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ABSTRACT

Accurate detection of clinically meaningful events in healthcare time-series data
is crucial for reliable downstream analysis and decision support. However, most
existing methods struggle to jointly localize event boundaries and classify event
types; even detection transformer (DETR)-based approaches show limited perfor-
mance when confronted with extremely sparse events typical of clinical record-
ings. To address these challenges, we propose a coarse-to-fine detection frame-
work combining a global context explorer, a local detail inspector, and an adap-
tive gating module (AGM) that fuses multiple label perspectives. The AGM uses
transformed labels—encoding event presence and temporal position—to improve
learning on sparse events. This design acts as a switch that selectively activates de-
tailed feature extraction only when an event is likely, thereby reducing noise and
improving efficiency in sparse settings. We evaluate our framework on diverse
healthcare datasets—including arrhythmia detection, emotion recognition, and
human-activity monitoring—and demonstrate substantial performance gains over
existing DETR-based models, with particularly strong improvements in sparse
event detection. With precise and robust event detection, our framework enables
interpretation and actionable insights in real-world clinical applications.

1 INTRODUCTION

Time-series data are generated across diverse physical, biological, and socio-economic systems,
exhibiting characteristics that vary substantially depending on their source. Among these, biosig-
nals—electrical or physical measurements of physiological activity—are particularly distinctive,
combining inherent temporal periodicity with irregular, sparse, and clinically significant local
events, and they are typically acquired at high sampling rates (Yuan et al., 2023). For instance,
arrhythmia episodes in electrocardiograms (ECG) or the onset and offset of specific physiological
behaviors must be captured with high temporal precision, as accurate timing is critical for clini-
cal decision-making. Detecting such events therefore requires not only distinguishing normal from
abnormal segments but also predicting both the event type (class) and its temporal boundaries—a ca-
pability essential for early diagnosis, continuous monitoring, and real-time alert systems (Figure. 1).

Previous studies have explored various approaches for time-series event detection. A common strat-
egy is to leverage unsupervised or semi-supervised anomaly detection methods (Ergen & Kozat,
2019; Braei & Wagner, 2020; Qiao et al., 2024; McIntosh & Albu, 2024), which effectively identify
abnormal segments but provide little information about what type of event is occurring. Another line
of work frames detection as a classification problem over fixed-length windows (e.g., 10 seconds).
These methods predict whether an event occurs within each segment (Bark et al., 2023; Mandala
et al., 2025; Saranya et al., 2025), particularly in studies involving biosignal-based events or disease
detection. However, such window-based formulations cannot capture exact onset and offset times,
limiting their ability to perform boundary-aware event detection within fixed segments.
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Figure 1: (a) Anomaly detection identifies abnormal segments without event types. (b) Classification
labels fixed-length time windows, without explicit boundary localization. (c) Multi-event detection
predicts both event class and temporal boundaries within each segment, enabling accurate detection.

Overall, existing approaches face two key challenges: (1) learning the type of events under sparse
conditions, and (2) accurately localizing event boundaries. In clinical applications, these challenges
are particularly critical, as failure to identify the onset, offset, and type of events can prevent timely
interventions. Moreover, providing explicit temporal and class information allows clinicians to focus
on specific suspicious segments rather than reviewing entire recordings, thus improving workflow
efficiency, supporting evidence-based decision-making, and generating actionable insights. Conse-
quently, previous methods are limited in their ability to perform event detection in time-series data,
highlighting the need for accurate, boundary-aware detection that facilitates both reliable interpreta-
tion and clinical actionability.

To address these challenges, we propose a novel framework for time-series data composed of two
key units: (i) an adaptive gating module that facilitates dynamic interaction between global and local
features, and (ii) a coarse-to-fine global–local structure built upon the detection transformer (DETR)
architecture (Carion et al., 2020; Sarlin et al., 2019). This design jointly predicts event types and
their temporal boundaries, enabling effective learning from sparse events. During training, the model
leverages multiple label perspectives—including actual values, event existence, and occurrence lo-
cations—which allows robust detection even under extreme event sparsity. We validate our approach
on healthcare time-series datasets, including arrhythmia detection, emotion recognition, and activity
monitoring, demonstrating consistent performance across diverse multi-event detection tasks.

The main contributions of this work are summarized as follows:

• We propose a time-series multi-event detection framework based on DETR that simultane-
ously estimates event types and temporal boundaries, enabling effective interaction between
contextual and detailed features.

• We introduce an adaptive gating module that enables effective detection of sparse events by
transforming labels to emphasize different aspects—such as event existence or occurrence
locations—allowing the model to learn complementary temporal cues.

• We demonstrate the clinical applicability of our method through diverse experiments on
healthcare datasets, showing its effectiveness for real-world multi-event detection tasks.

2 RELATED WORK

2.1 SEQUENCE-TO-SEQUENCE MODELS FOR EVENT DETECTION

Seq-to-seq models for time-series analysis have evolved rapidly, starting from LSTM (Graves,
2012), TCN (Bai et al., 2018), and Inception Time (Ismail Fawaz et al., 2020), and more recently
advancing to Transformer-based architectures (Vaswani et al., 2017; Nie et al., 2022; Liu et al.,
2023) and time-series–specific foundation models (Garza et al., 2023; Das et al., 2024). While these
models are effective at capturing global patterns and performing point-wise prediction or regression,
they face structural limitations for event boundary detection within segments. Point-wise outputs are
inherently insufficient for tasks that require identifying both event onset and offset. Moreover, these
models are not well-suited for detecting sparse events, where occurrences are rare and irregular.
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2.2 END-TO-END DETR MODELS FOR EVENT DETECTION

Several approaches have been proposed for event detection, among which DETR (Carion et al.,
2020) has become one of the most widely adopted and influential architectures. DETR introduced
the first end-to-end transformer-based framework for object detection, replacing traditional anchor-
based pipelines. Subsequent variants, such as Deformable DETR (Zhu et al., 2020), DINO1 (Zhang
et al., 2022), and DEIM2 (Huang et al., 2025), improved both convergence speed, accuracy, and
training efficiency. However, these advances have largely been limited to the image domain. In
time-series data, most timestamps correspond to normal states, with events occurring sparsely and
exhibiting ambiguous temporal boundaries (Azib et al., 2023; Zamanzadeh Darban et al., 2024).
These characteristics introduce a significant mismatch between conventional DETR architectures
and the requirements of boundary-aware event detection in time-series data. Direct application of
DETR often yields inaccurate predictions and inefficient training under extreme sparsity.

3 METHODOLOGY

Our framework processes univariate or multivariate time-series data using an end-to-end en-
coder–decoder architecture. The components of the proposed framework and their operating prin-
ciples, including the overall weight flow, are described below. A schematic overview of the full
framework is shown in Figure 2. The input and output are defined as:

X ∈ RB×T×D 7−→ Y = {(ci, ton
i , toff

i )}Ni=1, (1)

where B is the batch size, T is the segment length, and D is the number of variables (D = 1 for
univariate, D > 1 for multivariate time-series data). The output Y is a set of N events, where ci
denotes the event class, and ton

i , toff
i represent the onset and offset times of the i-th event, respectively.

3.1 ARCHITECTURE OVERVIEW

We use a frozen foundation model (FM), denoted fFM, based on the Chronos-T5 tiny-bolt architec-
ture (Ansari et al., 2024) pre-trained on large-scale time-series data. The FM serves as a lightweight
backbone. Since Chronos-T5 was originally designed for univariate time series, the framework em-
ploys a flexible input structure that expands or contracts the FM according to the input dimensional-
ity, allowing it to process multivariate time-series data. For a multivariate input, the representation
is constructed as

z =

D⊕
j=1

f
(j)
FM

(
X:,j

)
∈ RB×τ×(D·dFM), (2)

where
⊕

denotes channel-wise concatenation, B is the batch size, X:,j is the j-th input channel,
τ is the number of time steps in the FM output, and dFM is the embedding dimension of a single
channel.

