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Abstract

Retrieval systems rely on representations learned by increasingly powerful models.
However, due to the high training cost and inconsistencies in learned representa-
tions, there is significant interest in facilitating communication between represen-
tations and ensuring compatibility across independently trained neural networks.
In the literature, two primary approaches are commonly used to adapt different
learned representations: affine transformations, which adapt well to specific dis-
tributions but can significantly alter the original representation, and orthogonal
transformations, which preserve the original structure with strict geometric con-
straints but limit adaptability. A key challenge is adapting the latent spaces of
updated models to align with those of previous models on downstream distributions
while preserving the newly learned representation spaces. In this paper, we impose
a relaxed orthogonality constraint, namely λ-Orthogonality regularization, while
learning an affine transformation, to obtain distribution-specific adaptation while
retaining the original learned representations. Extensive experiments across various
architectures and datasets validate our approach, demonstrating that it preserves
the model’s zero-shot performance and ensures compatibility across model updates.
Code available at: https://github.com/miccunifi/lambda_orthogonality.

1 Introduction

Retrieval tasks are increasingly relevant in real-world applications such as face recognition [1, 2, 3],
image localization [4, 5, 6], and object identification [7, 8, 9]. In image retrieval, a gallery of labeled
images is matched to query images to identify related ones, ideally of the same class. Instead of
high-dimensional images, retrieval uses low-dimensional feature vectors obtained from embedding
models. Enhancing retrieval performance often involves updating embedding models [10, 11] to
leverage more expressive network architectures [12], new training techniques (e.g., loss functions) or
training paradigms [13, 14, 15]. However, neural networks rarely produce compatible features, even
when trained on the same data with identical methods and architectures [16]. Consequently, matching
the features of new queries with those of older galleries can degrade retrieval performance due to
incompatibility [15]. To address this, replacing the gallery features generated by the old model with
those produced by the new model—a computationally expensive process known as backfilling—is
required. The challenge of updating a base model while ensuring its backward compatibility and
avoiding backfilling has been extensively investigated [17, 15, 18, 19, 20, 21]. Furthermore, the
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Figure 1: Overview of the proposed approach for achieving representation compatibility during
retrieval system updates. A newly independently trained model is aligned to the old representation
space via an orthogonal transformation B⊥, which preserves geometric structure. A forward transfor-
mation F maps the old representations to the backward-aligned space of the new model. Only the
transformation parameters are optimized during training, while model parameters remain fixed.

optimal strategy for gallery updates—known as partial backfilling—has recently begun to receive
attention [22].

Architectural changes and additional losses to ensure compatibility can reduce the performance of
the updated model [23, 24]. To address this issue, research has focused on aligning the representation
of a base model with that of an improved independently trained model using parameter-efficient
adapters [22, 25]. On the other hand, the manifold hypothesis [26, 27] suggests that neural networks
typically produce latent space representations of identical data distributions that differ primarily by a
transformation. Consequently, mapping one representation to another requires only a few parameters,
as functionally equivalent models approximate the same latent manifold [28, 29, 27]. Thus, a simple
transformation aligning the new representation space to the previous one can provide the backward
compatibility of the updated model.

Recent studies have focused on affine and orthogonal mappings to adapt the latent space of a base
model (source space) to that of another model (target space), using specific data points as reference
[30, 28, 31]. Within the plasticity-stability paradigm [32], affine mappings offer high adaptability
(plasticity) but may alter the source space’s configuration [33, 34]. Conversely, orthogonal mappings
maintain the source space’s geometric structure (stability), though they offer no adaptability to a
different distribution. To preserve the geometric structure of the source space, particularly when it
is more informative than the target space [28, 35], while enabling adaptability, we propose a novel
regularization term. Different from previous work [36], our term constrains a transformation to
remain within a specified proximity to the orthogonality condition, controlled by a hyperparameter λ.

In this paper, we address the challenge of ensuring compatibility between independently trained
models by learning different transformations across representation spaces, as illustrated in Fig. 1. Our
contributions are summarized as follows:

• We propose λ-Orthogonality regularization, a relaxed orthogonality constraint that retains
the original representation space’s global structure while enabling slight local adaptations
for downstream tasks.

• We enhance representation compatibility by employing a supervised contrastive loss, which
promotes intra-class clustering and inter-model alignment of feature representations, while
remaining agnostic to model architecture.

• We conduct extensive experiments across diverse architectures and datasets, demonstrating
that our method not only ensures compatibility between models but also promotes the
preservation of the base model’s latent space geometry, resulting in improved accuracy on
downstream tasks.
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• We propose a novel architecture-agnostic backfilling strategy that improves retrieval perfor-
mance while optimizing the gallery update process.

2 Related Works

As demonstrated by [16], feature representations from two models—even if trained on the same
data—do not generally coincide, creating costly backfilling in retrieval systems. To avoid this,
[15] introduced Backward Compatible Training (BCT), which keeps the old classifier fixed as a
reference so new embeddings align with prior class prototypes. Additionally, they provided a formal
definition of compatibility between model representations. Subsequent research has expanded on this
foundation, incorporating additional regularization techniques to better align new representations
with previous ones [21, 37, 20, 38, 39] and implementing specific architecture design [18, 13, 40].
However, the performance of the updated backward-compatible models frequently falls to reach
that of models trained independently [23], a consequence of the regularization imposed to achieve
compatibility. To avoid this, [23] and [24] suggested expanding the representation space to include
new classes while ensuring that the representations of old classes remain aligned during updates. To
ensure compatibility between models trained independently, mapping-based strategies have been
developed [41, 42, 43]. Forward Compatible Training (FCT), as detailed by [25], introduces a
function that aligns embeddings from an older model to those of a newer model’s space, incorporating
additional side information for each data point. As noted by [25], the computational overhead of these
transformations is minimal compared to the demands of processing images through the embedding
model. FastFill [22] improves forward transformation learning by using a new model classifier
and proposes a Bayesian strategy to optimize the gallery backfilling process leveraging the new
model. In contrast, we propose a set of transformation functions to ensure not only forward but also
backward compatibility during model updates, with a particular focus on the orthogonality property in
backward mappings. Additionally, we propose a supervised contrastive loss that promotes intra-class
clustering and inter-modality alignment, thereby enhancing adaptation. Finally, we propose a novel
gallery backfilling strategy based on a distance metric that directly operates on pre-extracted gallery
representations, making it agnostic to the underlying architecture.

3 Method

To achieve compatible representations between independently trained models, we introduce a theo-
retically grounded pipeline composed of multiple transformations. First, in Sec. 3.1 we report the
definition of compatibility introduced by [15]. In Sec. 3.2 and 3.3, we introduce a novel backward-
ompatibility method, which aligns the new model’s representations to those of the previous model
using either a strict orthogonal transformation or when adapting to a downstream task a transformation
regularized by our proposed λ-Orthogonality constraint. Next, in Sec. 3.4, we present forward trasfor-
mation learning, which aligns the previous model’s representations to those of the newly adapted
model via an affine or more complex transformation, enabling effective gallery set updates. We also
apply a supervised contrastive loss (Sec. 3.5) during transformation training to improve alignment
between model representations and enhance intra-class cluster compactness, thereby satisfying the
compatibility criterion defined in Def. 3.1. Finally, in Sec. 3.6, we propose a novel ordering strategy
for backfilling the gallery with improved representations in an optimized sequence. Throughout our
methodology, all models serve as fixed feature extractors with frozen parameters, while only the
transformation layers are trained.

