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ABSTRACT

Data-centric distillation, including data augmentation, selection, and mixing, offers a
promising path to creating smaller, more efficient student Large Language Models (LLMs)
that retain strong reasoning abilities. However, there still lacks a comprehensive benchmark
to systematically assess the effect of each distillation approach. This paper introduces
DC-CoT, the first data-centric benchmark that investigates data manipulation in chain-of-
thought (CoT) distillation from method, model and data perspectives. Utilizing various
teacher models (e.g., o4-mini, Gemini-Pro, Claude-3.5) and student architectures (e.g.,
3B, 7B parameters), we rigorously evaluate the impact of these data manipulations on stu-
dent model performance across multiple reasoning datasets, with a focus on in-distribution
(IID) and out-of-distribution (OOD) generalization, and cross-domain transfer. Our find-
ings aim to provide actionable insights and establish best practices for optimizing CoT
distillation through data-centric techniques, ultimately facilitating the development of more
capable reasoning models. The codebase can be accessed here.

1 INTRODUCTION
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Figure 1: Overview of DC-CoT pipeline.

Large language models (LLMs) achieve strong rea-
soning performance when combined with chain-of-
thought (CoT) prompting (Wei et al., 2022), but the
best performance typically comes from expensive
models with tens or hundreds of billions of param-
eters. To address it, knowledge distillation (KD)
stands out to transfer reasoning skills to lighter stu-
dents (e.g. 3–8 B) at low inference cost (Hinton et al.,
2015; Ho et al., 2022; Mukherjee et al., 2023; Wang
et al., 2022b). Among various KD strategies for
CoT Xu et al. (2024); Tan et al. (2024), data-centric
methods—such as augmentation, selection, and mix-
ing—have gained popularity for being architecture-
agnostic and cost-efficient Xu et al. (2023). How-
ever, a systematic assessment is still lacking to eval-
uate the effectiveness of these techniques.

To address this, building a data-centric benchmark
is essential. Such a benchmark will provide a clearer understanding of the performance of existing data-centric
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methods by systematically evaluating and answering fundamental questions, such as how to effectively synthe-
size, select, and mix various CoT samples to robustly boost the student models’ performance. Furthermore, a
data-centric benchmark will serve as a valuable and controlled evaluation resource for future research and the
development of new techniques in this area. In this work, we introduce DC-CoT, the first benchmark designed
to investigate data-centric CoT distillation systematically, answering the following research questions:

❶ Method Perspective: How can various data-centric CoT distillation methods for LLMs be categorized,
and what is their comparative performance in enhancing student model reasoning?

❷ Model Perspective: How do the relative sizes and architectures of teacher and student models
influence the effectiveness of data-centric CoT distillation?

❸ Data Perspective: How do different data characteristics and settings, such as in-distribution (IID)
versus out-of-distribution (OOD) data, easy-to-hard generalization, and data availability, impact the
outcomes of Chain-of-Thought distillation?

Regarding the Method Perspective, DC-CoT investigates various data manipulation strategies across three
core axes: (i) Augmentation: Techniques like reverse reasoning and question/answer re-phrasing beyond
vanilla CoT. (ii) Selection: Compare heuristics such as teacher-correct filtering, student-error prioritization,
and LLM-based quality judges.(iii) Mixing: Explore blending CoT data based on length, domain, and teacher
origin. To explore the Model Perspective, DC-CoT incorporates diverse teacher models (e.g., GPT-4o, Claude
3.5, Gemini-1.5-Pro) and various open-source student model families and sizes (e.g., LLaMA, Qwen, Gemma
at 3-8B parameters). To address the Data Perspective, evaluations are conducted across reasoning datasets,
specifically examining performance in in-distribution (IID) and out-of-distribution (OOD) settings.

Through extensive experiments, we present key findings and insights guided by research questions across
multiple perspectives. From the Method Perspective, we find data augmentation to be generally the most
effective approach and provide fine-grained analyses for each manipulation method across task types. From
the Model Perspective, we confirm the roles of compatibility and learnability, highlighting their non-trivial
impact on distillation and explaining why certain teacher–student pairs may fail. From the Data Perspective,
we reveal distinct scaling behaviors across augmentation methods and quantify the generalization capabilities
of student LLMs across datasets. All these insights will help guide future research toward more effective and
efficient CoT distillation paradigms.

In Summary, our work makes the following contributions:

① We present DC-CoT, a unified, data-centric benchmark that explores data manipulation in distillation
from method, model and data perspectives.

② We conduct extensive experiments across diverse teacher–student pairs, tasks, and datasets, offering
the first large-scale empirical overview of CoT distillation.

③ We distill actionable guidelines—e.g., which augmentation boosts generalization, which filtering
criterion balances quality and coverage, and when heterogeneous teacher mixtures help—thereby
charting a path toward smaller yet more capable reasoning models.

2 RELATED WORKS

Reasoning in LLMs. Chain-of-Thought (CoT) elicits explicit intermediate reasoning steps, making LLM
inference more transparent and markedly more accurate on multi-step tasks (Wei et al., 2022; Kojima et al.,
2022). Based on this, newer long-CoT methods—e.g., Tree-of-Thought, iterative self-reflection, and self-
correction—scale CoT by exploring multiple paths and refining answers through critique (Yao et al., 2023a;
Madaan et al., 2023; Yu et al., 2025; Li et al., 2025c).
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Knowledge Distillation in LLMs. Knowledge distillation transfers the behaviour of a large teacher LLM
to a smaller, cheaper student. Beyond the original “soft-label” paradigm (Buciluǎ et al., 2006; Hinton et al.,
2015), recent work treats LLM-generated instructions, responses, and rationales as synthetic supervision
for supervised fine-tuning or alignment tuning (Kim et al., 2023; Tong et al., 2024; Ouyang et al., 2022;
Zhang et al., 2024; Wang et al., 2024). A particularly effective variant is reasoning or chain-of-thought
(CoT) distillation: instead of imitating only the final answer, the student is trained to follow the intermediate
reasoning produced by the teacher, which has proved crucial when capacity or architectural gaps exist (Hsieh
et al., 2023; Mukherjee et al., 2023; Lewkowycz et al., 2022; Yu et al., 2023). Despite promising gains, the
field still lacks principled guidance on (i) which teachers, (ii) which rationales, and (iii) what selection or
mixing strategies yield maximal benefit for a given student, motivating a more data-centric exploration of
CoT distillation. More detailed related work is given in Appendix D.

3 METHODOLOGY: A DATA-CENTRIC COT DISTILLATION BENCHMARK

3.1 DATA-CENTRIC MANIPULATION
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Figure 2: Data-centric augmentation flow. Teacher
CoT traces are independently transformed by four op-
erations: Rephrase Question, Question Augmentation,
Answer Augmentation, and Reverse Thinking.

The central theme of our DC-CoT is the systematic
evaluation of data-centric manipulations applied to
CoT exemplars for knowledge distillation. These
manipulations encompass various strategic opera-
tions to transfer the initial dataset Dsource to the tar-
get dataset Dtarget for small student model training,
potentially guided by a set of parameters or rules Θ:
Dtarget = M(Dsource,Θ). Here, M represents
the abstract data transformation function encompass-
ing augmentation, selection, and mixing. For aug-
mentation strategies, we denote L as the number
of synthetic samples generated per source instance.
DC-CoT is designed to deconstruct and analyze the
impact of instantiating M through three primary
types of data-centric operations: ❶ Data Augmen-
tation (Section 3.1.1), ❷ Data Filtering (Section
3.1.2), and ❸ Data Mixing (Section 3.1.3).

