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Abstract

A key challenge in analyzing neuroscience datasets is the profound variability
they exhibit across sessions, animals, and data modalities. Several recent studies
have demonstrated performance gains from pretraining neural foundation models
on multi-session datasets, seemingly overcoming this challenge. However, these
studies typically lack fine-grained data scaling analyses. It remains unclear whether
all sessions contribute equally to downstream performance gains. In this work, we
systematically investigate how cross-session variability impacts the scaling behav-
ior of neural data transformers (NDTs) in neural activity prediction. We propose
a session selection procedure based on single-session finetuning performances.
Through this procedure, models pretrained on as few as five selected sessions
outperformed those pretrained on the entire dataset of 84 sessions. Our findings
challenge the direct applicability of traditional scaling laws to neural data and
suggest that multi-session scaling benefits may need to be re-examined in the light
of session-to-session variability. This work both highlights the importance of incre-
mental data scaling analyses and suggests new avenues toward optimally selecting
pretraining data when developing foundation models on large-scale neuroscience
datasets.

1 Introduction

Recent advances in foundation models have revolutionized the modern machine learning paradigm.
Across domains such as language and vision, it has been shown that “pretraining” a generic model
on large-scale data before “finetuning” it to the actual tasks achieves much better performance than
task-specific models [1, 2, 3]. This success has inspired similar efforts in systems neuroscience,
where the goal is to develop foundation models trained on large, multi-session, multi-animal neural
datasets of neural activity recordings. However, neural recordings pose unique challenges: data
collected across brain regions, sessions, and individuals often exhibit substantial variability [4, 5, 6].
Even within the same recording session, stochasticity of neuronal firing and uncontrolled behavior
can lead to significant trial-to-trial variability [7, 8, 9]. Furthermore, neural data can be non-stationary
due to synaptic plasticity that induces gradual changes in population dynamics across days [10, 11].
These challenges raise a key question: Can neural foundation models overcome these sources of
variability and learn more generalizable representations with more pretraining data?
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Figure 1: Experimental Setup. (a) Schematic of the visual decision-making task performed by mice.
(b) Planned probe insertion location (black line) for all sessions in the RepeatedSite dataset. (c)
Forward-prediction training task. (d) The model architecture. Sub-figures adapted from [4, 5, 18, 14].
See text for details.

While several recent studies have demonstrated performance gains from multi-session pretraining on
a wide range of encoding and decoding tasks, they typically lack fine-grained scaling analyses on the
benefits of gradually increasing pretraining data [12, 13, 14, 15]. Most comparisons are limited to
models trained on single sessions versus entire datasets with few increments in the middle, making it
unclear how data scaling impacts downstream performances. Moreover, it remains unknown whether
all pretraining sessions contribute equally to downstream performance improvements. As pretraining
scales to thousands of sessions and hours of data [16, 13], understanding the scaling behaviors of the
model becomes increasingly critical.

In this work, we systematically investigate how cross-session variability affects the scaling behavior
of neural data transformers (NDTs) [17, 14, 16] using the RepeatedSite dataset released from
the International Brain Laboratory [5, 18]. Through a proposed session-selection procedure based
on single-session finetuning performances, we identified the impact of each pretraining session
on downstream performance improvements. We found that models trained with as few as five
selected sessions outperformed those with randomly chosen sessions even when the full dataset
was used, demonstrating the impact of session-to-session variability in performance scaling. These
findings point to the need for rigorous scaling analyses in future work on neural foundation models to
accurately assess the effect of data scaling and the promise of large-scale pretraining.

2 Experimental Setup

Figure 1 summarizes the experimental setup used throughout our study, which mostly follows Zhang
et al. [14] whose experiments were conducted on a subset of the same RepeatedSite dataset we
used. We discuss the datasets, training pipeline, and evaluation metrics in detail below.

Dataset We used the multi-brain-region, multi-animal/session RepeatedSite (henceforth RS)
dataset from the International Brain Lab (IBL) collected from mice. Animals performed a visual
decision-making task where they detected the presence of a visual grating (of varying contrast) to their
left or right and rotated a wheel to bring the stimulus to the center (Fig. 1(a)). Each session attempted
to record from the same brain regions (Fig. 1(b), black line shows planned electrode insertion
position). We used 89 out of 91 sessions in RS, excluding two sessions with fewer than one hundred
trials. Five out of 89 sessions were held out for finetuning and evaluation. Trials within each session
were randomly split into training, validation, and test sets using an 8:1:1 ratio. Each trial included
three seconds of neural activity, spanning from 0.5 seconds before to 2.5 seconds after stimulus onset
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with 20 ms bins for spike counts. The data from each session is thus a three-dimensional (trials ×
timesteps × neurons) tensor of integer spike counts.