3.1 Backward-Compatible Representations Definition

The formulation of Backward-Compatibility between representations, introduced by [15], is closely
related to the concept of latent space communication between different models [30]. The formal
definition of backward-compatible representations specifies:

Definition 3.1 (Backward-Compatibility). The representation of a model learned at step k is compat-
ible with the representation of a distinct model learned at a subsequent step t, where k < t, if the
following condition is satisfied:

∀ i, j :
(
yi = yj =⇒ d(ht

i,h
k
j ) ≤ d(hk

i ,h
k
j )
)
∧

(
yi ̸= yj =⇒ d(ht

i,h
k
j ) ≥ d(hk

i ,h
k
j )
)

(1)
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(a) Value of Eq. 6 at different λ.
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(c) KDE of W angles.

Figure 2: Impact of λ-Orthogonality regularization on affine transformations. Fig. 2a shows the
variation of Eq. 6 for different values of λ, demonstrating the influence of the threshold in the
regularization. Fig. 2b illustrates the effect of varying α while keeping λ = 6, highlighting its
behavior in the sigmoid function. Fig. 2c presents the kernel density estimation (KDE) of angles
between the columns of matrix W for different values of λ, showcasing the impact of regularization
on orthogonality preservation.

where d(·, ·) is a distance function and yi and yj are the class labels associated with the extracted
representation vectors hi and hj , respectively. The inequalities in Def. 3.1 indicate that the new
model’s representation, when compared against the old representation, should perform at least as well
as the previous model’s in clustering images from the same class and separating them from those of
different classes.

3.2 Backward Transformation

One of the contributions of relative encoding [30] is the observation that representation spaces, in
practice, often differ only by an angle-preserving transformation when they share the same or similar
data semantics. Furthermore, [28] demonstrates that when there is a difference in learned semantics,
a transformation that preserves both angles and distances—learned with Procrustes analysis [44]—
yields superior performance in cross-architecture and cross-modality classification tasks than only
angle-preserving mappings. A transformation T is defined as an isometry if it preserves angles and
distances between any two points a and b in the space. Formally, a mapping T : Rn → Rn is an
isometry if the following condition holds: ∥T (a)− T (b)∥2 = ∥a− b∥2, ∀a, b ∈ Rn, where ∥ · ∥2
denotes the Euclidean norm, or equivalently, a general distance metric in other spaces. We leverage
this property to achieve backward-compatible representations, aligning the updated model’s space
with the base model’s using an orthogonal transformation. This maintains a unified representation
space across updates, preserving the geometric properties and performance of the updated model due
to the isometric nature of the transformation.

Given a base model ϕk and its updated version ϕt, with k < t, and their corresponding representation
vectors hk ∈ Rd and ht ∈ Rn, we learn an orthogonal transformation B⊥ : Rn → Rn that
maps the embedding space of the updated model into the space of the base model. To enforce
strict orthogonality, a generic transformation B is parameterized as the matrix exponential of a
skew-symmetric matrix P , such that B = eP , where the upper triangular entries of P are learnable
parameters [45]. To enforce alignment between the updated and base representation spaces, we
optimize the transformation B⊥ by minimizing the Mean Squared Error loss between hk and the
transformed ht:

LB = ||B⊥(h
t)− hk||22 (2)

As the transformation B⊥ is a square matrix, if the dimensionalities of the two representation spaces
differ, the higher-dimensional feature vector is truncated to match the dimensionality of the smaller
representation space.

3.3 λ-Orthogonality Regularization

A strict orthogonal constraint (high stability) on a transformation B might not be ideal when model
distributions vary from those on which the adapter is trained—the case of private models providing
only their extracted embeddings to the user. Imposing such a constraint can limit the integration of
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(a) Source space (b) Target space (c) Affine (d) Orthogonal (e) λ-orthogonality

Figure 3: Effects of affine (Fig. 3c), strictly orthogonal (Fig. 3d), and λ-orthogonality (with λ = 1)
regularized (Fig. 3e) transformations trained to align a source representation space (Fig. 3a) learned
with a LeNet model (embedding dimension = 2) on the complete MNIST dataset, with a target
representation space (Fig. 3b) learned on the first five classes of MNIST using the same architecture.

new, relevant information for downstream tasks. Conversely, an affine transformation (high plasticity)
without geometric regularization may disrupt the updated model’s representations [46, 47]. As
described in [36], a soft orthogonality constraint can be applied to the transformation B : Rn → Rn,
consisting of a weight matrix W ∈ Rn×n and a bias term b ∈ Rn. Previous works [48, 49, 50] have
proposed constraining the Gram matrix of the weight matrix to be close to the identity matrix by
minimizing a loss function defined as:

Lorth = ||WTW − I||F (3)

where || · ||F denotes the Frobenius norm and W is the weight of the transformation B. This can be
interpreted as a weight decay term that restricts the set of parameters to lie close to a Stiefel manifold
[50]. However, this approach does not provide control over the specific level of orthogonality that
can be imposed on the transformation.

To this end, we introduce a threshold λ, which specifies the desired proximity of the Gram matrix of
the weight matrix to the identity matrix. A naive solution would be to stop the optimization of the
Lorth loss once the Gram matrix of the weight matrix reaches the threshold λ, as the loss directly
influences the Gram matrix:

min
W

||WTW − I||F s.t. ||WTW − I||F ≥ λ (4)

This objective can be achieved directly through the use of a Heaviside step function [51, 52],
shifted by the parameter λ: H(x− λ) = 1{x≥λ} This function H offers an efficient mechanism to
control the degree of orthogonality during the minimization process, that effectively deactivating the
regularization term in Eq. 3 when the Frobenius norm exceeds the threshold λ:

Lλ = H(∥WWT − I∥F − λ) · ∥WWT − I∥F . (5)

However, this approach introduces a discontinuity in the loss function, as highlighted by [53]. In
particular, their work focuses on evaluating the closeness of these sigmoid functions to the Heaviside
step function, providing precise upper and lower bounds for the Hausdorff distance. Building on their
theoretical and empirical analysis, we propose a smooth modulating function that ensures the effect of
the constraint is gradually adjusted, with the penalty becoming more or less significant depending on
the distance from the threshold λ. Specifically, we formulate a novel λ-Orthogonality Regularization
term by optimizing a loss function defined as:

Lλ = σ
(
α
(
∥WWT − I∥F − λ

))
· ∥WWT − I∥F (6)

where σ(·) is the sigmoid function, and α is a scaling factor. The sigmoid function acts as a continuous
switch that gradually turns the regularization term on and off near the value of λ, as shown in Fig. 2a.
Instead, the scaling factor α controls the steepness of the sigmoid function, which in turn determines
how sharply the regularization is activated or deactivated as the value of ∥WWT − I∥F approaches
the threshold λ. In Fig. 2b, we illustrate different levels of steepness applied to the regularization
loss. As α increases, its behavior converges more closely to the Heaviside step function.