The embedding vector z extracted from the FM(fFM) is first mapped to an integrated representation
h ∈ RB×τ×d through a feed-forward network (FFN) comprising linear layers and positional embed-
dings. The representation h then provides the foundational input to two feature extraction modules:
the global context explorer (GCE) and the local detail inspector (LDI), which extract global and
local temporal features, respectively, each with its own positional embeddings. Since GCE and LDI
follow different processing paths, their outputs may reside in distinct feature spaces; an alignment
layer is used to map all features into a common space.

Next, the core component of the framework, the adaptive gating module (AGM), fuses the aligned
features by modulating their contributions using a conditional gate scaler (CGS) and positional
Gaussian injection (PGI), based on the global and local distributions of each sample. Specifically,
the AGM computes gate values for each time step, controlling the relative contributions of GCE and
LDI features. Finally, the gated features are passed to the transformer decoder along with a set of
learnable object queries Q = {q1, q2, . . . , qN} to predict both the start and end times of events as
well as their class labels for each segment.

1DINO: DETR with Improved DeNoising Anchor Boxes for End-to-End Object Detection
2DEIM: DETR with Improved Matching for Fast Convergence
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Figure 2: Overview of the proposed framework. The input time-series data is first processed by a
frozen foundation model (FM), followed by a feed-forward network (FFN). Global and local tempo-
ral features are then extracted via the global context explorer (GCE) and local detail inspector (LDI),
respectively. The GCE and LDI outputs are fused through the adaptive gating module (AGM), which
acts as a dynamic gate to modulate global and local information. The fused representation is subse-
quently fed into the transformer decoder to predict event types and their temporal boundaries.

3.2 GLOBAL CONTEXT EXPLORER & LOCAL DETAIL INSPECTOR

The model operates on three complementary inputs: (i) the initial feature representation h, (ii)
the global context extracted by the GCE, and (iii) the local detail extracted by the LDI. The GCE
(fGCE ∈ RB×τ×d) and LDI (fLDI ∈ RB×τ×d) are composed of a similar block structure com-
prising a transformer encoder, a TCN-based attention mechanism with dilation rates [1, 2, 4, 8], and
layer normalization, providing complementary perspectives for event representation in time series.
To ensure consistency across these heterogeneous inputs, all three inputs are projected into a unified
representation space through a linear alignment layer. Specifically, the initial features are aligned as

halign = Align(h), (3)

while the outputs of GCE and LDI are also maintained in the aligned space, which normalizes scale
and distribution across inputs, unifies feature dimensions for consistent integration, and facilitates
semantic alignment between global and local features, inspired by (Lin et al., 2017).

Building on this aligned representation, the coarse-to-fine hierarchy is established not only through
the different kernel sizes (7 for GCE and 3 for LDI) but also via two additional factors. First, LDI
receives both the aligned input and the globally refined GCE output:

xLDI = halign ⊕ fGCE(halign), (4)

creating a richer, higher-dimensional space that enhances its ability to capture fine-grained local
interactions. Second, the sequential ordering of the modules—GCE preceding LDI—enables GCE
to extract coarse, long-range dependencies, after which LDI focuses on refining these representations
with local detail.

Because all features remain in the aligned space, downstream components such as the AGM can
consistently integrate global and local information. This hierarchical, aligned processing is critical
for accurate, boundary-aware event detection and stable model training.
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Figure 3: Overview of the adaptive gating module (AGM). (a) Conditional gate scaler (CGS) mit-
igates class imbalance by predicting weights wc to emphasize sparse event features while down-
scaling frequent ones. (b) Positional Gaussian injection (PGI) encodes event locations by aligning
Gaussian-distributed labels with input features via cosine similarity.

3.3 ADAPTIVE GATING MODULE

The AGM is a core component of our framework (Figure. 3), consisting of two sub-modules: con-
ditional gate scaler (CGS), which adaptively modulates the contributions of each feature stream to
better capture events in time series, and positional Gaussian injection (PGI), which injects positional
priors to enhance temporal localization of events. The input to the AGM is the fused representation
from GCE and LDI, formulated as

xAGM = CrossAttn
(
fGCE, fLDI

)
, xAGM ∈ RB×τ×d, (5)

Within the AGM, xAGM sequentially passes through the CGS and PGI submodules. The resulting
output, denoted as outputPGI, is then compressed through a 1D convolution layer followed by a
sigmoid activation to generate the gate tensor:

g = Sigmoid(Conv1D(outputPGI)), g ∈ RB×τ×1. (6)

This gate tensor dynamically modulates the relative contributions of LDI and GCE via element-wise
weighting:

hgated = g ⊙ fLDI + (1− g)⊙ fGCE, ⊙ : element-wise multiplication. (7)

In summary, CGS and PGI work in sequence to produce g, enabling the AGM to adaptively balance
global and local information while preserving boundary precision for sparse event detection.

3.3.1 CONDITIONAL GATE SCALER

The CGS is designed to enhance the learning of sparse events by modulating the relative importance
of features. It reflects distributional differences between event and non-event segments, assigning
higher weights to event-related representations. In particular, CGS controls how much the LDI can
leverage the global context extracted by the GCE, and therefore only fGCE(halign) is used as input.

For each input segment, we reinterpret the labels from a binary perspective (no event: 0, event: 1)
and simultaneously assign a weight in (0, 1) to mitigate imbalance. Specifically, let r0 and r1 denote
the ratios of the two classes (e.g., 10:1). The GCE features are fed through an FFN to predict the
binary label, supervised by a weighted cross-entropy loss LBCE, with class weights computed as:

w0 =
1/r0

1/r0 + 1/r1
, w1 =

1/r1
1/r0 + 1/r1

, (8)

ensuring 0 < w0, w1 < 1, with the rarer class receiving the larger weight. The final output of the
FFN serves as the conditional scaling weight wc, directly modulating the AGM input.

Specifically, for each sample, the AGM input xAGM is element-wise scaled by this conditional
weight as x̃AGM = wc ⊙ xAGM, where x̃AGM ∈ RB×T×d. As a result, abundant (non-event)
features are downscaled while sparse (event) features are emphasized, enabling adaptive rebalancing
during training.
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3.3.2 POSITIONAL GAUSSIAN INJECTION

The PGI module encodes event locations within a time series by introducing Gaussian-shaped super-
visory signals. For each ground-truth event, we generate a normalized Gaussian label distribution
(ygaussian) centered at the event midpoint, with the start and end points explicitly set to zero to
delineate boundaries:

ygaussian(t) =


N (t; c, σ2)

maxu∈[ts,te]N (u; c, σ2)
, ts < t < te,

0, t ∈ {ts, te},
(9)

where ts and te denote the start and end indices of an event defined by y(t) ̸= 0, c = ts+te−1
2 is

the event center, and σ is proportional to the event length. Here, N (t; c, σ2) represents the value of
a 1D Gaussian distribution with mean c and variance σ2. The normalization by the maximum value
ensures the label distribution peaks at 1 within the event.

This Gaussian supervision is deliberately designed to: (i) explicitly indicate sparse event centers,
(ii) enhance the distinguishability of consecutive events, and (iii) prevent boundary ambiguity that
arises when events are split across fixed-length segments. In this way, PGI provides the model with
smooth boundary cues related to event onsets and offsets within each segment. It thus complements
the original discrete label representation, offering a richer supervisory signal for event localization.