Model We used the neural data transformer (NDT) architecture by Ye and Pandarinath [17] that has
been widely applied to neural encoding and decoding tasks [19, 16, 15]. During training, the model is
trained to predict future activities of all neurons from previous activities with causal attention masks
(Fig. 1(c)). Since different sessions have different numbers of neurons recorded, a session-specific
linear layer (encoding “stitcher”) maps raw spike counts to spike embeddings (Fig. 1(d) left) whose
dimensions are shared across sessions [20]. A session embedding and a masking scheme embedding
[14] are also appended to input sequences 1. Lastly, another session-specific linear layer (decoding
stitcher) maps the output of the transformer back to reconstructed spike rates (Fig. 1(d) right).

Evaluation To show the effect of scaling up pretraining data, we directly trained single-session
models on the training set of each heldout session as the baseline models. The models’ neural activity
prediction performances are evaluated with the widely used bits-per-spike (BPS) metric:[21, 22, 14,
15]:

bits-per-spike
(
λ̂,X

)
=

1

nsp log 2

(
L
(
X; λ̂

)
− L

(
X; λ̄

))
, (1)

where λ̂ is the predicted spike rates by the model, X is the true spike counts, nsp is the total spike
count of X, L is the log likelihood function of Poisson, and λ̄ is the mean firing rate of X. The BPS
metric essentially evaluates the goodness-of-fit statistics of a model over the null model, normalized
by the spike counts. Changes in BPS directly reflect changes in model log likelihood L

(
X; λ̂

)
when

evaluated on the same dataset, as other terms remain constant. For all experiments, we report the
metrics on the test sets of the heldout sessions after finetuning models to their training sets.

3 Identifying more beneficial single sessions for performance scaling

We hypothesize that each pretraining session exhibits varying degrees of distribution shift relative
to a heldout session, which arises from subtle, implicit individual differences among animals and
sessions. We expect that models pretrained on sessions “closer” to the heldout sessions will achieve
higher performances more data-efficiently than models pretrained with randomly selected sessions.

3.1 Ranking pretraining sessions by single-session finetuning performances
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Figure 2: Schematic of the ranking process. (a) Pretraining
stage: We trained 84 single-session models, each consisting
of a transformer and two session-specific stitchers. (b) Fine-
tuning stage: For each pretrained model, we trained two new
stitchers on the heldout session’s training set, keeping the
transformer weights frozen. Models were ranked by their
bits-per-spike metric on the heldout session’s validation set.

To test this hypothesis, we first pro-
pose using single-session finetuning
performances as an estimate of the
“closeness” between the data distribu-
tions of a pretraining session and a
heldout session. Figure 2 illustrates
this process: during the pretraining
stage, we trained 84 single-session
models, one for each pretraining ses-
sion (Fig. 2(a)). During the finetuning
stage, for a particular heldout session,
we trained two new stitchers (for en-
coding and decoding) for each of the
pretrained transformers while keep-
ing the transformers’ weights frozen
(Fig. 2(b)). This ensures the finetun-
ing performance maximally depends
on the features learned from the pre-
training session, as the only adjustable weights were the input/output linear layers that map the raw
spike counts to the frozen feature space and back. Lastly, we report each model’s forward-prediction

1This setup was inherited from a training pipeline that used other masking schemes as in [14]. Since our
work here only uses the forward-prediction task, this masking scheme embedding is not strictly necessary.
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Figure 3: Scaling performances under different session orders. (a) Forward-prediction perfor-
mances of each heldout session as we increased pretraining sessions according to random (blue),
ranked (green), or reverse-ranked (orange) order. The error bars show the standard deviation over
three seeds (ranked/reverse-ranked) or three shuffled orders (random). Black dashed lines show
the baseline models’ performance (averaged over three seeds). (b) Same as (a) but with the total
number of trials as the x-axis. Linear regressions were fitted with logarithmic x values and dashed
lines show extrapolated predictions. Shading shows the standard deviations. Red stars show the
performances of the models pretrained with all pretraining sessions. (c) Percentage improvements of
models pretrained with more sessions over the 1-session model.

performance on the heldout session’s validation set, yielding 84 metric values – one per pretraining
session. The pretraining stage (Fig. 2(a)) was performed once, while the finetuning and ranking
stage (Fig. 2(b)) were repeated for each heldout session. See Appendix B and Fig. A1 for the ranked
single-session finetuning performances.

We conducted our data scaling experiments by incrementally selecting more pretraining sessions in
three session-selection orders: random, ranked (based on the procedure above), and reverse-ranked.
To reduce variance, we used three random seeds for both ranking sessions and training models in the
scaling analysis, including the baseline models that were directly trained on the heldout sessions. For
the random order, we used three different shuffles of the session list. The transformers’ weights were
frozen for all finetuning experiments across data orders to be consistent with the ranking procedure.
We limited experiments to a maximum of 40 pretraining sessions (except for the full 84-session case)
since more selected sessions overlap as we exhaust the pretraining data.