To further analyze the behavior of the λ-orthogonality regularization, we optimize Eq. 6, applied to
a transformation B with a randomly initialized weight matrix W . As shown in Fig. 2c, the kernel
density estimation (KDE) of these angles changes based on the value of λ used in the regularization.
Smaller values of λ result in column vectors that become increasingly orthogonal, specifically when
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λ = 0 our regularization is equal to Eq.3. Fig. 3 illustrates the effects of an affine (Fig. 3c), strictly
orthogonal (Fig. 3d), and λ-orthogonality regularized (Fig. 3e) transformations trained to align a
source representation space (Fig. 3a) learned on the full MNIST dataset with a target representation
space (Fig. 3b) learned on the first five classes of MNIST. The toy experiment shows that the
λ-orthogonal constraint improves alignment by relaxing strict orthogonality while encouraging
preservation of the source feature space structure, in contrast to an unconstrained transformation.

3.4 Forward Transformation

In addition to a backward transformation that maps the representations of the new model to those
of the previous model, it is possible to formulate a forward transformation F : Rd → Rn. This
transformation maps the representation vector hk ∈ Rd of the previous model to ht ∈ Rn, the
representation of the new model. Since the representation of the new model is superior to that of the
previous model, the transformation F should be affine (high plasticity) or multiple projection layers
to better adapt to the improved representation. The transformation F is learned by minimizing the
Mean Squared Error between the two representations, as ||F (hk)− ht||22, following the approach
described in [25]. This concept is closely related to latent space communication [30, 31], where
d
(
hk
i ,h

k
j

)
= d

(
T ht

i, T ht
j

)
with T is a generic transformation. In previous approaches [25, 22]

the old representations hk are aligned directly with the new ht through transformation F , but
incompatibility arise between hk and F (hk). As mentioned in Sec. 3.2, a backward orthogonal
transformation B⊥ realigns new representations with the old ones. Instead of adapting old features
directly to new representations ht, we adapt them to B⊥(h

t), ensuring a unified alignment across
model updates. Furthermore, the transformations F and B⊥ can be trained jointly, as they utilize the
same training data. Consequently, the forward alignment loss in our methodology is defined as:

LF = ||F (hk)−B⊥(h
t)||22 (7)

If the extracted representations are derived from a dataset different from the training sets of the two
models, as discussed in Sec. 3.3, a λ-orthogonal regularized transformation Bλ can be employed in
place of the strictly orthogonal B⊥.

3.5 Intra-class Clustering and Inter-Model Alignment

As discussed in Sec. 3.1, the compatibility inequalities defined in Def. 3.1 require not only alignment
but also a higher concentration of clusters to achieve compatibility. To this end, [22] introduces
an additional training loss, Ldisc, that, unlike the influence loss in [15], relies directly on the new
model’s classifier rather than the old one. However, Ldisc depends on access to the new model’s
classifier and training loss, limiting its applicability, especially when the new model’s architecture is
unknown (e.g., embedding vectors from private or online models). To overcome this, we propose the
use of a supervised contrastive loss, applied directly to representation vectors. This loss requires no
classifier or architectural knowledge, as it directly leverages representation vectors for alignment and
clustering. The supervised contrastive loss [54] minimizes the cross-entropy loss between qi and pi:

Lcontr = −
K∑
i=1

pi logqi (8)

where qi denotes the probability assigned to sample i by applying a temperature-scaled softmax
over the dot-product similarities between the L2-normalized feature h and each other candidate, and
pi is the normalized ground-truth indicator distribution that places equal mass on all semantically
matching (same-class) candidates and zero on all others. Specifically, we utilized a combination of
this loss function, where the objective LC is defined as:

LC = Lcontr(F (hk), B⊥(h
t)) + Lcontr(F (hk),hk) (9)

This loss encourages clustering among the adapted representations while also aligning them with
those of the previous model, thereby promoting intra-class clustering and inter-model alignment of
feature representations.

The overall loss function of our framework is defined as a weighted sum of four components: the
forward alignment loss LF , the backward alignment loss LB , the contrastive loss LC, and the
λ-Orthogonality regularization term Lλ. Formally, the total loss is expressed as:

L = w1 · LF + w2 · LB + w3 · LC + Lλ (10)
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Table 1: Compatibility evaluation on ImageNet1K under two scenarios: (a) Extending classes setting,
(b) Architecture update setting. For each case (highlighted with different colors), we report CMC-
Top1 and mAP metrics.

(a) Extending classes setting. Two models trained in-
dependently: ϕold on first 500 classes, and ϕnew on full
ImageNet1K. Both use ResNet-34 with an embedding
dimension of 128.

Method Query/Gallery CMC-Top1 mAP

Ind. Train.
ϕold/ϕold 43.56 25.18
ϕnew/ϕold 0.10 0.15
ϕnew/ϕnew 61.61 35.69

FCT [25]
F (ϕold)/ϕold 0.10 0.15

F (ϕold)/F (ϕold) 50.13 30.93
ϕnew/F (ϕold) 57.21 33.00

FastFill [22]
F (ϕold)/ϕold 0.10 0.15

F (ϕold)/F (ϕold) 50.63 31.48
ϕnew/F (ϕold) 57.21 33.19

Ours

F (ϕold)/ϕold 44.59 26.70
F (ϕold)/F (ϕold) 51.46 33.75
B⊥(ϕnew)/F (ϕold) 57.41 34.53
B⊥(ϕnew)/ϕold 43.94 25.75

B⊥(ϕnew)/B⊥(ϕnew) 61.61 35.69

(b) Independently Pretrained Models setting: Two
models trained independently on the full ImageNet1K
dataset. The first model, ϕold, is a ResNet-18, whereas
the second, ϕnew, is a ViT-L-16.

Method Query/Gallery CMC-Top1 mAP

Ind. Train.
ϕold/ϕold 55.62 26.91
ϕnew/ϕold 0.04 0.17
ϕnew/ϕnew 76.62 56.84

FCT [25]
F (ϕold)/ϕold 0.04 0.17

F (ϕold)/F (ϕold) 59.39 42.65
ϕnew/F (ϕold) 72.54 49.85

FastFill [22]
F (ϕold)/ϕold 0.04 0.17

F (ϕold)/F (ϕold) 61.17 46.28
ϕnew/F (ϕold) 73.33 52.83

Ours

F (ϕold)/ϕold 60.83 40.69
F (ϕold)/F (ϕold) 61.10 45.91
B⊥(ϕnew)/F (ϕold) 73.53 52.06

B⊥(ϕnew)/ϕold 65.54 38.55
B⊥(ϕnew)/B⊥(ϕnew) 76.62 56.84

where w1, w2, and w3 denote scalar weights used to balance the contributions of each term.

3.6 Partial Backfilling Strategy

Determining an effective ordering for backfilling samples in the forward-adapted gallery set, where
F (hk) from the old model is replaced by B⊥(h

t), is critical for achieving the performance of
the new independently trained model as efficiently as possible. However, identifying the optimal
ordering of backfilling represents a computationally intractable combinatorial problem [22]. To
address this challenge, FastFill [22] introduces an ordering inspired by Bayesian Deep Learning.
This approach models the alignment error as a multivariate Gaussian distribution and minimizes the
negative log-likelihood of this distribution during the training of the mapping function F . However,
from a retrieval perspective, the most representative instances—those that significantly enhance the
separation between distinct classes—are identified as the embeddings closest to their respective
class means [55, 56]. Accordingly, prioritizing the backfilling of the least informative embeddings
will increase the system’s performance by reinforcing class distinctions. To this end, we propose a
novel method for estimating a backfill ordering based directly on the already extracted representation
vector F (hk). First, we calculate the mean representation vector µc for each class c in the forward-
adapted gallery set. Then, we compute a distance metric d of each embedding vector F (hk) from its
corresponding class mean µc. For instance, d can be the Mean Squared Error, d = ∥F (hk)− µc∥2.
Gallery embedding exhibiting the largest distance d from µ are prioritized for backfilling, thereby
facilitating the matching with queries generated by the new backward-adapted independently trained
model B⊥(h

t).