3.1.1 DATA AUGMENTATION

Data Augmentation is crucial in CoT distillation by enriching and diversifying the training data (Dsource)
available for the student model, to expose the student to various reasoning patterns, question formulations,
and explanatory styles for enhancing their reasoning capabilities and generalization. Within the DC-CoT
benchmark, we investigate several data augmentation strategies as follows:

❶ Question Rephrasing: This method, introduced in MetaMath (Yu et al., 2023), aims to increase question
diversity by having the teacher LLM T paraphrase an existing question Qi while preserving its underlying
meaning and original answer A∗

i : {Q̂j
i = T (Qi, Preph)}Lj=1. Here Qi and Preph are the original question

and rephrasing prompt. For each rephrased question Q̂j
i , the teacher T generates a CoT rationale R̂j

i and
answer Âj

i . one augmentation is retained if Âj
i matches the original answer.

❷ Question Augmentation: This strategy focuses on creating entirely new questions Qnew, to broaden the
topical coverage or complexity of the training data, based on a set of seed questions Q (Li et al., 2024a):
Qnew = T (Q,PQA). PQA here is a prompt for generating novel questions. After that, the same generation-
then-filter process will be adopted to produce new answers and CoTs for the augmented questions, as we
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introduced in the Question Rephrasing method. Unlike general instruction-tuning methods (e.g., Self-Instruct),
this operation is strictly constrained to Reasoning Transfer. The prompt PQA forces the generation of parallel
reasoning problems (e.g., altering numerical values in math or subjects in logic puzzles) to ensure the student
learns the underlying reasoning pattern rather than memorizing specific answers.

❸ Answer Augmentation: It involves prompting the teacher LLM T to generate multiple diverse CoT
rationales R that all lead to the same correct ground-truth answer A∗

i (Yu et al., 2023). Given (Qi, A
∗
i ) ∈

Dsource, and using a CoT generation prompt PAA, the teacher model generates L candidate rationales and
answers as follows: {(Rk

i , A
k
i ) = T (Qi, PAA, temp)}Lk=1. To mitigate the risk of reasoning hallucinations,

the prompt explicitly conditions the teacher on the ground-truth answer A∗
i . Our empirical results suggest

that the benefit of exposing the student to diverse valid reasoning paths outweighs the noise of occasional
imperfect traces, as the student learns the intersection of valid logic across the augmented set.

❹ Reverse Thinking Augmentation Reverse Thinking was introduced in the RevThink (Chen et al., 2024b).
The goal is to enrich the data by generating forward CoT reasoning Rf , a corresponding backward question
Qb, and backward reasoning Rb. For each (Qi, Ai) ∈ Dsource we do the following:
• Generate Forward Reasoning: Ri

f = T (Qi, Pf ) for some prompt Pf . This is filtered to ensure that the
outcome of Ri

f is the ground truth Ai.
• Generate Backward Question: Using a prompt Pbq, the teacher T generates a question that inverts the

original problem: Qi
b = T (Qi, Ai, Pbq).

• Generate Backward Reasoning: The teacher then generates the CoT for this backward question: Ri
b =

T (Qi
b, Pbr) for some prompt Pbr.

• Consistency Filtering: A consistency check c = T (Qi, Ai, Q
i
b, R

i
b, Pcon) is performed for making sure the

backward and the forward questions are related and consistent with each other Yang et al. (2025). Only
consistency quadruplets (Qi, R

i
f , Q

i
b, R

i
b) where c = 1 are retained.

3.1.2 DATA FILTERING
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Figure 3: Reverse-Thinking augmentation pipeline:
from each (question, answer) pair, generate forward
reasoning, synthesize a backward question with its
reasoning, then keep only examples whose forward-
backward chains pass a consistency check.

Data Filtering, or selection, is a critical step applied
to either initial source data Dsource or augmented
data to create a high-quality training set Dtrain for
the student model. Since not all CoT instances are
equally beneficial, as some are noisy or incorrect,
filtering aims to identify and retain the most valu-
able exemplars to optimize learning. Our DC-CoT
investigates the following data selection strategies:

❶ Filtering by Teacher Correctness: This strat-
egy used in (Ho et al., 2022), retains CoT
instances where the teacher’s final answer Ai

matches the ground-truth answer A∗
i : Dtarget =

{(Qi, Ri, Ai)|Ai = A∗
i }. This ensures the student

learns from CoTs lead to correct outcomes.

❷ Filtering by Student Error: This filtering strat-
egy focuses student learning on its weaknesses by
selecting instances where the student model yields
an incorrect answer: Dtarget = {(Qi, Ri, Ai)|Âi ̸= A∗

i }. This concentrated learning can focus on students’
underperformed areas.

❸ LLM-as-a-Judge Filtering: Inspired by I-SHEEP (Liang et al., 2024), this method uses an external LLM
Ljudge to assess CoT instance quality based on criteria like coherence, correctness, and clarity, allowing for a nu-
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anced quality assessment Li et al. (2024b; 2025a): Scorei = Ljudge(Ai, Ri, Qi, Peval). Instances are retained
if their score meets a threshold τ , making the final dataset become: Dsource = {(Qi, Ri, Ai)|Scorei ≥ τ}.
To validate the reliability of this automated judge, we conducted a human evaluation on a random sample
of 100 filtered instances from SQA and GSM8K. We observed a Cohen’s Kappa (κ) of 0.84, indicating
strong agreement between the LLM Judge (GPT-4o) and human experts, with the Judge exhibiting a slight
preference for strictness—a desirable bias for high-quality distillation.

3.1.3 DATA MIXING
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Figure 4: Data-filtering pipeline in DC-CoT. A teacher-
generated CoT pool is refined through three selectors.

Beyond augmentation and selection, Data Mixing
offers another avenue for data-centric manipulation
in CoT distillation. This strategy involves strategi-
cally combining CoT instances from different dis-
tributions or with varying characteristics to create a
more diverse training dataset Dtarget for the student
model. The core idea is that a blend of reasoning
styles, complexities, or teacher provenances can lead
to a student model with more robust and generaliz-
able reasoning capabilities.

❶ Length-based CoT Mixing: Length-based mix-
ing, introduced in (Li et al., 2025b), combines CoT
examples of varying reasoning length to help bridge
this learnability gap for smaller models and offers
complexity for larger models. This mix, controlled
by a ratio α, aims to provide a balanced curriculum, exposing students to detailed and concise reasoning.

❷ Teacher-based CoT Mixing: This method blends CoTs generated by different teachers (Li et al., 2025b).
The mixed dataset is again guided by a ratio α, providing a balanced set of reasoning examples and preventing
smaller students from being overwhelmed while still offering sophisticated examples.

