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Abstract

A learning-based posterior distribution estimation method, Probabilistic Dipole Inversion
(PDI), is proposed to solve quantitative susceptibility mapping (QSM) inverse problem in
MRI with uncertainty estimation. A deep convolutional neural network (CNN) is used to
represent the multivariate Gaussian distribution as the approximated posterior distribution
of susceptibility given the input measured field. In PDI, such CNN is firstly trained on
healthy subjects’ data with labels by maximizing the posterior Gaussian distribution loss
function as used in Bayesian deep learning. When tested on new dataset without any label,
PDI updates the pre-trained CNN’s weights in an unsupervised fashion by minimizing the
KullbackLeibler divergence between the approximated posterior distribution represented
by CNN and the true posterior distribution given the likelihood distribution from known
physical model and pre-defined prior distribution. Based on our experiments, PDI provides
additional uncertainty estimation compared to the conventional MAP approach, meanwhile
addressing the potential discrepancy issue of CNN when test data deviates from training
dataset.

Keywords: Bayesian deep learning, variational inference, convolutional neural network,
quantitative susceptibility mapping

1. Introduction

Consider the following biomedical imaging model:

y = Ax+ n (1)

where A the forward imaging system model, x the underlining biomedical image variable,
n the system noise, and y the measured data/signal variable. Because of the intrinsic ill-
posedness of forward imaging operator A, prior term is needed in the following Maximum
a posteriori (MAP) estimation problem (Kaipio and Somersalo, 2006):
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x̂ = arg max
x

p(x|y) ∝ p(y|x)p(x) (2)

where p(x) is the prior term to regularize the inverse problem. Assuming zero mean
Gaussian noise with covariance matrix Σ, Eq. 2 is equivalent to the following minimum
− log p(x|y) problem:

x̂ = arg min
x
||Ax− y||2

Σ−1/2 +R(x) (3)

where R(x) = − log p(x). Convex optimization solvers have been widely used to solve Eq. 3
with both accuracy and efficiency, such as quasi-newton method (Dennis and Moré, 1977),
alternating direction method of multipliers (ADMM) (Boyd et al., 2011) and primal dual
method (PD) (Chambolle and Pock, 2011).

In recent years, posterior distribution estimation in imaging inverse problems has been
a new topic in medical imaging field (Repetti et al., 2019; Chappell et al., 2009; Tezcan
et al., 2018), in which random variable’s variance is provided from posterior distribution to
measure the uncertainty of the solution. However, posterior distribution estimation requires
complicated or even intractable integral from Bayes formula, therefore sampling or approx-
imation method is used to reduce the computational cost and intractability of the problem.
Markov chain Monte Carlo (MCMC) (Andrieu et al., 2003) and variational inference (VI)
(Bishop, 2006) are two common frameworks in Bayesian estimation problem. In MCMC, ef-
ficient sampling methods are used to get random samples from posterior distribution. After
proper sampling procedure, random samples can represent an empirical distribution which
resembles the true distribution. However, in imaging inverse problem, the computational
cost of approximating integrals for Bayesian estimation is often several magnitude higher
than the optimization method of MAP estimation, suffering from curse of dimensionality
(Pereyra, 2017).

An alternative approach is to use VI, in which an approximation distribution is proposed
with specific function form and unknown parameters, and then optimization algorithm is
implemented (for example, expectation-maximization (EM) algorithm (Blei et al., 2017))
to learn these parameters by minimizing the divergence between true posterior and ap-
proximate posterior. After learning/fitting, the approximate posterior represents the true
posterior. However, approximation quality is determined by the flexibility of approximate
function form and trainable parameters. More complicated approximate function has bet-
ter representation ability, however, the computational cost becomes higher. Therefore,
the trade-off between number of trainable parameters of approximate function and learn-
ing/fitting efficiency needs careful consideration for VI.

Over the past years, thanks to the advances of deep learning, using deep neural net-
work as the approximate function has become a new trend in VI, especially for generative
models (Rezende et al., 2014; Kingma and Welling, 2013), in which low dimensional latent
space variables are modeled and encoder and decoder networks are built to approximate
the latent variable distribution conditioned on observed data and reversely observed data
distribution conditioned on latent variable. Due to the approximation and generalization
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power of deep neural network with millions of trainable weights, neural network can ap-
proximate any function/distribution with high accuracy. In addition, advanced stochastic
optimization algorithms such as ADAM (Kingma and Ba, 2014) have been proposed for effi-
cient backpropagation in network weights’ updating. Another topic related to the posterior
distribution estimation with deep learning is discussed in Bayesian deep learning frame-
work (Kendall and Gal, 2017), in which data uncertainties are captured by maximizing
the posterior distribution with the labels as the samples assuming they follow multivariate
Gaussian.

