with the principal components of the
original matrix, and exhibits faster convergence and en-
hanced performance compared to LoRA on several tasks,
including GSM8K and MATH.

Several of these methods, especially LoRA, have been
adapted specifically for distilling knowledge provided in
context into the parameters of a language model. Some of
those methods are described in the sections below, and this
work is an extension of prefix-tuning for long-context tasks.

B.1.2. PARAMETER-EFFICIENT ADAPTER COMPOSITION
AND MERGING

A number of works have explored the idea of composing
multiple different parameter-efficient adapters (e.g. LoRAs)
by summing them together, concatenating them, or using a
dynamic mixture of experts (Zhao et al., 2024b; Huang et al.,
2023; Xiao et al., 2024a; Zhao et al., 2024a; Yadav et al.,
2024; Wu et al., 2024; Gou et al., 2023; Li et al., 2024a). For
example, Huang et al. propose LoraHub, a framework for

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

5 seed prompts
Self-study Seed PromptsSelf-study duration

(# of training steps)
Self-study duration
(# of training steps)1 seed prompt

LongHealth MTOB (KE) QASPER

Figure 9. Diverse seed prompts improve quality. We generate synthetic data according to Algorithm 1 and ablate the choice of seed
prompts sampled on Line 2. We consider two approaches: using a single, broad seed prompt (Green) or randomly sampling one of five
different types of seed prompts (Blue). We train CARTRIDGES using self-study with these two strategies on LONGHEALTH, MTOB
and QASPER corpora. In all plots, the x axis is the number of training steps, and the y axis is either accuracy (for LONGHEALTH and
MTOB) or perplexity on ground truth answer (for QASPER). We use an CARTRIDGE size of 1024 tokens.

dynamically weighting and composing multiple language
model adapters (Huang et al., 2023). Given a set of LoRA
modules for different upstream tasks and new unseen task
with in-context examples, LoraHub dynamically weights
the LoRAs and composes a new LoRA module for the task.
Similarly, Zhao et al. propose a method for dynamically
retrieving the most relevant language model LoRAs for a
given task (Zhao et al., 2024a).

B.1.3. PARAMETRIC KNOWLEDGE INJECTION

Several recent works have explored methods for integrating
external knowledge directly into model parameters, known
as parametric knowledge injection (Kujanpää et al., 2024;
Mao et al., 2025; Su et al., 2025). To the best of our knowl-
edge, these studies are the closest in scope to ours. Like ours,
these works address the problem of parametric knowledge
injection: how to store large text corpora within parameters
of a language model. Some use simple synthetic data gen-
eration pipelines or context-distillation objectives. Unlike
our work, these studies do not highlight the memory reduc-
tion and throughput advantages of parametric knowledge
injection techniques. We highlight other differences below.

One parametric knowledge injection method, recently pro-
posed by Kujanpaa et al., is prompt distillation, in which
a teacher model with access to privileged knowledge gen-
erates question-answer pairs. These pairs are then used to
train a LoRA adapter for a student model (identical to the
teacher model, but without access to privileged information)
using a distillation objective (i.e. mimicking the teacher’s
full token distribution) (Kujanpää et al., 2024). This closely
resembles our context-distillation objective, which we also
found works better than next-token prediction. However,
unlike our work, Kujanpaa et al. only train LoRA adapters

of a single size (rank 1024) and don’t assess memory reduc-
tions with respect to full in-context learning. Indeed, they
do not evaluate against long-context ICL baselines at all,
focusing instead on a comparison with RAG. Furthermore,
they evaluate on a relatively simple long-context setting – a
concatenation of SQUAD passages (Rajpurkar et al., 2016)
– which does not exhibit long range dependencies or require
reasoning the way MTOB and LONGHEALTH do.

Similarly, Mao et al. propose Long Input Fine-tuning
(LIFT), which fine-tunes a language model using a typi-
cal next-token prediction objective on overlapping segments
of the corpus, as well as instruction tuning on question an-
swer pairs generated from the corpus. Unlike our work, Mao
et al. find that synthetic Q/A pairs “offer minimal benefit
and can even degrade performance due to overfitting" (Mao
et al., 2025). The difference in our findings is perhaps due
to the fact that they only generate ten synthetic examples,
whereas we generate tens of thousands. Furthermore, they
use a weaker ICL baseline (Llama 3 8B) that only has 8k
tokens of context. Any contexts longer than 8k tokens are
truncated before being fed to the ICL baseline.