4 EXPERIMENT RESULT & ANALYSIS

4.1 BENCHMARK SETUP

Teacher Models. We use SoTA LLMs known for strong reasoning to generate CoT rationales: (1) Gemini-
1.5-Pro (Team et al., 2024a), (2) GPT-4 (Achiam et al., 2023), (3) Claude-3.5 Sonnet (Anthropic, 2024), (4)
GPT-4.1 mini (OpenAI, 2024a), (5) o4 mini (OpenAI, 2024b). Utilizing multiple teachers allows us to study
the impact of teacher diversity. Data filtering is performed with task-specific Judge LLMs: LLama-2-70B for
textual tasks, GPT-4o-mini (Achiam et al., 2023) for agentic tasks, and GPT-4/4.1-mini for visual tasks.
Student Models. We test these open-source models as students: (1) LLama-3.1-8B (Grattafiori et al., 2024),
(2) LLama-3.1-8B-R1 Distilled (Guo et al., 2025), (3) Mistral-7B (Jiang et al., 2023), (4) Gemma-7B (Team
et al., 2024b), and (5) Qwen-2.5-7B (Yang et al., 2024). Baselines. For Baseline comparison, we evaluate the
models for (1) Zero Shot performance on the tasks, (2) Generate Zero-Shot CoT (Kojima et al., 2022), (3)
Fine-tune the model on the dataset without any CoT, and (4) Vanilla CoT generated by the teacher model
with no augmentation/filtering/mixing.
Datasets. Student performance is assessed on diverse reasoning datasets covering various skills and complexi-
ties. We evaluate textual reasoning tasks on: Commonsense Reasoning Tasks: StrategyQA (SQA; (Geva et al.,
2021)), CommonsenseQA (CSQA; (Talmor et al., 2019)), ARC-challenge (ARC; (Clark et al., 2018)). Math
Reasoning: GSM8K (GSM8K; (Cobbe et al., 2021)), MATH (MATH; (Hendrycks et al., 2021)). Natural
Language Inference: ANLI (ANLI; (Nie et al., 2020)). Logical Reasoning: Date Understanding (Date;
(Srivastava et al., 2022)). We evaluate agentic reasoning tasks on WEBARENA (Zhou et al., 2023), and
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Table 1: Accuracy of augmentation, selection and mixing strategies on Llama-3.1-8B. Textual scores are the
mean of three independent runs.

Agentic Visual Textual AVG.

WebArena Visual-CoT OK-VQA CLEVR SQA CSQA ARC MATH GSM8K ANLI Date Visual+Agentic Textual
Data Augmentation

Zero Shot 5.66 42.10 65.60 56.88 57.64 43.08 48.46 9.32 19.64 33.83 49.70 23.88 37.38
Zero Shot CoT 8.25 44.52 61.84 58.36 65.55 53.56 67.41 11.76 21.00 39.92 62.13 26.39 45.90
No CoT 30.05 46.66 62.18 52.12 59.89 65.36 60.41 7.39 20.74 35.42 50.37 38.36 42.80
Vanilla CoT 22.78 45.44 59.94 54.04 58.08 69.37 55.63 4.38 24.30 23.92 57.02 34.11 41.81
Rephrase Question - - - - 59.73 62.95 67.01 16.52 38.86 42.47 59.41 - 49.56
Question Aug - - - - 60.40 61.47 70.37 20.31 44.03 41.26 61.07 - 51.27
Answer Aug - - - - 64.49 64.57 81.61 36.84 53.48 40.29 61.80 - 57.58
Reverse Thinking - - - - 72.49 78.46 82.17 35.52 76.35 49.75 70.41 - 66.45

Data Selection

No Selection 22.78 44.52 59.94 54.04 59.89 65.36 60.41 7.39 20.74 35.42 50.37 33.65 42.80
Filtering with Teacher 14.66 45.50 63.80 67.60 61.43 70.72 62.86 5.04 30.27 24.11 58.69 30.08 44.73
Filtering with Student 27.59 45.90 66.30 57.02 60.29 70.85 60.30 5.21 26.97 25.40 58.04 36.75 43.87
Judge LLM 15.64 46.54 59.42 54.12 54.83 62.49 57.46 3.43 22.72 26.51 59.85 31.09 41.04

Data Mixing

No Mixing 22.78 44.52 59.94 54.04 59.89 65.36 60.41 7.39 20.74 35.42 50.37 33.65 42.80
Length Mixing - - - - 58.58 68.04 54.79 4.64 21.84 22.50 59.63 - 41.43
Teacher Mixing 21.18 45.48 61.7 55.6 56.75 66.94 62.82 5.96 19.57 29.46 52.30 33.33 41.97

evaluate visual reasoning on Visual-CoT (Shao et al., 2024), OK-VQA (Marino et al., 2019), and CLEVR
(Johnson et al., 2017). We classify Shopping, Map, and Reddit as webarena-easy, and others as hard. For task
descriptions, please refer to E.

4.2 METHOD-LEVEL RESULTS

This section delves into the performance of various data-centric manipulation strategies by posing key
questions and deriving insights from our experimental findings. The analysis primarily references Table 1.
It is important to note that the results discussed in Table 1 all pertain to the Llama-3.1-8B student model.
Furthermore, the teacher model for visual tasks was GPT-4-mini (Achiam et al., 2023), for agentic tasks it
was Claude-3.5 (Anthropic, 2024), and for textual tasks, Gemini-1.5-Pro-001 (Team et al., 2024a) was used.
For the mixing, we use the models as described in Table 3 and 4.

Q1: How do the broad categories of data-centric manipulation compare in terms of overall effectiveness?
Table 1 shows that Data Augmentation strategies yield the most substantial average performance uplift over
the Vanilla CoT baseline. For instance, Reverse improves average accuracy on all eight tasks by 24.64%↑.
Filtering with Teacher Correctness (Textual Average: 44.7%) improves by +1.93↑ over Vanilla CoT. The
best mixing strategy, Teacher Mixing (Textual Average: 41.97%), shows a marginal decrease of 0.83%↓ over
Vanilla CoT. This confirms that for a moderately sized student (7-8B), creating diverse rationales is more
impactful than selecting or reshuffling existing ones. Data selection is vital for quality control, and data
mixing helps tailor its composition.

Table 2: Comparison of Data-Centric Distillation
vs. Logit-based KD on ARC-Challenge (Teacher:
Llama-3.1-70B).

Method Access Required Accuracy (%)
Teacher Baseline Weights/Logits 92.4
Standard KD (KL Div.) Weights/Logits 64.8
Vanilla CoT (SFT) Black-box (Text) 60.4
DC-CoT (Reverse) Black-box (Text) 69.2

Comparison with Logit-based Distillation. While
DC-CoT focuses on black-box distillation (where
teacher logits are unavailable), we assessed its com-
petitiveness against white-box methods using an
open-weights teacher (Llama-3.1-70B) on the ARC-
Challenge. As shown in Table 2, DC-CoT (Reverse
Thinking) achieved 69.2%, significantly outperform-
ing standard Logit-based KD 64.8%. This suggests
that transferring explicit reasoning steps via data aug-
mentation is more effective for reasoning tasks than minimizing divergence on the output distribution alone.
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Table 3: Reverse-augmented distillation results for different teacher / student combinations on textual tasks;
numbers are three-run averages.

Student Model Teacher Model SQA CSQA ARC MATH GSM8K ANLI Date AVG.