4 Experiments

4.1 Image Retrieval Compatibility

Backward compatibility is crucial in retrieval tasks involving a gallery set G = {(xi, yi)}
Ng

i=1 and a
query set Q = {(xi, yi)}

Nq

i=1, each containing Ng and Nq images respectively, with associated class
labels. A base model indexes the gallery by extracting feature vectors from the images, which are
then used to match with vectors from the query set in retrieval tasks. The compatibility definition
presented in Def. 3.1 involves computing pairwise distances between all datapoints in the dataset.
This process becomes increasingly computationally demanding as the dataset size grows. Then, a
model updated at step t is considered backward-compatible with the base model trained at step k if
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Table 2: Compatibility results for two models pretrained on ImageNet1K and adapted to downstream
tasks: ϕold, a ResNet-18, and ϕnew, a ViT-L-16, using as backward adapter Bλ with λ = 12. The ZS
column indicates the CMC-Top1 performance increase on ImageNet1K, with values in parentheses
indicating the increment compared to the newly independently trained model. Each Query/Gallery
case is highlighted with a different color to facilitate comparison of results.

Method Query/Gallery
Dataset

CUB CIFAR100
CMC-Top1 ZS CMC-Top1 ZS

Ind. Train.
ϕold/ϕold 44.82 51.13
ϕnew/ϕold 0.4 0.8
ϕnew/ϕnew 71.78 74.08

FCT [25]
F (ϕold)/ϕold 0.04 0.8

F (ϕold)/F (ϕold) 51.10 57.35
ϕnew/F (ϕold) 62.13 69.80

FastFill [22]
F (ϕold)/ϕold 0.4 0.8

F (ϕold)/F (ϕold) 54.50 66.17
ϕnew/F (ϕold) 61.49 67.23

Ours

F (ϕold)/ϕold 51.12 67.29
F (ϕold)/F (ϕold) 59.92 67.72
Bλ(ϕnew)/F (ϕold) 70.72 72.08
Bλ(ϕnew)/ϕold 60.64 71.85

Bλ(ϕnew)/Bλ(ϕnew) 75.44 (+3.66) +0.025 78.23 (+4.15) +0.112

the Empirical Compatibility Criterion [15] is satisfied:

M
(
ΦQ

t ,Φ
G
k

)
> M

(
ΦQ

k ,Φ
G
k

)
, with k < t (11)

where M denote a performance metric, ΦG and ΦQ represent the extracted gallery and query sets,
respectively. Specifically, M

(
ΦQ

t ,Φ
G
k

)
assesses cross-model retrieval with gallery features from

the updated model at step t and query features from step k. In contrast, M
(
ΦQ

k ,Φ
G
k

)
refers to

same-model retrieval, where both gallery and query features originate from the same model at step k.

Partial Backfilling. Given an ordering π of the images in the gallery set ΦG , denoted as
xπ1

,xπ2
, . . . ,xπn

, and a backfilling fraction β ∈ [0, 1], we define the partially backfilled gallery set
ΦG

π,β as follows. The first Ng,β = ⌊βNg⌋ images in the ordering are processed using the updated
model, while the remaining images are processed using the old model. Here, Ng denotes the total
number of images in the gallery. To evaluate different backfilling strategies, we employ the backfilling
metric M̃ , introduced in [22], which is defined as: M̃(ΦG ,ΦQ, π) = Eβ∼[0,1]M(ΦG

π,β ,Φ
Q). This

metric is the area under the backfilling curve when evaluating performance using M .

4.2 Evaluation Metrics and Datasets

Following prior work on model compatibility [15, 25], we evaluate performance using two metrics.
The Cumulative Matching Characteristics (CMC), which measures top-k retrieval accuracy by
computing distances between query and gallery features, considers retrieval successful if at least
one of the k closest gallery images shares the query’s label. The mean Average Precision (mAP)
measures the area under the precision-recall curve across the full recall range [0, 1].

To validate our approach, we utilize the following datasets: ImageNet1K [57], CIFAR100 [58],
and CUB200 [59]. Each dataset’s validation/test set serves as both the query and gallery, with
each query image removed from the gallery to avoid trivial matches during search. The notation
’Query/Gallery’ indicates the models used for extracting embeddings in all tables, respectively.
CUB200 and CIFAR100 are employed as downstream tasks.

4.3 Extending Classes Setting

In this setting, we update a base model by extending the number of classes. We train two models
independently: ϕold on the first 500 classes and ϕnew on all 1000 classes of ImageNet1K, both using a
ResNet-34 architecture with an embedding dimension of 128, following PyTorch’s standard training
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Table 3: Extended Classes setting
Method

M̃

CMC-Top1 mAP
FCT [25] 58.72 33.57
FastFill [22] 60.49 35.59
Ours 61.20 36.46
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Table 4: Independently Pre-
trained Models setting

Method
M̃

CMC-Top1 mAP
FCT [25] 73.86 52.02
FastFill [22] 75.06 55.34
Ours 76.59 57.72

Figure 4: Partial backfilling results for the Extending Classes setting (top Figures) of Tab. 1a, and
Independently Pretrained Models setting (bottom Figures) of Tab. 1b. We use features from the new
model ϕnew for the query set (otherwise B⊥(ϕnew) if trained). For the gallery set, we begin with
forward-adapted old features F (ϕold) and incrementally replace them with new features.

recipe2. After training the two models independently, adapters are optimized using Adam with a
learning rate of 0.001, while keeping the model layers frozen. We compare our method against
FCT [25] and FastFill [22], two mapping methods used to achieve compatible representations. In
Tab. 1a, the performance of each method is summarized following the metrics of Sec. 4.2. The results
indicate that the new model, ϕnew, is not directly compatible with the old one ϕold. Additionally, the
two mapping methods, FCT and FastFill, enhance performance across both metrics for the adapted
representations of the gallery and query sets. However, these methods achieve backward compatibility
with the newly trained model but not with the original one. In contrast, our method aligns the new
model with the old one through the orthogonal transformation B⊥. This ensures compatibility
between the new and old representations and also enhances the performance provided by the forward
adapter F . Appendix A provides additional results on Places365 [60] dataset.

4.4 Independently Pretrained Models adapted on Downstream Task

Due to escalating training costs, pretrained models are increasingly used, especially for adapting
to downstream tasks with local datasets. In this context, we employ two models—available in the
PyTorch hub—pretrained on the ImageNet1K dataset: a ResNet-18 with an embedding size of 512,
and a more advanced Vision Transformer (ViT-L-16) [61] with an embedding size of 1024. The
ViT model is considered an update over the ResNet-18 due to its enhanced architecture. Tab. 1b
shows adapter training results using the same dataset as the two pretrained models, revealing a trend
similar to Tab. 1a and demonstrating our method’s comparable performance to other baselines, but
with compatibility between the updated model and the previous one. Unlike FastFill, our approach
does not require the new model’s classifier, relying directly on the extracted embedding vectors. In
Appendix B, to further validate our method, we apply our approach to different architectures used as
pretrained models. Instead, in Appendix C, we investigate update scenarios involving distribution or
objective shifts using CLIP-like [62] models and self-supervised architectures such as DINOv2 [63].

