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ABSTRACT

Graph structures are widely leveraged to represent proteins. However, to a large
extent, proteins fold into complex three-dimensional conformations that cannot be
entirely well-captured by graphs built only from sequence adjacency or distance
cutoffs. In this paper, we discover that a more faithful characterization comes
from secondary structure elements—such as a-helices and (3-sheets—that reflect
recurring local motifs and stabilizing hydrogen-bond patterns. To this end, we
propose a new graph neural network framework that augments node represen-
tations with the secondary structure assignment of each residue and introduces
a novel edge-construction strategy based on hydrogen bonds weighted by their
energetic strength. This formulation captures both local structural context and
long-range couplings essential to protein stability. On commonly used bench-
marks, our model achieves the leading accuracy compared with state-of-the-art
methods while providing improved interpretability through biologically mean-
ingful edges. These results highlight the promise of secondary-structure-aware,
energy-weighted graphs as an effective inductive bias for protein representation
learning.

1 INTRODUCTION

Graph Neural Networks (GNNs) have emerged as powerful learning paradigms for complex, re-
lational data, with successes on social networks (Easley & Kleinberg, 2010), knowledge graphs
(Easley & Kleinbergl 2010), molecular graphs (Wu et al., 2018)), and biological networks (Barabasi
& Oltvai, |2004), as well as for modeling 3D objects (Simonovsky & Komodakis| 2017), manifolds
(Bronstein et al., [2017), and source code (Allamanis et al.,2017). Benchmarks such as the Open
Graph Benchmark (OGB) have further catalyzed progress by standardizing tasks and evaluation (Hu
et al.,[2020).

Proteins as graphs. Proteins are composed of amino acids and realize diverse cellular functions
by folding into three-dimensional (3D) conformations. Beyond the one-dimensional (1D) peptide
sequence, each residue has 3D coordinates in space; effective modeling must therefore leverage
both views. Notably, proteins with similar sequences can adopt very different folds (Alexander
et al., [2009), whereas proteins with similar folds may have entirely different sequences (Agrawal
& Kishan, [2001). These observations motivate representation learning methods that couple 1D
sequence and 3D structure (Liu et al.,[2022; [Fout et al., 2017; Jumper et al.| 2021} |Gao et al.| 2021}
Gao & Ji, 2019; [Yan et al., 2022; [Wang et al., [2022b; [Yu et al., 2022; Xie et al.| 2022} |Gui et al.}
2022; |Luo et al., [2022; Baldassarre et al., [2021; Jing et al., | 2020; |[Zhang et al.l |2022} [Hermosilla &
Ropinskil [2022; [Fan et al.| 2022; Hu et al., [ 2024)).

From proximity proxies to biophysical edges. Radius cutoffs and sequence windows are conve-
nient, but do residues “interact” merely because they are close in space or adjacent in sequence,
or because specific chemical and geometric conditions are satisfied (e.g., donor/acceptor compati-
bility and orientation)? If proximity were the right criterion, why would model performance hinge
so strongly on brittle hyperparameters (window size, cutoff radius) instead of stable, mechanistic
rules? Prior work improves parts of this picture—CDConv separates discrete sequence from contin-
uous geometry (Fan et al.,[2022), ProNet enforces hierarchical completeness (Wang et al., 2022a)),
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CoupleNet couples dual graphs (Hu et al. 2024)), and SCHull offers a sparse, connected scaffold
(Wang et al.| 2025)—yet the edge decision itself often remains a proximity proxy.

Protein structure is organized into secondary-structure elements (e.g., a-helices, S-sheets) stabilized
primarily by hydrogen bonds. As outlined in [Schulz & Schirmer| (2013), organization spans pri-
mary, secondary, tertiary, and quaternary levels and extends to supersecondary motifs and domains
(Fig.[Ta). In practice, tools such as DSSP (Hekkelman et al.,[2025)) provide residue-level secondary-
structure assignments and identify backbone hydrogen bonds (examples in Fig.[Tb). These annota-
tions suggest a more faithful inductive bias: nodes should encode secondary-structure context, and
edges should reflect stabilizing interactions—with strengths that vary—rather than distance alone.
This is precisely the gap we target next with SSProNet.
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(a) Levels of structural organization in proteins. (b) Examples of secondary structure elements.

Figure 1: (a) Protein structure levels, from primary to quaternary (plus supersecondary and do-
mains). (b) Common secondary-structure elements such as a-helices, 3-sheets, and turns, from
DSSP (Hekkelman et al., [2025).

