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ABSTRACT

The function of an RNA molecule depends on its structure and a strong structure-
to-function relationship is already achieved on the secondary structure level of
RNA. Therefore, the secondary structure based design of RNAs is one of the ma-
jor challenges in computational biology. A common approach to RNA design is
inverse RNA folding. However, existing RNA design methods cannot invert all
folding algorithms because they cannot represent all types of base interactions.
In this work, we propose RNAinformer, a novel generative transformer based
approach to the inverse RNA folding problem. Leveraging axial-attention, we
directly model the secondary structure input represented as an adjacency matrix
in a 2D latent space, which allows us to invert all existing secondary structure
prediction algorithms. Consequently, RNAinformer is the first model capable of
designing RNAs from secondary structures with all base interactions, including
non-canonical base pairs and tertiary interactions like pseudoknots and base mul-
tiplets. We demonstrate RNAinformer’s state-of-the-art performance across dif-
ferent RNA design benchmarks and showcase its novelty by inverting different
RNA secondary structure prediction algorithms.

1 INTRODUCTION

Ribonucleic acid (RNA) is one of the major regulatory molecules inside the cells of living organisms
with key roles during differentiation and development (Morris & Mattick, 2014). RNAs fold hierar-
chically (Tinoco Jr & Bustamante, 1999) and the structure is key to their function: Base interactions
via hydrogen bonds result in a fast formation of a secondary structure, with tertiary interactions sta-
bilizing the formation of the final 3D shape (Vicens & Kieft, 2022). A strong structure-to-function
relationship is already achieved on a secondary structure level (Hammer et al., 2019), and therefore,
RNA secondary structure prediction recently got into the focus of the deep learning community,
achieving state-of-the-art results (Singh et al., 2019; Fu et al., 2022; Chen et al., 2022; Franke et al.,
2022; 2024). Compared to more traditional methods, these algorithms predict an adjacency matrix
representation of the secondary structure instead of the commonly used but less expressive dot-
bracket string notation (Hofacker et al., 1994). This has the advantage that they are not limited to
the prediction of specific kinds of base pairs but can model non-Watson-Crick interactions (Olson
et al., 2019), pseudoknots (Staple & Butcher, 2005), as well as base multiplets (nucleotides that pair
with more than one other nucleotide) (Bhattacharya et al., 2019; Singh et al., 2019), which all play
significant roles for RNA structures and functions (Reyes et al., 2009; Vicens & Kieft, 2022).

Structure-based RNA design considers the inverse problem: Given a target structure, find an RNA
primary sequence that folds into the desired structure. It is thus intricately tied to RNA folding.
However, there is currently no structure-based RNA design algorithm available that can invert state-
of-the-art deep learning-based secondary structure prediction algorithms, which could offer substan-
tially improved designs, crucial for synthetic biology and the development of RNA-based therapeu-
tics.

In this work, we propose RNAinformer, the first inverse RNA folding algorithm that is capable of de-
signing RNAs while considering all kinds of base interactions. Inspired by the RNAformer (Franke
et al., 2024), we show that a transformer architecture enhanced with axial attention can reliably
design RNAs in different settings including RNA design with non-canonical interactions, pseudo-
knots, and base multiplets. Figure 1 shows example designs of the RNAinformer solving tasks that
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Figure 1: Example designs for experimentally validated RNA structures that include non-canonical
base pairs, pseudoknots, and base multiplets. We show predictions of the RNAinformer that solve
the respective structures.

contain non-canonical base pairs, pseudoknots, and base multiplets. We see our main contributions
as follows:

• We propose RNAinformer, a novel generative transformer model for the inverse RNA folding
problem. Using axial attention, our model is the first RNA design algorithm that can design
RNAs from secondary structures with all types of base interactions (Section 3).

• We present a data pipeline for creating synthetic datasets for RNA design, with data splits based
on RNA families (Section 4).

• We show that our model outperforms existing algorithms on nested and pseudoknot structures,
while further being capable of designing sequences that form base multiplets (Section 5).

Our source code, data, and trained models are publicly available1.

2 RELATED WORK

Traditional Methods The problem of computational RNA design was first introduced as the in-
verse RNA folding problem by Hofacker et al. (1994). Since then, different methods were proposed
for solving the problem using approaches like local search (Hofacker et al., 1994; Andronescu et al.,
2004), constraint programming (Garcia-Martin et al., 2013; 2015; Minuesa et al., 2021), evolu-
tionary methods (Esmaili-Taheri et al., 2014; Esmaili-Taheri & Ganjtabesh, 2015), or multifrontier
search (Zhou et al., 2023). However, in contrast to our approach, these methods are limited to the
design of nested structures, typically considering canonical base pairs only.

Learning Based Approaches More recently, RNA design was also approached with learning
based methods. One line of research use human priors to design RNAs based on player strategies
obtained from the online gaming platform Eterna (Shi et al., 2018; Koodli et al., 2019). However,
these models incorporate human strategies that might not be available for all designs and consider
nested structures only. The other, more general approach seeks to learn RNA design purely from
data. Eastman et al. (2018) propose to use reinforcement learning (RL) to adjust an initial input
sequence by replacing nucleotides based on structural information. In contrast, Runge et al. (2019)
and Riley et al. (2023) use a generative approach to the problem. Runge et al. (2019) employs a joint
architecture and hyperparameter search approach (Bansal et al., 2022) via automated reinforcement
learning (AutoRL) (Parker-Holder et al., 2022) to derive an RL system that is capable of generatively
designing RNAs that fold into a desired target structure. Riley et al. (2023) uses a GAN (Goodfellow
et al., 2020) approach specifically for the design of toehold switches (Green et al., 2014). However,

1An anonymized repository is available at https://anonymous.4open.science/r/
RNA-design-7204/
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all learning-based approaches so far consider RNA design for nested structures only, ignoring pseu-
doknots and base multiplets, while often being limited to the design of canonical base interactions.