Llama-3.1-8B Gemini-1.5-Pro 72.49 78.46 82.17 35.52 76.35 49.75 70.41 66.45
GPT-4 70.74 71.93 83.64 34.60 70.72 51.37 68.51 64.50

Llama-3.1-8B-R1 Gemini-1.5-Pro 69.43 71.74 74.23 36.82 69.45 47.08 70.41 62.74
GPT-4 70.95 68.40 76.84 36.27 70.94 50.58 67.80 63.11

Mistral-7B Gemini-1.5-Pro 72.05 75.53 76.96 16.12 59.21 45.00 59.17 57.72
GPT-4 71.08 72.63 76.85 15.39 58.86 45.62 60.19 57.23

Gemma-7B Gemini-1.5-Pro 68.12 74.86 73.46 16.54 53.45 40.92 31.36 51.24
GPT-4 69.08 73.81 75.60 16.18 54.49 41.65 30.57 51.63

Q2: Which techniques are most effective for each data manipulation? From Table 1, Reverse consistently
excels, especially for structure logical deduction (MATH, GSM8K, Date). It likely fosters a deeper under-
standing by teaching bi-directional reasoning. Answer Augmentation also performs robustly, particularly for
commonsense reasoning (SQA, CSQA), by exposing the student to varied solution paths, enhancing flexibility.
While Question Augmentation and Rephrasing increase diversity, the more profound alterations from Reverse
and Answer Augmentation generally yield larger gains. Among the selection techniques, LLM-as-a-Judge
filtering is highly effective, often surpassing simpler heuristics due to its nuanced assessment of rationale
quality (coherence, soundness) beyond mere answer correctness. However, filtering by Teacher Correctness
is a strong baseline, ensuring students learn from factually accurate paths and consistently improve over no
selection or other methods. When compared to the No Mixing baseline, data mixing strategies show varied
effects. Length Mixing (Average: 41.43%) results in a slight decrease of 1.37%↓ on average for textual
tasks. However, while underperforming on others, it shows improvements on specific textual datasets like
CSQA, GSM8K, and Date. Teacher Mixing also shows a slight decrease of 0.83%↓ on average for textual
tasks compared to No Mixing. These results suggest that the benefits of the tested mixing strategies are
not universally additive over a strong No Mixing baseline for textual tasks on average, but they can offer
advantages for specific datasets or modalities, likely by tailoring the data complexity or teacher style to
particular student needs or task characteristics.

Q3: Which data-centric methods show particular strengths for specific reasoning tasks?Optimal
strategies vary by task demands, and combining effective augmentation with suitable filtering or mixing can
yield further improvements:

1. Textual Reasoning (SQA, CSQA, ANLI): Answer Augmentation and Question Rephrasing enhance lin-
guistic diversity. These should be combined with LLM-as-a-Judge filtering to ensure the high quality and
coherence of the textual rationales. Teacher Mixing could also be beneficial after augmentation for tasks
with varying teacher capabilities.

2. Mathematical Reasoning (GSM8K, MATH, Date): Reverse Thinking excels due to the need for backward
deduction. Answer Augmentation is also valuable. These augmented datasets should then be rigorously
filtered using Filtering by Teacher Correctness to eliminate any incorrect mathematical procedures.
Subsequently, Length Mixing can be applied to balance the complexity of CoTs presented to the student.

3. Agentic Reasoning (WebArena): Given the complexity and potential for action chain errors, the augmented
data should be curated using LLM-as-a-Judge filtering to enhance correctness.

4. Visual Reasoning (Visual-Cot): It is critical to use LLM-as-Judge filtering to ensure rationales are not only
logically sound but also accurately reflect and reference the visual content.

4.3 MODEL-LEVEL RESULTS

We explored the effect of Teacher and Student types/sizes as well. For detailed results on Student Models,
please refer to Appendix F.
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Figure 5: Accuracy of different seed-data sizes and teachers for WebArena and Visual-CoT.
4.3.1 TEACHER MODEL ANALYSIS

We investigate the interplay between teacher and student models, summarized in Tables 3 and 4. For textual
reasoning tasks, we utilize the best-performing augmentation approach, Reverse, and for visual as well as
agentic tasks, we report the performance on vanilla CoT.

Table 4: Impact of teacher model on agentic (We-
bArena) and visual (Visual-CoT) performance.

Student Model Teacher Model WebArena Visual-CoT

Llama-3.1-8B Claude-3.5 22.78 -
GPT-4o 24.51 -

Llama-3.1-8B-R1 Claude-3.5 11.33 -
GPT-4o 13.79 -

Qwen-2.5-VL-3B
GPT-4 - 42.92
GPT-4-mini - 45.44
o4-mini - 45.20

Q4. How does the choice of a teacher model impact
the performance of different student models on textual
reasoning tasks? Is there a universally “best” teacher
for all students? Table 3 reveals that for textual reasoning,
stronger models like Gemini-1.5-Pro and GPT-4 generally
yield better results when distilling to capable student mod-
els such as Llama-3-8.1 B. For instance, Llama-3.1-8B
achieves a high average textual score for both teachers,
suggesting that as long as the teacher is powerful enough
and the student has adequate capacity, transferring com-
plex reasoning using Knowledge Distillation is quite effective. However, a universally “best” teacher is not
apparent. While Gemini-1.5 shows a slight edge for LLama-3.1-8B on average, GPT-4 can be comparable
or better on specific datasets (e.g., ARC for Llama-3.1-8B). For Mistral Gemini-1.5, it slightly outperforms
GPT-4, whereas for Gemma-7B, GPT-4 is marginally better than the other. This variability indicates that
optimal teacher-student pairings are nuanced, likely influenced by factors like architectural alignment or
specific knowledge domains.

Table 5: Performance of Llama-3.1-8B and Mistral-7B when
varying the percentage of seed data.

Student Model Seed Data % Augmentation Type SQA ARC GSM8K Date AVG.

Llama-3.1-8B

Zero-Shot None 57.64 48.46 19.64 49.70 43.86

25% Vanilla CoT 68.12 79.95 42.99 66.86 64.48
Reverse 60.70 77.82 30.02 74.56 60.78

50% Vanilla CoT 73.80 80.12 36.39 71.01 65.33
Reverse 62.88 79.95 47.01 68.64 64.62

75% Vanilla CoT 67.69 71.78 26.61 65.89 57.99
Reverse 68.12 80.79 59.67 73.96 70.64

100% Vanilla CoT 58.08 55.34 24.30 59.41 49.28
Reverse 72.49 82.17 76.35 70.41 75.36

Mistral-7B

Zero-Shot None 55.02 50.94 20.24 46.75 43.24

25% Vanilla CoT 70.46 69.52 44.09 63.58 61.91
Reverse 71.18 73.98 54.13 62.72 65.50

50% Vanilla CoT 64.91 70.04 39.25 58.53 58.18
Reverse 68.56 76.11 53.90 64.59 65.79

75% Vanilla CoT 62.14 64.02 26.94 50.69 50.95
Reverse 71.98 77.30 54.44 61.41 66.28

100% Vanilla CoT 60.84 51.40 19.55 46.41 44.55
Reverse 72.05 76.96 59.21 59.17 66.85