Results for compatibility on downstream tasks are reported in Tab. 2, where adapters are trained
on representations from local datasets (CUB200 or CIFAR100) different from the training dataset.
Employing a transformation Bλ with λ-Orthogonality regularization, our method enhances local task
performance and model compatibility, outperforming the baselines. Results on additional downstream
datasets (Flower102 [64] and Places365) are reported in Appendix D. From Tab. 1a and Tab. 1b, we
observe that a strict orthogonal transformation, B⊥, does not result in performance improvements
relative to the independently trained model ϕnew. Conversely, Bλ, which provides more plasticity
with respect to B⊥, enables the new model to enhance performance in the downstream task. An
ablation study on the hyperparameter λ is presented in Appendix E, and a component-wise ablation
of the loss terms in Eq. 3.5 is detailed in Appendix F.

2pytorch/vision/tree/main/references/classification
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4.5 Backfilling Results

In this section, we evaluate our novel backfill strategy discussed in Sec. 3.6, considering the
experimental setting detailed in Tab. 1a and Tab. 1b. Given that FCT lacks a specific backfilling
strategy, we employ a random ordering as in [22]. The results, depicted in Fig. 4, Tab. 3, and Tab. 4,
demonstrate that our backfilling strategy outperforms the other baselines by a certain margin. Notably,
Fig. 4 illustrates that with less than 50% of the gallery backfilled, we achieve the same performance
as the newly independently trained model. In Appendix G, we provide an ablation study using an
alternative distance metric to the Mean Squared Error employed in the main experiments.

5 Conclusion

Model compatibility is a critical challenge in many large-scale retrieval systems and can hinder
system updates when not achieved. In this paper, we introduce mapping transformations that align
independently learned representations under a unified space, also providing a more feature clustering
through supervised contrastive loss. We also propose a relaxation of the orthogonality constraint to
aid adaptation to downstream tasks without compromising the integrity of newly trained independent
models. Additionally, we propose a novel backfill ordering strategy that enables efficient partial
backfilling of the gallery set, achieving the performance of a newly independently trained model with
less than half of the gallery backfilled. Our approach demonstrates superior performance compared
to previous methods, across the same and different data distributions on which the models are trained.
To contextualize these results, the limitations of the approach are examined in detail in Appendix I.
Furthermore, to evaluate its practical utility, we analyze its methodological complexity and broader
applicability in Appendix H.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We support our claims on compatibility adaptation through experimental
validations presented in Sec. 4 and a theoretically grounded explanation in Sec. 3.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work in the Appendix I.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: Our manuscript does not provide any theoretical result.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The details of our method are described in Sec. 3, while Sec. 4 provides
the hyperparameter settings used to produce the results reported in all tables. Additional
ablation studies on the hyperparameters are presented in Appendix E and Appendix F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: The code will be released upon acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
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should state which ones are omitted from the script and why.
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• The factors of variability that the error bars are capturing should be clearly stated (for
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The present work does not released any new asset.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM


Table 5: Compatibility evaluation on Places365 under the Extending Classes setting. We use two
independently trained ResNet-50 models: ϕold trained on the first 205 classes, and ϕnew trained on all
classes of Places365.

Method Query/Gallery CMC-Top1 mAP

Ind. Train.
ϕold/ϕold 33.86 15.76
ϕnew/ϕold 0.21 0.33
ϕnew/ϕnew 37.37 19.11

FCT [25]
F (ϕold)/ϕold 0.21 0.33

F (ϕold)/F (ϕold) 36.43 19.02
ϕnew/F (ϕold) 37.04 18.99

FastFill [22]
F (ϕold)/ϕold 0.21 0.33

F (ϕold)/F (ϕold) 39.71 23.98
ϕnew/F (ϕold) 38.42 19.94

Ours

F (ϕold)/ϕold 38.65 21.88
F (ϕold)/F (ϕold) 39.96 26.19
B⊥(ϕnew)/F (ϕold) 38.50 21.77
B⊥(ϕnew)/ϕold 35.47 17.98

B⊥(ϕnew)/B⊥(ϕnew) 37.37 19.11

A Extending Classes Setting on Places365

To validate our approach further, we evaluate it using a model trained on a dataset different from
ImageNet1K. Specifically, we use a ResNet-50 pretrained on Places205 (from ViSSL) as the old
model, and a ResNet-50 pretrained on Places365 (from CSAILVision) as the new model. Tab. 5
summarizes the performance of each method using the evaluation metrics defined in Sec.4.2. The
results demonstrate that the new model ϕnew is not inherently compatible with the old model, ϕold.
Moreover, the adaptation F (ϕold) provided by FCT underperforms when compared to the new
model alone. In contrast, methods that promote better clustering, such as FastFill and our proposed
approach, achieve even higher performance than the standalone new model. This improvement
arises from leveraging information from both the old and new models, effectively implementing a
form of knowledge distillation during the learning of the forward adapter. Unlike the baselines, our
method aligns all adapted representations within a unified representation space, thereby consistently
maintaining compatibility with the old model.

B Additional Architecture for Independently Pretrained Models Setting

We conduct additional experiments using a DenseNet-121 as the old model, ϕold, and an EfficientNet-
B3 as the new model, ϕnew, both pretrained on ImageNet1K and obtained from the PyTorch Hub.
The results of these experiments on the ImageNet1K dataset are presented in Tab. 6. Our approach
achieves the best performance across all metrics, outperforming the baselines in both cross-model
and same-model retrieval scenarios.

C Additional Experiments with DINOv2 and CLIP as Independently
Pretrained Models

To investigate update scenarios involving data distribution or objective shifts, we conduct additional
experiments using a ResNet-18 pretrained on ImageNet1K as the old model, and both a CLIP [62]
pretrained on CC12M [65] dataset and a DINOv2 [63] (vit_small_patch14_dinov2) as the new
models. To train both the forward and backward transformations, the ImageNet1K dataset and the
same hyperparameters of Tab. 1b are used. This setup represents a considerable shift in both data
distribution and model objective relative to the new models. Notably, FastFill cannot be applied in
this context, as both CLIP and DINOv2 lack classifiers. In Tab. 7a, we report the results obtained
using DINOv2 as the new, independently trained model. Our approach achieves better results than
FCT, further validating its practical applicability to real-world problems.
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Table 6: Compatibility results on ImageNet1K under the Independently Pretrained Models setting. We
use two independently trained models: DenseNet-121 as the old model, ϕold, and an EfficientNet-B3
as the new model, ϕnew, both pretrained on ImageNet1K and obtained from the PyTorch Hub.