To incorporate this signal, input features to the AGM after CGS (x̃AGM ∈ RB×τ×d) are passed
through a trainable convolutional layer (d → dFM), while Gaussian labels are projected via the
frozen FM (fFM ∈ RB×τ×dfm ) encoder into the same representation space. A cosine similarity loss
aligns the two:

Lcos = 1− 1

Bτ

B∑
b=1

τ∑
t=1

Conv(x̃AGM)b,t · fFM(ygaussian)b,t
∥Conv(x̃AGM)b,t∥2 ∥fFM(ygaussian)b,t∥2

, (10)

where B is the batch size and τ the time-step length. The final PGI output is obtained by concate-
nating the AGM input after CGS with its convolutional layer along the feature dimension,

OutputPGI = x̃AGM ⊕ Conv(x̃AGM) ∈ RB×τ×(d+dFM) (11)

3.4 TRAINING OBEJECTIVE

Our framework is trained with three loss terms: (1) a cosine similarity loss (Lcos) between the
Gaussian labels generated by the PGI module and the AGM convolutional outputs, (2) a binary
cross-entropy loss (LBCE) applied to the CGS predictions, and (3) a detection loss (LDetection) in the
transformer decoder, computed via Hungarian matching. The overall objective is given by

Ltotal = αLcos + βLBCE + γLDetection, α = 0.2, β = 0.1, γ = 0.7. (12)

Unlike the DETR, where Hungarian matching is based on 2D bounding box position and size, tem-
poral event detection requires a tailored cost. We therefore define the matching cost as

cost(i, j) = λcls · costcls(i, j) + λctr · L1(ci, cj) + λlen · L1(li, lj), (13)

where ci, cj denote event centers and li, lj their lengths. We set λcls : λctr : λlen = 1 : 5 : 1.

The detection loss (LDetection) combines localization and classification terms, formulated as
LDetection = 5.0 · Lloc + 2.0 · Lcls, where Lloc is an L1 loss over centers and lengths, and Lcls is
a weighted cross-entropy loss. To mitigate class imbalance, the classification weights are assigned
inversely proportional to class frequencies, emphasizing sparse event classes while down-weighting
abundant normal segments.
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4 EXPERIMENT

4.1 PERFORMANCE COMPARISON ON HEALTHCARE DATASETS

Datasets We evaluate our model on four public databases covering arrhythmia detection, emotion
recognition, and activity monitoring. Specifically: MIT-BIH (Moody & Mark, 2001) and SHDB-
AF (Tsutsui et al., 2025) for arrhythmia detection, WESAD (Schmidt et al., 2018) for emotion
recognition, and OPP (Roggen et al., 2010) for activity monitoring. For arrhythmia detection, we
consider both specific arrhythmias (MIT-BIH Class 3, SHDB-AF Class 3, MIT-BIH Class 15)and
broader categories (MIT-BIH Class 6, SHDB-AF Class 5). All datasets are split into training, vali-
dation, and test sets (8:1:1). Sampling frequency and channel count vary: MIT-BIH and SHDB-AF
are 256 Hz with 1 and 2 channels; WESAD is 200 Hz with 8 channels; OPP is 30 Hz with 36 chan-
nels. Time-series signals are first resampled, then interpolated to fill missing values, and finally
segmented into fixed-length windows. Stratified sampling is applied to address class imbalance.
Pre-processing details and class definitions are provided in Appendix A.

Baseline We compare our approach against six DETR-based baselines. We employ the same
Chronos-T5 model as a pre-trained, fixed feature extractor (backbone encoder) to adapt them to
1D time-series inputs. The extracted embedding vectors are fed into the Transformer encoder of
the respective DETR-style architectures, using a 1D structure. Temporal coordinates (event center
and length) are used to align with the time-series data. All models, including DETR (Carion et al.,
2020), Multi-scale DETR, Deformable-DETR (Zhu et al., 2020), DAB-DETR (Liu et al., 2022a),
DN-DETR (Li et al., 2022), and Deformable-DINO (Zhang et al., 2022), were trained for 100 epochs
with a batch size of 64, early stopping after five epochs without improvement, and a learning rate of
1 × 10−4 using the AdamW optimizer (weight decay 5 × 10−2, ϵ = 1 × 10−8, β = (0.9, 0.999)).
Implementation details are provided in Appendix C.

Metrics We evaluate performance using three complementary metrics: macro point-wise F1 (PW-
F1), macro affiliation F1 (AF-F1), and mean average precision (mAP). PW-F1 measures frame-level
accuracy by converting predictions and ground-truth events into time-indexed label sequences. AF-
F1 assesses event-level correctness by checking whether each predicted segment overlaps with a
ground-truth segment of the same class. Finally, mAP summarizes precision–recall behavior based
on confidence scores, treating each event as a temporal segment analogous to DETR-style detec-
tion. Together, these metrics capture timing accuracy (PW-F1), segment alignment (AF-F1), and
confidence-based detection quality (mAP). Detailed metric definitions are in Appendix B.

Table 1: Overall performance comparison across multiple datasets. Bold indicates the best perfor-
mance, while underlined values indicate the second-best performance. Full quantitative results are
in Appendix F, and qualitative examples of detected events are shown in Appendix E.

Model Metric MIT-BIH SHDB-AF WESAD OPP

Class 3 Class 6 Class 15 Class 3 Class 5 Class 8 Class 5

DETR
PW-F1 77.22 64.41 41.32 93.24 60.19 59.53 61.30
AF-F1 82.72 58.29 43.35 93.47 60.83 62.29 61.89
mAP 51.45 53.33 45.23 95.78 77.77 53.14 50.85

Multi-scale DETR
PW-F1 75.60 73.36 65.52 91.99 63.49 63.88 58.05
AF-F1 76.00 62.39 49.34 92.13 64.67 65.65 58.38
mAP 66.03 55.60 50.97 97.76 76.85 68.24 48.28

Deformable DETR
PW-F1 85.39 68.68 58.96 90.86 53.33 62.69 61.05
AF-F1 84.71 60.81 45.67 91.10 53.99 65.45 60.92
mAP 63.17 52.59 52.16 97.79 74.18 66.59 51.86

DAB-DETR
PW-F1 83.13 71.05 53.50 93.11 51.52 55.59 60.35
AF-F1 83.70 60.77 46.03 93.23 52.14 58.58 60.88
mAP 65.57 54.19 46.85 98.96 86.16 72.75 50.30

DN-DETR
PW-F1 77.82 66.82 62.17 91.59 71.92 66.44 57.00
AF-F1 77.71 58.18 47.37 86.26 70.13 66.32 56.05
mAP 66.28 51.42 48.80 96.69 80.06 55.12 49.29

Deformable-DINO
PW-F1 86.41 74.11 63.49 89.57 66.03 69.22 56.80
AF-F1 83.22 60.00 48.59 88.82 65.98 70.73 55.80
mAP 72.05 52.20 46.92 96.00 83.65 69.96 50.68

Ours
PW-F1 90.63 83.37 74.86 96.23 83.41 73.59 64.98
AF-F1 85.96 60.87 52.85 96.09 83.78 74.29 62.81
mAP 77.66 57.54 44.55 97.38 85.83 65.19 60.07
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Results Table 1 shows that our model consistently outperforms all baselines on both PW-F1 and
AF-F1 while maintaining competitive mAP. On MIT-BIH Class 3, our model achieves a PW-F1 of
90.63, exceeding other methods by +4.22–15.03 percentage points (%p). On SHDB-AF Class 5, it
reaches an AF-F1 of 83.78, surpassing baselines by +13.65–31.64 %p. Although PW-F1 and AF-F1
are often conflicting, our model attains strong performance on both metrics while sustaining high
mAP, indicating that it is not tuned to a single event type but captures both the temporal precision
and continuity of diverse events.

Table 2: Summary of notable results for specific dataset events. Each row reports the performance
for a specific event within each dataset and provides the corresponding ratio. Bold indicates the
best performance, while underlined values indicate the second-best performance. Full results for all
classes are provided in Appendix F.