Finally, Su et al. proposes Parametric Retrieval Augmented
Generation (Parametric RAG), in which each document has
a corresponding LoRA adapter, trained on an augmented
dataset consisting of the document, rewritten versions of the
document, and question-answer pairs generated from the
document. At inference time, a retriever is used to determine
relevants documents, and the corresponding LoRA adapters
are merged (Su et al., 2025). This method demonstrates
significant gains over RAG on a variety of tasks, including
WikiMultihopQA.

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Context-distillation
2048

with different sizes

Self-study duration
(# of training steps)

Self-study duration
(# of training steps)

512
Next-token prediction

2048

with different sizes

512

LongHealth MTOB (KE) QASPER

Figure 10. Context-distillation objective improves training efficiency. We train CARTRIDGES using SELF-STUDY on the corpora
from LONGHEALTH (Left), MTOB (Center) and QASPER (Right) using two loss functions: a next token prediction loss (green) and a
distillation loss (blue). We evaluate the performance of the CARTRIDGES on questions from the target dataset (LONGHEALTH, MTOB or
QASPER) using the same protocol as in Figure 4. In all plots, the x axis is the number of training steps, and the y axis is either accuracy
(for LONGHEALTH and MTOB) or perplexity on ground truth answer (for QASPER). The shade of the points represents the size of the
CARTRIDGE. Using a distillation loss achieves higher accuracy (or lower perplexity for QASPER) across datasets and CARTRIDGE sizes.

B.2. Prior work related to SELF-STUDY

B.2.1. SELF DISTILLATION AND CONTEXT
DISTILLATION

Self-distillation is another method used to internalize the
performance gains provided by information in context (e.g.
scratchpads, informative instructions) into the model param-
eters. In "Learning by Distilling Context", the authors distill
a model with instructions and scratchpads in context into
parameters by conditioning the model on “[instructions]
+ [task-input]” to predict “[scratch-pad] + [final answer]”;
then fine-tuning the same model to predict its own “[final
answer]” conditioned on the “[task-input]”, without seeing
the “[instructions]” or using the “[scratch-pad]” (Snell et al.,
2024).

B.2.2. SYNTHETIC DATA GENERATION

Due to the ubiquitous need for high quality data for fine-
tuning (e.g. for use with the methods described above), a
large body of work has focused on generating high quality
synthetic data (Nayak et al., 2024) (Abdin et al., 2024)
(Gandhi et al., 2024) (Riaz et al., 2025). For example,
Bonito is a model that is fine-tuned to generate synthetic data
(Nayak et al., 2024), and MetaSynth is a method proposed by
Riaz et al. that uses a language model to orchestrate several
expert LLMs for domain-specific synthetic data generation
(Riaz et al., 2025). The training process for Phi-4, a 14
billion parameter language model, also incorporates signifi-
cant amounts of synthetically generated data (Abdin et al.,
2024). Incorporating synthetic data, in conjunction with
new post-training techniques, allows Phi-4 to surpass its
teacher model on STEM QA tasks, as well as perform well

for its size on reasoning benchmarks. These works demon-
strate the potential for synthetic data generation methods to
augment the capabilities of language models.

B.3. Reducing the size of the KV cache

In this section, we discuss existing approaches for reducing
the size of the KV cache.

First, in Appendix B.3.3, we describe works that propose
architectural changes to the multi-head attention operation,
which reduce the memory footprint of the KV cache. Next,
in Appendix B.3.1, we discuss prompt compression meth-
ods, which reduce the size of the KV cache by converting
a long sequence of input embeddings into a shorter one.
They can be split into hard-token methods, which output
discrete tokens from the vocabulary, and soft-token methods,
which output new token embeddings not from the vocab-
ulary. Finally, in Appendix B.3.2, we describe KV cache
compression methods. These methods directly modify the
key and value matrices in the KV cache. Compared with
prompt compression methods, these are more expressive
because they can produce a KV cache that no sequence of
input embeddings could have produced.

The methodology proposed in our work relies on cache-
tuning, which could be viewed as a form of KV cache com-
pression.

B.3.1. PROMPT COMPRESSION

Hard-token prompt compression Some works aim to
reduce the size of KV cache by converting a longer text into
a shorter text (Jiang et al., 2023b; Li, 2023; Chuang et al.,
2024; Zhang et al., 2024a; Pan et al., 2024). These methods

19

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

are typically referred to as hard-token prompt compression
methods because the resulting KV cache comes from dis-
crete tokens from the vocabulary. Compared with soft-token
prompt methods, these methods work well with black-box
API models.