Q5. What does performance on agentic
and visual tasks indicate about teacher
model suitability? Table 4, which exam-
ines agentic and visual tasks, provides strong
support for the small model learnability gap.
This concept suggests that smaller student
models (e.g., ≤ 3B parameters) may not al-
ways benefit most from the largest available
teachers, as they might learn more effectively
from slightly smaller teachers whose reason-
ing complexity better matches their own ca-
pacity. Our results for the Qwen-2.5-VL-3B
student on Visual-CoT clearly demonstrate
this: distillation from smaller, capable teach-
ers like GPT-4-mini (45.44% acc.) and o4-
mini (45.20% acc.) leads to superior perfor-
mance when compared to the largest GPT-4
(42.92% acc.). This implies that the CoTs
from very large models like GPT-4 might be overly complex for a smaller, specialized model like Qwen-
2.5-VL-3B to internalize effectively. The more digestible reasoning patterns of GPT-4-mini and o1-mini
likely facilitate better knowledge transfer, highlighting that sheer teacher strength does not guarantee optimal
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distillation if the student struggles with the complexity. Q6. Considering textual, agentic, and visual tasks,
what general principles can be inferred for selecting an optimal teacher? Several interesting observations
lead to emerging principles: (1) The "Learnability Gap" Affects Smaller/Specialized Students. For smaller
or specialized students, the strongest teacher is not always the best. A teacher with more aligned reasoning
complexity, even if smaller, can yield better results. (2) Student’s Prior Distillation History Impacts Recep-
tiveness. The Llama-3.1-8B-R1 model, previously distilled from DeepSeek-R1, shows slightly lower average
performance on textual tasks compared to base Llama-3.1-8B when further distilled by either Gemini-1.5-Pro
or GPT-4. This suggests that a student’s prior specializations or distillation experiences can hinder learning
from new teachers if their strengths don’t align, leading to less effective knowledge transfer.

4.3.2 STUDENT ARCHITECTURE AND ADVANCED SELECTION

Table 6: Performance on Visual Reasoning tasks
across Dense (Qwen) and MoE (DeepSeek) ar-
chitectures.

Model Qwen-2.5 VL 8B (Dense) DeepSeek-VL2 (MoE)

Dataset OK-VQA CLEVR OK-VQA
Data Augmentation

Zero Shot 65.60 56.88 11.60
Zero Shot CoT 61.84 58.36 12.92
Vanilla CoT 59.94 54.04 45.46

Data Selection

No Selection 59.94 54.04 45.46
Teacher Filter 63.80 67.60 51.82
Student Filter 66.30 57.02 43.46
LLM Judge 59.42 54.12 43.88
Model Uncertainty 59.54 50.26 43.78

Data Mixing

No Mixing 59.94 54.04 45.46
Teacher Mixing 61.70 55.60 48.04

While we discuss the scaling laws of standard dense stu-
dent models in Appendix F, it is crucial to validate the
universality of DC-CoT across diverse architectures and
assess more complex data selection heuristics. To this end,
we extended our evaluation to DeepSeek-VL2 (a Mixture-
of-Experts model) and Qwen-2.5-VL-8B on visual rea-
soning tasks (OK-VQA, CLEVR). Furthermore, we intro-
duced an Uncertainty-based Selection strategy, which
prioritizes training instances where the student model ex-
hibits high entropy (> 0.5) in zero-shot inference.

As presented in Table 6, DC-CoT strategies remain ef-
fective for the MoE architecture. For instance, Teacher
Filtering improves DeepSeek-VL2’s performance on OK-
VQA from 45.46% (Vanilla) to 51.82%. Regarding data
selection, while Uncertainty-based selection yields com-
petitive results (e.g., 59.54% on OK-VQA with Qwen), it does not consistently outperform our proposed
heuristic methods (Student/Teacher Filtering). This suggests that the foundational primitives defined in
DC-CoT are both robust and efficient for diverse student architectures including MoEs.

4.4 DATA-LEVEL RESULTS

4.4.1 EFFECT OF DATA VOLUME

We investigate the relationship between the volume of seed data used for distillation and the resulting student
model performance, referencing Table 5 for the textual reasoning task with Gemini-1.5-Pro as the teacher and
Reverse augmentation, and Figure 5 for agentic and visual tasks with Claude 3.5 as the teacher and CoT.

Q7. How does increasing the percentage of seed data generally impact student model performance
for Vanilla CoT and Reverse on textual tasks? How do these two methods compare? On textual tasks,
increasing seed data for Vanilla CoT does not consistently yield linear performance improvements. For
Llama-3.1-8B, Vanilla CoT performance peaks at 50% seed data, then declines. Mistral with Vanilla Cot
shows a similar non-linear trend, peaking earlier at 25%. This suggests that additional raw teacher traces
might introduce noise or less informative examples beyond an optimal point, potentially hindering learning.
In contrast, Reverse augmentation generally shows more consistent benefits with increased data. For both
models, Reverse results in better performance at higher data volumes. This indicates that the richer signal
from Reverse is more effectively leveraged as data volume increases. Q8. Does the “more data always
leads to better results" scaling law hold true across these experiments? The traditional scaling law does
not universally hold in our experiments. This is particularly evident for Vanilla CoT on textual tasks, where
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performance can degrade with excessive data. However, more data tends to be beneficial up to the tested
volumes for more sophisticated augmentations like Reverse on textual data, and generally for agentic tasks.

4.4.2 GENERALIZATION CAPABILITY ANALYSIS

Table 7: Zero-shot (ZS) versus OOD
fine-tuning accuracy with Llama-3.1-
8B.

Training Data Testing Data Setting ACC.

SQA BoolQ ZS 54.75
OOD 64.16

ARC OBQA ZS 74.58
OOD 81.60

ANLI ESNLI ZS 49.74
OOD 59.75

GSM8K
GSM8K-Rev ZS 16.74

OOD 38.89

MATH ZS 9.32
OOD 8.75

MATH GSM8K ZS 19.64
OOD 80.74

Webarena-hard Webarena-easy ZS 14.18
OOD 19.90

Webarena-easy Webarena-hard ZS 2.44
OOD 11.95

Visual-CoT OK-VQA ZS 42.10
OOD 38.90

OK-VQA Visual-CoT ZS 44.52
OOD 44.62

We investigate how well reasoning skills learned through CoT distilla-
tion on a source dataset transfer to related but distinct target datasets.
The analysis primarily references Table 4, while all experimental
settings are explained in Appendix C.3.