1.1 CONTRIBUTION

We introduce SSProNet, a GNN that (i) enriches node features with each residue’s secondary-
structure assignment and (ii) defines edges via backbone hydrogen bonds weighted by their energetic
strength. Messages flow on this energy-weighted H-bond graph, fused with proximity edges that
come from radial graph construction. To ensure geometric robustness, we adopt the SE(3)-invariant
descriptors from ProNet (Wang et al.| [2022a)), derived from local residue frames and inter-residue
geometry, which guarantee a complete and rotation/translation-invariant structural representation.
Architecturally, SSProNet is compatible with dual-stream coupling ideas (as in [Hu et al.| (2024))
yet replaces “who-talks-to-whom” with a biophysically grounded criterion; it is complementary to
CDConv’s separation of discrete/continuous displacements (Fan et al.,|2022), and can be paired with
SCHull when a provably sparse/connected scaffold is desired (Wang et al., [2025)).

1.2 PAPER OUTLINE

Section 2 provides the necessary background for GNN-based protein representation learning and
the motivation for our SSProNet. Section 3 formally introduces SSProNet, especially detailing its
graph construction (secondary-structure nodes and energy-weighted H-bond edges) and invariant
features. Section 4 presents experiments, including performance comparisons against the state-of-
the-art SCHull framework (Wang et al., 2025). Section 5 concludes the paper.

2 BACKGROUND AND MOTIVATION

2.1 PRELIMINARY

We model a protein as a 3D graph G = (V, E,P), where V indexes residues (or atoms), F is an
edge set, and P = {P; € R®},cy are coordinates (by default C,, for residue graphs). A represen-
tation ®(G) is SE(3)-invariant if ®(RP + t) = ®(P) for any rotation R € SO(3) and translation
t € R3; it is complete (up to rigid motion) if ®(G) = ®(G’) implies the coordinates of G’ are
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congruent to G. Across biomolecular GNNs, four properties consistently drive performance and
robustness: (i) SE(3) symmetry handling (invariance/equivariance), (ii) completeness/expressivity
of geometric encodings, (iii) a graph topology that is sparse, connected, and maximally informative,
(iv) biologically grounded priors (e.g., secondary structure, hydrogen bonds).

2.2 HIERARCHICAL SE(3)-AWARE ENCODERS

Coarse-to-fine structure. ProNet (Wang et al.| 2022a) introduced hierarchical encoders that build
SE(3)-invariant, provably complete descriptors at three levels: (1) amino-acid (residue) with lo-
cal frames and inter-residue geometry; (2) backbone augmenting with plane/dihedral relations to
disambiguate chain orientation; (3) all-atom incorporating side-chain torsions for fine-grained dis-
tinction. Interaction blocks (Hier-Geom-MP) integrate these descriptors into edge-gated message
passing with residual updates and invariant graph readout. This architecture preserves SE(3) sym-
metry while maintaining discriminative power across scales, and serves as the backbone we inherit.

2.3 COUPLING SEQUENCE AND 3D GEOMETRY

Continuous—discrete fusion. Protein neighborhoods have two distinct regularities: 1D sequence
(regular, discrete) and 3D space (irregular, continuous). CDConv (Fan et al.|2022)) addresses this by
convolving over a hybrid neighborhood (continuous displacements ¢ and discrete sequence offsets
A) with offset-specific kernels, thereby reducing interference between the two modalities while
letting them interact.

Two-graph coupling. CoupleNet (Hu et al., [2024) operationalizes the idea with two explicit edge
families—sequence (small |A|) and radius (||P; — P;|| < r)—and performs coupled node—edge
updates. After pooling, it expands spatial thresholds to grow the receptive field as features become
coarser. The key takeaway is that architectural separation of sequence and spatial relations simplifies
learning and stabilizes training.

2.4 GRAPH CONSTRUCTION PARADIGMS

Radius/s-graphs and kNN. Cutoff (¢) or kNN graphs are ubiquitous for coverage and simplicity,
but can be either overly dense (hurting sample efficiency) or fragile (hurting connectivity), and may
admit geometric ambiguities (distinct structures sharing similar local neighborhoods).

Rigid, sparse, connected alternatives. Recent rigidity-aware constructions (e.g., spherical-convex-
hull or related projections) (Wang et al.,[2025)) aim for graphs with theoretical guarantees: low edge
density, connectivity, and improved identifiability when paired with metric/dihedral edge attributes.
These designs reduce spurious edges yet keep enough structure to reconstruct geometry up to isom-
etry, improving downstream stability.

2.5 BIOLOGY-GROUNDED PRIORS

Secondary structure and solvent accessibility. DSSP (Hekkelman et al., 2025) remains the ref-
erence for assigning per-residue secondary structure (H/E/C/... variants) and solvent accessibil-
ity from PDB coordinates. These labels summarize recurring local conformations (helices, sheets,
loops) and exposure, providing interpretable priors that complement purely geometric channels.