Dataset (Event) Ratio (%) Metric DETR Multi-scale DETR Deformable DETR DAB-DETR DN-DETR DINO Ours

MIT-BIH Class 3
(AFL) 0.91 PW-F1 64.02 58.11 77.17 72.30 66.65 78.01 84.58

AF-F1 77.39 60.51 81.90 77.39 71.04 79.13 84.30
MIT-BIH Class 15

(T) 1.32 PW-F1 0.60 38.31 34.19 28.06 58.97 60.94 80.17
AF-F1 33.33 44.44 30.00 32.26 52.94 58.33 78.57

SHDB-AF Class 5
(PAT&NOD) 0.03 PW-F1 29.12 37.80 22.51 12.50 43.84 25.85 66.41

AF-F1 29.75 38.65 22.88 12.50 37.69 24.54 67.26
WESAD Class 8

(Task 1) 0.95 PW-F1 30.11 31.36 10.41 37.46 41.56 49.59 60.00
AF-F1 34.99 31.69 12.57 44.40 41.51 50.97 57.12

OPP Class 5
(Stand) 42.36 PW-F1 46.75 40.02 36.45 44.28 35.35 35.73 55.61

AF-F1 45.91 40.61 32.97 44.53 27.37 29.18 48.83
MIT-BIH Class 6

(Ventricular arrhythmia) 0.59 PW-F1 20.26 44.59 29.88 44.51 24.53 54.71 79.04
AF-F1 28.27 36.36 30.83 25.27 21.75 25.60 19.52

Highlights 1 Table 2 highlights the distinctive strengths of our model on selected classes. Even
for extremely sparse events, our method outperforms strong baselines, achieving combined PW-
F1 and AF-F1 improvements over Deformable-DINO ranging from 6.6 to 20.2 %p. Performance
on non-sparse events (e.g., OPP Class 5 ”Stand”) is also competitive. For challenging cases such
as ”Ventricular arrhythmia” in MIT-BIH Class 6, our model attains high PW-F1 but lower AF-F1.
This indicates that while the precise boundaries of individual events may not always be perfectly
captured, the model reliably detects event occurrence—a property particularly valuable in healthcare
applications.

Table 3: Summary of model performance by event length. Event classes are positioned as short or
long based on their class-specific mean event length (CMEL, in seconds) relative to the global mean
event length (GMEL, in seconds), considering a fixed window length. This table provides a detailed
comparison of performance metrics for cases with short or long events across multiple datasets,
based on the GMEL. Bold indicates the best performance, while underlined values indicate the
second-best performance. Full results for all classes are provided in Appendix F.

Dataset (Event) CMEL (GMEL) Metric DETR Multi-scale DETR Deformable DETR DAB-DETR DN-DETR DINO Ours

MIT-BIH Class 3
(AFIB) 8.52 (8.32) PW-F1 90.42 93.08 93.61 93.95 88.99 94.81 96.67

AF-F1 88.04 91.49 87.51 90.00 84.44 87.31 87.91

MIT-BIH Class 15
(SVTA) 7.75 (5.19) PW-F1 81.21 96.71 94.72 96.36 94.24 96.43 96.34

AF-F1 84.53 85.71 85.42 88.42 85.22 87.11 88.45
MIT-BIH Class 15

(P) 2.95 (5.19) PW-F1 6.63 69.51 71.55 63.31 70.26 70.60 80.05
AF-F1 37.60 44.64 50.83 51.91 50.25 51.15 55.79

MIT-BIH Class 15
(VFL) 0.88 (5.19) PW-F1 3.36 31.54 31.53 22.68 16.55 32.16 69.03

AF-F1 15.37 17.43 13.27 22.93 9.38 11.69 10.27

SHDB-AF Class 5
(AT) 9.61 (9.90) PW-F1 42.69 58.20 38.28 32.81 65.82 55.68 75.20

AF-F1 43.59 59.29 38.81 33.85 66.23 57.64 76.16
WESAD Class 8

(Stress) 9.45 (9.41) PW-F1 75.93 84.41 85.44 83.63 77.02 85.28 86.58
AF-F1 77.45 84.94 85.79 83.70 73.76 85.33 86.57

OPP Class 5
(Lie) 6.80 (3.93) PW-F1 83.46 76.22 84.78 79.69 81.31 82.58 86.67

AF-F1 85.58 79.13 87.03 82.54 85.03 85.27 87.86

Highlights 2 Table 3 emphasizes the model’s performance with respect to relative event length.
To account for class-dependent duration characteristics and to provide an objective, sparsity-
independent evaluation, we adopt CMEL and GMEL as length-aware metrics. The results show
that the model generally achieves high performance regardless of event length. This trend is partic-
ularly evident in the MIT-BIH Class 15 dataset, where the model outperforms baselines for both the
SVTA class—whose event duration exceeds the GMEL—and the P class, which is shorter than the
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GMEL. A notable exception is the VFL class, which contains extremely short events. Although the
model exhibits outstanding PW-F1 performance (exceeding the previous best by 36%p), its AF-F1
performance is lower than that of the comparison models. This suggests that while our model can
accurately identify fine-grained points within very short events, its ability to detect an entire event
instance as a unified and independent segment still leaves room for improvement.

4.2 ANALYSIS OF INTERACTION BETWEEN GCE AND LDI

Motivation To investigate how our model dynamically integrates multi-scale information, we
analyzed interactions between the GCE and LDI under event and non-event conditions. High-
dimensional outputs were aggregated via mean and normalized for visualization (Figure. 4).

Observation Figure 4 illustrates the dynamic behavior of the AGM. In stable conditions without
events, the AGM output closely follows the coarse-grained GCE values, indicating reduced reliance
on computationally expensive fine-grained representations such as LDI and primarily leveraging
stable global information for efficiency. In contrast, when events occur, fluctuations in both LDI and
GCE become pronounced, and the model switches to a GCE-LDI interaction strategy to accurately
capture subtle changes and utilize rich LDI representations for improved predictive performance.

Insights These results highlight how the AGM leverages context-detail interactions to adaptively
select feature scales: emphasizing efficiency by relying on coarse-grained context in stable periods,
while exploiting fine-grained detail to maximize sensitivity during critical events. This adaptive
strategy is particularly effective for sparse event detection in healthcare time-series data.
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Figure 4: Adaptive gating module selectively prioritizes feature scales. The normalized outputs of
LDI, GCE, and AGM are shown over time. In non-event periods (left), the gate closely follows
the low-variability GCE, emphasizing stable global information. During events (right), the gate in-
creases the contribution of high-variability LDI, capturing subtle changes and improving robustness.

4.3 ABLATION STUDY

Quantitative Analysis We evaluate the contribution of the AGM and its two submodules—the
PGI and the CGS—through a joint quantitative and convergence analysis. Under three ablation
settings (removing AGM entirely, removing CGS, or removing PGI), the full model consistently
achieves the best performance across datasets and metrics (Table 4). Removing the AGM entirely
leads to substantial performance drops in both PW-F1 and AF-F1, highlighting the critical role
of adaptive gating in integrating multi-scale temporal cues. The PGI-only and CGS-only variants
maintain moderate performance, yet they exhibit clear degradation compared to the full model, in-
dicating that each submodule contributes unique, complementary information. Overall, these results
quantitatively confirm that the AGM effectively integrates complementary label perspectives and
significantly enhances event detection performance.

Interpretive Analysis To further understand their roles during training, we analyzed epoch-wise
trends (Figure. 5). The CGS-only model converges rapidly in early epochs by emphasizing event
presence, whereas the PGI-only model, although slower to start, steadily refines predictions through
positional information and eventually surpasses the CGS-only variant after about 15 epochs, achiev-
ing higher final performance. This complementary behavior—CGS for early learning and PGI for
fine-grained refinement, with PGI ultimately yielding stronger results—explains the superior perfor-
mance of the full model. Convergence curves of DETR-based baselines are provided in Appendix D.
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Table 4: Ablation study of the AGM and its components. “w/o” denotes “without.” Bold indicates
the best performance, while underlined values indicate the second-best performance.