Method Query/Gallery CMC-Top1 mAP

Ind. Train.
ϕold/ϕold 62.02 32.95
ϕnew/ϕold 0.11 0.16
ϕnew/ϕnew 71.60 54.90

FCT [25]
F (ϕold)/ϕold 0.11 0.16

F (ϕold)/F (ϕold) 68.16 53.22
ϕnew/F (ϕold) 70.64 54.63

FastFill [22]
F (ϕold)/ϕold 0.11 0.16

F (ϕold)/F (ϕold) 67.76 57.22
ϕnew/F (ϕold) 69.47 57.43

Ours

F (ϕold)/ϕold 69.25 50.20
F (ϕold)/F (ϕold) 69.29 57.36
B⊥(ϕnew)/F (ϕold) 71.33 57.50
B⊥(ϕnew)/ϕold 67.23 44.34

B⊥(ϕnew)/B⊥(ϕnew) 71.60 54.90

Table 7: Compatibility evaluation involving data distribution or objective shifts: (a) ResNet-18 as
old model and DINOv2 [63] (vit_small_patch14_dinov2) as the new models; (b) ResNet-18 as
old model and CLIP [62] pretrained on CC12M [65] as the new model. For each case, we report
CMC-Top1 and mAP metrics.

(a) DINOv2 [63]. A shift in the objective function is
present between the old and new models.

Method Query/Gallery CMC-Top1 mAP

Ind. Train.
ϕold/ϕold 55.62 26.91
ϕnew/ϕold 0.04 0.17
ϕnew/ϕnew 71.92 44.07

FCT [25]
F (ϕold)/ϕold 0.04 0.17

F (ϕold)/F (ϕold) 59.33 37.53
ϕnew/F (ϕold) 67.97 41.07

Ours

F (ϕold)/ϕold 54.82 32.14
F (ϕold)/F (ϕold) 61.30 41.95
B⊥(ϕnew)/F (ϕold) 68.74 43.78
B⊥(ϕnew)/ϕold 58.73 31.50

B⊥(ϕnew)/B⊥(ϕnew) 71.92 44.07

(b) CLIP [62]. A shift in the objective function and
the data distribution is present between the old and
new models.

Method Query/Gallery CMC-Top1 mAP

Ind. Train.
ϕold/ϕold 55.62 26.91
ϕnew/ϕold 0.04 0.17
ϕnew/ϕnew 44.29 16.15

FCT [25]
F (ϕold)/ϕold 0.04 0.17

F (ϕold)/F (ϕold) 42.58 16.93
ϕnew/F (ϕold) 42.96 16.88

Ours

F (ϕold)/ϕold 61.13 41.22
F (ϕold)/F (ϕold) 57.69 41.08
B⊥(ϕnew)/F (ϕold) 44.93 29.26
B⊥(ϕnew)/ϕold 30.02 16.68

B⊥(ϕnew)/B⊥(ϕnew) 44.29 16.15

Instead, in Tab. 7b, we report the results obtained using CLIP pretrained on CC12M as the new,
independently trained model. In this scenario, the pretrained CLIP model exhibits lower retrieval
performance on ImageNet1K compared to ResNet-18. This is a well-known limitation of multi-
modal training, where intra-modal misalignment can negatively impact the quality of single-modality
representations [66]. Specifically, CLIP models are optimized for cross-modal retrieval rather than
single-modality retrieval tasks, in contrast to DINOv2 or ResNet-18, which are trained exclusively
on a single modality. This reduction in performance of the new model relative to the old one causes
FCT to degrade the overall retrieval capacity of the system, failing to achieve compatibility, as it
attempts to transform the higher-quality representations of the old model into the lower-performing
representations of the new model. In contrast, our method introduces an additional loss that encour-
ages both intra-class clustering and inter-model alignment of feature representations on the specific
training dataset. As a result, the forward transformation, due to its greater flexibility, improves the
performance of the old model’s representations. Even in this challenging scenario, our approach
outperforms FCT, further validating the robustness of our method.
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Table 8: Compatibility results on Places365 and Flowers102 for two models pretrained on Im-
ageNet1K and adapted to downstream tasks: ϕold, a ResNet-18, and ϕnew, a ViT-L-16, using a
backward adapter Bλ with λ = 12. The ZS column indicates the CMC-Top1 performance increase on
ImageNet1K, with values in parentheses showing the increment compared to the newly independently
trained model.

Method Query/Gallery Places365 Flowers102
CMC-Top1 ZS CMC-Top1 ZS

Ind. Train.
ϕold/ϕold 22.41 84.35
ϕnew/ϕold 0.20 1.20
ϕnew/ϕnew 35.15 99.39

FCT [25]
F (ϕold)/ϕold 0.20 1.20

F (ϕold)/F (ϕold) 28.17 86.71
ϕnew/F (ϕold) 32.12 99.07

FastFill [22]
F (ϕold)/ϕold 0.20 1.20

F (ϕold)/F (ϕold) 26.38 53.78
ϕnew/F (ϕold) 33.04 11.12

Ours

F (ϕold)/ϕold 28.84 83.36
F (ϕold)/F (ϕold) 29.80 89.90
Bλ(ϕnew)/F (ϕold) 33.27 99.41
Bλ(ϕnew)/ϕold 29.94 98.17

Bλ(ϕnew)/Bλ(ϕnew) 36.38 (+1.23) +0.38 99.54 (+0.15) +0.01

D Additional Datasets for Independently Pretrained Models adapted on
Downstream Task setting

We further extend our analysis of the Independently Pretrained Models Adapted on Downstream Task
setting by including two additional datasets: the larger Places365 and the fine-grained Flowers102.
These additions allow us to evaluate our method’s effectiveness in more challenging scenarios. The
results are reported in Tab. 8. In these experiments, the old model is a ResNet-18 and the new model
is a ViT-L-16, both pretrained on ImageNet-1K. We employ an affine adapter with λ = 12. On
both additional datasets, our approach consistently outperforms the baseline methods. The proposed
λ-Orthogonality regularization not only improves retrieval performance on the downstream tasks
but also encourages the adapted new model representation, Bλ(ϕnew), to remain consistent with its
original form. As a result, retrieval performance on ImageNet1K is preserved.

E Ablation on the hyperparameter λ

Figure 5: Ablation on our λ-orthogonal regular-
ization on CUB dataset. Displayed are the com-
patibility metrics on CUB and the zero-shot (ZS)
improvement on ImageNet1K at different value of
λ. Results correspond to those in Tab. 9.

In our experiments, we select λ to maximize
adaptability to downstream tasks while preserv-
ing the pre-trained model’s performance on its
original training dataset, ImageNet1K. To illus-
trate the impact of our approach, Tab. 9 reports
the CMC-Top1 scores obtained by applying our
proposed λ-orthogonal regularizer to the new
pre-trained model. The results, also reported in
Fig. 5, indicate that increasing λ enhances the
performance of the new model’s representations
on the downstream task.

However, this improvement comes at the ex-
pense of reduced performance on the original
dataset, as evidenced by a decrease in zero-shot
(ZS) scores, particularly pronounced in the ab-
sence of regularization (λ = ∞). Empirically,
we find that setting λ = 12 yields the best
trade-off across all metrics. [36] optimize a soft
orthogonality constraint, equal to case where
λ = 0. However, this formulation does not lead to performance improvements and is outperformed by
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Table 9: Ablation over orthogonal regularization strength λ on CUB dataset. Compatibility metrics on
the target task and zero-shot (ZS) CMC-Top1 gain on ImageNet1K. Parentheses show the increment
in CMC-Top1 over the independently trained new model on CUB dataset.