These methods can be broadly classified into two categories:
filtering and summarization based methods. Filtering meth-
ods cut text from the original prompt using heuristics such as
self-information. For example, LLMLingua and Selective-
Context use a smaller LLM to filter a long prompt (e.g.
dropping redundant tokens) before passing it to the main
model (Jiang et al., 2023b; Li, 2023). Summarization meth-
ods paraphrase a long prompt into a smaller number of
tokens (Chuang et al., 2024).

Soft-token prompt compression with adapted LLMs In
one line of work, researchers train a model (typically an
adapted LLM) to compress a long prompt into a smaller
number of soft tokens (Chevalier et al., 2023; Yen, 2024;
Ge et al., 2023b; Mu et al., 2023; Qin et al., 2023).

For example, Autocompressors and In-context Autoencoders
(ICAE) are LLMs that are fine-tuned to output embeddings
which can be used in soft-token prompts (Chevalier et al.,
2023; Ge et al., 2023b). Autocompressors are trained with
full-parameter fine-tuning and leverage a recursive strategy
to generate the soft prompts, whereas ICAEs are trained
with LoRA and use a single forward pass to generate the
soft prompts. A number of other works also propose us-
ing an auxiliary model to produce soft-tokens from a long
prompt (Ge et al., 2023b; Qin et al., 2023). Gisting is an-
other method that differs from those above in that it uses
the same LLM to compress the prompt into soft tokens as it
uses to generate the response (Mu et al., 2023).

Soft-token prompt compression via gradient-descent
Soft tokens can also be produced by optimizing input token
embeddings with gradient descent. This idea, called prompt
tuning, was first proposed for the purpose of conditioning a
frozen langauge model to perform specific tasks (Lester
et al., 2021). As such, it is an important part of the
parameter-efficient fine-tuning literature and is discussed
in more detail in Appendix B.1.1. Since then, Li et al. has
extended prefix tuning techniques to long-context settings,
proposing a new method called prefix propagation, which
conditions prefixes on previous hidden states to achieve su-
perior performance on long-document tasks compared to
prefix tuning (Li et al., 2024a).

B.3.2. KV CACHE COMPRESSION

Hard-token KV cache compression Motivated by the
observation that, in some settings, a small number of keys
dominate the attention scores of subsequent queries, several

works have proposed KV cache eviction policies wherein
keys and values are dynamically dropped during genera-
tion (Ge et al., 2023a; Zhang et al., 2023; Tang et al., 2024;
Oren et al., 2024). For example, H20 drops keys and values
from generated tokens based on a running sum of historical
attention scores (Zhang et al., 2023). Similarly, SnapKV
drops keys and values from prompt tokens based on a win-
dow of queries from the end of the prompt (Li et al., 2024b).

A major limitation of eviction methods is that once a key
is evicted, it cannot be recovered. Instead of evicting keys
permanently, another line of work focuses on selectively
loading keys from KV cache to SMs. While these works do
not reduce memory consumption of the KV cache, they can
speed up inference by making better use of GPU memory
bandwidth (Ribar et al., 2023; Tang et al., 2024). For ex-
ample, the Quest method estimates critical tokens at each
decoding step and selectively loads them to SMs (Tang et al.,
2024).

Compared with the hard-token prompt compression meth-
ods, KV-cache compression methods allow fine-grained
control at the level of an attention head. This means that
a token can be dropped from one attention head but not
another.

Soft-token KV cache compression with merging In an-
other line of work, instead of evicting tokens from the KV
cache, researchers propose merging similar tokens (Wang
et al., 2024; Zhang et al., 2024c; Wan et al., 2024; Liu
et al., 2024b). For example, Cache Merge (CaM) takes
keys marked for eviction and merges them instead, using a
weighting scheme based on attention weights (Zhang et al.,
2024c). Wang et al. builds on this work by clustering
key states into "merge sets" based on cosine similarity, and
merging states within a "merge set" with a Gaussian kernel
weighting scheme, which upweights states more similar to
a pivotal state chosen as the token with the largest total
attention score (Wang et al., 2024). Wan et al. expands on
both these works with Dynamic Discriminative Operations
(D2O), which performs optimizations at both the layer and
token levels. D2O adjusts the KV cache budget for each
layer based on its attention density and uses an exponential
moving average mechanism to dynamically determine when
a previously discarded token is similar enough to retained
tokens to be merged back in (Wan et al., 2024). All of these
works demonstrate promising results, offering similar or bet-
ter performance on several tasks compared to a full cache
with a 50% or more reduction in cache size. However, there
is still room for further improvement, as these methods still
fail to match full cache performance in several tasks, and
even a 50% reduction in cache size may still be prohibitively
expensive for very large models or very long contexts. Ad-
ditionally, these works do not evaluate the effectiveness of
these methods in long-context settings.