Model Metric MIT-BIH SHDB-AF WESAD OPP

Class 3 Class 6 Class 15 Class 3 Class 5 Class 8 Class 5

w/o AGM
PW-F1 49.97 76.46 67.63 91.98 60.79 60.51 51.36
AF-F1 55.21 51.25 39.32 91.90 61.20 63.39 46.27
mAP 64.31 52.69 43.44 96.55 72.69 62.30 50.12

w/o CGS, with PGJ
PW-F1 84.41 81.22 72.76 95.77 70.88 61.84 52.46
AF-F1 87.07 59.98 45.65 95.52 79.78 63.43 45.12
mAP 71.46 55.41 45.50 96.57 73.06 65.15 52.25

w/o PGJ, with CGS
PW-F1 84.68 80.02 74.72 95.13 73.17 61.67 54.78
AF-F1 82.93 58.23 44.81 95.02 73.41 63.71 46.67
mAP 71.69 54.89 45.68 96.53 70.68 63.55 53.31

Ours (Baseline)
PW-F1 90.63 83.37 74.86 96.23 83.41 73.59 64.98
AF-F1 85.96 60.87 52.85 96.09 83.78 74.29 62.81
mAP 77.66 57.54 44.55 97.38 85.83 65.19 60.07
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Figure 5: Epoch-wise performance of the model on three metrics (PW-F1, AF-F1, mAP), illustrat-
ing the contributions of CGS and PGI. Early in training (epochs 0–10), the CGS-only model (”w/o
PGI, with CGS”, green dashed) converges faster, emphasizing event presence. After 15 epochs,
the PGI-only model (”w/o CGS, with PGI”, orange dashed) surpasses CGS, achieving higher final
performance by refining predictions based on positional information. This demonstrates the com-
plementary roles of CGS and PGI in accelerating early learning and improving final outcomes.

5 CONCLUSION AND FUTURE WORK

We presented a framework for detecting event types and boundaries in sparse time-series data by
combining a global context explorer, local detail inspector, and adaptive gating module (AGM).
Within the AGM, the positional Gaussian injection and conditional gate scaler provide complemen-
tary cues, improving sparse-event detection. Our approach outperforms DETR-based baselines on
healthcare datasets, enabling more accurate interval identification of clinically relevant events. In
real-world scenarios, the proposed framework can be applied to continuous monitoring tasks by de-
tecting events within fixed-length segments and then merging them to reconstruct full-length events,
facilitating practical and scalable deployment (Appendix E).

However, the main limitation of this work lies in its evaluation, which was confined to healthcare
datasets. As a result, the generalizability across different domains remains to be validated. Future
work will address this by extending the evaluation to diverse sparse-event contexts. In addition, we
employed a coarse-to-fine encoder and a DETR-style decoder to effectively detect sparse events,
this design may introduce challenges for real-time service deployment. To address this, we aim to
explore lighter backbones and model compression strategies. We also plan to incorporate additional
types of contextual information—such as patient demographics or clinical history—to further en-
hance the adaptability and interpretability of the gating module. Taken together, we believe that
by addressing the aforementioned limitations, our framework could be widely applicable across a
variety of domains, including healthcare, finance, industrial monitoring, and beyond.
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REPRODUCIBILITY STATEMENT

The model architecture is described in the main text through equations and figures. Details of the
datasets, evaluation metrics, and model parameters used for implementation are provided in the
Appendix. The complete source code and scripts to reproduce our framework are available at:
https://github.com/hbumjj/CDI-TS-Event-Detection
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A DATASET

We evaluate our framework on four datasets spanning three representative tasks: (1) arrhythmia
detection, (2) emotion recognition from biosignals, and (3) human activity monitoring. Each dataset
is split into training, validation, and test sets with a ratio of 8:1:1, and the number of samples
is summarized in Table 5. Given the severe class imbalance across datasets, we apply stratified
sampling to ensure valid evaluation.

All datasets undergo a unified pre-processing pipeline comprising signal resampling and class as-
signment. Resampling is necessary because the backbone model used in this study accepts inputs
of fixed length. Labels are adjusted during resampling to preserve class information and maintain
alignment with the signals. During data preparation, any missing values in the time-series signals
were addressed through linear interpolation. If a particular signal in a multivariate time-series was
entirely incomplete, the corresponding data sample would be removed from the analysis. Detailed
pre-processing steps and class definitions for each dataset are provided in the following subsections.

We further employ a pre-trained foundation model (Chronos-T5 (Ansari et al., 2024)) as the back-
bone. Chronos-T5 has not been trained on any of the datasets used in this study, thereby preserving
data independence.
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Table 5: Summary of datasets employed to evaluate the proposed framework across arrhythmia
detection, emotion recognition, and human activity monitoring tasks. Key statistics include dataset
size, number of channels, sampling frequency, and the global mean event length (GMEL).

Dataset MIT-BIH SHDB-AF WESAD OPP

Dataset size 86,208 466,128 86,733 28,753
Variable number 1 2 8 36

Sampling frequency 256 Hz 256 Hz 200 Hz 30 Hz
GMEL 5.19 sec 9.90 sec 9.41 sec 3.93 sec

A.1 MIT-BIH: MIT-BIH ARRHYTHMIA DATABASE

We utilize the MIT-BIH Arrhythmia Database (Moody & Mark, 2001), a widely used benchmark
for arrhythmia detection, which contains annotations for 14 types of arrhythmic rhythms. For pre-
processing, ECG signals were denoised using a 1–30 Hz band-pass filter and resampled to 256 Hz
for computational efficiency (Jeon et al., 2020). The signals were segmented into 10-second win-
dows with a 1-second stride to increase data diversity. the 10-second length was chosen because it
is sufficiently long to yield promising results in identifying rhythm types and classifying arrhyth-
mias in previous studies (Liu et al., 2022b). Since ECG signals can exhibit multiple simultaneous
arrhythmias, we evaluate our framework under several scenarios: (1) 3-class: AFIB and AFL detec-
tion from normal rhythm, (2) 6-class: grouping the 14 rhythms into six categories—Normal, Atrial
arrhythmia, Ventricular arrhythmia, Bradycardia/Paced/Junctional rhythm (B/P/J rhythm), Conduc-
tion disorders, and Others, and (3) 15-class: using all rhythms individually. Class distributions and
category definitions for the 6-class scenario are provided in Table 6.

Table 6: Class distribution and category mapping in the MIT-BIH Arrhythmia Dataset. Each
class represents a specific rhythm type: normal sinus rhythm (Normal), atrial fibrillation (AFIB),
atrial flutter (AFL), supraventricular tachyarrhythmia (SVTA), atrial bigeminy (AB), idioventricu-
lar rhythm (IVR), ventricular flutter (VFL), ventricular tachycardia (VT), paced rhythm (P), sinus
bradycardia (SBR), nodal rhythm (NOD), ventricular bigeminy (B), pre-excitation (PREX), second-
degree atrioventricular block (BII), and ventricular trigeminy (T). The ”Category” row indicates the
grouping used for the 6-class evaluation scenario. The ”Ratio” row shows the percentage of each
class in the dataset, and the ”CMEL” row reports the class-specific mean event length.