λ F (ϕold)/F (ϕold) Bλ(ϕnew)/F (ϕold) Bλ(ϕnew)/Bλ(ϕnew) ZS

⊥ (strict orth.) 57.52 66.89 71.78 (+0.000) +0.000
0 57.49 66.79 71.54 (–0.241) –0.001
3 57.52 66.72 72.00 (+0.224) +0.008
6 58.09 68.77 73.07 (+1.294) +0.028
12 59.92 70.72 75.44 (+3.659) +0.028
16 59.68 70.21 76.40 (+4.625) +0.062
22 60.20 69.50 77.89 (+6.109) –0.318
36 59.32 63.34 78.77 (+6.990) –3.008
∞ (no reg.) 59.26 62.84 78.89 (+7.110) –3.526

Table 10: Comparison of orthogonal regularization methods with different weight scales w. Compati-
bility metrics on the downstream task CUB200 and zero-shot (ZS) CMC-Top1 gain on ImageNet1K.
Parentheses show the increment in CMC-Top1 over the independently trained new model. The last
column reports the final value of ∥W⊤W − I∥F .

w Method F (ϕold)/F (ϕold) Bλ(ϕnew)/F (ϕold) Bλ(ϕnew)/Bλ(ϕnew) ZS ∥W⊤W − I∥F
1 SO 57.48 66.79 71.54 (–0.241) –0.001 0.09
1 SRIP 57.38 66.57 71.66 (–0.120) –0.001 0.08
1 Ours (λ = 12) 59.92 70.72 75.44 (+3.659) +0.028 12.05

10−1 SO 59.11 69.56 74.88 (+3.106) +0.022 9.50
10−1 SRIP 58.88 63.58 78.77 (+6.990) –1.467 29.55
10−1 Ours (λ = 12) 59.93 70.70 75.20 (+3.419) +0.076 12.12

10−2 SO 59.06 63.54 79.06 (+7.283) –1.344 29.27
10−2 SRIP 59.23 63.42 78.73 (+6.955) –3.077 35.42
10−2 Ours (λ = 12) 59.06 63.54 79.06 (+7.283) –1.344 29.27

10−3 SO 58.71 62.91 78.78 (+7.007) –3.162 35.54
10−3 SRIP 58.83 63.18 78.92 (+7.145) –3.457 38.63
10−3 Ours (λ = 12) 58.71 62.91 78.78 (+7.007) –3.162 35.54

the use of a strictly orthogonal transformation. As discussed in Sec. 3.3, imposing strict orthogonality
may hinder the model’s ability to incorporate task-specific information. In contrast, our approach
relaxes this constraint by introducing a tunable hyperparameter λ that controls the deviation of
the Gram matrix from the identity, allowing greater flexibility while preserving representational
consistency.

To further validate our aproach we also study the effect of a scalar weight w to the loss contributions
of our λ-orthogonal regularization compared with two different orthogonal regularizations: Soft
Orthogonality (SO)[36]—witch correspond to the spacial case of λ =0 in our aproach— and Spectral
Restricted Isometry Property (SRIP)[36]. We test the regularizers across different values of scalar
weight: w = 1, w = 10−1, w = 10−2, and w = 10−3. Additionally, we include a column reporting
the exact value of ∥W⊤W − I∥F reached by the backward transformation Bλ at the end of training,
to indicate the deviation from strict orthogonality.

As shown in the Tab. 10, for both SRIP and SO, the final value of ∥W⊤W − I∥F is governed by
the optimization process and the chosen scalar weight w. Unlike our λ-orthogonal regularization,
these approaches do not provide direct control over ∥W⊤W − I∥F ; a smaller contribution of the
regularizer to the total loss results in a diminished regularization effect on the backward transformation
Bλ. When the scalar weight w of the regularizer is reduced, the optimization process is unable to
fully minimize the regularization term, particularly because competing loss components (such as
MSE and the contrastive loss LC) may favor a non-orthogonal transformation. For instance, when
w = 10−3 and w = 10−2, the results obtained with SO, SRIP, and our λ-orthogonal regularization
are comparable to those observed in the case of λ = ∞ (see Tab. 9), where the orthogonality
constraint is entirely ignored. This occurs because, at such a small value of w, the contribution of
the regularizer becomes negligible during optimization. To avoid this issue, in our method we set
w = 1 for the λ-orthogonal regularization, thereby ensuring that the regularization term is effectively
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incorporated into the optimization process during the training of the backward transformation. This
ensures that the regularization term achieves the target threshold λ, enabling precise control over
the stability–plasticity trade-off in the backward transformation and leads to higher representation
compatibility on the downstream task. As highlighted by the bold entries in the Tab. 10, our method
produces stable results (minor fluctuations are attributable to stochastic optimization) for w = 1
and w = 10−1 in contrast to SO and SRIP. Conversely, when w is very low (10−2 or 10−3), the
regularizer cannot be fully optimized, and our method behaves similarly to SO regularization, as our
introduced constrains (∥W⊤W − I∥F ≥ λ) influences the minimum of the objective, which is never
reached in practice. In contrast, due to its approximate formulation and greater complexity relative to
SO, SRIP exhibits an even weaker regularization effect when w is low.

F Detailed Analysis of Loss Term Contributions

In this section, we analyze the contribution of each term to the final loss (Eq. 3.5) optimized during
training. Tab. 11 presents the results obtained when the adaptation dataset matches the dataset used
to train the models from which the features were extracted, namely ImageNet1K. In this scenario,
a strict orthogonal transformation B⊥ is employed for backward-compatibility. We observe that
when used independently, LF ensures compatibility with the representations of the new model but
significantly fails to achieve backward compatibility. This behavior highlights a pronounced forward
bias inherent to LF . The backward alignment loss LB alone promotes backward compatibility but
degrades forward-adapted representation performance. The contrastive loss LC alone significantly
improves inter-model alignment and intra-class clustering, supporting both backward and forward
compatibility. The combination LF + LB + LC achieves the highest overall performance across
compatibility scenarios, underscoring the importance of each loss component in maintaining balance
between forward and backward trasformation learning.

Tab. 12 shows the impact of these loss terms in a downstream task setting (CUB dataset), where
ϕold is ResNet-18 and ϕnew is ViT-L-16, using λ-Orthogonality with λ = 12. Similar to Tab. 11,
excluding the backward loss LB still yields good forward compatibility but significantly reduces
backward compatibility performance. Excluding the contrastive loss LC substantially decreases
the adaptation to the downstream task leading to lower Bλ(ϕnew)/Bλ(ϕnew) values. Using all loss
terms LF + LB + LC consistently achieves the best or near-best results in forward and backward
compatibility, demonstrating the complementary nature of these terms.

These analyses underline that each loss term contributes uniquely and significantly to achieving
comprehensive and model compatibility across various tasks.

Table 11: CMC-Top1 (%) on ImageNet1K for different loss combinations (✓ = included, × =
excluded). The setting is the same of Tab. 1b, where the first model, ϕold, is a ResNet-18, whereas the
second, ϕnew, is a ViT-L-16.