Pseudoknotted Structures Pseudoknots are an important type of base pairs that influence the
function of an RNA (Staple & Butcher, 2005). Therefore, some approaches tried to design RNAs
from pseudoknotted structures (Taneda, 2012; Kleinkauf et al., 2015; Merleau & Smerlak, 2022).
However, these algorithms work on a string notation in dot-bracket format (Hofacker et al., 1994),
and thus, they cannot express base multiplets.

Overall none of the existing algorithms can design RNAs including non-canonical base pairs, pseu-
doknots, and base multiplets.

RNA Design from 3D Structures Besides the described approaches to design RNA based on
secondary structure information, recently different methods also tackled the design of RNA se-
quences based on 3D structure information. The current state-of-the-art physics-based toolkit for
biomolecular modeling and design is Rosetta (Leman et al., 2020). However, recently deep learning
approaches challenged Rosetta’s performance. Joshi & Liò (2024) developed gRNAde, a geometric
deep learning-based RNA design pipeline that can be conditioned on RNA 3D backbone structures.
Similarly, RDesign (Tan et al., 2024), a hierarchical framework that leverages a contrastive learn-
ing approach and incorporates secondary structure information, and RiboDiffusion (Huang et al.,
2024), a diffusion model based on a graph neural network (GNN) (Zhou et al., 2020) structure- and
a transformer-based (Vaswani et al., 2017) sequence module, showed remarkable results.

However, in contrast to RNAinformer, these methods leverage additional 3D information for their
designs and, therefore, tackle RNA Design from a different perspective. Often, 3D information
of RNA structures is not available and RNA 3D structure prediction is still challenging (Das et al.,
2023). Therefore, strong secondary structure based RNA design approaches are highly thought after,
also, but not limited to, to achieve better 3D predictions.

3 THE RNAINFORMER

RNA secondary structures can be represented in multiple ways, including the common dot-bracket
string notation (Hofacker et al., 1994) or adjacency matrices. We show different representations in
Figure 8. One advantage of an adjacency matrix representation is that it can model all types of base
interactions, especially if a nucleotide interacts with more than one other, a situation prevalent for
most experimentally solved structures (Singh et al., 2019). In the following, we detail our generative
approach to designing RNAs from secondary structures using matrix representations.

Model Our model is a modified auto-regressive encoder-decoder transformer model (Vaswani
et al., 2017) with a next token prediction objective. The encoder embeds the structure informa-
tion, while the decoder auto-regressively generates RNA nucleotide sequences by sampling from
the softmax distribution (see Figure 5 in Appendix A). For RNAinformer we use axial attention in
the first encoder block to process the adjacency matrix input similar to the RNAformer (Franke et al.,
2024) (Figure 6 in Appendix A). To reduce the memory footprint of the 2D latent operations, we use
flash-attention-2 (Dao, 2023) in the axial attention modules. For computational efficiency, we use
pooling to reduce the 2D latent representation to a 1D vector that is then passed through the encoder
and the decoder to generate candidate sequences. During constrained generation, we pass an addi-
tional input of the masked RNA sequence to the encoder. The masked sequence is embedded into a
2D representation and concatenated to the structure embedding. Similarly, for property condition-
ing, we embed the target GC-Content using a linear layer and add it to the structure embedding (see
Figure 7 in Appendix A). For more details about the RNAinformer architecture and the formulation
of the loss, please see Appendix A and B.

4 A HOMOLOGY AWARE SYNTHETIC DATA PIPELINE FOR RNA DESIGN

While secondary structure information obtained from experimentally validated RNA 3D structure
data is considered the gold standard, this data is scarce; only roughly 3% of all available 3D struc-
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ture data contains RNAs (Schneider et al., 2023). Therefore, most of the available training data
is typically derived from comparative sequence analysis (Choudhary et al., 2017) and, thus, is less
reliable. Further, the diversity within existing training sets is limited to only a few RNA families,
making it challenging for a folding algorithm to generalize to less represented RNA types (Flamm
et al., 2021). This recently raised skepticism in the RNA community that learning based models
might not be able to generalize to unseen families (Flamm et al., 2021; Szikszai et al., 2022), which
could be a serious concern when using a folding algorithm to validate a given design. To evade this
problem, we train the RNAinformer exclusively on synthetic data. This allows us to generate large
amounts of training data while enabling us to create a family-based split of the data to avoid learning
homologies; a known problem in the RNA folding community (Rivas et al., 2012). In the follow-
ing, we detail our approach to generate clean family-based synthetic train-/test splits for training the
RNAinformer in different settings.

Initial Training Data Pool We generate an initial training data pool using the families of the
Rfam database (Version 14.10) (Kalvari et al., 2020). We select all families with covariance models
having a maximum CLEN (the number of columns from a sequence alignment defined as consensus
(match) columns) of 500 and sample 1,000 sequences for each family from the covariance models
using Infernal (Nawrocki & Eddy, 2013). However, while our initial length cutoff is set to 500,
roughly 80% of the samples had a max length below 200 nucleotides. Since we use the provided test
sets from Singh et al. (2021), which all have a maximum length below 200 nucleotides (see below),
for our evaluations on known RNAs obtained from PDB, we decide to use a length cutoff at 200
nucleotides to decrease computational costs. The sampled sequences are then annotated using the
Rfam covariance models and Infernal. Sequences that hit multiple families, families other than the
family they were sampled from, or did not hit any of the families were removed. To reduce intra-clan
and intra-family sequence similarity we use CD-HIT (Fu et al., 2012) with a 0.8 threshold to cluster
the sequences within a clan and if there is no clan information then within the family. Families or
clans with less than 50 clusters are removed and we keep a maximum of 300 representatives of the
clusters for each family/clan.

Data Splits We split the data into training, validation, and test sets based on the clan information.
All families without a clan annotation are put into the training set. We randomly sample 30 and 25
clans for the test and validation sets. For each test clan, we sample 100 sequences to form a test set
and 50 sequences from each validation clan to form a validation set. The samples from all other clans
are used for training. We then apply CD-HIT with a similarity cutoff of 80% to remove sequence
similarity between the training, validation, and test sets, followed by a BLAST-search (Altschul
et al., 1997) to further remove training and validation samples that are hit by BLAST for any of the
test samples at a high e-value of 10 similar to Singh et al. (2021) but for all test data.