3.2 Pretraining on five top-ranked sessions outperforms all random sessions

Figure 3(a) shows the performances of our scaling analysis on each heldout session’s test set with
different session orders. The results clearly show that in all heldout sessions, models pretrained
with ranked session order outperform those trained with randomly chosen sessions. Importantly, the
models pretrained with reverse-ranked sessions achieved worse performances than random-order
models, proving the validity of our ranking procedure based on single-session finetuning. Notably,
the performance differences in ranked, random, and reverse-ranked settings are more pronounced
in low-data regimes (fewer than ten sessions, see statistical tests in Table A2). Since the number of
trials was different among sessions, we also plotted the model performances in Figure 3(a) against the
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Table 1: Percentage improvements over baseline with different session selection procedures.

Session selection order (best of all experiments)

Heldout session Random Ranked Reverse-ranked Ranked (top 5 sessions)

84 5.74% 11.08% 2.54% 8.69%
85 11.33% 18.87% 9.39% 16.92%
86 3.13% 4.78% 0.89% 3.39%
87 8.37% 8.43% 3.30% 8.43%
88 19.12% 26.60% 10.95% 22.44%
Average 9.54% 13.95% 5.42% 11.97%

total number of trials from the pretraining sessions for fairer comparisons. As shown in Figure 3(b),
the same performance differences hold among the different session-selection orders given the same
number of trials. We fit the models’ performances using linear regression (with logarithmic input).
In contrast to the success of “scaling laws” in machine learning [23, 24, 25], the actual pretraining
performance using the entire 84 RS sessions (Fig. 3(b) red stars) is consistently lower than the
extrapolated performance (Fig. 3(b) dashed lines), indicating limited scaling effects for the neural
IBL data with the NDT model. This further supports our hypothesis that differences in pretraining
and finetuning data distributions greatly affect the promises of neural data scaling.

Table 1 summarizes the best percentage improvements over the baseline models for each session
selection order, along with the performance of models pretrained on five top-ranked sessions. On
average, models using rank-ordered session data achieved a 4% greater improvement over the baseline
than models using random-ordered session data. Remarkably, models trained on just five ranked
sessions outperformed the best models trained on randomly selected sessions, indicating an over 8×
gain in data efficiency (compared to 40 random session models, which outperformed the models
trained on all sessions (Fig. 3(b)). However, this also implies a reduced scaling effect compared to
randomly selected sessions. Figure 3(c) demonstrates that the percentage performance gains using
more pretraining data relative to using one pretraining session under each session selection order.
The scaling effects when using the ranked sessions were clearly weaker than when using random or
reverse-ranked sessions. Indeed, models with five ranked sessions already achieved 86% of the best
model performances with all 40 ranked sessions (Table 1), suggesting that most of the pretraining
benefit is concentrated in the top few sessions.

3.3 Rankings are session-specific and cannot be predicted from session metadata

Since the ranking procedure was performance-based, it is inherently model-dependent. Are there
model-independent measures that could be used to recover these rankings for more efficient session
selection? To answer this question, we attempted to use simple heuristics (i.e., metadata about the
session) to predict the rankings we computed through single-session finetuning. Out of the different
types of session metadata [5], we identified three types that correlate with the performance-based
ranking: number of trials, number of neurons, and number of “good quality” neurons (p < 0.05).
However, through regression analyses, these types of metadata can only explain 24% of the variance
in ranking or finetuning bits-per-spike performances. This further shows that the intrinsic variability
between sessions contributes to the model’s scaling behavior, and such variability cannot be solely
determined by simple heuristics.

We also examined how session-specific the rankings were. Figure A2 shows the number of sessions
shared in all five top-k ranking of the heldout sessions. The top 20 sessions were highly session-
specific: no session appeared in the top five for all held-out sessions, and only three were shared in
the top 23. In contrast, rankings became increasingly similar beyond 23 sessions, with 43 sessions
shared in all five top 53 rankings. These results suggest that only a small number of top-ranked
sessions have a strong impact on performance, while the remaining pretraining sessions are more
consistent across held-out sessions and affect model performance less significantly.
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4 Conclusion

In conclusion, our analysis suggests that apparent scaling benefits in multi-session datasets can
be highly sensitive to the specific sessions selected, due to substantial individual differences and
variability across sessions. Thus, it is extremely important for studies that claim scaling benefits to
show detailed experimental results with fine-grained data increments.
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A Experimental setup details

In this section, we detail our experimental setup introduced in Section 2.