20

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

Soft-token KV cache compression with low-rank pro-
jection A number of works leverage the observation that
the KV cache exhibits low-rank structure to develop com-
pression methods (Yu et al., 2024; Chang et al., 2024;
Zhang et al., 2024b; Zhou et al., 2025; Saxena et al., 2024).
Similar to compression methods based on merging, com-
pression methods based on low-rank adaptation achieve
performances similar to or exceeding full caches on several
tasks at 50% compression, while experiencing performance
degradation upon further compression.

Soft-token KV cache compression with adapted LLMs
Above we discussed how some works adapt an LLM to
output a shorter sequence of soft tokens given a long context.
Similarly, one could adapt an LLM to output a smaller
KV cache given a long context. While less explored than
the analagous prompt compression approach, there is at
least one published method that falls into this category. In
KV-distill, the authors add LoRA adapters to an LLM’s
query projections and train them to to produce queries which
aggregate information from prior tokens (Chari et al., 2025).
The adapter is applied selectively to some tokens and only
these tokens are kept in the KV cache. The idea is that
these selected tokens can act as sinks to collect information
from prior tokens. The adapter is trained with a distillation
objective between a compressed and uncompressed KV
cache. However, unlike our work, KV-distill does not use
any training at test time.

Soft-token KV cache compression with gradient-descent
The idea of treating the keys and value matrices in a KV
cache as weights and training them with gradient descent
was first discussed in the prefix-tuning paper (Li & Liang,
2021). In this work, the method was not applied to long-
contexts, but rather as a parameter-efficient fine-tuning
method that can be applied to training datasets with input-
output pairs, so we discuss it in more detail in B.1.1. Since
then, we are not aware of works that have applied this tech-
nique to handle long-contexts.

B.3.3. ARCHITECTURAL CHANGES

A number of works have proposed architectural changes to
the original multi-head attention (MHA) operation (Vaswani
et al., 2017) that reduce the memory footprint of the KV
cache. Because they fundamentally alter the architecture,
these methods are not immediately compatible with pre-
trained models using the standard MHA operation.

The earliest works in this direction developed fixed sparsity
patterns in the attention map (Beltagy et al., 2020; Child
et al., 2019; Zaheer et al., 2020). For example, many works
use a sliding window sparsity pattern wherein each token
attends to a fixed window of tokens around it. These ap-
proaches reduce the size of the KV cache because they

require only keeping around a fixed number of tokens in
the KV cache. More recently, some large language mod-
els have adopted sliding window sparsity in a subset of
layers/heads (Team et al., 2024).

While the methods above reduce the size of the cache by in-
troducing sparsity at the token-level, another class of meth-
ods changes the structure of the attention heads. Multi-
query attention (MQA), the earliest of such modifications,
uses multiple query heads but only a single key and value
head (Shazeer, 2019). While MQA dramatically reduces the
size of the KV cache, it can lead to a significant drop in the
expressive power of the model. Grouped-query attention
(GQA) is a middle ground between MQA and MHA that
allows a group of query heads to attend to a single key and
value head (Ainslie et al., 2023). Many frontier models use
GQA, including the Llama 3 architecture, which we use
in our experiments (Dubey et al., 2024; Jiang, 2024; Yang
et al., 2024a). More recently, a number of other architec-
tural modifications have been proposed including including
Multi-head Latent Attention (Liu et al., 2024a) and Tensor
Product Attention (Zhang et al., 2025).

In another line of work, researchers observe that without the
softmax operation in the attention mechanism (i.e. lineariz-
ing the attention operator), the KV cache can be faithfully
represented by the fixed size matrix K⊤V (Arora et al.,
2024). This allows us to represent the KV cache with a sin-
gle matrix whose size is independent of the context length.