Obtaining Structure Information We fold all sequences using different folding algorithms to
create three datasets with different structural complexity:

1. SynNested: Folded using RNAfold (Lorenz et al., 2011) containing only nested structures.
2. SynPseudoknot: Folded using HotKnots2.0 (Andronescu et al., 2010) containing both pseu-

doknotted and nested structures.
3. SynMultiplet: Folded using RNAformer (Franke et al., 2024) containing structures with all

base interactions, including base multiplets and non-canonical base pairs.
Further filtering is done to remove structures with no base pairs and structure duplicates.

Experimental Structures from PDB To evaluate RNAinformer on known RNAs, we use addi-
tional test sets, TS1, TS2, TS3, and TS hard from Singh et al. (2021), derived from experimental
structures of the Protein Data Bank (PDB) (Berman et al., 2000). All the test sets contain struc-
tures with non-canonical base pairs, pseudoknots and base multiplets. To ensure non-homologous
data, we apply an additional homology pipeline to remove homologous RNAs from SynMultiplet
that share any sequence or structure similarity to any test sample. Specifically, we build covariance
models from multiple sequence alignments for every test RNA employing LocARNA-P (Will et al.,
2012) and remove any sequences from the training and validation sets that have a hit with any of
the resulting covariance models using Infernal as previously described (Runge et al., 2024a). This
ensures that there is no data homology between the training and test sets based on structure and
sequence similarity.
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All datasets used for our experiments are detailed in Appendix C.

5 EXPERIMENTS

We evaluate the RNAinformer on three RNA design paradigms, inverse RNA folding, constrained
design, and RNA design with desired properties. We show that the RNAinformer can approach
inverse RNA folding and RNA design with desired properties for tasks with increasing structural
diversity by first evaluating RNA design for nested structures in Section 5.1, before tackling RNA
design for pseudoknotted structures in Section 5.2. We then demonstrate RNAinformer’s capa-
bility to conditionally generate RNA sequences for the real-world task of designing theophylline
riboswitches following Runge et al. (2024a) in Section 5.3. We conclude with an assessment of
RNAinformer’s ability to design RNAs from secondary structures that contain all kinds of base in-
teraction in Section 5.4. Here, we also compare our strategy to train on synthetic data with a more
commonly used fine-tuning strategy using two versions of the RNAinformer.

During evaluation, we generate 20 candidate sequences with the RNAinformer for each task except
for the PDB structures where we instead generate 100 candidate sequences. The first sequence is
generated using a greedy strategy and the rest are generated using multinomial sampling. We set the
threshold for satisfying the property constraint as ϵ = 0.01.

Metrics The ultimate goal of structure-based RNA design is to generate sequences that fold back
into the target structure. Following the common convention in the field of RNA design, we report
the number of solved tasks for a given benchmark dataset. However, we provide a more com-
prehensive analysis of all experiments with different performance measures, described in detail in
Appendix D.2.

Training Details We train our model with 6 encoder blocks and 6 decoder blocks with an em-
bedding dimension of 256. The model is trained using cosine annealing learning rate schedule with
warm-up and AdamW (Loshchilov & Hutter, 2019). We train separate models for each training
dataset and for each training dataset we also train a separate GC-content conditioned model. The
constrained design models were trained with a maximum length of 100 while the rest were trained
with length 200. The longer models were trained across 2 A40 GPUs with an effective batch size
of 128 for 50,000 steps having a runtime of ∼18 hours. The GC-content of the original sequences
is used as the target GC-content. The hyperparameters used for training our model are described in
Table 2 in Appendix B.

5.1 RNA DESIGN FOR NESTED STRUCTURES

We first evaluate the RNAinformer’s ability to design RNA sequences for nested structures with only
canonical base pair interactions on the SynNested test set (see Table 3 in Appendix C). Additionally,
we also evaluate its ability to design sequences with desired GC-content. We compare the perfor-
mance of the RNAinformer for inverse folding against one of the currently best-performing set of
algorithms, LEARNA, Meta-LEARNA, Meta-LEARNA-Adapt (Runge et al., 2019), libLEARNA
(Runge et al., 2024b) and SAMFEO (Zhou et al., 2023). For design with desired GC-content we
compare it against libLEARNA. The LEARNA suite algorithms and libLEARNA were run with a
timeout of 30 seconds per sample and SAMFEO was run for 1,000 iterations for each task. We
then select the best 20 candidates for evaluation. Corresponding to the data generation, the designed
candidates are folded using RNAfold Lorenz et al. (2011) for evaluation; note that all competitors
also used RNAfold for training and/or evaluation in their respective original publications.

RESULTS

Inverse Folding From Table 1 we observe that RNAinformer outperforms most of its competitors
except SAMFEO, solving 91.8% of the tasks. Furthermore, RNAinformer generates multiple, highly
diverse solutions for each task, indicated by a high diversity score of 0.699 as shown in Table 10
in Appendix E.1. Remarkably, this performance is achieved by sampling only 20 sequences from
the RNAinformer without any post-processing strategies as e.g. implemented in the local search
strategy of the LEARNA suite of algorithms. However, while SAMFEO is capable of solving more
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Table 1: Performance on the nested and pseudoknotted structures of the SynNested and SynPseudo-
knot datasets, respectively, for Inverse Folding (IF) and Desired GC-content design (GC). We report
the % tasks solved in 20 designed sequences.