A.1 Model architecture

Our model follows the architecture of Zhang et al. [14]. At each time step t, a raw spike count vector
xt ∈ RNi from session i (with Ni neurons recorded) is projected via a session-specific linear layer
to a spike token with dimension d. Another linear layer with Softsign activation maps the spike
tokens to embeddings. A session embedding and a masking scheme embedding were appended to
the spike embedding sequence. Learned position embeddings are added to the input embeddings,
making up the final input to the transformer block. Lastly, another session-specific linear layer maps
the transformer output back to the spike count vectors of dimension Ni for session i.

A.2 Hyperparameter selection

We tuned learning rates, dropout rates, weight decay rates, and batch sizes using small-scale exper-
iments on single- and ten-session models. Optimal values were chosen based on test losses from
pretraining sessions in RS. Other hyperparameter values were inherited from the implementation of
Zhang et al. [14]. Table A1 summarizes the hyperparameters we used for all experiments. We used
seeds 10, 20, and 42 for experiments in Section 3 that required three seeds.

The two session-specific linear layers contain approximately 1.2 million parameters on average per
session. The number of parameters in NDT (shared across sessions) is roughly 12 million with the
values in Table A1, which achieved better performance than smaller 8 million models and larger
24/38 million models on RS.

A.3 Compute

All models were trained on a single Nvidia A40 or L40 GPU. Single-session training and finetuning
take about one hour to train on average. The full 84-session model on RS takes about 3.5 days.
Finetuning jobs in Section 3 are significantly faster since we only train the two linear stitchers, with
each taking about 20 minutes to finish on average.

B Finetuning results from the session-selection procedure

Here, we show the results of the session-selection procedure described in Section 3.1. Figure A1
shows the single-session finetuning performances on the validation set of each heldout session, sorted
from high to low. As the figure shows, there exist large differences between the best and worst
single-session finetuning performances, which are more noticeable in Sessions 84, 85, and 88 than in
others.
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Table A2: p values from t-test on Fig. 3

Session 84
Number of Sessions 1 2 3 4 5 10 20 30 40
Random vs. Ranked 0.003 0.002 0.022 0.148 0.146 0.707 0.887 0.118 0.166
Random vs. Rank Reversed 0.001 0.509 0.021 0.078 0.028 0.281 0.709 0.181 0.967
Ranked vs. Rank Reversed 0.000 0.001 0.003 0.012 0.005 0.072 0.965 0.010 0.048

Session 85
Number of Sessions 1 2 3 4 5 10 20 30 40
Random vs. Ranked 0.022 0.007 0.004 0.022 0.017 0.032 0.922 0.235 0.151
Random vs. Rank Reversed 0.337 0.537 0.446 0.279 0.182 0.055 0.412 0.731 0.440
Ranked vs. Rank Reversed 0.032 0.015 0.004 0.011 0.002 0.004 0.819 0.105 0.030

Session 86
Number of Sessions 1 2 3 4 5 10 20 30 40
Random vs. Ranked 0.016 0.000 0.001 0.002 0.000 0.045 0.019 0.094 0.096
Random vs. Rank Reversed 0.433 0.884 0.251 0.247 0.124 0.789 0.228 0.087 0.214
Ranked vs. Rank Reversed 0.082 0.018 0.001 0.001 0.000 0.021 0.019 0.029 0.086

Session 87
Number of Sessions 1 2 3 4 5 10 20 30 40
Random vs. Ranked 0.000 0.002 0.006 0.007 0.029 0.284 0.640 0.435 0.872
Random vs. Rank Reversed 0.517 0.421 0.066 0.298 0.135 0.042 0.012 0.005 0.006
Ranked vs. Rank Reversed 0.001 0.001 0.002 0.009 0.005 0.006 0.132 0.004 0.067

Session 88
Number of Sessions 1 2 3 4 5 10 20 30 40
Random vs. Ranked 0.002 0.000 0.012 0.063 0.058 0.253 0.769 0.271 0.024
Random vs. Rank Reversed 0.141 0.937 0.024 0.109 0.076 0.048 0.014 0.092 0.214
Ranked vs. Rank Reversed 0.003 0.000 0.001 0.008 0.005 0.000 0.024 0.072 0.020

Table A1: Hyperparameter values across experiments

Hyperparameter Value

Model
Spike token dim 668
Embedding dim 512
Feedforward dim 1024
# attention heads 8
# transformer blocks 5
Dropout rate 0.2

Training
Optimizer AdamW [26]
Learning rate 1e-4
Learing rate scheduler OneCycle [27]
Weight decay 0.01
Batch size 16
Gradient clipping 1
# Epochs 1000
Masking ratio 0.3
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Figure A1: Single-session finetuning performances on the validation set of the heldout sessions
from the session-selection procedure. Black dashed lines show the baseline models’ performances.
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Figure A2: Number of shared sessions in the top-k ranking of all five heldout sessions.
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