Indeed, a large body of work has focused on developing ar-
chitectures with fixed-size memory consumption (i.e. mod-
els that do away with the KV cache). Notable examples
include state-space models (Gu & Dao, 2023), RNNs (Beck
et al., 2024), and other linear attention variants (Arora et al.,
2024; Yang et al., 2024b).

Prior work shows that there are tradeoffs between the mem-
ory consumption of an architecture and the ability of a model
to perform recall-intensive tasks, when controlling for com-
pute (i.e. FLOPs) (Arora et al., 2024). In this context,
our work shows that by increasing compute (i.e. FLOPs),
we can reduce the memory consumption of a model with-
out sacrificing performance. In ??, we provide a prelinary
theoretical analysis relating SELF-STUDY with recurrent
architectures. However, future work should explore the re-
lationship between CARTRIDGES and recurrent models in
more depth.

B.3.4. ORCHESTRATION FOR LONG-CONTEXT

In this section, we describe strategies for managing long-
contexts by orchestrating calls to LLMs. For instance, the
approach by (Russak et al., 2024) involves summarizing
chunks of the context and then combining the summaries.
Similarly, PRISM (Jayalath et al., 2024) treats the context

21

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

as a sequence of chunks, capturing key information in a
structured data format. MemGPT (Packer et al., 2023) intro-
duces a virtual memory paging system, drawing inspiration
from operating systems. As context length reaches the limit
of available memory, the system strategically determines
which information to retain.

C. Extended method description
There are three key details of SELF-STUDY: the seed
prompts, the chunking strategy, and the loss. In this section
we discuss the seed prompts and chunking strategy, and in
Appendix A.2 we further ablate the loss function we use.

C.1. SELF-STUDY seed prompts

As discussed in Algorithm 1, we seed the synthetic conver-
sation generation with a prompt that elicits conversations
about different aspects of the document. For each conver-
sation, we randomly sample one of the following functions
and create a seed prompt by calling it:

Structuring Seed Prompt Generator

1 def structuring_seed_prompt(**kwargs):
2 DATA_FORMATS = [
3 "JSON",
4 "YAML",
5 "TOML",
6 "INI",
7 "XML",
8 "plain text",
9]

10
11 data_format = random.choice(DATA_FORMATS)
12
13 EXAMPLES = [
14 (
15 "Can you structure the information

in {{subsection}} of {{document}} related
to {{something specific}} "

16 f"in the following format: {
data_format}? "

17 "Be sure to include precise
information like any dates, times, names,
and numerical values.’"

18 ...
19
20]
21
22 example = random.choice(EXAMPLES)
23
24 return (
25 f"Please generate a single chat message

instructing an LLM to structure the
information in {data_format}. "

26 "Output only the chat message itself and
absolutely nothing else. "

27 "Make sure it is clear what section and
document you are asking about. "

28 f"The message can follow the following
template, filling in details from the
corpus: \n\n’{example}’"

29)
30
31

Summarization Seed Prompt Generator

1 def summarization_seed_prompt(**kwargs):
2 prompts = [
3 (
4 "Please generate a single chat

message instructing an LLM to summarize
part of the corpus. "

5 "Make sure the instruction is very
explicit about the section of the corpus
that you want to summarize. "

6 "Include details (ids, names, titles
, dates, etc.) that make it clear what you
are asking about. "

7),
8 (
9 "Please generate a single chat

message instructing an LLM to summarize a
section. "

10 "Make sure the instruction is
explicit about the section that should be
summarized and the document it is from."

11),
12]
13 prompt = random.choice(prompts)
14 return prompt
15
16

Question Seed Prompt Generator

1 def question_seed_prompt(**kwargs):
2 prompts = [
3 (
4 "Generate a question for an LLM that

will test its knowledge of the information
in the corpus above. "

5 "In your question be sure to include
details (ids, names, titles, dates, etc.)
that make it clear what you are asking
about. "

6 "Output only a single question. Do
NOT include any other text or explanation
other than the question."

7),
8 (
9 "Generate a message for an LLM that

will test its knowledge of the information
in the corpus above."

10 "Be sure to include details (ids,
names, titles, dates, etc.) in the question
so that it can be answered without access
to the corpus (i.e. closed-book setting). "

11 "Output only a single question. Do
NOT include any other text or explanation
other than the question."

12),
13 (
14 "You are helping to quiz a user

about the information in the corpus. "
15 "Please generate a question about

the subsection of the corpus above. "
16 "Be sure to include details (ids,

names, titles, dates, etc.) in the question
to make it clear what you are asking about
. "

17 "Answer only with the question, do
not include any other text."