Model SynNested SynPseudoknot

Solved (IF) [%] Solved (GC) [%] Solved PK (IF) [%] Solved PK (GC) [%]

RNAinformer 91.8 69.6 68.5 33.7
LEARNA 63.9 ✗ ✗ ✗
Meta-LEARNA 36.8 ✗ ✗ ✗
Meta-LEARNA-Adapt 37.2 ✗ ✗ ✗
libLEARNA 77.2 59.0 ✗ ✗
SAMFEO 99.6 ✗ ✗ ✗

antaRNA ✗ ✗ 15.6 1.2

tasks, it generates solutions with much lower diversity (0.106) compared to the RNAinformer. One
reason is that SAMFEO uses an initialization strategy that itself could already solve 78% of the tasks,
leveraging biases in the internal scoring functions of RNAfold by placing low energy GC-pairs at
paired positions and single A nucleotides at unpaired positions that cannot pair with G or C in the
limited model of RNAfold. Despite increasing the ability to solve the design tasks, this approach
has the disadvantage that the resulting candidates rarely contain U nucleotides, typically resulting in
high GC nucleotide ratios (GC-content), which can drastically impact the function of the resulting
RNAs (Isaacs et al., 2006). In contrast, the designs of the RNAinformer do not show similar bias as
indicated by the high sequence diversity.

Desired GC-Content Design The GC-content conditioned RNAinformer model solves ∼10%
more tasks than libLEARNA, the only competitor capable of also generating RNAs with desired
GC-contents, as shown in Table 1. Further, our results in Table 11 in Appendix E.1 demonstrate
that even with the GC-content constraints, RNAinformer can still generate multiple highly diverse
solutions for each task. We also note that the average GC-content error of the candidate sequences
generated by RNAinformer is very low (0.01), indicating that the model actively generates sequences
with GC-content close to the desired target value.

5.2 RNA DESIGN WITH PSEUDOKNOTS

In this section, we assess the performance of RNAinformer when designing RNAs for pseudoknotted
input structures. Pseudoknots are tertiary interactions that typically connect local geometries of the
RNA secondary structure by establishing long-range interactions between nucleotides. We compare
the RNAinformer against antaRNA (Kleinkauf et al., 2015) with HotKnots2.0 (Andronescu et al.,
2010) as the folding algorithm; one out of three folding engines available for antaRNA which was
also used for data generation. Again, we provide results for both inverse-folding and for the design
with desired GC-content. We evaluate the RNAinformer on both the pseudoknotted structures(pK)
and nested structures(pK-free) of the SynPseudoknot Dataset (see Table 4 in Appendix C). However,
due to the long runtime of antaRNA and its internal ant-colony optimization strategy, we only evalu-
ate one design candidate, supposed to solve the task, and limit the comparison to the pseudoknotted
structures (pK). However, there are many more intermediate sequences designed by antaRNA before
outputting the final design. To make a fair comparison, we additionally evaluate the first design of
RNAinformer for completeness.

RESULTS

Inverse Folding RNAinformer significantly outperforms antaRNA, solving ∼50% more pseudo-
knot tasks, as shown in Table 1 (right). Remarkably, RNAinformer also achieves high performance
on the nested structures solving more than 90% of the tasks as shown in Table 12 in Appendix E.2.
Generally, we observe that RNAinformer is able to generate multiple solutions with high diversity
for both the nested and the pseudoknotted structures. The high F1 and MCC scores of RNAinformer
further indicate that the designs are close to a solution even for the tasks that could not be solved
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with 20 candidates (see Table 12 in Appendix E.2). Notably, the RNAinformer also solves 39.1%
of the tasks with the first sequence generated, still outperforming antaRNA by solving twice the
number of tasks (see Table 13 in Appendix E.2).

Desired GC-Content Design Similar to the unconditional generation, the RNAinformer also out-
performs antaRNA for the conditional design of RNAs with desired GC-contents by a large margin
as shown in Table 1. The RNAinformer roughly solves one third of the pseudoknotted structures
(33.7%) compared to only 1.2% solved tasks by antaRNA. Although the number of solutions gen-
erated by the conditioned RNAinformer model is less compared to the unconditioned model, the
diversity of the solutions is maintained as shown in Table 13 in Appendix E.2. Moreover, the
RNAinformer is capable of solving almost two-thirds of the nested structures (65.8%) while again
generating sequences with low GC-content error, indicating closeness to the target value (see Ta-
ble 13 in Appendix E.2). Again we evaluate the first prediction of RNAinformer and observe that it
solves nearly 15 times the number of tasks compared to antaRNA (solving 17.7% of the tasks with
a single shot; see Table 13 in Appendix E.2).

5.3 AUTOMATED DESIGN OF THEOPHYLLINE RIBOSWITCHES

We evaluate the RNAinformer’s ability to do constrained design by tackling the design of synthetic
theophylline riboswitches. We use the design space formulation from Runge et al. (2024b), which
was created by combining the shared sequence and structure motifs of the proposed constructs by
Wachsmuth et al. (2012), defined as,

ω̂ = ........???(((((.....)))))...???((((((((((?̂??....?̂))))))))))?̂?.......

ϕ̂ = AAGUGAUACCAGCAUCGUCUUGAUGCCCUUGGCAGCACUUCA?̂???????̂UGAAGUGCUG?̂UUUUUUUU
(1)

where ? represent masked out positions and ?̂ represent positions for extensions. The different
sections of the construct are highlighted, (i) Aptamer (Red), (ii) Spacer (Green), (iii) the Comple-
mentary Sequence (Blue), and (iv) the 8-U Stretch (Black). We use the above formulation to sample
tasks for our evaluation. Since we do not have any ground truth sequences to get target GC-contents
we test RNAinformer’s ability for conditional generation on a range of GC-content values for each
task. We compare our models against libLEARNA for both inverse folding and design with desired
GC-content. For each task, we again generate 20 candidates and use RNAfold to fold them, in line
with the original procedure described at Runge et al. (2024b).

Figure 2: Comparison between RNAin-
former and libLEARNA for Riboswitch de-
sign with desired GC-content.

Training Data For training, we use the Training
Short and Validation datasets provided by Runge
et al. (2024b) (see Table 7 in Appendix C). The
datasets were generated by sampling from the Rfam
database version 14.1 and folding all the sequences
with RNAfold. The structures and sequences were
then randomly masked to create the final datasets
for constrained design. During training, target GC-
content values were obtained from the unmasked se-
quences.