Hydrogen bonds (H-bonds). DSSP identifies backbone hydrogen bonds using an electrostatics-
based energy criterion rooted in Kabsch—Sander. More negative energies indicate stronger bonds;
common practice keeps only stabilizing bonds (e.g., threshold h < 0kcal/mol, such as —0.5). Im-
portantly, H-bonds are nonlocal along sequence and can bridge distant 3D regions (inter-strand 3
ladders, helix capping, long-range turns). As graph edges, they add sparse, physically interpretable
couplings that typical radius graphs miss.

2.6 POSITIONING OUR APPROACH

The above motivates two design decisions we adopt in the below Section
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* Keep the encoder, change the graph. We retain ProNet’s hierarchical, SE(3)-invariant message
passing (capacity held constant) and instead redefine the topology to include energy-filtered H-
bond edges on top of a light proximity scaffold. This isolates the effect of biology-grounded
connectivity.

* Add lightweight residue priors. We inject DSSP-derived secondary-structure and solvent-
accessibility channels—interpretable cues that bias the model toward known structural regularities
with minimal parameter overhead.

In contrast to prior two-graph schemes (sequence+radius) (Hu et al.,|2024)) or continuous—discrete
kernels (Fan et al.|[2022), our hybrid edge set introduces chemistry-anchored long-range constraints
(H-bonds) while preserving the simplicity and coverage of a radius scaffold. Combined with com-
plete hierarchical encoders (Wang et al.,[2022a)), this yields message passing over edges that are both
geometrically informative and biophysically meaningful.

3 SSPRONET: SECONDARY STRUCTURE AWARE GRAPH NEURAL NETWORK
FOR PROTEIN REPRESENTATION LEARNING

SSProNet builds on ProNet’s (Wang et al., 2022a)) hierarchical, SE(3)-invariant encoders while in-
troducing a biology-grounded graph and residue priors. Message passing operates on a hybrid edge
set that combines generic proximity contacts with hydrogen-bond couplings anchored in protein
chemistry.

3.1 GRAPH CONSTRUCTION

We represent each protein chain as a residue graph G = (V, E)) with one node per residue and C,,
coordinates P; € R3. The edge set is the union of a generic proximity graph and a biology-grounded
hydrogen-bond graph: E = (Fyaq U Eng) \ {(i,7) | i € V}.

Radius (proximity) edges. We connect residues that are spatially close:
Eiaq = {(Za]) : HPl - Pj||2 < 7"},

with a cutoff 7 (default 10 A) and an optional degree cap to bound neighborhood size. This provides
a light, connected scaffold capturing generic short-range contacts.

Hydrogen-bond edges. From backbone hydrogen bonds identified by a standard secondary-
structure tool (e.g., DSSP (Hekkelman et al., 2025)), we form directed edges between reported
donor-acceptor residue pairs. Let E;; denote the associated H-bond energy (more negative indi-
cates stronger bonding). We retain only stabilizing bonds,

Eug = {(i,j) : H-bond reported between i and j and E;; < h},
with threshold 7 < 0 (default h = —0.5kcal/mol). Unless stated otherwise, energies are used for

filtering (to control precision/recall of Eyp) rather than as per-edge weights; undirected variants
symmetrize by adding (7, ¢) whenever (i, j) € Fup.

Rationale. FE,,4 supplies coverage and local connectivity, while Eyp injects a sparse set of bio-
physically meaningful, often nonlocal couplings. As illustrated in Fig.[2] proximity-based edges are
confined to local neighborhoods, whereas hydrogen-bond edges can span long sequence distances
and link residues that are far apart in 3D but biochemically coupled. This highlights the key differ-
ence: SSProNet does not rely solely on arbitrary cutoffs but grounds its connectivity in physically
interpretable interactions. The combined edge set feeds ProNet-style encoders (Wang et al.} 2022a)),
ensuring that message passing operates on both generic spatial contacts and stabilizing biochemical
interactions.

3.2 NODE FEATURES AUGMENTED WITH BIOLOGICAL PRIORS

Ateach hierarchy level used by ProNet (Wang et al.,[2022a)) (residue, backbone, all-atom), SSProNet
augments the SE(3)-invariant geometric descriptors F(G)pase» F(G)pp, and F(G)ay with two
lightweight residue priors obtained from a standard annotator (e.g., DSSP (Hekkelman et al.| [2025));
see Appendix [B): the secondary-structure label and solvent accessibility. These channels add inter-
pretable biological context that complements ProNet’s primarily local geometric descriptors.
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Figure 2: Comparison of graph construction strategies. Proximity-based graphs connect residues
within a radius threshold, while SSProNet also adds hydrogen-bond edges that bridge distant se-
quence positions based on biophysical donor—acceptor rules. This expands the receptive field in a
biologically meaningful way.