18),
19]
20 prompt = random.choice(prompts)
21 return prompt
22

22

1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

Use Case Seed Prompt Generator

1 def use_case_seed_prompt(**kwargs):
2 prompt = (
3 "You are working to train a language

model on the information in the following
corpus. "

4 "Your primary goal is to think about
practical, real-world tasks or applications
that someone could achieve using the
knowledge contained within this corpus. "

5 "Consider how a user might want to apply
this information, not just recall it. "

6 "After considering potential use cases,
your task will be to generate a sample
question that reflects one of these
downstream applications. "

7 "This question/instruction/task should
be something a user, who has access to this
corpus, might ask when trying to
accomplish their specific goal. "

8 "Output only a single question. Do NOT
include any other text or explanation other
than the question."

9)
10 return prompt
11
12

Creative Seed Prompt Generator

1 def creative_seed_prompt(**kwargs):
2 prompt = [
3 (
4 "You are having a creative

conversation inspired by the information in
the corpus. "

5 "Please generate a question for your
conversation partner to start off the
discussion. "

6 "Answer only with the question, do
not include any other text."

7),
8]
9 return random.choice(prompt)

C.2. SELF-STUDY chunking

For the SELF-STUDY data generation process, we extract
uniformly random token-level chunks from the input cor-
pus C. A corresponding textual description is generally
prepended to each chunk c̃ to contextualize it when gen-
erating the seed prompt. This approach helps the model
focus on different parts of the corpus and generate diverse
synthetic examples. The specific chunking parameters and
descriptions are tailored to each dataset:

• LONGHEALTH: Chunks are sampled with a minimum
size of 512 tokens and a maximum size of 4096 tokens.
The accompanying description is: ‘Below is a section of
a patient’s medical record. It is part of a larger corpus of
medical records for Npatients different patients.’

• AMD/FinanceBench: Fixed-size chunks of 8192 tokens
are utilized. No specific descriptive text is prepended to
these chunks.

• MTOB: Chunks are sampled with a minimum size of
512 tokens and a maximum size of 4096 tokens. The
description used is: ‘The following is an excerpt from a
grammar book about the Kalamang language.’

• QASPER: Following our general methodology, chunks
are sampled with a minimum size of 512 tokens and a
maximum size of 4096 tokens. A generic description
is used to contextualize the chunk as an excerpt from
a research paper, in line with the nature of the Qasper
dataset.

D. Datasets
D.1. GENCONVO

To evaluate the ability of our approach to handle diverse
queries over long documents, we generated the GENCONVO
dataset. We created GENCONVO using the AMD 2022 10-K
filing, a document from the FinanceBench corpus (Islam
et al., 2023). The primary purpose of GENCONVO is to
simulate a wide range of tasks a user might ask a model to
perform given a long document, thereby testing the model’s
comprehension, reasoning, and ability to extract varied types
of information. The generation process relies on Claude
Sonnet 3.7 (Anthropic, 2024) and is structured as follows:

1. Document Input: The entire source document (e.g., the
AMD 2022 10-K, which is less than 200,000 tokens and
fits within the model’s context window) is provided to
Claude Sonnet 3.7.

2. Question Generation: A series of distinct prompt tem-
plates (detailed below), designed to elicit different rea-
soning traces (e.g., factual recall, synthesis, multi-hop
reasoning), are used to generate questions. For the given
document and each prompt template, we ask the model
to generate 16 unique questions. This involves providing
the model with the full document content alongside the
specific question-generation prompt.

3. Answer Generation: Subsequently, for each generated
question, Claude Sonnet 3.7 is prompted again with the
original full document and the generated question to
produce an answer. This process ensures that the answers
are grounded in the provided document.

We hope GENCONVO provides a challenging benchmark
that moves beyond simple fact retrieval, assessing a model’s
capacity for deeper understanding and more complex in-
formation processing over long contexts. The following
prompt templates were utilized for the question generation
phase:

23

1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319

Factual Prompt Template
Please generate a question to test
someone’s ability to remember factual
details from the document. The answer
should be a few tokens long and be a
factual detail from the statement, such
as a number, entity, date, title, or
name.
This question should not be common
knowledge: instead, it should be
something that is only answerable via
information in the document.