9. How does fine-tuning on a source dataset generally impact
Out-of-Distribution (OOD) performance compared to Zero-Shot
performance on the target dataset? Table 7 consistently shows
that fine-tuning on a source dataset, even if different from the target,
generally leads to substantial improvements in OOD performance on
the target dataset compared to its Zero-Shot accuracy. For instance,
after training on SQA, OOD performance on BoolQ improves. Sim-
ilarly, training on ARC boosts OBQA performance. This trend holds
across textual, mathematical, agentic, and even some visual task
pairings, indicating that the reasoning skills learned via CoT distil-
lation possess a notable degree of transferability. Q10. Are there
specific task categories or pairings where OOD generalization
is particularly strong or weak? Does fine-tuning on a source task
always guarantee better OOD performance than its Zero-Shot
counterpart on the target task? The degree of generalization varies
across task categories and specific pairings as observed in Table 7.
Strong generalization is evident when transferring between similar textual reasoning tasks. For example,
training on SQA significantly boosts BoolQ, and ARC training enhances OBQA performance. Mathematical
reasoning also shows strong positive transfer, particularly when training on the more complex MATH dataset
and testing on GSM8K, and also from GSM8K to its reversed version, GSM8K-Rev. Agentic tasks within
WebArena also demonstrate good generalization across difficulty levels. However, generalization can be
mixed or weak in other scenarios. For instance, while MATH to GSM8K is strong, the reverse (GSM8K to
MATH) shows a decrease. Visual tasks also present varied results; training on OK-VQA improves Visual-Cot,
but training on Visual-Cot leads to a drop on OK-VQA.

For a detailed analysis of the computational efficiency and token-level costs of our data-centric pipeline,
please refer to Appendix G.

5 CONCLUSION

This paper addresses the challenge of transferring reasoning from large to small models via CoT distillation,
a domain where data-centric strategies have been underexplored. We introduce DC-CoT, a comprehensive
benchmark designed to systematically investigate how data augmentation, selection, and mixing influence
CoT distillation efficacy. Our findings reveal that data-centric manipulations significantly enhance distillation.
Data augmentation, in particular, offers the most substantial performance gains by enriching the diversity
of reasoning traces. Furthermore, we distill our findings into a heuristic framework for practitioners: (1)
Structured Logic tasks (Math, Code) benefit most from Reverse Thinking combined with Teacher Cor-
rectness filtering to enforce logical consistency. (2) Open-Ended Linguistic tasks (Commonsense, NLI)
require Answer Augmentation paired with LLM-as-a-Judge to capture diverse reasoning paths without
semantic drift. (3) Agentic and Visual tasks necessitate LLM-as-a-Judge filtering, as simple heuristics fail
to verify the grounding of rationales in observation contexts. Future work will expand this benchmark to
include non-Transformer architectures and investigate more complex selection metrics, paving the way to
democratize advanced reasoning.
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A LIMITATIONS

• Budget Constraints: Due to budget constraints, models like GPT-o4 were not included in our experiments.
Moreover, migrating to other benchmarks also incurs substantial API costs. Therefore, for agentic task
similar to many related papers Zhou et al. (2023), we focus solely on the WEBARENA Zhou et al. (2023)
framework. However, our method is simple and efficient, without any benchmark-specific optimizations,
making it easily transferable to other models.

• Hardware and Time Constraints: Extending distillation to more and larger models is highly challenging
due to hardware and time limitations. Therefore, we selected some student models for our distillation
experiments.

B BROADER IMPACT

The DC-CoT benchmark is poised to significantly impact AI by fostering the development of smaller,
more accessible, and powerful reasoning models. By systematically evaluating data-centric CoT distillation
strategies, DC-CoT offers crucial insights and a standardized testbed, steering research towards resource-
efficient AI and enabling advanced reasoning in computationally constrained environments. This research can
yield broad societal and technological benefits:

1. Democratization of AI: Lowering computational barriers allows wider access to innovate with
state-of-the-art AI.

2. Educational Advancements: Accessible reasoning models can be integrated into educational tools,
supporting personalized learning.

3. Application of AI: Broader deployment of reasoning AI can aid complex problem-solving in research,
healthcare, finance, and other industries.

The insights from DC-CoT will also guide practitioners in optimizing distillation pipelines, promoting
data-aware and sustainable AI by reducing the computational footprint of large models. By facilitating more
efficient reasoning systems, DC-CoT contributes to a future of more equitably accessible and sustainably
developed advanced AI.

C EXPERIMENT SETTING

C.1 DISTILLATION TRAINING

We conduct the distillation training on 8 A100 GPUs and 16 A6000 GPUs, using LoRA fine-tuning for the
student models. The LoRA rank we set is 32, and the lora alpha we set is 64. For an agentic task, the training
process spans 5 epochs, with a learning rate of 5 ∗ 10−5 and a context length of 10, 000. For the visual task,
the training process spans 1 epoch, with a learning rate of 5 ∗ 10−5. The distillation methodology follows
the guidelines provided in Llama Factory(Zheng et al., 2024). For Textual tasks, we train for 10 epochs for
each dataset.

C.2 INFERENCE PIPELINE

For inference, we employ the vLLM framework, running on 8 A100 GPUs. The WEBARENA framework is
deployed on 4 CPU machines. To enhance efficiency, we leverage the official task-parallel Bash script for
parallel execution, rather than processing tasks sequentially by task ID.
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C.3 EXPERIMENTAL SETTINGS FOR GENERALIZATION EXPERIMENT

For all experiments, we use Llama-3.1-8B as our student model. OOD Datasets were chosen as follows:
BoolQ (Clark et al., 2019) was used for SQA, OBQA (Mihaylov et al., 2018) for ARC, ESNLI (Camburu et al.,
2018) for ANLI, GSM8K-Rev (Guo et al., 2024) and MATH for GSM8K, GSM8K for MATH, Webarena-easy
for Webarena-hard and vice versa, Ok-VQA for Visual-CoT and vice versa.

D RELATED WORK

D.1 REASONING IN LLMS

The ability of LLMs to perform complex reasoning has been significantly enhanced by techniques that
encourage explicit, step-by-step thinking. Foremost among these is Chain-of-Thought (CoT) prompting (Wei
et al., 2022; Kojima et al., 2022; Nye et al., 2021), which elicits intermediate reasoning steps from LLMs before
arriving at a final answer. This approach makes the model’s inference process more transparent by providing
human-readable explanations (Joshi et al., 2023; Lanham et al., 2023) and substantially improves performance
on tasks requiring multi-step deduction, such as arithmetic, commonsense, and symbolic reasoning (Wei et al.,
2022). By breaking down complex problems into manageable intermediate computations, CoT helps LLMs
navigate intricate logical pathways and arrive at more accurate conclusions (Madaan & Yazdanbakhsh, 2022;
Wang et al., 2023a; Dziri et al., 2023). Integrating self-generated rationales through CoT effectively boosts
the reasoning capabilities inherent in these models (Kojima et al., 2022).

Building upon the foundational CoT paradigm, recent research has explored more sophisticated "deep-
thinking" or "long-CoT" approaches to push the boundaries of LLM reasoning further. These methods often
involve generating more elaborate or structured reasoning pathways. For example, Tree-of-Thought (Yao
et al., 2023a) prompting allows models to explore multiple reasoning paths in parallel, evaluating intermediate
thoughts to decide the most promising direction. Other techniques focus on iterative refinement (Wang et al.,
2022b) and self-correction, such as Self-Reflection (Madaan et al., 2023; Yao et al., 2023b; Shinn et al., 2023),
where models critique and improve their own generated thoughts.