Riboswitch Tasks We generate an exhaustive set
of riboswitch design tasks for evaluation using the
design formulation 1. We sample masked sequences
for each of the extension positions while consider-
ing the length constraints for each part. We filter the
tasks for the seven GC-content targets, listed in Ta-
ble 8 in Appendix C, based on the possible range of
GC-contents for each task as calculated from their
length and masked sequence. Few of the generated
tasks have no valid sequences possible when evalu-
ating using RNAfold. As it is not feasible to determine all the un-designable tasks we do not filter
them out.
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(a) Inverse Folding (b) Desired GC-content design

Figure 3: Results for RNA Design with all kinds of base pair interactions.

RESULTS

Inverse Folding Both RNAinformer and libLEARNA are capable of solving almost all of the ri-
boswitch tasks (solving >90% of the tasks) as shown in 14 in Appendix E.3. However, the RNAin-
former slightly outperforms libLEARNA. Furthermore, the RNAinformer generates more solutions
(valid sequences) compared to libLEARNA. Due to the fixed sequence constraints, the observed
diversity of the solution sequences is rather low.

Desired GC-Content Design The results for the desired GC-content design are shown in Fig-
ure 2. We observe that libLEARNA outperforms RNAinformer for the smaller GC-content targets
(0.3,0.35), whereas RNAinformer outperforms libLEARNA for the larger target values (0.55,0.6)
and the performance is almost identical for the mid-range targets. However, the performance of
the RNAinformer is generally significantly more consistent across all the target GC-content values.
Additional results are shown in Table 15 in Appendix E.3.

5.4 RNA DESIGN WITH ALL KINDS OF BASE INTERACTIONS

In this section, we evaluate RNAinformer for designing RNAs from structure data that contains all
kinds of base pairs including pseudoknots and base multiplets on experimentally validated structures
from the PDB (Berman et al., 2000) and the SynMultiplet Dataset (see Table 5 in Appendix C).
To account for the difficulty of the task, we design 100 candidate sequences instead of only 20
sequences. The RNAinformer is the only method capable of tackling the task of designing RNAs
for structures that contain base multiplets; consequently, we cannot compare our designs with other
methods from the field. Instead, we compare against a simple baseline that uniformly samples RNA
sequences for both inverse folding and desired GC-content design and a GNN baseline where we
use the implementation of structTransformer provided by Ingraham et al. (2019) and run it with
the same batch size and steps as the RNAinformer. According to the data generation, the designed
candidate sequences are folded using RNAformer Franke et al. (2024) for evaluation.

RESULTS

Inverse Folding RNAinformer significantly outperforms the randomly designed sequences and
the GNN baseline as shown in Table 16. From Figure 3a we observe that RNAinformer further is
the first method capable of solving experimentally determined structures across the PDB test sets
including structures with base multiplets. However, the overall solved rate is rather low, indicating
that designing sequences for structures with all kinds of base pairs seems to be much more challeng-
ing than for nested structures or structures with pseudoknots only. Examples of solved experimental
structures with base multiplets are shown in Figure 1. Despite relatively low rates of solved tasks,
the RNAinformer still achieves high F1 and MCC scores, indicating that the designed candidates
have high structural accuracy. Notably, the RNAinformer achieves similar performance on the Syn-
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Multiplet Test set. In addition, the RNAinformer is able to generate multiple solutions with high
diversity for all the test sets except TS3 and can generate solutions with non-canonical base pairs,
which are typically ignored by other design algorithms.

Desired GC-Content Design As shown in Figure 3b, the GC-conditioned RNAinformer can solve
tasks across the PDB test sets including structures with base multiplets, even with the additional GC-
content constraint. While the number of solutions generated drops significantly, the diversity of the
generated sequences is maintained. Similar to the unconditioned model, we observe high F1 and
MCC scores indicating structural similarity to the ground truth, and that the RNAinformer generates
solutions with non-canonical base pairs and candidate sequences with a low GC-content error across
the test sets.

Detailed results are shown Table 17 and Table 18 in Appendix E.4.

Figure 4: Difference in F1-Scores between the
folded structures for the designed sequences and
the PDB test set sequences.

Synthetic data vs Real-World data To val-
idate our strategy to only use synthetic data
during training of the RNAinformer, we addi-
tionally train a model on known RNA data us-
ing the inter-family dataset from Runge et al.
(2024a). The training data was collected from
multiple public sources: bpRNA-1m (Danaee
et al., 2018), ArchiveII (Sloma & Mathews,
2016) and RNAStrAlign (Tan et al., 2017) from
Chen et al. (2020), RNA-Strand (Andronescu
et al., 2008) and PDB (Berman et al., 2000).
Homologies between the training, validation,
and test sequences were removed by filtering
using CD-Hit (Fu et al., 2012) and BLAST-
Search (Altschul et al., 1997). An additional
homology reduction based on structure similar-
ity was applied using covariance models of the
PDB test sets (TS1, TS2, TS3 and TS-Hard).
We train an RNAinformer model (NAT + FT)
on it and further fine-tuned it on the PDB train-
ing samples. We compare it against an RNAin-
former model (Syn) pre-trained on the SynMultiplet dataset and a second model that was also pre-
trained on synthetic data but finetuned on the PDB samples (Syn + FT) similar to the NAT + FT
model.

The results are shown in Table 19 in Appendix E.4. Surprisingly, the RNAinformer model pre-
trained on synthetic data performs significantly better than the model that was pre-trained and fine-
tuned on known RNAs, having nearly double the F1 score across the test sets. However, the addi-
tional finetuning appears beneficial, as indicated by slightly higher scores of the Syn + FT model.
To further assess this, we evaluated the Syn and Syn + FT models on RNA only samples from
the Critical Assessment of Structure Prediction 15 (CASP15) competition. As before, we use the
RNAformer for secondary structure predictions but additionally employ AlphaFold 3 (Abramson
et al., 2024) for 3D structure prediction of the generated sequences. The results are shown in Ta-
bles 20 and 24 for 2D and 3D predictions, respectively. In contrast to the results for the PDB test
set, we observe that the finetuned model achieves slightly worse performance than the model trained
on synthetic data only for both folding engines, RNAinformer and AlphaFold 3. We conclude that
training on synthetic data appears beneficial for RNAinformer compared to training on known RNAs
only, and finetuning on experimentally validated structures can lead to slightly better performance
in some cases.