In this paper, we come up with a framework by combining Bayesian deep learning to
model data uncertainties and VI with deep learning to approximate true posterior dis-
tribution, and apply it to one important imaging inverse problem in MRI: quantitative
susceptibility mapping (QSM) (de Rochefort et al., 2010; Wang and Liu, 2015), which has
the advantages of mapping iron decomposition (Wang et al., 2017) and calcification (Chen
et al., 2014). Assuming multivariate Gaussian represented by a CNN as the posterior dis-
tribution of susceptibility given the input local field, golden standard susceptibility maps
COSMOS (Calculation Of Susceptibility through Multiple Orientation Sampling (Liu et al.,
2009)) are used to train such CNN with a maximal posterior loss function. With physical
model-based likelihood term and delicately designed prior term, the pre-trained CNN can
be enhanced when tested on patient dataset by minimizing the Kullback-Leibler (KL) di-
vergence between true posterior distribution and approximation distribution represented by
such CNN. Our experimental results show the proposed method gives mean and variance
estimation of the solution automatically, and yields optimal results compared to two types
of benchmark methods: deep learning QSM ((Yoon et al., 2018; Zhang et al., 2020)) and
maximum a posteriori (MAP) QSM with convex optimization (Liu et al., 2012; Kee et al.,
2017; Milovic et al., 2018), both of which do not provide uncertainty estimation.

2. Method

2.1. Modeling

In Magnetic Resonance Imaging (MRI), the forward model of generating relative local field
b from tissue susceptibility χ is:

b = d ∗ χ+ n (4)

where ∗ denotes convolution operation, d denotes dipole kernel, which is ill-posed inherent in
the structure of dipole convolution operator. b is derived from multi-echo gradient echo MR
signal with noise n estimated as well. The inverse problem of estimating χ from measured b
is called Quantitative Susceptibility Mapping (QSM). From convolution theory, the forward
convolution process in Eq. 4 is equivalent to the following Fourier space multiplication
process:

b = FHDFχ+ n (5)

where F is Fourier matrix, D is dipole kernel in Fourier space. Eq. 5 is computationally
friendly since Fast Fourier Transform (FFT) can be used efficiently. We will use forward
model in Eq. 5 for computation in this paper.
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One successful approach to solving QSM from single orientation field b is MEDI (Mor-
phology enabled dipole inversion) (Liu et al., 2011b, 2012), where weighted total variation
regularization was imposed onto the area except tissue in brain and the following MAP
estimation is deployed:

χ̂ = arg min
χ
||W (FHDFχ− b)||22 + λ||M∇χ||1 (6)

where W is derived from observation noise covariance matrix and M is gradient’s weight
to penalize only region’s outside brain tissues. Computational methods for solving Eq. 6 is
reviewed in (Kee et al., 2017).

Starting from forward model in Eq. 5, we develop the fully probabilistic model of QSM
and use approximate Bayesian inference to solve this problem. We assume conditional
distribution of field b given susceptibility χ as a Gaussian distribution:

p(b|χ) = N (b|FHDFχ,Σb|χ) (7)

where we assume n ∼ N (0,Σb|χ) with Σb|χ diagonal in Eq. 5. The prior distribution from
Eq. 6 reads:

p(χ) ∝ e−λ‖M∇χ‖1 . (8)

Other types of prior distributions can also be applied. Because of the intractability of
estimating the posterior distribution p(χ|b) = p(b|χ)p(χ)/

∫
χ p(b|χ)p(χ)dχ in most cases,

approximate posterior distribution q(χ|b) = N (µχ|b,Σχ|b) with diagonal covariance matrix
is assumed to approximate the true posterior distribution p(χ|b). In this work, we use a
dual-decoder network architecture (Figure 1) extended from 3D U-Net (Ronneberger et al.,
2015; Çiçek et al., 2016) to represent the approximate posterior qψ(χ|b), with each decoder’s
output representing mean µχ|b and variance Σχ|b map, respectively.

2.2. Supervised Bayesian Training

For training dataset with COSMOS as golden standard labels, we can treat these labels as
samples from the true posterior distribution, and train the approximate distribution qψ(χ|b)
in a supervised fashion with the following MAP loss function:

− log qψ(χi|bi) =
1

2
(χi − µχ|bi)

TΣ−1
χ|bi(χi − µχ|bi) +

1

2
ln |Σχ|bi |, (9)

where {bi, χi} denote the i-th input and label data pair in the training dataset. Note that
because of multiple orientations’ scanning for COSMOS, this dataset is quite limited and
usually only on healthy subjects. We denote this supervised Bayesian learning approach as
Probabilistic Dipole Inversion (PDI).