3.3 MODEL OVERVIEW

We retain ProNet’s hierarchical encoder (Wang et al.}2022al) and change (i) the topology F' = E,,qU
FEyg (see Section[3.1)) and (ii) the node channels (see Section[3.2)). Below we specify one interaction
block; stacking L blocks and adding a permutation-invariant readout completes SSProNet.

Notation. Let o(z) = xsigmoid(z) (swish), ® denote the Hadamard product, and || - || denote
vector concatenation. For node i, N'(i) = {j : (i,j) € E} is its neighbor set. The hidden
width is d € N. For each edge (i,7) we precompute three SE(3)-aware, ProNet-based descrip-
tor families {fi(f)}izo corresponding to: k = 0 (distance/angles), & = 1 (orientation or torsion;
level-dependent), and k£ = 2 (positional).

Edge gates. We map descriptors to d-dimensional gates with small MLPs:
e = oi(tl) eR, Kk e{0,1,2). (1)
(k)

where ¢y, is a two-layer perceptron for stream k, and e; ;

message transmitted along (¢, j) in stream k.

is the edge-wise gate that scales the

Interaction block (Hier-Geom-MP). Given node states x(8) = {xl@)}iev at block ¢, we form a
message view and a residual view:

%Y = O'(AX(-Z) + a), ry) = O'(BXEZ) + b), )
)

)

where A, B € R2*d and a,b € R? are learnable; 5(1(-6) is used to compute messages, while r
provides the skip path.

Each stream & applies an edge-gated GraphConv-style update (Morris et al.} 2019):

mg?) = e;) ® ig.g), message sent from j to i in stream k, 3)

ugk) = Z ml(f), neighbor aggregation at node i, “)
JEN (D)

hgk) = U(L(k)ugk))7 stream-specific linear head, 5)

where L(*) € R4 is learnable and has the same shape across streams.

Fusion, mixing, and residual update. We concatenate the three stream outputs, mix them with a
small MLP, and add the residual view:
h h™ er?, X"V = MLP(Ch;) + " (6)
———

stream mixing

_|2
i = |lizo
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where C € R¥*34 projects the concatenated streams back to width d, and MLP (2-3 layers with
swish and dropout) mixes the streams before the skip addition.

Readout and prediction. After L blocks, we pool node embeddings and predict task outputs:

he = Y xt", = MLPyu(he), (7)
eV
where the sum is permutation-invariant pooling over residues, and MLP,; maps the graph embed-
ding to logits (classification) or real values (regression).

Summary. Eqgs.[T[}-6]define a ProNet-style Hier-Geom-MP block with three geometric streams and
edge-gated messages; Eq. [/|is the permutation-invariant graph readout. SSProNet preserves these
mechanics but grounds E in biophysics (radius scaffold + energy-filtered H-bonds) and augments
node inputs with DSSP secondary-structure and solvent-accessibility priors.

4 EXPERIMENT

We evaluate our SSProNet on various protein tasks, including protein fold and reaction prediction,
protein-ligand binding affinity prediction. Detailed descriptions of the datasets are provided in Sec-
tion[4.1]. Detailed experimental setup and optimal hyperparameters are provided in Appendix

4.1 DATASETS

Fold Dataset. We use the same dataset as in (Wang et al., 20255 2022a; |Hou et al.|[2018};|[Hermosilla
et al., 2020). In total, this dataset contains 16,292 proteins from 1,195 folds. There are three test
sets used to evaluate generalization ability:

* Fold: proteins from the same superfamily are unseen during training,
 Superfamily: proteins from the same family are unseen during training,

* Family: proteins from the same family are present during training.

Among the three test sets, Fold is the most challenging since it differs the most from the training
distribution. In this task, 12,312 proteins are used for training, 736 for validation, 718 for Fold,
1,254 for Superfamily, and 1,272 for Family.

Reaction Dataset. For reaction classification, the 3D structures of 37,428 proteins representing 384
EC numbers are collected from the PDB database (Berman et al.,2000), and EC annotations for each
protein are obtained from the SIFTS database (Dana et al., 2019)). The dataset is split into 29,215
proteins for training, 2,562 for validation, and 5,651 for testing. Every EC number is represented in
all three splits, and protein chains with more than 50% sequence similarity are grouped together.