Improved Foldability of Designed Sequences The RNAinformer’s designed sequences on aver-
age achieve higher structure F1 scores across the PDB test sets compared to RNAformer’s original
predictions on the PDB test set sequences. We take this as an indicator that the RNAinformer learns
to design sequences that are better foldable by the RNAformer for the experimental test structures.
However, to ensure that these results are not artifacts resulting from overfitting the RNAformer’s
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distribution, we folded the best-designed sequences by the RNAinformer for each of the PDB test
structures using other folding algorithms (SPOT-RNA (Singh et al., 2019), MXFold2 (Sato et al.,
2021) and UFold (Fu et al., 2022)) and compared the F1 scores against the folding algorithms’
predictions on the PDB test set sequences. We observe that designed sequences have better or sim-
ilar F1 scores for almost all the folding algorithms, showing consensus agreement for the designed
sequences (see Figure 4). The F1 scores of the designed sequences and the folding algorithms eval-
uations on the PDB test sets are reported in Table 21 in Appendix E.4. We again also folded the
designed sequences with AlphaFold 3 and analyzed the results regarding TM score and RMSD. The
results are shown in Table 22. We find that RNAinformer cannot improve the TM scores compared
to TM scores achieved when folding the ground truth sequence with AlphaFold 3. However, Al-
phaFold 3 is known to struggle with predictions for so-called orphan RNAs (Bernard et al., 2024)
– sequences where there exist no homologs in the database – due to its dependence on multiple
sequence alignments (MSAs). Therefore, we analyzed the AlphaFold 3 predictions in more detail
and find that for all the designed sequences AlphaFold 3 was not able to find an MSA during the
search while roughly 59% of the PDB samples had multiple homologs. We show the difference in
TM-Score when splitting the data into orphan and non-orphan RNAs in Table 23. We observe that
the designed sequences of the RNAinformer slightly improve the TM score for three out of four
datasets for orphan RNAs. However, when there is MSA available for the ground truth but not for
the designed sequences, the TM score drops drastically for the designed candidates.

6 CONCLUSION, LIMITATIONS & FUTURE WORK

In this work, we propose RNAinformer, the first RNA design algorithm capable of designing RNA
sequences from secondary structures that contain all kinds of base interactions, including non-
canonical base pairs, pseudoknots, and base multiplets. Using axial-attention, the RNAinformer
leverages a 2D latent representation to process adjacency matrix representations of RNA secondary
structures to achieve state-of-the-art results in structure based RNA design. We demonstrate the
strong performance of RNAinformer on tasks with nested structures only, tasks that contain pseudo-
knots, as well as on experimentally derived structures with all kinds of base interactions. We observe
high diversity across all designs and tasks and improved foldability of the designed sequences com-
pared to their known counterparts.

Limitations While showing overall strong performance, there is still room for improvement, par-
ticularly for the design for known RNA structures. Further, while we reduce computational com-
plexity using a pooling operation to map the 2D latent representation to a 1D vector, training the
RNAinformer is memory intensive. As a result, we only train the RNAinformer with a sequence
length cutoff at 200 nucleotides. While this is sufficient for current benchmarks, a higher length
cutoff would further increase the usability of our approach.

Future Work We think that RNAinformer is a useful basis for future approaches to RNA design
and expect it to be of great value for the RNA design community. Future work could e.g. focus on
improving the memory footprint of the RNAinformer.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we have made our source code, model checkpoints,
and datasets publicly available in the anonymous repository https://anonymous.4open.
science/r/RNA-design-7204/. The repository contains detailed instructions for setting up
the environment, including specific Python package versions (see environment.yml). Model
checkpoints and predictions for all experiments are provided in the runs.ta.xz file. Our datasets
are provided in the data.tar.xz. Links to download both files are in the repository. We pro-
vide scripts for evaluating trained models (eval.py) and for reproducing our training procedures
(train.py with configs for all trained models also provided. Scripts for running inference on the
test sets is also provided (inference.py). Hardware requirements (GPU specifications) for both
training and inference are clearly stated. Evaluation on provided predictions can be done without
gpus.
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A MODEL DETAILS
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Figure 5: Overview of nucleotide sequence generation.
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Figure 6: Overview of matrix input processing in RNAinformer.
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Figure 7: Overview of RNAinformer encoder for constrained design and GC-Content conditioning
with an adjacency matrix structure representation.

B TRAINING DETAILS

Loss The problem of RNA design is often addressed by defining a structural loss function Lω =
d(ω,F(ϕ)) that quantifies the difference between the target structure ω and the folding, F(·), of
the designed candidate sequence ϕ (Runge et al., 2019). However, the folding process is generally
not differentiable making it difficult to use the structural loss for training in deep learning based
approaches. Instead, we cast the problem as a conditional language modeling problem and train a
conditional transformer language model on RNA sequences.

The inverse folding problem can then be formulated as conditioning RNA sequences on the target
structures. The conditional probability for an RNA sequence ϕ conditioned on a target structure ω
is,

p(ϕ) = p(ϕ |ω) . (2)
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To design RNA sequences with a certain set of desired properties C we extend the inverse folding
formulation and condition the sequence on both the target structure ω and the desired properties C.
Equation 2 is extended to,

p(ϕ) = p(ϕ |ω,C) . (3)

Similar to the task of scaffold-based generation for small molecules (Bagal et al., 2021) but for
both the RNA sequence and the structure, we can further extend the above formulation for con-
strained design to include constraints on the target structure as well as the designed sequence at
certain positions. By imposing these constraints on the sequence ϕ and the structure ω we get the
masked sequence ϕ̂ and the masked structure ω̂, respectively, to condition the sequence generation
on. Equation 3 then becomes,

p(ϕ) = p(ϕ | ω̂, ϕ̂, C) . (4)

Using auto-regressive modeling allows us to factorize the probability of the whole sequence p(ϕ)
into,

p(ϕ) =

l∏
i=1

p(ϕi |ϕ<i, ω̂, ϕ̂, C) , (5)

where l is the length of the sequence ϕ.