Class Normal AFIB AFL SVTA AB IVR VFL VT P SBR NOD B PREX BII T

Category 0 1 1 1 1 2 2 2 3 3 3 4 4 4 5
Ratio (%) 73.07 9.18 0.91 0.24 0.1 0.17 0.17 0.25 7.63 2.08 0.32 2.90 0.86 0.81 1.32

CMEL (sec) - 6.70 2.33 7.75 5.07 4.54 0.88 4.60 2.95 6.19 2.38 1.25 5.50 4.43 5.96

A.2 SHDB-AF: JAPANESE HOLTER ECG DATABASE FOR ATRIAL FIBRILLATION

We also evaluated our framework on the SHDB-AF dataset (Tsutsui et al., 2025), a two-channel
Holter ECG dataset annotated with various arrhythmia rhythms. Similar to MIT-BIH, we considered
two settings: (1) a 3-class task for detecting major arrhythmias (AFIB and AFL), and (2) a 5-class
task corresponding to the four arrhythmia events in the dataset. For pre-processing, ECG signals
were denoised using a band-pass filter (1–30 Hz) and resampled to 256 Hz. Unlike MIT-BIH,
a moving window approach was not applied, as the dataset already provides sufficient coverage;
signals were segmented into 10-second segments, as in the previous dataset. The class distribution
and proportions are summarized in Table 7.

A.3 WESAD: WEARABLE STRESS AND AFFECT DETECTION

The WESAD dataset (Schmidt et al., 2018) is a publicly available database for stress and emotion
recognition using wearable devices. It includes six modalities: 3-axis accelerometer, ECG, EMG,
EDA, temperature, and respiration. Originally recorded at 700 Hz, we resampled the signals to 200
Hz to match our backbone model. EMG was excluded due to insufficient resolution after resampling.
To increase data diversity, we applied a 10-second window (Islam & Washington, 2023) with a 1-
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Table 7: Class distribution in the SHDB-AF dataset. Normal denotes normal rhythm, AFIB atrial
fibrillation, AFL atrial flutter, AT atrial tachycardia, and PAT & NOD represent other supraventric-
ular tachycardias and intranodal tachycardias.

Class Normal AFIB AFL AT PAT & NOD

Ratio (%) 78.57 19.56 1.54 0.31 0.03
CMEL (sec) - 9.91 9.88 9.61 9.45

second stride. The dataset consists of 8 subject states, and their distribution is summarized in Table 8.
Since states 6, 7, and 8 lack clear labels, we grouped them as Task 1, 2, and 3 for this study.

Table 8: Class Distribution in WESAD Dataset

Class Transient Baseline Stress Amusement Meditation Task 1 Task 2 Task 3

Ratio (%) 45.44 20.29 11.48 6.42 13.60 0.95 0.91 0.91
CMEL (sec) - 9.61 9.45 9.23 9.62 7.61 8.06 7.53

A.4 OPP: OPPORTUNITY ACTIVITY RECOGNITION

The OPPORTUNITY (OPP) dataset (Roggen et al., 2010) is a publicly available dataset designed for
human activity recognition research. It contains multimodal recordings from wearable and environ-
mental sensors, including inertial measurement units (IMU), accelerometers, and position sensors,
collected in various daily-life scenarios. For our study, we selected 36 representative accelerometer
signals from the dataset for analysis. Signals were used at their original sampling frequency (30Hz)
without resampling. To enhance data diversity, we applied a sliding window approach with a win-
dow length of 10 seconds and a stride of 1 second. Although human activity recognition (HAR)
datasets typically use short windows (Jaén-Vargas et al., 2022), during our experiments we found
that such short windows tend to perform more like classification rather than event detection. There-
fore, we adopted a relatively long window of 10 seconds (Mekruksavanich & Jitpattanakul, 2022;
Duan et al., 2023), as used in some HAR studies. Table 9 lists the selected accelerometer signals
along with their sensor locations. The OPP dataset provides annotations at multiple hierarchical
levels. In this study, we focused on the highest-level labels, corresponding to five distinct activity
classes. These are summarized in Table 10.

Table 9: Selected accelerometer signals from the OPP dataset. Superscripts “∧” and “ ” denote
sensors at different positions on the same limb.

Sensor Location Signals (X, Y, Z)

Right Knee (RKN∧) accX, accY, accZ
Hip (HIP) accX, accY, accZ
Left Upper Arm (LUA∧) accX, accY, accZ
Right Upper Arm (RUA ) accX, accY, accZ
Left Hand (LH) accX, accY, accZ
Back (BACK) accX, accY, accZ
Right Knee (RKN ) accX, accY, accZ
Right Wrist (RWR) accX, accY, accZ
Right Upper Arm (RUA∧) accX, accY, accZ
Left Upper Arm (LUA ) accX, accY, accZ
Left Wrist (LWR) accX, accY, accZ
Right Hand (RH) accX, accY, accZ
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Table 10: Class Distribution in OPP Dataset

Class Base Stand Walk Sit Lie

Ratio (%) 14.71 42.36 24.16 15.93 2.84
CMEL (sec) - 4.03 2.78 7.29 6.80

B METRIC

In this study, we employed three evaluation metrics: point-wise F1 score (PW-F1), affiliation F1
score (AF-F1), and mean average precision (mAP).

The point-wise F1 score (PW-F1) was computed by transforming the predicted events, defined
by their start point, end point, and class label, into a one-dimensional time-series sequence and
comparing it with the ground-truth sequence. Let the sequence length be T . For each time point
t ∈ {1, . . . , T}, the predicted label ŷt and the ground-truth label yt were compared point by point to
calculate the number of true positives (TP), false positives (FP), and false negatives (FN) for each
class. Then, the F1-score was computed for each class, and the final macro point-wise F1 score
was obtained by averaging across all classes equally. This metric evaluates the overall prediction
accuracy across the entire time series.

PW-F1c =
2 · TPc

2 · TPc + FPc + FNc
(14)

PW-F1 =
1

C

C∑
c=1

PW-F1c (15)

The affiliation F1 score (AF-F1) evaluates model performance at the event level. Unlike point-
wise metrics, which measure accuracy at each time step, AF-F1 quantifies how well predicted event
segments align with ground-truth segments, serving as a complementary metric to the point-wise
F1 score. An event is defined by a start time, an end time, and a class label. A predicted event is
considered a true positive (TP) if it belongs to the same class as a ground-truth event and its temporal
span overlaps with the ground-truth segment. A false negative (FN) occurs when a ground-truth
event is not predicted, and a false positive (FP) occurs when a predicted event does not overlap with
any ground-truth event. The AF-F1 score is computed per class as

AF-F1c =
2 · TPc

2 · TPc + FPc + FNc
, (16)

and averaged across classes using a macro scheme:

AF-F1 =
1

C

C∑
c=1

AF-F1c. (17)

This metric provides a more meaningful assessment for time-series event detection by evaluating
the accuracy of predicted events in terms of both their class and temporal boundaries, accounting for
cases where a single event may be split into multiple events may be merged into one.

The mean average precision (mAP) measures model performance by first computing the area under
the precision-recall (PR) curve for each class, referred to as average precision (AP), and then aver-
aging the APs across all classes. Originally widely used in object detection and DETR frameworks,
mAP is employed here as an auxiliary metric for evaluating event detection in time-series data. Here,
each event is treated as a temporal segment, and the PR curve is derived from the confidence scores
of predicted events. As such, mAP captures not only the correctness of event predictions but also
the quality of their ranking based on prediction confidence, offering a comprehensive assessment of
overall model performance.

APc =

∫ 1

0

Pc(R) dR (18)

mAP =
1

C

C∑
c=1

APc (19)
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C IMPLEMENTATION DETAILS

C.1 MODEL ARCHITECTURE

Our framework builds upon Chronos’s tiny-bolt architecture (Ansari et al., 2024) and comprises
three primary components: (1) a feature extractor, (2) an AGM, and (3) a query-based decoder for
event detection. The feature extractor consists of the GCE and the LDI. GCE captures long-range
temporal dependencies, while LDI extracts local temporal patterns. The AGM contains two sub-
modules: the CGS, which adjusts feature importance based on event presence, and the PGI, which
encodes positional information of events. An overall forward-pass algorithm flow is provided in Al-
gorithm 1, and detailed descriptions of each module, including their dimensions, are summarized in
Table 11. The model has approximately 11.0M–13.3M parameters depending on the number of input
channels, making it relatively compact. Considering the sparsity of events in time-series data, we set
the number of queries to 10 during training. The GCE and LDI use kernel sizes of 7 and 3, respec-
tively, and the feature dimension d was experimentally set to 40 for optimal performance. Full archi-
tectural details, including layer dimensions, kernel sizes, and other hyperparameters, are provided in
our GitHub repository (https://github.com/hbumjj/CDI-TS-Event-Detection).