Knowledge Prompt Template
Please generate a question that requires
combining information mentioned both
inside and outside the document.
This question should require using a
fact from the document and also a fact
that you are confident about, but is not
mentioned in the document. For instance:
- What are the founding dates of the
companies that got acquired this year?
This is a good question because the names
of the acquired companies are mentioned
in the document and the founding dates
are not mentioned. - What is the name
of the CEO’s spouse? This is a good
question because the name of the CEO
is mentioned in the document and the
spouse’s name is not mentioned.
The answer should be a fact that is a
few tokens long such as a number, entity,
date, title, or name.

Disjoint Prompt Template
Please generate a multi-hop question
that tests someone’s ability to use
factual information mentioned in at least
two very different sub-sections of the
document.
This question shouldn’t be a standard
question about this kind of document.
Instead, it should ask about two
particularly disconnected ideas, like
comparing information about the amount of
owned space for the company headquarters
with the amount of dollars of estimated
liability or comparing the revenue number
with the number of employees.
This question should also test one’s
ability to do retrieval: do not give
away part of the answer in the question.
Ensure that for one to get the correct
answer to the question, they need to
understand the document.
The answer should be a short: for
example, a number, entity, date, title,
or name.

Synthesize Prompt Template
Please generate a question that requires
synthesizing and aggregating information
in the document.
For instance, you could ask someone to
summarize a page of the document, list
all the key competitors mentioned in
the document, or summarize the company’s
business model.

Structure Prompt Template
Please generate a question that requires
understanding the structure of the
document.
This question should be more about the
structure of the document, rather than
the precise statement details. For
instance, you could ask someone to
list the titles of all the sections
in the document, describe the document
structure, report the total number of
pages, ask which section amongst two
sections comes first, or report the
section with the largest number of
tables.

Creative Prompt Template
Please generate a question about the
document to test someone’s ability to
comprehend the content of the document.
This question specifically should be
focused on their ability to generalize
the information about the document to a
strange question of sorts.
This question shouldn’t be a standard
question about this kind of document, it
should ask to do something abnormal and
creative, like writing a poem about a
financial document.

Counting Prompt Template
Please generate a question that requires
counting how frequently different events
occur in the document.
This question should be about statistical
properties of the document, rather than
the statement details. For instance, you
could ask someone to count the number of
times the word "million" is mentioned or
count the length of the shortest section
title.
The answer should be a number.

Reasoning Prompt Template
Please generate a question that requires
mathematical reasoning over the values in
the document.
This question should require going beyond
the facts directly mentioned in the
statement, such as asking to compute the

24

1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374

percentage increase in revenue between
two years, find the largest expense
category, or calculate difference in
profit between two years.
The answer should be a number.

D.2. LONGHEALTH

LONGHEALTH is a benchmark for evaluating large lan-
guage models ability to analyze and interpret long clinical
texts (Adams et al., 2024). The benchmark consists of 20 fic-
tional clinical case reports (each containing between 5,090
and 6,754 word) and 400 multiple-choice questions based
on them.

In our experiments, the context C consists of the reports for
a panel of n patients. We evaluate in two settings:

1. LONGHEALTH HALF with n = 10 patients, with a full
panel of approximately 100k tokens, which fits in the
context length of the LLAMA 3 models.

2. LONGHEALTH FULL with n = 20 patients, with a full
panel of approximately 200k tokens.

The questions are categorized into information extraction,
negation, and sorting.

A sorting question is included below:

Please answer the question below about
the following patient: ID patient_03,
Name: Mr. John Williams, Birthday:
1956-08-08 00:00:00, Diagnosis: Multiple
Myeloma
<question>
Mr. Williams received multiple
radiologic examinations. In which order
did she receive them?
</question>
<options>
CT Whole Body > MR Spine Scan > CT Spine
Scan > PSMA-PET-CT Scan > CT Chest > CT
Whole Body > Whole Body CT scan
Whole Body CT scan > CT Spine Scan > CT
Whole Body > MR Spine Scan > CT Chest >
PSMA-PET-CT Scan > CT Whole Body.
CT Whole Body > CT Whole Body > CT Chest
> CT Chest > PSMA-PET-CT Scan > MR Spine
Scan > CT Spine Scan > Whole Body CT scan
> Chest X-ray
CT Chest > CT Spine Scan > CT Whole Body
> Whole Body CT scan > PSMA-PET-CT Scan >
MR Spine Scan > CT Whole Body
Whole Body CT scan > CT Spine Scan > CT
Whole Body > MR Spine Scan > CT Chest >
CT Whole Body > PSMA-PET-CT Scan
</options>
You should first think step by step.
Then give your final answer exactly as
it appears in the options. Your output

should be in the following format:
<thinking> {{YOUR_THOUGHT_PROCESS}}
</thinking>