LBA Dataset. Following (Somnath et al., 2021) and (Townshend et al. 2021}, we perform lig-
and binding affinity (LBA) prediction on a subset of the commonly used PDBbind refined set (Wang
et al.||2004; |Liu et al., |20135)). The curated dataset of 3,507 complexes is split into train/validation/test
splits based on a 30% sequence identity threshold to evaluate model generalization on unseen pro-
teins. For each protein—ligand complex, we predict the negative log-transformed binding affinity:

pK = —log,(K),

where K is the binding constant measured in molar units.

4.2 BASELINES

Our main point of comparison is the recent state-of-the-art method SCHull (Wang et al., |2025),
which currently leads performance on fold, reaction, and binding affinity tasks. To contextualize our
contributions, we also benchmark SSProNet against a representative spectrum of methods in protein
graph learning. Below we briefly describe each:

* GCN (Kipf} [2016): a classic semi-supervised GNN that propagates features layer by layer using
a first-order spectral approximation.
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Table 1: Accuracy (%) on protein fold and enzyme reaction classification tasks. Avg. Time is the
average time per epoch (s). A dash (—) means not reported.

Fold

Method React Avg. Time Avg. Time
Fold Super Family Avg.
GCN (Kipf} [2016) 67.3 - 16.8 21.3 82.8 40.3 -
IEConv (Hermosilla et al.}|2020) 87.2 - 45.0 69.7 98.9 71.2 -
DWNN (L1,|2022) 76.7 - 31.8 37.8 85.2 51.5 -
GearNet (Zhang et al.||2022) 79.4 - 28.4 42.6 95.3 55.4 -
HoloProt (Somnath et al.| 2021) 78.9 - - - - - -
MACE (Batatia et al.;[2022) - - 23.7 214 60.2 35.1 114
MACE+SCHull (Wang et al.|[2025) - - 27.0 23.1 65.0 384 105
SEGNN (Brandstetter et al.||2021) - - 28.8 304 77.1 45.4 121
SEGNN+SCHull (Wang et al.[|2025) - - 32.0 33.6 86.7 50.3 115
GVP-GNN (Jing et al.}|2020) 65.5 320 16.0 22.5 83.8 40.8 106.3
GVP-GNN + SCHull (Wang et al.| [2025) 77.1 345 24.5 27.1 88.0 47.1 111
ProNet-Amino-Acid (Wang et al.| 2022a) 86.0 210 51.5 69.9 99.0 73.5 70.5
ProNet-Amino-Acid+SCHull (Wang et al.||2025) 87.9 221 52.2 739 99.2 75.1 69.3
ProNet-Backbone (Wang et al.}|2022a)) 86.4 213 52.7 70.3 99.3 74.1 74.1
ProNet-Backbone+SCHull (Wang et al.| 2025) 88.1 230 56.1 74.6 99.4 76.7 75.8
SSProNet-Amino-Acid (Ours) 87.5 287 62.6 76.9 1.0 79.8 90.3
SSProNet-Backbone (Ours) 88.3 293 63.1 77.4 1.0 80.2 93.7

* IEConv (Hermosilla et al.,[2020): uses a multi-graph representation combining structural connec-
tivity and geometry, with a kernel that fuses intrinsic and extrinsic distances.

* DWNN (L1, 2022): an orientation-aware GNN with 3D directed weights, enabling explicit mod-
eling of angular relations under equivariance.

* GearNet (Zhang et al.,[2022): a geometry-aware residue graph encoder pretrained via contrastive
and structural prediction tasks, which captures structural signals efficiently.

* HoloProt (Somnath et al., 2021): integrates surface geometry and residue topology in a multi-
scale network, using superpixels to compress surface graphs and bridging layers in message pass-
ing.

* MACE (Batatia et al., 2022): supports higher-order message passing (beyond pairwise) in an
equivariant framework, reducing the depth required while retaining expressivity.

* SEGNN (Brandstetter et al.l [2021): extends E(3) equivariant GNNs by allowing steerable node
and edge features, processed by nonlinear steerable MLPs with tensorial combinations.

* GVP-GNN (Jing et al., [2020): replaces standard MLPs with Geometric Vector Perceptrons that
jointly handle invariant scalars and equivariant vectors, enabling richer geometric reasoning.

* ProNet (Wang et al.| [2022a): a hierarchical 3D graph architecture for proteins that ensures com-
pleteness across amino acid, backbone, and all-atom levels. It employs hierarchical message
propagation (Hier-Geom-MP) for flexible traversal across granularities.