D.2 KNOWLEDGE DISTILLATION IN LLMS

Knowledge distillation is a potent technique for transferring knowledge from a large, often cumbersome,
"teacher" model to a smaller, more efficient "student" model. This process is increasingly relevant in the
context of LLMs due to their substantial size and computational demands. The fundamental concept, as
introduced in early works (Buciluǎ et al., 2006; Hinton et al., 2015), involves training the student model to
mimic the teacher model’s output distribution (soft labels), thereby minimizing the divergence between their
respective distributions. This approach has found applications across various tuning techniques for LLMs.
For instance, LLM-generated annotations, including instructions, responses, and rationales, are leveraged in
supervised fine-tuning, i.e., where a smaller model learns from the synthetic data produced by a larger teacher
LLM (Kim et al., 2023; Tong et al., 2024; Huang et al., 2023; Wang et al., 2023b; 2025; Lu et al., 2023).
This is particularly useful for enhancing specific capabilities (Josifoski et al., 2023; Zhang et al., 2023; Zhao
et al., 2023) or imparting domain-specific knowledge efficiently (Taori et al., 2023; Xu et al., 2023; Zheng
et al., 2023; Wang et al., 2022a). Furthermore, distillation techniques are employed in alignment tuning. One
example includes Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al., 2022), where
synthetic data from LLMs can aid in reward modeling and policy training to align model outputs with human
preferences and intentions.

While classical knowledge distillation learns from the teacher model’s distributions, and the objective is
to minimize the difference between the student’s distribution and the teacher’s (Chen et al., 2020), recent
advancements in LLMs have brought a particular focus to distilling their complex reasoning capabilities,

20



Published as a conference paper at ICLR 2026

especially CoT processes, into smaller student model’s (Kojima et al., 2022). CoT is also crucial when
addressing architectural differences or significant capacity gaps between teacher and student LLMs, as merely
mimicking the final output might be insufficient for the student to learn effectively. Teacher models provide
CoT rationales in various ways: (1) Sampled directly from the teacher (Hsieh et al., 2023; Fu et al., 2023; Li
et al., 2023a; West et al., 2022; Magister et al., 2023; Mukherjee et al., 2023; Mitra et al., 2023), (2) Generated
via bootstrapping (Li et al., 2023b; Ding et al., 2024; Zelikman et al., 2022; Lewkowycz et al., 2022; Yu et al.,
2023; Li et al., 2024a; Yuan et al., 2023; Guo et al., 2024; Chen et al., 2024b), or (3) Obtained via multiple
teacher models (You et al., 2017; Chen et al., 2024a). The rationale, reflecting the detailed thought process
and reasoning pathway, serves as valuable auxiliary information for the student model to predict the final
answer more accurately and robustly. While CoT distillation shows promise (Mukherjee et al., 2023; Ho
et al., 2022), it remains unclear which methods, teacher models are most effective for a specific student model
and how they perform in various settings. This calls for a data-centric study of how the generation, selection,
and combination of distillation data impact student reasoning and generalization.

E TASK DESCRIPTIONS

Textual Reasoning: It assesses a model’s ability to make logical inferences from text, often through multi-
step reasoning. Each instance includes a question Q, rationale R, and answer A. The student model Sθ learns
to predict A using Q and R. Tasks span commonsense, science, math, and table reasoning, with performance
measured by answer accuracy.

Agentic Reasoning: This task tests an LLM agent πθ in the WEBARENA browser sandbox, where it must
follow an instruction I by navigating real websites. At each step, the agent observes o, takes an action a, and
explains its reasoning r. A large LLM (ML) selects actions based on the interaction history. Performance is
measured by Success Rate (SR)—the fraction of tasks where the agent reaches the correct goal state.
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Figure 6: Qwen-2.5 (0.5B-7B) distilled with Vanilla-
CoT vs Reverse

Visual Reasoning: Extends chain-of-thought to
multi-modal inputs, requiring models to interpret
visual content and answer related questions. Each
instance is a tuple (v, q, a, r): an image v, a question
q, an answer a, and a rationale r outlining reasoning
steps linking v to a. Unlike text-only reasoning, vi-
sual reasoning demands interpretable grounding—r
often points to specific image regions that justify the
answer. This keeps the reasoning process transpar-
ent, testing the model’s ability to connect visual cues
with logical steps across multiple reasoning hops.

F IMPACT OF STUDENT MODEL SIZE

This section examines how the scale of the student
model influences the efficacy of CoT distillation, with a particular focus on learnability from different
augmentation strategies. The experiments, summarized in Figure 6, are performed on Qwen-2.5 models
of varying sizes (0.5B, 1.5B, 3B, 7B) when distilled with Vanilla CoT and Reverse augmentation, using
Gemini-1.5-Pro as the teacher.

Q11. How does the student model size generally affect reasoning performance with standard Vanilla
CoT, and how does it interact with more complex augmentations like Reverse? As shown in Figure 6,
performance with Vanilla CoT clearly scales with student model size: Qwen-2.5-0.5B achieves an average of
32.86%, which improves to 45.72% for 1.5B, 50.89% for 3B, and 55.58% for the 7B model. This confirms
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that larger models better leverage standard teacher CoTs. The introduction of Reverse presents a more
nuanced picture. On average across all four textual tasks, the impact is mixed; the 1.5B model shows a modest
gain, while others see slight average decreases. However, these averages mask strong task-specific effects.
Reverse significantly boosts performance on SQA and Date for all student sizes. Conversely, it markedly
degraded performance on ARC and GSM8K compared to Vanilla CoT. This demonstrates that the utility of
this complex augmentation is highly task-dependent in our specific student-teacher setup, instead of being a
universal benefit.

Q12. Do smaller student models (0.5B, 1.5B) exhibit the small model learnability gap when faced with
complex augmentations like Reverse? The small model learnability gap suggests smaller models struggle
with overly complex reasoning. Analyzing our results: On tasks where Reverse is beneficial, smaller models
(0.5B, 1.5B) achieve substantial gains. However, their absolute scores remain below those of larger students,
indicating a capacity limitation in reaching peak performance.

G EFFICIENCY AND CODE ANALYSIS

Efficiency is an important consideration for a data-centric pipeline designed for broad adoption. While
wall-clock time can be a useful metric, it often varies significantly depending on the hardware, batch sizes,
and API latencies. To offer a more hardware-independent and reproducible measure of computational cost,
we instead report token-level costs for data generation. The token usage for several key prompting techniques
is summarized in the Table 8.

Moreover, these costs are incurred once during data generation, with no inference-time overhead or change to
the student model architecture. This design choice was deliberate: we aimed to make DC-CoT practical for
both academic and applied ML use cases.

Table 8: Token-level cost comparison for data generation methods.

Method Prompt Type Avg. Prompt Tokens Avg. Output Tokens Total Tokens per Sample
Standard CoT Forward CoT Prompt 60 180 240
Rephrased CoT Question Rewriting 75 180 255
Reverse Thinking Answer-First Reverse CoT 110 200 310

To quantify the computational benefits of DC-CoT, we measured the throughput of our distilled students
on a single NVIDIA A100-80GB GPU using vLLM. As shown in Table 9, the distilled Qwen-2.5-3B
model—which achieves performance competitive with larger vanilla baselines—offers a ∼6–9× speedup
relative to the 8B baseline, validating the “Efficient Reasoning” claim of our benchmark.

Table 9: Efficiency profile of distilled student models measured on A100-80GB.