Algorithm 1 Overall Model Forward Flow

1: procedure FORWARDPASS(Time Series Input X ∈ RB×T×D)
2: ▷ Chronos Embedding and Initial Projection
3: Featuresd ← ChronosEmbed(X:,:,d) for d in 1..D
4: h← FFN Block(Concatenate(Featuresd))
5: halign ← AlignmentLayer(h)
6: ▷ GCE: Global Context Explorer (fGCE)
7: GCE ← GCE Block(halign)
8: GCEalign ← AlignmentLayer(GCE)
9: ▷ LDI: Local Detail Inspector (fLDI)

10: xLDI ← Concatenate(halign,GCEalign)
11: LDI ← LDI Block(xLDI)
12: LDIalign ← AlignmentLayer(LDI)
13: ▷ AGM: Adaptive Gating Module
14: xAGM ← CrossAttention(LDIalign, GCEalign)
15: wc ← CGS Block(GCEalign)
16: x̃AGM ← wc ⊙ xAGM
17: OutputPGI ← Concatenate(xAGM,Conv(x̃AGM))
18: g ← Sigmoid

(
Conv(outputPGI)

)
19: hgated ← g ⊙ LDIalign + (1− g)⊙GCEalign
20: ▷ DETR-Style Detection Head
21: Decoderout ← TransformerDecoder(Target = Queryembed,Memory = hgated)
22: Predboxes ← BBoxPredictor(Decoderout)
23: Predlogits ← ClassPredictor(Decoderout)
24: return {Predboxes, Predlogits}
25:
26: end procedure

C.2 TRAINING PROCEDURE AND HYPERPARAMETERS

The model was trained for 100 epochs with a batch size of 64 and a learning rate of 1× 10−4. Early
stopping was applied, halting training if no improvement occured for five consecutive evaluations.
The dataset was split into training, validation, and test sets in an 8:1:1 ratio using stratified sampling
to preserve class distributions. We used the AdamW optimizer with a weight decay of 5 × 10−2,
ϵ = 1× 10−8, and β = (0.9, 0.999). The overall loss combined three components: Lcos, LBCE, and
LDetection, with relative weights 2:1:7. For the Hungarian matching in detection, the class, center, and
length costs were weighted 1:5:1, respectively. The Chronos model dimension was increased from
2048 to 4096. Random seeds were fixed to 42 to ensure reproducibility across all experiments.
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Table 11: Overview of the proposed model architecture.

Module Purpose Input / Output Description

ChronosEmbed Per-channel feature encoding [B, T,D]→ [B, τ,D × dFM] Pre-trained embedding for each channel

FFN Block Compress the embedding dimension [B, τ,D × dFM]→ [B, τ, d] Linear projection with normalization and positional embedding

GCE Block Capture global temporal features [B, τ, d]→ [B, τ, d] Transformer encoder with TCN-attention and positional embedding

LDI Block Capture local temporal features [B, τ, 2d]→ [B, τ, d] Transformer encoder with TCN-attention and positional embedding

AGM (CGS + PGI) Adaptive interaction [B, τ, d]→ [B, τ, 1] Adjusts features based on event presence and positional encoding

Decoder Query-based event prediction [B,N, d]→ [B,N, d] Transformer decoder with learnable queries

Predictor Event localization/classification [B,N, d]→ [B,N, 2/num classes] Linear layers to predict event boundaries and labels

C.3 HARDWARE AND SOFTWARE SETUP

All experiments were conducted on a machine running Ubuntu 22.04, equipped with two Intel Xeon
Scalable 6526Y processors (16 cores, 32 threads) and 256 GB DDR5 ECC RAM. Three NVIDIA
Quadro RTX A5000 GPUs (24 GB GDDR6) were used for all training and evaluation. Experiments
were executed within a Docker container using Python 3.10 and PyTorch 2.3.0 with CUDA 11.8.

D COMPARISON OF CONVERGENCE SPEED WITH BASELINE MODELS

Although the primary goal of our model is improved sparse event detection in time-series data, it
also demonstrates faster convergence compared to baseline models. To illustrate this, we compare
the convergence behaviors up to 40 epochs (Figure 6), as most models terminate around this point
due to early stopping. Specifically, we present the results for the mAP metric as a representative
example.
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Figure 6: Convergence comparison of our model against baseline models, including DETR, Multi-
scale DETR, Deformable DETR, DAB-DETR, DN-DETR, and DINO. The plot shows mAP over
training epochs. Our model consistently achieves higher mAP and reaches peak performance in
fewer epochs, indicating both improved effectiveness and training efficiency.

E SAMPLE PREDICTIONS

We present representative examples of our framework’s event detection results across multiple time-
series datasets. For clarity, the signals are normalized within each class range, and selected cases are
shown to illustrate overall trends (from Figure 7 to Figure 13). Each figure compares the model’s
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predictions (Blue) with the ground truth (Red). The top waveform shows the original signal, while
the two colored traces below indicate the occurrence of specific events.
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Figure 7: Sample Predictions in MIT-BIH Class 3.
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Figure 8: Sample Predictions in MIT-BIH Class 6.
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Figure 9: Sample Predictions in MIT-BIH Class 15.
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Figure 10: Sample Predictions in SHDB-AF Class 3.
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Figure 11: Sample Predictions in SHDB-AF Class 5.
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Figure 12: Sample Predictions in WESAD Class 8.
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Figure 13: Sample Predictions in OPP Class 5.

F FULL EXPERIMENTAL RESULTS

We report the full experimental results, including per-class PW-F1 and AF-F1 scores, for all datasets
from Table 12 to Table 18. A comprehensive summary and key results are presented in Section 4.1.

Table 12: Full Results: MIT-BIH 3 classes

Class Ratio(%) Metric DETR Multi-scale DETR Deformable DETR DAB-DETR DN-DETR DINO Ours

Base 89.91 PW-F1 98.86 99.44 99.34 99.46 98.84 99.48 99.72
AF-F1 - - - - - - -

AFIB 9.18 PW-F1 90.42 93.08 93.61 93.95 88.99 94.81 96.67
AF-F1 88.04 91.49 87.51 90.00 84.44 87.31 87.61

AFL 0.91 PW-F1 64.02 58.11 77.17 72.30 66.65 78.01 84.58
AF-F1 77.39 60.51 81.90 77.39 71.04 79.13 84.30
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Table 13: Full Results: MIT-BIH 6 classes

Class Ratio(%) Metric DETR Multi-scale DETR Deformable DETR DAB-DETR DN-DETR DINO Ours

Normal 73.07 PW-F1 93.81 95.99 95.45 94.77 95.08 96.18 97.46
AF-F1 - - - - - - -

Atrial arrhythmia 10.43 PW-F1 86.82 91.08 91.57 87.78 89.99 91.93 95.23
AF-F1 74.78 74.95 76.90 78.29 75.88 77.32 78.53

Ventricular arrhythmia 0.59 PW-F1 20.26 44.59 29.88 44.51 24.53 54.71 79.04
AF-F1 28.27 36.36 30.83 25.27 21.75 25.60 19.52

B/P/J rhythm 10.03 PW-F1 95.26 95.76 95.18 95.73 94.95 96.10 96.51
AF-F1 82.05 79.49 79.52 82.35 78.46 79.02 82.63