4.3 TASK 1: FOLD CLASSIFICATION

Protein fold classification (Hou et al.l 2018} |Levitt & Chothia, |1976) is a fundamental task for un-
derstanding protein structure—function relationships and evolutionary patterns. Following the dataset
and experimental setup of (Wang et al.,[2025)), we evaluate our methods on this task. A detailed de-
scription of the dataset is provided in Appendix In total, the dataset comprises 16,712 proteins
spanning 1,195 folds. It includes three test sets: Fold, Superfamily, and Family. We report the ac-
curacies on each of these test sets, as well as their average, in Table E} In line with (Wang et al.|
2023)), to examine how SSProNet facilitates the capture of global structural information, each test
set is further divided into four subsets based on graph size, with node counts capped at 150, 300,
450, and 600.

Table demonstrates that on the FOLD dataset, SSProNet achieves the best accuracy on
Fold/Superfamily/Family (63.10/77.42/100.0) and the highest average (80.17), surpassing the
SCHull-based baselines (Wang et al., [2025) by +7.0, +2.82, +0.6, and +3.47 points, respectively.
This comes with a ~24-27% increase in per-epoch training time.
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4.4 TASK 2: REACTION CLASSIFICATION

Enzymes are proteins that act as biological catalysts, and their functions are systematically classified
by enzyme commission (EC) numbers, which group enzymes according to the reactions they cat-
alyze (Omelchenko et al.| 2010). In this experiment, we assess the SSProNet model on the reaction
classification task, using the same dataset and experimental setup as described in (Wang et al., 2025;
2022a)). Further details on the dataset and the training, validation, and test splits are provided in

Appendix 1]

For the EC dataset, Table[T]shows that SSProNet-Backbone establishes a new state of the art, achiev-
ing the highest accuracy (88.3%) and surpassing the previous best ProNet-Backbone+SCHull base-
line (88.1%) (Wang et al.,|2025). This gain, although modest in absolute terms, confirms that our
secondary-structure—aware design improves generalization beyond existing methods. The improve-
ment comes at the cost of a moderate increase in runtime (about 27-35% per epoch).

4.5 TASK 3: LIGAND BINDING AFFINITY

Predicting protein-ligand binding affinity (LBA) is a fundamental task in drug discovery, with di-
rect impact on downstream applications such as virtual screening and lead optimization. For this
task, we adopt our integrated SSProNet model to predict LBA. The dataset is derived from PDB-
bind (Wang et al., 2004; [Liu et al., |2015) following the experimental protocols outlined in (Wang
et al., 2025} [Jing et al., 2020), and we use the default dataset split (see Appendix for details).
Evaluation is conducted using multiple statistical metrics—RMSE, Pearson, Spearman, and Kendall
correlations—to assess how SSProNet improves the learning capacity and generalization of GNN-
based models.

Table 2: RMSE/Pearson Correlation/Spearman Correlation/Kendall Correlation on the LBA test set.
Avg. Time is the average running time per epoch. Arrows indicate whether lower or higher is better.
A dash (-) means not reported.

Method LBA Avg. Time
RMSE (|) Pearson (1) Spearman (1) Kendall (1)

IEConv (Hermosilla et al.}[2020) 1.554 0.414 0.428 - -
HoloProt-Full Surface (Somnath et al., 2021) 1.464 0.509 0.500 - -
HoloProt-Superpixel (Somnath et al.|[2021) 1.491 0.491 0.482 - -
GVP-GNN (Jing et al.}|2020) 1.529 0.441 0.432 0.301 48.6
GVP-GNN + SCHull (Wang et al.| |2025) 1.401 0475 0.459 0.335 53.6
ProNet-Amino—Acid (Wang et al.;[2022a) 1.455 0.536 0.526 0.465 31.7
ProNet-Amino—Acid+SCHull (Wang et al.}|2025) 1.355 0.556 0.568 0.512 339
ProNet-Backbone (Wang et al.}|[2022a) 1.458 0.546 0.550 0.481 32.1
ProNet-Backbone+SCHull (Wang et al.| 2025) 1.321 0.581 0.578 0.535 344
SSProNet-Amino-Acid (Ours) 1.354 0.607 0.601 0.487 473
SSProNet-Backbone (Ours) 1.382 0.613 0.616 0.498 54.7

As shown in Table[2] our SSProNet model establishes a new state of the art on the LBA benchmark.
In particular, SSProNet-Backbone achieves the highest correlation scores (Pearson = 0.613, Spear-
man = 0.616), surpassing the strongest SCHull (Wang et al., 2025)) baseline by +0.032 and +0.038,
respectively. Although RMSE (1.382 vs. 1.321) and Kendall (0.498 vs. 0.535) remain slightly be-
low the best baseline, the improvements in correlation metrics are significant, demonstrating the
strength of our secondary-structure—aware design. These gains come with a moderate increase in
training time (54.7 s vs. 34.4 s per epoch, see Table[2).