This decomposes the design problem into a next token prediction problem. Now we can train a
model with parameters θ over a dataset D = {(ϕ, ω̂, ϕ̂, C)}n, where n = | D| using the loss,

LD =
1

n

n∑
k=1

1

lk

lk∑
i=1

lCE(ϕ
k
i , θ(ϕ

k
<i, ω̂

k, ϕ̂k, Ck)) , (6)

where LCE(ψi, ϕi) is the cross entropy loss between the target sequence and the designed sequence
at position i.

Table 2: Hyperparmeters for RNAinformer training.

Group Parameter Value

Trainer Batch Size 128
Training Steps 50,000

Optimizer
LR 0.0005

Weight Decay 0.1
Betas 0.9,0.98

LR Schedule
Schedule Cosine Annealing

LR Decay Factor 0.1
Warmup Steps 1,000

Model

Model dim 256
Layers 6

Num Head 4
FeedForward factor 4
FeedForward kernel 3

Dropout 0.1

C DATASETS

Table 3: Overview of the SynNested dataset.

Set #Samples Avg Length Pseudoknots Multiplets

Train 444766 100 0(0.00%) 0(0.00%)
Valid 1108 100 0(0.00%) 0(0.00%)
Test 2722 96 0(0.00%) 0(0.00%)
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Figure 8: Representations of RNA secondary structures. (Left) Common graph representation of the
RNA. (Middle) Dot-bracket notation in the graph structure. A pair of nucleotides is indicated by a
pair of matching brackets, unpaired nucleotides are indicated by a dot. (Right) Matrix representation
of the RNA. The matrix is a binary L×L square matrix, where L is the sequence length of the RNA.
Pairing nucleotides are shown in yellow.

Table 4: Overview of the SynPseudoknot dataset.

Set #Samples Avg Length Pseudoknots Multiplets

Train 444768 100 19.82% 0.00%
Valid 1108 100 20.31% 0.00%
Test 2732 96 29.61% 0.00%

Table 5: Overview of the SynMultiplet dataset.

Set #Samples Avg Length Pseudoknots Multiplets Non Canonical BP

Train 441028 100 44.92% 57.44% 63.85%
Valid 1101 101 46.91% 61.25% 68.14%
Test 2721 95 45.61% 57.00% 62.27%

Table 6: Overview of the PDB Test sets.

Set #Samples Avg Length Pseudoknots Multiplets Non-Canonical BP

TS1 67 74 83.58% 79.10% 92.54%
TS2 39 52 66.67% 74.36% 97.44%
TS3 19 79 94.74% 94.74% 94.74%
TS-Hard 28 66 71.43% 75.00% 85.71%

Table 7: Overview of the Rfam Constrained Design Dataset.

Set #Samples Avg Length Pseudoknots Multiplets

Train 51063 73 0.00% 0.00%
Valid 49 72 0.00% 0.00%
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Table 8: Overview of the Riboswitch Tasks.

Inverse Folding Target GC-Content

0.30 0.35 0.40 0.45 0.50 0.55 0.60

#Tasks 1440 205 1275 1440 1440 1436 1220 364

Table 9: Overview of the Inter-family Dataset.

Set #Samples Avg Length Pseudoknots Non-Canonical BP Multiplets

Train 19540 73 2047(10.47%) 11114(56.70%) 1330(6.80%)
Valid 494 77 12(2.43%) 287(57.86%) 13(2.63%)
TS1 54 61 43(79.62%) 49(90.74%) 40(74.07%)
TS2 36 45 23(63.88%) 35(97.22%) 26(72.22%)
TS3 16 67 15(93.75%) 15(93.75%) 15(93.75%)
TS-Hard 25 55 17(68.00%) 21(84.0%) 18(72.00%)

D EVALUATION

D.1 NOTATION

Task We call designing sequences for a particular target structure a task. The task may also have
additional constraints for design with desired properties and constrained design.

Solved Task If a task has at least one designed sequence that folds back into the target structure
and satisfies the other constraints of the task, then the task is considered to be solved.

Candidate Sequence All the designed RNA sequences for a particular task are considered as its
candidate sequences.

Valid Sequence Candidate sequences that solve a task are considered valid sequences for the task.

Valid Structure If a candidate sequence for a task folds back into the target structure or satisfies
the constraints on the structure, then it has a valid structure.

D.2 METRICS

All metrics for the RNAinformer are reported as the mean and standard deviation of three random
seed runs.

Solved As the main performance measure of the model we report the percent of solved tasks for a
given benchmark dataset.

Valid Sequences (Valid Seq.) We refer any candidate sequence that solves a task as a valid se-
quence. We measure the efficiency of the generative process by the number of valid sequences that
are produced for each task.

V alidSequences =
#V alidSequences

#CandidateSequences
(7)

Diversity (Div.) To measure the diversity of the valid sequences generated for a target structure,
we use the pairwise Hamming distance. For N valid sequences of length l the diversity is defined
as,

Diversity =
1

N

N∑
i

N∑
j

1

l

l∑
k=1

H(Sik, Sjk) , (8)
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where H(Sik, Sjk) describes the positional Hamming distance:

H(Sik, Sjk) =

{
0 if Sik = Sjk

1 else
. (9)

NC To measure the models ability to design with non-canonical base pair interactions we report
the number of valid sequences containing non-canonical base pairs.