<answer>
{YOUR_ANSWER}
</answer>

An example of a negation question is included below:

Please answer the question below
about the following patient: ID
patient_01, Name: Anna Sample,
Birthday: 1970-01-01 00:00:00,
Diagnosis: DLBCL
<question>
Which of these examinations were
never performed in Mrs. Sample?
</question>
<options>
Bone marrow aspiration
CSF aspiration
MRI of the head
Pulmonary function testing Cardiac
stress testing
</options>
You should first think step by step.
Then give your final answer exactly
as it appears in the options. Your
output should be in the following
format:
<thinking> {{YOUR_THOUGHT_PROCESS}}
</thinking>

<answer>
{YOUR_ANSWER}
</answer>

D.3. MTOB

The Machine Translation from One Book (MTOB) bench-
mark tests a large language model’s ability to learn to trans-
late between English and Kalamang, a low-resource lan-
guage with virtually no web presence (Tanzer et al., 2023).
The core task is to perform translation (Kalamang to En-
glish, and English to Kalamang) by primarily relying on
a single comprehensive grammar book and a small set of
accompanying linguistic resources.

The source documents provided by the MTOB benchmark
are:

• A grammar of Kalamang: A comprehensive grammar
textbook, with the original source provided in LATEX for-
mat. This book details the phonology, morphology, and
syntax of Kalamang.

25

1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429

• Bilingual Word List (W): A list of Kalamang words with
their part-of-speech tags and English descriptions.

• Parallel Kalamang-English Corpus (S): A collection of
375 paired Kalamang-English sentences.

The MTOB authors preprocessed the grammar textbook
from its original LATEX source into several plaintext splits
for their baseline experiments. These include:

• Gm (Medium-length chunk): A plaintext segment of
approximately 50,000 tokens consisting of an overview
chapter, a morpheme table from the grammar book, and
the complete bilingual word list (W).

• Gl (Long-length chunk): A larger plaintext segment of
approximately 100,000 tokens, containing chapters from
the grammar book that the MTOB authors deemed most
important for the translation task.

• Full Plaintext Textbook (G): The entire grammar book
converted to plaintext.

The combination of the long-length chunk (Gl), the parallel
sentences (S), and the word list (W) exceeds the context
window of Llama 3 models. We use the medium-length
chunk Gm and the parallel sentence list S as input for our
ICL baseline.

D.4. QASPER

QASPER is a benchmark for evaluating the ability of large
language models to answer questions about scientific pa-
pers (Dasigi et al., 2021). To create a challenging multi-
query long-context setting resembling the setup described in
Section 3.1, we concatenate 16 papers all related to QA NLP
models to form out corpus C. In total, there are 78 questions
about these 16 papers in the dataset, which we use as the
queries Q.

Because the dataset only includes short answers and ground-
truth spans containing evidence for each answer, we rewrite
the answers in a longer, more conversational format using
GPT-4.1 and use these as the targets when evaluating.

26

	Introduction
	Related work
	The Cartridge paradigm
	Problem setup
	Preliminaries: Language models and KV caches
	Formalizing Cartridges
	Parameterizing Cartridges
	Serving Cartridges

	Self-Study: A self-supervised method for compressing long contexts
	Self-supervised synthetic data to avoid overfitting
	Self-Study context-distillation objective

	Results
	Pushing the quality/cost tradeoff frontier
	Extending the effective context window
	Composing Cartridges
	Ablating Self-Study design choices

	Discussion and conclusion
	Extended Results
	Cartridge design choices: parameterization and initialization
	Self-Study design choices: data-generation and objective
	Throughput measurement details

	Extended Related Work
	Prior work related to the parameterization of Cartridges
	Parameter-efficient Fine-tuning (PEFT)
	Parameter-efficient Adapter Composition and Merging
	Parametric Knowledge Injection

	Prior work related to Self-Study
	Self Distillation and Context Distillation
	Synthetic Data Generation

	Reducing the size of the KV cache
	Prompt compression
	KV cache compression
	Architectural changes
	Orchestration for long-context

	Extended method description
	Self-Study seed prompts
	Self-Study chunking

	Datasets
	 GenConvo
	LongHealth
	MTOB
	QASPER