4.6 ABLATION STUDIES

To better understand the contribution of individual design choices in SSProNet, we conduct ablation
experiments on the LBA dataset using the amino acid representation.

Influence of the energy threshold. As shown in Table (3] the choice of energy cutoff substantially
influences LBA performance. The most permissive threshold (—0.1 kcal/mol), which retains both
strong and weak hydrogen bonds, achieves the best overall results: RMSE = 1.336, Pearson = 0.612,
Spearman = 0.609, Kendall = 0.432. This suggests that weak hydrogen bonds still carry useful
geometric and interaction information that benefits predictive accuracy when included in the graph.
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Table 3: Ablation study on the influence of the energy threshold for constructing H-bond edges.
Results are reported on the LBA test set. Arrows indicate whether lower or higher is better.

Energy Threshold LBA Avg. Time (s)
RMSE (J) Pearson (1) Spearman (1) Kendall (1)

-0.1 1.336 0.612 0.609 0.432 57.3

-1.5 1.354 0.605 0.601 0.424 47.9

-2.5 1.354 0.607 0.601 0.424 45.8

-3.5 1.349 0.605 0.601 0.426 43.7

By contrast, more stringent thresholds (—1.5 to —3.5 kcal/mol) progressively exclude weaker bonds
and lead to sparser graphs. While this reduces runtime (from 57.3s at —0.1 to 43.7s at —3.5 per
epoch), it also slightly diminishes correlation metrics (Pearson ~ 0.605, Spearman == 0.601, Kendall
=~ 0.424-0.426). The results therefore reveal a clear trade-off: keeping weaker bonds improves the
model’s ability to capture global affinity trends, whereas filtering them out yields time efficiency
gains but weaker predictive consistency.

Compared to Table [2| the —0.1 setting surpasses our default SSProNet—Amino-Acid model on
RMSE (1.336 vs. 1.354) and correlations (Pearson 0.612 vs. 0.607, Spearman 0.609 vs. 0.601),
although Kendall correlation drops (0.432 vs. 0.487). Relative to the strongest SCHull (Wang et al.,
2025) baseline, our ablation improves Pearson/Spearman but remains slightly behind in RMSE and
Kendall.

4.7 EFFECT OF GRAPH TOPOLOGY AND DSSP-DERIVED FEATURES

Table 4: Ablation study on the effect of removing different information sources. Results are reported
on the LBA test set (best epoch). Arrows indicate whether lower or higher is better.

Ablation LBA

RMSE (|) Pearson (1) Spearman (1) Kendall (1)
Removing Radius Edges (H-bond only) 1.385 0.570 0.579 0.408
Removing SS (keep ACC) 1.361 0.606 0.599 0.424
Removing ACC (keep SS) 1.362 0.611 0.606 0.429

Table [ shows three ablations. First, removing the radius graph and keeping only hydrogen-bond
edges degrades performance (RMSE = 1.385, Pearson = 0.570), indicating that proximity-based
edges provide complementary structural context beyond H-bond connectivity.

Second, comparing the two node-annotation ablations reveals that secondary structure (SS) is more
useful than solvent accessibility (ACC) for LBA. When we remove ACC but keep SS, we obtain the
strongest correlations (Pearson = 0.611, Spearman = 0.606, Kendall = 0.429) with virtually the
same RMSE as the w/o0-SS variant (1.362 vs. 1.361). Conversely, removing SS yields slightly lower
correlations (Pearson = 0.606, Spearman = 0.599, Kendall = 0.424). Taken together, these results
suggest: (i) radius edges complement H-bonds and should be retained; (ii) SS carries the dominant
DSSP signal for affinity prediction, while ACC contributes less.

5 CONCLUSION

We introduce SSProNet, a new graph neural network model that enriches node features with per-
residue secondary-structure labels and adds hydrogen-bond edges on top of regular proximity based
edges. Across Fold, Reaction, and LBA benchmarks, our model yields competitive and improved
performance. Ablations identify the main drivers: radius-based proximity edges are indispensable
for affinity prediction; secondary-structure cues contribute more than solvent accessibility; and per-
missive H-bond thresholds that retain weaker bonds modestly improve generalization at a runtime
cost. Overall, grounding protein graphs in biophysical interactions provides an effective inductive
bias, improving both accuracy and interpretability.



Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

In this paper, we have provided implementation details in Section and Appendix |[Al We will
provide the code upon request during the review process and promise to release the code upon the
paper’s publication.
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A HYPERPARAMETER DETAILS & EXPERIMENTAL SETUP

This section describes the full experiment setup for each task considered in this paper. The imple-
mentation of our methods is based on the PyTorch (Paszke et al.l 2019) and Pytorch Geometric (Fey
& Lenssen, 2019), and all models are trained with the Adam optimizer (Kingma & Ba, |2015). All
experiments are conducted on a single NVIDIA Tesla V100 32GB GPU. The search space for model
and training hyperparameters are listed in Table[5] Note that we select hyperparameters at the amino
acid and backbone levels by the same search space, and optimal hyperparameters are chosen by the
performance on the validation set.

Table 5: Model and training hyperparameters for protein-related datasets.

Hyperparameter React Fold LBA
Number of layers 3,4,5 3,4,5 3,4,5
Hidden channels 64, 128, 256 64, 128, 256 128, 192, 256
Cutoff 6,8, 10 6,8, 10 6,8, 10
Dropout 0.2,0.3,0.5 0.2,0.3,0.5 0.2,0.3
Epochs 500, 1000 500, 1000 500, 800
Batch size 16, 32 16, 32 8,16, 32
Learning rate le-4, Se-4 le-4, Se-4 Se-5, le-4, 2e-4
Learning rate scheduler step_lr step_Ir step_Ir
Learning rate decay factor 0.5 0.5 0.5
Learning rate decay epochs 50, 100,150 100, 150, 200 50, 100, 150

B DSSP PREPROCESSING AND INTEGRATION

Role of DSSP and how we use it. The Dictionary of Secondary Structure of Proteins (DSSP) is a
long-standing standard for deriving residue-level annotations (secondary structure, hydrogen bonds,
solvent accessibility, backbone geometry) directly from 3D coordinates (Hekkelman et al.l [2025).
In our pipeline we install DSSP locally (version 2.3.0) and use it to annotate each protein chain, then
feed those annotations into our graph construction and node features. Concretely, for each residue
we use: (1) the primary secondary-structure code (H, £, T, S, G, B, I, defaultsto coil if
unassigned), (2) the solvent-accessible surface area (ACC), (3) backbone dihedrals (PHI,PSTI), and
(4) hydrogen-bond partners with energies. These DSSP attributes allow us to complement purely
geometric proximity with biochemical constraints (e.g., hydrogen bonds) and physically meaningful
local context (ACC, dihedrals).

Example of produced .dssp output. Below is a short excerpt from one of our generated DSSP
files (1b6v.A.dssp); columns are truncated for readability but show the key fields we use:

# RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->0 O—-->H-N ... PHI PSI

13 12 AM B < +a 47 0A 9 -4,-2.3 2,-0.2 ... —100.3 123.4 .
14 13 A D + 0 0 11 33,-2.7 3,-0.2 . —-135.7 79.8 .
19 18 A A S— 0 0 39 61,-0.0 2,-0.7 . —137.7 146.5 .
22 2LAS S > S- 0 0 77 1,-0.1 3,-2.0 72.1 115.0 .
24 23 AN T 3> + 0 0 75 1,-0.1 4,-2.4 . —-100.8 6.1 .

Each residue line includes: (i) indices and chain ID, (ii) amino-acid code (A2), (iii) the STRUCTURE
symbol (e.g., H helix, E strand, T turn, S bend), (iv) ACC (solvent accessibility), (v) hydrogen-bond
partners and energies for N-H—0O and O—H-N (pairs like offset, energy), and (vi) backbone
geometry (PHI, PSI).

How we use these fields in our model. We parse the produced .dssp files and attach their
information to each residue/node of the protein graph. Secondary structure is mapped to an 8-way
categorical label and one-hot encoded; ACC is kept as a scalar feature. Hydrogen-bond partners are
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converted into additional edges in the graph: for each residue, we add edges to the residues indicated
by DSSP’s H-bond partners (using the provided offsets), optionally filtering by bond energy (more
negative indicates stronger bonding). These DSSP-derived edges are merged with the usual radius-
based proximity edges, duplicates are removed, and self-loops are dropped. On the node side, SS
and ACC are concatenated with the sequence/structure features used by SSProNet (amino-acid one-
hot; and, depending on the chosen level, backbone and/or side-chain embeddings). This way, the
model simultaneously “sees” short-range geometric contacts and longer-range biochemical links,
improving its capacity to capture secondary-structure regularities and nonlocal constraints (e.g., /3-
sheet hydrogen-bonding).

C LLM USAGE DISCLOSURE

During the paper writing process, the authors utilize LLMs as tools to formalize word choice and
correct grammatical mistakes.
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