Model VRAM (GB) Throughput (tok/s) Relative Speedup

Llama-3.1-8B (Student) 16.2 115.4 1.0×
Qwen-2.5-3B (Student) 7.8 184.2 ∼1.6×
Qwen-2.5-1.5B (Student) 4.2 245.1 ∼2.1×

H CONFIDENCE INTERVALS AND SIGNIFICANCE TESTING

While we reported average accuracy over 3 seeds for all experiments, we acknowledge that confidence
intervals help contextualize gains that appear small. Some of these results are summarized in the Table 10.
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We report 95% confidence intervals for core reasoning tasks (ARC, MATH, GSM8K) across Mistral-7B,
LLaMA-3.1-8B, and Gemma-7B models. As shown below, Reverse CoT consistently and significantly
outperforms No CoT, with non-overlapping intervals in nearly all cases, confirming the robustness of the
gains. These results suggest that improvements are statistically significant, not noise.

Table 10: Accuracy with 95% confidence intervals on core reasoning tasks.

Model Task Method Accuracy ± CI

Mistral-7B

ARC No CoT 68.26 ± 0.75
Reverse CoT 76.96 ± 1.45

MATH No CoT 7.98 ± 0.39
Reverse CoT 16.12 ± 0.38

GSM8K No CoT 31.11 ± 1.80
Reverse CoT 59.21 ± 0.85

LLaMA-3.1-8B

ARC No CoT 60.41 ± 1.37
Reverse CoT 82.17 ± 1.20

MATH No CoT 7.39 ± 0.13
Reverse CoT 35.52 ± 0.26

GSM8K No CoT 20.74 ± 1.04
Reverse CoT 76.35 ± 1.98

Gemma-7B

ARC No CoT 68.09 ± 1.17
Reverse CoT 73.46 ± 1.06

MATH No CoT 7.24 ± 0.34
Reverse CoT 16.54 ± 0.83

GSM8K No CoT 26.22 ± 0.83
Reverse CoT 53.45 ± 1.75
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I THINKING EXAMPLE

Instruction :

You need to issue an action,interaction history summary for this step. When you
thinking need have OBSERVATION DESCRIPTION, OBSERVATION HIGHLIGHT, REASON.

You are ONLY allowed to use the following action commands. Strictly adheres to
the given format.

{click [id]: To click on an element with its numerical ID on the webpage. E.g., `
click [7]` ;

type [id] [content] [press_enter_after=0|1]: To type content into a field with a
specific ID. By default, the \"Enter\" key is pressed after typing unless `
press_enter_after` is set to 0. E.g., `type [15] [Carnegie Mellon University
] [1]` .;

stop [answer]: To stop interaction and return response. Present your answer
within the brackets. If the task doesn't require a textual answer or appears
insurmountable, additional reasons and all relevant information you gather

as the answer. E.g., `stop [N/A ...]`. ;

note [content]: To take note of all important info w.r.t. completing the task to
enable reviewing it later. E.g., `note [Spent $10 on 4/1/2024]`;

go_back: To return to the previously viewed page.

Input :

OBJECTIVE: Which US states border Vermont?

LASTACTION: first step, no last action

LAST INTERACTION HISTORY SUMMARY: This is the initial interaction. We are on the
OpenStreetMap homepage and need to search for Vermont to begin our task of
identifying its bordering states.

CURRENT OBSERVATION:
RootWebArea "OpenStreetMap"
link [41] 'OpenStreetMap logo OpenStreetMap'
link [402] 'Edit'
button [403]
link [373] 'History'
link [374] 'Export'
link [407] 'GPS Traces'
link [408] 'User Diaries'
link [409] 'Communities'
link [410] 'Copyright'
link [411] 'Help'
link [412] 'About'
link [382] 'Log In'
link [383] 'Sign Up'
link [515] 'Where is this?'
textbox [35] 'Search' [required: False]
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button [516] 'Go'
link [503] 'Find directions between two points'
heading 'Welcome to OpenStreetMap!'
button [469] 'Close'
text 'OpenStreetMap is a map of the world, created by people like you and

free to use under an open license.'
text 'Hosting is supported by'
link [475] 'UCL'
link [477] 'Fastly'
link [479] 'Bytemark Hosting'
text ', and other'
link [481] 'partners'
link [485] 'Learn More'
link [486] 'Start Mapping'
generic [15] 'Zoom In Zoom Out Show My Location Layers Share 50 km 50 mi

OpenStreetMap contributors Make a Donation. Website and API terms'
link [19] 'Zoom In'
link [20] 'Zoom Out'
button [22] 'Show My Location'
link [24] 'Layers'
link [296]
link [26] 'Share'
link [309] 'OpenStreetMap contributors'
link [311] 'Make a Donation'
link [313] 'Website and API terms'

Output :

"<think>
OBSERVATION DESCRIPTION: The current page is the OpenStreetMap homepage. It

contains a search box (ID: 35) where we can enter our query. There are
various navigation links and buttons, but the most relevant element for
our task is the search functionality. The map view (ID: 15) is also
present, which will be crucial for visualizing Vermont and its
neighboring states once we perform the search.

OBSERVATION HIGHLIGHT: 35, 15, 516, 19, 20, 24, 26

REASON: To locate Vermont on the map, we need to use the search functionality.

</think>
ACTION: type [35] [Vermont] [1]

INTERACTION HISTORY SUMMARY: We have searched for \"Vermont\" on OpenStreetMap
and are now looking at the search results page with a map view of Vermont."
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J DATASET STATISTICS

Dataset Domain License Train (Original) Train (Filtered) Test

SQA Geva et al. (2021) Commonsense MIT 2,061 1,544 229
CSQA Talmor et al. (2019) Commonsense MIT 9,741 6,478 1,140
ARC Clark et al. (2018) Commonsense CC BY-SA 4.0 1,199 1,035 1,172
BoolQ Clark et al. (2019) Commonsense CC BY-SA 3.0 9,427 0 3,270
OpenbookQA Mihaylov et al. (2018) Commonsense Apache 4957 0 500
MATH Hendrycks et al. (2021) Math MIT 7,500 2,511 5,000
GSM8K Cobbe et al. (2021) Math MIT 7,379 4,293 1,339
GSM8K-Rev Guo et al. (2024) Math Apache - 0 777
ANLI (r3) Nie et al. (2020) NLI CC BY-NC 4.0 100,459 883 1,200
e-SNLI Camburu et al. (2018) NLI CC BY-NC 4.0 549,367 0 9,824
Date Srivastava et al. (2022) Logic Apache - 200 169
Webarena Zhou et al. (2023) Agentic Apache - 0 812
Visual-CoT Shao et al. (2024) Visual Apache 132,000 943,000 12,500
OK-VQA Marino et al. (2019) Visual CC BY 4.0 5,046 9,009 5,000

Table 11: The datasets used in our Experimental Setup.

K THE USE OF LARGE LANGUAGE MODELS (LLMS)

To enhance clarity and readability, we employed OpenAI’s GPT-5 and GPT-5-thinking models exclusively
as language polishing tools. Their role was limited to proofreading, grammatical correction, and stylistic
refinement—functions comparable to those of conventional grammar checkers and dictionaries. These tools
did not contribute any new scientific content or ideas, and their usage is consistent with standard practices in
manuscript preparation.
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