Conduction disorders 4.57 PW-F1 73.54 72.91 70.22 68.18 70.99 74.48 84.83
AF-F1 59.05 62.29 59.28 64.62 57.91 61.04 68.91

Others 1.32 PW-F1 44.60 62.45 56.55 59.03 53.80 53.31 61.23
AF-F1 47.30 58.85 57.52 53.30 56.88 57.02 54.75

Table 14: Full Results: MIT-BIH 15 classes

Class Ratio(%) Metric DETR Multi-scale DETR Deformable DETR DAB-DETR DN-DETR DINO Ours

Normal 73.07 PW-F1 87.89 95.05 91.95 93.17 93.48 94.50 96.36
AF-F1 - - - - - - -

AFIB 9.18 PW-F1 78.43 91.38 83.29 84.54 86.66 89.34 91.60
AF-F1 63.01 73.26 68.71 70.84 70.32 71.38 74.24

AFL 0.91 PW-F1 7.25 49.08 31.94 19.46 42.82 33.24 64.75
AF-F1 12.52 33.67 22.66 29.36 29.20 23.47 18.53

SVTA 0.24 PW-F1 81.21 96.71 94.72 96.36 94.24 96.43 96.34
AF-F1 84.53 85.71 85.42 88.42 85.22 87.11 88.45

AB 0.10 PW-F1 91.82 81.67 85.02 74.59 97.08 95.61 97.01
AF-F1 60.99 52.44 54.39 53.49 61.06 58.52 62.21

IVR 0.17 PW-F1 56.91 66.43 61.84 48.49 65.02 61.62 68.85
AF-F1 56.18 49.40 48.76 43.89 53.36 49.26 57.81

VFL 0.17 PW-F1 3.36 31.54 31.53 22.68 16.55 32.16 69.03
AF-F1 15.37 17.43 13.27 22.93 9.38 11.69 10.27

VT 0.25 PW-F1 17.20 50.29 43.95 38.48 32.80 41.18 46.29
AF-F1 28.09 43.06 43.74 38.01 35.12 39.36 46.23

P 7.63 PW-F1 6.63 69.51 71.55 63.31 70.26 70.60 80.05
AF-F1 37.60 44.64 50.83 51.91 50.25 51.15 55.79

SBR 2.08 PW-F1 83.52 93.48 93.66 95.65 93.42 94.44 89.46
AF-F1 70.71 74.87 73.30 75.56 75.68 75.39 67.96

NOD 0.32 PW-F1 27.49 44.10 31.31 21.93 40.99 33.63 40.98
AF-F1 24.05 30.97 31.11 15.95 33.72 26.52 34.42

B 2.90 PW-F1 2.14 43.97 30.83 30.95 29.45 34.88 48.68
AF-F1 2.09 13.13 14.50 57.14 11.31 14.59 16.59

PREX 0.86 PW-F1 64.86 80.80 70.54 76.71 65.37 62.03 81.12
AF-F1 59.57 66.67 48.78 49.23 41.67 50.00 65.00

BII 0.81 PW-F1 57.07 80.40 61.13 47.82 76.80 82.81 93.72
AF-F1 58.82 61.02 53.97 32.26 53.97 63.49 63.83

T 1.32 PW-F1 0.60 38.31 34.19 28.06 58.97 60.94 80.17
AF-F1 33.33 44.44 30.00 32.26 52.94 58.33 78.57

Table 15: Full Results: SHDB-AF 3 classes

Class Ratio(%) Metric DETR Multi-scale DETR Deformable DETR DAB-DETR DN-DETR DINO Ours

Base 78.91 PW-F1 98.83 99.23 99.03 98.96 98.77 99.06 99.48
AF-F1 - - - - - - -

AFIB 19.56 PW-F1 95.09 96.02 95.26 95.68 95.08 95.40 97.68
AF-F1 95.75 96.42 95.81 96.15 84.95 94.11 97.84

AFL 1.54 PW-F1 91.39 87.95 86.45 90.54 88.10 83.74 94.78
AF-F1 91.19 87.85 86.38 90.31 87.57 83.54 94.33
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Table 16: Full Results: SHDB-AF 5 classes

Class Ratio(%) Metric DETR Multi-scale DETR Deformable DETR DAB-DETR DN-DETR DINO Ours

Normal 78.57 PW-F1 97.31 92.53 97.36 96.59 97.90 98.51 99.29
AF-F1 - - - - - - -

AFIB 19.56 PW-F1 89.74 83.55 86.02 85.21 92.01 94.49 97.33
AF-F1 90.96 85.08 87.62 86.74 91.97 94.80 97.40

AFL 1.54 PW-F1 79.22 74.22 66.49 75.58 85.98 88.07 94.68
AF-F1 79.04 75.66 66.64 75.49 84.62 86.96 94.29

AT 0.31 PW-F1 42.69 58.20 38.28 32.81 65.82 55.68 75.20
AF-F1 43.59 59.29 38.81 33.85 66.23 57.64 76.16

PAT&NOD 0.03 PW-F1 29.12 37.80 22.51 12.50 43.84 25.85 66.41
AF-F1 29.75 38.65 22.88 12.50 37.69 24.54 67.26

Table 17: Full Results: WESAD 8 classes

Class Ratio(%) Metric DETR Multi-scale DETR Deformable DETR DAB-DETR DN-DETR DINO Ours

Transient 45.44 PW-F1 71.00 81.41 80.13 82.53 75.71 80.44 85.63
AF-F1 - - - - - - -

Baseline 20.29 PW-F1 72.95 83.15 82.89 83.91 78.30 80.11 84.25
AF-F1 75.71 83.92 84.93 85.52 77.29 81.59 85.20

Stress 11.48 PW-F1 75.93 84.41 85.44 83.63 77.02 85.28 86.58
AF-F1 77.45 84.94 85.79 83.70 73.76 85.33 86.57

Amusement 6.42 PW-F1 51.15 66.65 70.81 76.53 57.49 65.79 62.50
AF-F1 55.39 68.15 71.34 77.15 57.78 68.42 63.40

Meditation 13.60 PW-F1 89.42 90.54 90.41 90.96 89.06 89.09 88.44
AF-F1 89.79 90.63 91.17 91.19 88.90 89.87 89.04

Task 1 0.95 PW-F1 30.11 31.36 10.41 37.46 41.56 49.59 60.00
AF-F1 34.99 31.69 12.57 44.40 41.51 50.97 57.12

Task 2 0.91 PW-F1 39.84 50.21 50.64 13.26 58.17 48.61 56.42
AF-F1 44.15 56.38 55.66 16.80 62.28 51.50 63.92

Task 3 0.91 PW-F1 57.30 40.87 48.21 3.37 63.49 66.07 77.00
AF-F1 58.55 43.83 56.72 11.31 62.75 67.45 74.78

Table 18: Full Results: OPP 5 classes

Class Ratio(%) Metric DETR Multi-scale DETR Deformable DETR DAB-DETR DN-DETR DINO Ours

Base 14.71 PW-F1 41.49 41.45 42.06 41.87 41.61 40.25 44.15
AF-F1 - - - - - - -

Stand 42.36 PW-F1 46.75 40.02 36.45 44.28 35.35 35.73 55.61
AF-F1 45.91 40.61 32.97 44.53 27.37 29.18 48.83

Walk 24.16 PW-F1 26.98 28.87 34.44 28.14 24.73 20.74 28.15
AF-F1 39.21 37.57 45.34 38.99 35.78 30.62 36.98

Sit 15.93 PW-F1 88.00 87.07 88.54 82.29 86.60 88.14 89.51
AF-F1 76.88 76.22 78.34 77.45 76.01 78.13 77.58

Lie 2.84 PW-F1 83.46 76.22 84.78 79.69 81.31 82.58 86.67
AF-F1 85.58 79.13 87.03 82.54 85.03 85.27 87.86
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