2.3. Unsupervised Variational Inference

After training using COSMOS data with loss function Eq. 9 and obtaining optimal param-
eters ψ∗, given a test local field b

′
, we can simply estimate p(χ|b′) as qψ∗(χ|b

′
). However, for
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Figure 1: Network architecture of the proposed method. Dual decoders’ outputs represent mean
and variance maps. COSMOS dataset was used to do supervised Bayesian training via MAP in Eq.
9. Unsupervised VI with MC sampling in Eq. 11 and 12 was applied on other test dataset.

new test dataset which has input field b
′

deviating from COSMOS training dataset (such as
having new pathologies), inferior outputs could be produced. In this case, qψ∗(χ|b

′
) can be

enhanced by deploying variational inference on a subset of this new test dataset as another
training set. specifically, the pre-trained approximation qψ(χ|b′) with weights ψ initialized
as ψ∗ can be fine-tuned by minimizing the KL divergence between p(χ|b′) and qψ(χ|b′):

KL[qψ(χ|b′)||p(χ|b′)]

= Eq[log qψ(χ|b′)− log p(χ|b′)]

= Eq[log qψ(χ|b′)− log p(χ, b
′
)] + log p(b

′
)

= KL[qψ(χ|b′)||p(χ)]− Eq[log p(b
′ |χ)]

(10)

where the first term in the last equation above imposes the posterior to be similar to the
prior, and the second term encourages data consistency in QSM foward model. Applying
the prior term defined in Eq. 8 and likelihood term in Eq. 7, KL divergence in Eq. 10
becomes:

KL[qψ(χ|b′)||p(χ|b′)]

= − 1

2
ln|Σχ|b′ |+

1

2K

K∑
k=1

λ‖M∇χk‖1 +
1

2K

K∑
k=1

(χk ∗ d− b
′
)TΣ−1

b′ |χ(χk ∗ d− b
′
)

(11)
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Figure 2: Reconstructions (first row) and error maps (second row) of one COSMOS test subject in
one orientation, with COSMOS as the golden standard. FINE gives the best reconstruction at the
expense of significantly increased computational time. The other three methods have comparable
results. The standard deviation map (last column) provided by PDI resembled its error map, with
high uncertainties/errors locating at sagittal sinus and globus pallidus.

where −Eq[ln p(χ)] in KL[qψ(χ|b′)||p(χ)] and −Eq[log p(b
′ |χ)] are calculated through Monle

Carlo (MC) sampling with χk sampled from qψ(χ|b′) because of the intractability of both
expectations. We denote the fine-tuned approximate distribution with Eq. 11 as PDI-VI1.

Another possible prior term for χ is simply constant prior p(χ) ∝ c, which means no
prior information is given regarding the distribution of χ. With such non-informative prior,
the corresponding loss function is simply:

KL[qψ(χ|b′)||p(χ|b′)] = −1

2
ln|Σχ|b′ |+

1

2K

K∑
k=1

(χk ∗ d− b
′
)TΣ−1

b′ |χ(χk ∗ d− b
′
) (12)

We denote the fine-tuned approximate distribution with Eq. 12 as PDI-VI2.

3. Experiments

MRI was performed on 7 healthy subjects with 5 brain orientations using a 3T GE scanner
equipped with a multi-echo 3D gradient echo (GRE) sequence. Acquisition matrix was
256 × 256 × 48 and voxel size was 1 × 1 × 3 mm3. The input local tissue field data b was
generated by sequentially deploying non-linear fitting across multi-echo phase data (Kressler
et al., 2009), graph-cut based phase unwrapping (Dong et al., 2014) and background field
removal (Liu et al., 2011a). COSMOS reconstruction (Liu et al., 2011b) was calculated from
5 orientations’ GRE imaging and was used as the gold standard label in the experiment. A
second dataset was obtained by performing single orientation GRE MRI on 8 patients with
intracerebral hemorrhage (ICH), which were acquired using the same scanner and imaging
parameters as above.

Network architecture is shown in Figure 1. Dual decoders’ outputs were used to represent
mean and variance maps in the posterior susceptibility distribution given input local field.
The 3D convolutional kernel size was 3 × 3 × 3. The numbers of filters from the highest
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Figure 3: Reconstructions (first row in (a) and (b)) and standard deviation maps (second row in
(a) and (b)) of two ICH patients. Compared to MEDI and FINE, underestimation issue inside
hemorrhage happened on QSMnet and PDI. This issue was reduced in PDI-VI1 and PDI-VI2 by
fine-tuning the pre-trained network using unsupervised variational inference. High variance inside
the hemorrhage was consistent with high measured noise in the same region.

feature level to the lowest were 32, 64, 128, 256 and 512, respectively. Batch normalization
(Ioffe and Szegedy, 2015), max pooling for downsampling and deconvolution operation for
upsampling were used. For COSMOS dataset, 4/1 subjects (20/5 brain volumes) were used
as training/validation dataset, with augmentation by in-plane rotation of ±15◦. Each brain
volume data in the training and validation dataset was divided into 3D patches with patch
size 64 × 64 × 32 and extraction step 21 × 21 × 11. The remaining 2 subjects (10 brain
volumes in total) were used for testing. For ICH patients dataset, 5/1 subjects were used
as training/validation dataset for PDI-VI1 and PDI-VI, and the remaining 2 subjects were
used for testing.