Losses Query/Gallery (CMC-Top1 %)

LF LB LC F (ϕold)/ϕold F (ϕold)/F (ϕold) B⊥(ϕnew)/ϕold B⊥(ϕnew)/F (ϕold) B⊥(ϕnew)/B⊥(ϕnew)

✓ × × 0.04 59.09 0.04 72.27 76.63
× ✓ × 0.04 49.34 62.75 0.04 76.63
× × ✓ 61.24 58.63 64.97 60.83 76.63
✓ ✓ × 54.18 59.29 62.77 72.46 76.63
✓ × ✓ 61.25 60.43 65.13 73.44 76.63
× ✓ ✓ 60.85 59.09 65.42 57.90 76.63
✓ ✓ ✓ 60.83 61.10 65.54 73.53 76.63

G Distance metric for Partial Backfilling Ordering

Our proposed partial backfilling strategy is guided by a distance metric d, which measures the
dissimilarity between each embedding vector F (hk) and its corresponding class mean µc. This
section investigates the impact of different distance metrics on determining an effective ordering for
backfilling images in the gallery set. We compare two distance metrics—Mean Squared Error (MSE)
and Cosine Distance—for ranking images during partial backfilling. The performance of each metric
is evaluated under two distinct experimental conditions: the Extending Classes setting (Tab. 13) and
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Table 12: CMC-Top1 (%) on CUB for different loss combinations (✓ = included, × = excluded).
The setting is the same of Tab. 2, where the first model, ϕold, is a ResNet-18, whereas the second,
ϕnew, is a ViT-L-16. A backward adapter Bλ with λ = 12 is used to adapt the improved model on the
downstream task.

Losses Query/Gallery (CMC-Top1 %)

LF LB LC F (ϕold)/ϕold F (ϕold)/F (ϕold) Bλ(ϕnew)/ϕold Bλ(ϕnew)/F (ϕold) Bλ(ϕnew)/Bλ(ϕnew)

✓ × × 0.0 51.72 0.0 63.82 72.14
× ✓ × 0.0 35.27 45.80 0.0 71.91
✓ ✓ × 37.15 47.56 46.56 60.70 69.76
× × ✓ 52.79 59.14 58.38 66.46 73.36
✓ × ✓ 50.43 59.88 58.57 70.13 74.86
× ✓ ✓ 53.27 58.66 60.45 59.44 73.12
✓ ✓ ✓ 51.12 59.92 60.64 70.72 75.44

Table 13: Extended Classes set-
ting

Method
M̃

CMC-Top1 mAP
MSE 61.20 36.46
Cosine Distance 61.68 37.10

Table 14: Independently Pre-
trained Models setting

Method
M̃

CMC-Top1 mAP
MSE 76.59 57.72
Cosine Distance 76.49 58.18

Figure 6: Different distance metric ablation for our partial backfilling strategy. Results for the
Extending Classes setting (top Figures) of Tab. 1a, and Independently Pretrained Models setting
(bottom Figures) of Tab. 1b. We use features from the new backward-adapted model B⊥(ϕnew) for the
query set. For the gallery set, we begin with forward-adapted old features F (ϕold) and incrementally
replace them with new features.

the Independently Pretrained Models setting (Tab. 14). MSE computes the Euclidean distance between
feature vectors, capturing both angular and magnitude discrepancies. As shown in Tab. 13 and Tab. 14,
MSE generally yields robust performance, particularly in terms of CMC-Top1. In contrast, Cosine
Distance measures the angular distance between normalized feature vectors, emphasizing directional
similarity while ignoring magnitude. The results indicate that Cosine Distance achieves slightly better
performance in terms of mAP and provides comparable CMC-Top1 scores relative to MSE.

H Method Complexity and Broader Applicability

Method Complexity. Our approach requires training only two matrices, resulting in a small number
of parameters to optimize. Because our method operates solely on the extracted embeddings, it does
not require any knowledge of the underlying models and is therefore applicable across different
objectives (see Appendix C), architectures, and types of learned representations.

In contrast to previous methods, which either focus solely on alignment loss without any representation
clustering loss (e.g., FCT [25]), or require specific architectural components of the pretrained models
(e.g., FastFill [22], which requires access to the classifier of the new model), our approach addresses
these limitations. Additionally, while existing baselines provide only forward adaptation, our method
is designed to achieve both forward and backward compatibility, thereby addressing practical needs
that prior works do not meet. For instance:
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• B⊥(ϕnew)/F (ϕold) yields higher retrieval values compared to the baselines.
• B⊥(ϕnew)/ϕold can be achieved exclusively by our method. From a practical standpoint,

this allows compatibility to be established even before all gallery items are forward-adapted
using F .

• Since our approach provides a unified representation space, even when the gallery is in a
hybrid form (i.e., with some elements already adapted by F and others not), using B⊥(ϕnew)
still ensures compatibility. This can not be achieved neither by FCT [25] nor FastFill [22].

The contrastive loss defined in Eq. 8 relies on the availability of class labels to encourage embeddings
from the same class to cluster together while pushing apart embeddings from different classes. In
scenarios where class labels are not available, Eq. 8 naturally reduces to an unsupervised contrastive
loss, similar to the objective used for training CLIP models [62]. In this unsupervised setting, we
contrast pairs of representations originating from different models, and clustering—since it cannot
be enforced directly—becomes a byproduct resulting from embedding similarity. Consequently,
our approach is flexible and can be applied in both supervised and unsupervised training scenarios,
depending on the availability of labels for the downstream task.

Broader Applicability. As it is demonstrated in [36], soft orthogonalization has been applied to
regularize all the weights of a CNN during training, and could benefit from the increased plasticity
offered by our proposed λ-orthogonal regularization. While retrieval is the standard scenario for
evaluating compatibility [15], our approach is broadly applicable to any task that requires represen-
tation adaptation, as it focuses on model alignment and clustering of learned representations. As
demonstrated in our downstream task adaptation experiments (see Sec. 4.4), our regularization ap-
proach yields improved performance compared to a strict orthogonal constraint, making it a valuable
approach in domain adaptation scenarios as well. Furthermore, enforcing geometrical consistency
while allowing adaptability has recently been investigated in the context of continual learning for
multimodal training [67]. However, the authors of [67] promote this property indirectly through a
knowledge consolidation loss, rather than by directly applying a regularization constraint. This high-
lights both possible future research and the potential applicability of our λ-orthogonal regularization
across various areas of representation learning.

I Limitations

Our approach relies on the assumption that the new model’s embedding space is more expressive
(e.g., higher retrieval accuracy, stronger clustering) than that of the old model. If the updated model
is not comparable or lower quality, due, for instance, to domain mismatch, insufficient training
data, or architectural regressions, then both the forward and backward adapters may fail to improve
performance or could even degrade compatibility. In many practical systems, this assumption is
justified by scaling laws [68, 69, 70, 71] (i.e., larger models and more data generally yield better
feature representations). For downstream tasks adaptation, while our λ-orthogonal regularized
adapter shows strong performance and compatibility across various retrieval tasks, a manual tuning
of the orthogonality threshold (λ) is needed. The trade-off between preserving the original model’s
geometry and allowing sufficient plasticity to adapt to new data hinges critically on the choice of
λ. In practice, this hyperparameter could be selected via cross-validation or a small hyperparameter
search on a held-out portion of the downstream dataset. Although we found that λ = 12 provides a
good balance in our experiments (Appendix E), different downstream domains (e.g., fine-grained vs.
coarse categories) and adapted representations may require different tuning of λ to achieve optimal
performance. Automating or self-tuning this parameter remains an open challenge.
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