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Abstract—With the rapid growth of electric vehicles and 

energy storage systems, accurate state of charge (SOC) estimation 
has become a critical component of battery management systems 
(BMS), essential for preventing overcharging and over-
discharging, enhancing operational safety, and extending battery 
life. This paper proposes a novel SOC estimation method based on 
an enhanced self-correcting (ESC) model incorporating a second-
order RC circuit, enabling a more accurate simulation of battery 
response time and dynamic behavior. To improve model reliability, 
a genetic algorithm-particle swarm optimization (GA-PSO) 
approach is employed for parameter identification. Additionally, 
a multi-model adaptive extended Kalman filter (AEKF) algorithm 
is introduced to achieve precise SOC estimation. MATLAB 
simulations using constant current discharge and automotive 
driving cycle data demonstrate that the proposed method 
outperforms traditional AEKF algorithms, with faster 
convergence and higher estimation accuracy, particularly in 
scenarios with varying initial estimation accuracies. The results 
highlight the potential of this approach to significantly enhance 
SOC estimation in BMS, contributing to safer operation and 
prolonged battery life in electric vehicles and energy storage 
systems.  
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I. INTRODUCTION  
As electric vehicles and energy storage systems continue to 

develop rapidly, the application of batteries as key energy 
storage devices has become increasingly widespread, 
highlighting the growing importance of battery management and 
control [1]. Within battery management systems (BMS), 
accurately estimating the state of charge (SOC) is a critical task 
[2]. Precise SOC estimation not only enables more reliable 
predictions of vehicle range but also improves battery utilization 
and helps prevent significant reductions in battery lifespan 
caused by overcharging or deep discharging [3]. However, the 
nonlinear characteristics, time-varying behavior, and 
electrochemical reactions of batteries make it impossible to 
measure their SOC directly with sensors [4]. Instead, SOC must 
be estimated using indirect measurements such as voltage, 
current, and temperature. Common SOC estimation methods 

include approaches based on open-circuit voltage, coulomb 
counting, data-driven techniques, and model-based estimation 
methods [5]. Each of these approaches presents distinct 
advantages and disadvantages [6]. 

Among these methods, model-based estimation achieves a 
reasonable balance between accuracy, real-time performance, 
and computational cost by integrating the battery equivalent 
circuit model (ECM) with state estimation algorithms. The ECM 
is a key component in this approach. Previous studies have 
advanced SOC estimation using various models and algorithms. 
Li et al. [7] utilized a second-order RC model with a stochastic 
gradient algorithm for parameter identification and developed a 
multi-innovation extended Kalman filter, validated 
experimentally. Shi et al. [8] employed Bayesian belief 
networks and adaptive extended Kalman particle filtering, 
demonstrating enhanced convergence and accuracy. 

However, these studies largely overlook the hysteresis effect 
in battery charging and discharging. Gregory L. Plett [9] 
addressed this by introducing an Enhanced Self-Correcting 
(ESC) model that incorporates hysteresis into the ECM. Sk Bittu 
et al. [10] simulated a first-order RC ESC model with an EKF 
algorithm for SOC estimation but found that the model struggles 
with complex polarization dynamics, and the EKF's 
performance deteriorates with significant measurement errors. 

Accurate SOC estimation requires precise circuit modeling 
and effective algorithms. This study incorporates the hysteresis 
phenomenon using an ESC model with second-order RC 
characteristics. The GA-PSO algorithm is applied for precise 
identification of battery model parameters via an optimized 
fitness function. Additionally, a multi-model AEKF is 
developed, integrating an adaptive factor into the EKF to refine 
the gain matrix, thereby improving the capture of the model's 
dynamic properties. This multi-model approach reduces 
estimation errors and enhances the robustness, accuracy, and 
stability of SOC estimation. The main contributions of this paper 
are as follows: 

1) Battery parameter estimation: An ESC model with 
second-order RC characteristics is used for accurate 



characterization, with GA-PSO employed for parameter 
identification, validated through model testing. 

2) Multi-model AEKF algorithm for SOC estimation: A 
multi-model AEKF algorithm is designed, combining adaptive 
parameters for process noise with a multi-model approach to 
improve SOC estimation accuracy. 

3) Simulation comparative analysis: SOC estimation is 
analyzed using constant current discharge and automotive 
driving cycle scenarios, comparing the multi-model AEKF with 
the traditional AEKF, demonstrating enhanced convergence and 
accuracy.. 

II. LITHIUM-ION BATTERY SOC ESTIMATION METHOD  
This paper presents an ESC model based on a second-order 

RC equivalent circuit, incorporating the hysteresis phenomenon 
observed during battery charging and discharging. The model 
captures the battery's dynamic behavior, static characteristics, 
and hysteresis effects, as shown in Fig. 1. 

 
Fig. 1. ESC model of second-order RC 

To identify the unknown parameters in the ESC model, the 
GA-PSO algorithm, an integration of Genetic Algorithm and 
Particle Swarm Optimization, is utilized. The process initiates 
with GA generating an initial population of parameter sets, 
which are subsequently evaluated by comparing the model's 
predictions with experimental battery data. GA operations, 
including selection, crossover, and mutation, are employed to 
refine these parameters, while PSO dynamically adjusts their 
search direction. After several iterations, the algorithm 
converges on the optimal parameter set, facilitating precise 
SOC estimation. 

Building on the ESC model and parameter identification, a 
multi-model AEKF framework is developed to enhance SOC 
estimation. This framework employs multi-model fusion, 
integrating the estimates from several models to improve filter 
performance and robustness. The battery SOC is quantized into 
discrete sets, with n AEKF models constructed. The conditional 
probability of each SOC is calculated using Bayesian rules, and 
the SOC with the highest probability is selected for each time 
step. By using conditional probability as the switching rule, the 
multi-model AEKF adapts to varying operating conditions and 
improves SOC estimation accuracy and stability. The Bayesian 
rule used to compute these conditional probabilities is given by 
the following formula: 
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where ( )ip s  denotes the prior probability, reflecting the initial 
estimate of the state is  in the absence of any measurement 
information. The entire expression delineates the posterior 
probability of each potential state given all previous 
measurements 1kY −  and the current measurement is . 

MATLAB simulations were conducted to model constant 
current discharge and automotive driving cycle discharge 
scenarios. A comparative experiment was set up between the 
traditional AEKF and the multi-model AEKF, focusing on 
evaluating their convergence performance and accuracy under 
conditions of unstable initial parameters and complex 
variations in discharge current. 

III. CONCLUSION 
This paper focuses on the estimation performance of SOC 

in lithium-ion batteries. A second-order RC ESC model is 
considered, and the battery parameters are identified using the 
GA-PSO algorithm. Additionally, accurate estimation of 
battery SOC is achieved through the implementation of a multi-
model Adaptive Kalman Filter. To validate the effectiveness of 
the proposed method, a series of simulation comparisons are 
conducted. The simulation results demonstrate that the 
proposed multi-model AEKF algorithm exhibits fast 
convergence and high estimation accuracy in predicting battery 
SOC, showcasing its superior performance in SOC estimation. 
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