Loss function in Eq. 9 was applied for supervised Bayesian training on COSMOS dataset
with ADAM optimizer (Kingma and Ba, 2014) (learning rate: 10−3, Number of epochs: 60),
yielding trained network qψ∗(χ|b). The outputs of qψ∗(χ|b) were denoted as PDI. Initialized
with the pre-trained PDI using COSMOS training data, unsupervised variational inference
with loss function Eq. 11 and 12 was also applied on ICH dataset using ADAM optimizer
(learning rate: 10−3, Number of iterations: 100). MC sampling size K was chosen as 5 due
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pSNR RMSE SSIM HFEN GPU time (s)

MEDI (Liu et al., 2012) 46.39 41.16 0.9569 31.30 17.54
FINE (Zhang et al., 2020) 48.12 33.66 0.9789 31.97 65.42

QSMnet (Yoon et al., 2018) 46.35 41.29 0.9705 43.31 0.60
PDI (Eq. 9) 47.77 35.08 0.9772 35.17 0.61

Table 1: Mean quantitative metrics of 10 test COSMOS brains reconstructed by different methods.
FINE gives the best reconstruction at the expense of significantly increased computational time.
The other three methods have comparable results.

to limited GPU memory and reparameterization trick (Kingma and Welling, 2013) was used
for MC sampling in order to do backpropagation. The outputs were denoted as PDI-VI1
and PDI-VI2, respectively. The whole brain volume was fed into the network during testing,
including unsupervised variational inference step. We implemented the proposed method
using PyTorch (Python 3.6) on an RTX 2080Ti GPU.

For COSMOS test dataset, we compared PDI with MAP estimation MEDI (Liu et al.,
2012) and two deep learning reconstructions QSMnet (Yoon et al., 2018) and FINE (Zhang
et al., 2020). Reconstruction maps of one orientation from one test subject are shown
in Figure 2 ([-0.15ppm, 0.15ppm]). Quantitative metrics of each reconstruction method
averaged among 10 test brains are shown in Table 1. FINE gave the best overall quantitative
results; However, it overfitted to every test case by minimizing the fidelity loss, which
had the major drawback of significantly increased computational time. PDI gave slightly
better results than MEDI and QSMnet, meanwhile achieved fast inference time on GPU
comparable to QSMnet. In figure 2, error map of PDI’s mean output µχ|b was coincident
with PDI’s standard deviation output

√
Σχ|b, with high uncertainty/error happening at

sagittal sinus and globus pallidus.
For ICH test dataset, PDI-VI1 and PDI-VI2 were also performed and compared. Two

representative ICH patients’ QSMs are shown in Figure 3 ([-0.6ppm, 1.5ppm] for zoomed-in
hemorrhage). Compared to MEDI and FINE which had hyperintensity inside the hemor-
rhage, both QSMnet and PDI suffered from underestimation issue inside this region, which
might result from the fact that such pathology was not encountered during training since
long scan COSMOS was not practical for the patients. After PDI-VI1 and PDI-VI2, such
underestimation issue was reduced and variance maps’ structures inside the hemorrhage
were also better depicted. High uncertainties inside hemorrhage as shown in Figure 3 were
consistent with high local field noise level which was approximately proportional to the
underlining susceptibility values.

4. Conclusion

We developed a Bayesian dipole inversion framework for quantitative susceptibility mapping
by combining variational inference and Bayesian deep learning. Our method generated high
fidelity susceptibility maps meanwhile provided uncertainty quantifications. When applied
to other datasets not encountered during training, the proposed method was able to correct
the undesirable outputs in an unsupervised fashion based on variantional inference principle.
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Özgün Çiçek, Ahmed Abdulkadir, Soeren S Lienkamp, Thomas Brox, and Olaf Ronneberger.
3d u-net: learning dense volumetric segmentation from sparse annotation. In Interna-
tional conference on medical image computing and computer-assisted intervention, pages
424–432. Springer, 2016.

Ludovic de Rochefort, Tian Liu, Bryan Kressler, Jing Liu, Pascal Spincemaille, Vincent
Lebon, Jianlin Wu, and Yi Wang. Quantitative susceptibility map reconstruction from
mr phase data using bayesian regularization: validation and application to brain imaging.
Magnetic Resonance in Medicine: An Official Journal of the International Society for
Magnetic Resonance in Medicine, 63(1):194–206, 2010.
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