GC-Content Error (GCE) For design with desired GC-content we report the property constraint
violation of the candidate sequences with valid structures, given by:

GCE = abs(GCtarget −GCSequence) (10)

where GCtarget is the target GC-Content value and GCSequence is the GC-Content of a candidate
sequence.

F1 Score The F1 Score is a commonly used performance measure to assess the quality of sec-
ondary structure prediction algorithms. It is based on the confusion matrix, which describes the
number of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN)
when comparing a predicted structure to the ground truth. The F1 score is the harmonic mean of
precision and sensitivity, defined as:

F1 =
2 · TP

(2 · TP + FP + FN)
(11)

Matthews Correlation Coefficient (MCC) Compared to the F1 score that emphasizes on posi-
tives, the MCC is a more balanced measure (Chicco & Jurman, 2020). The MCC can be calculated
as follows.

MCC =
(TP · TN)− (FP · FN)√

(TP + FP ) · (TP + FN) · (TN + FP ) · (TN + FN)
(12)

For each task in a test set, we take the maximum F1 and MCC scores achieved by a candidate
sequence and report the average over these values across three random seeds.

TM-score and RMSD We use US-align (Zhang et al., 2022) to get the TM-scores and RMSD
value based on optimal structural alignment between the folded 3D structure of the designed se-
quences and the ground truth 3D structure from the PDB.
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E ADDITIONAL RESULTS

E.1 RNA DESIGN FOR NESTED STRUCTURES

Table 10: Results for the design of RNAs for nested structures of the SynNested Dataset.

Model Solved Valid Seq. Diversity F1 Seq. Rec.

RNAinformer 0.918±0.020 0.299±0.005 0.699±0.001 0.992±0.005 0.394±0.002

LEARNA 0.639 0.372 0.457 0.989 0.371
Meta-LEARNA 0.368 0.244 0.747 0.975 0.366
Meta-LEARNA-Adapt 0.372 0.236 0.746 0.976 0.366
libLEARNA 0.772 0.740 0.733 0.987 0.370
SAMFEO 0.996 0.999 0.106 0.999 0.343

Table 11: Results for the design of RNAs for nested structures of the SynNested dataset with target
GC content.

Model Solved Valid Seq. Diversity F1 Seq. Rec. GC Error

RNAinformer(GC) 0.696±0.025 0.247±0.004 0.701±0.003 0.993±0.002 0.395±0.002 0.010±0.001

libLEARNA 0.590 0.452 0.728 0.923 0.373 0.082

E.2 RNA DESIGN WITH PSEUDOKNOTS

Table 12: Results for the design of RNAs including pseudoknots on the SynPseudoknot dataset.

Model Test Set Solved Valid Seq. Diversity F1 Seq. Rec.

RNAinformer pK-free 0.934±0.016 0.213±0.018 0.692±0.002 0.995±0.002 0.392±0.001
pK 0.685±0.064 0.140±0.028 0.692±0.004 0.947±0.009 0.405±0.001

RNAinformer-1 pK-free 0.670±0.025 - - 0.920±0.007 -
pK 0.391±0.045 - - 0.734±0.025 -

antaRNA pK 0.156 - - 0.788 0.253

Table 13: Results for the design of RNAs including pseudoknots on the SynPseudoknot dataset with
target GC content.

Model Test Set Solved Valid Seq. Diversity F1 Seq. Rec. GC-Error

RNAinformer(GC) pK-free 0.658±0.023 0.147±0.009 0.691±0.002 0.993±0.003 0.395±0.001 0.010±0.002
pK 0.337±0.021 0.105±0.003 0.694±0.002 0.937±0.015 0.405±0.001 0.013±0.001

RNAinformer(GC)-1 pK-free 0.447±0.008 - - 0.931±0.016 - 0.010±0.001
pK 0.177±0.016 - - 0.757±0.045 - 0.010±0.001

antaRNA pK 0.012 - - 0.747 0.257 0.063

E.3 AUTOMATED DESIGN OF THEOPHYLLINE RIBOSWITCHES.

Table 14: Results for the design of Riboswitches

Model Set Solved Valid Seq. Diversity

RNAinformer Riboswitch Tasks 0.919±0.002 0.599±0.031 0.182±0.003
libLEARNA Riboswitch Tasks 0.915 0.557 0.190
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Table 15: Results for the design of Riboswitches with target GC-Content.

Target Model Solved Valid Seq. Diversity

0.3 RNAinformer(GC) 0.964±0.020 0.403±0.043 0.126±0.001
libLEARNA 0.990 0.264 0.125

0.35 RNAinformer(GC) 0.898±0.039 0.511±0.077 0.128±0.004
libLEARNA 0.941 0.421 0.142

0.4 RNAinformer(GC) 0.893±0.015 0.486±0.048 0.149±0.002
libLEARNA 0.913 0.398 0.177

0.45 RNAinformer(GC) 0.899±0.023 0.431±0.039 0.145±0.002
libLEARNA 0.913 0.388 0.189

0.5 RNAinformer(GC) 0.888±0.036 0.399±0.039 0.143±0.002
libLEARNA 0.894 0.309 0.174

0.55 RNAinformer(GC) 0.871±0.010 0.336±0.033 0.128±0.009
libLEARNA 0.672 0.205 0.148

0.6 RNAinformer(GC) 0.600±0.083 0.193±0.014 0.128±0.010
libLEARNA 0.071 0.050 0.000

E.4 RNA DESIGN WITH ALL KINDS OF BASE INTERACTIONS

Table 16: Comparison with different baselines on the experimentally validated structures from PDB.

Test Set RNAinformer Random GNN

F1 Seq. Rec F1 Seq. Rec F1 Seq. Rec

TS1 0.832±0.004 0.461±0.003 0.223±0.006 0.391±0.001 0.221±0.017 0.393±0.007
TS2 0.923±0.004 0.479±0.007 0.349±0.014 0.416±0.007 0.315±0.04 0.405±0.004
TS3 0.866±0.010 0.454±0.001 0.211±0.004 0.384±0.009 0.223±0.044 0.392±0.009
TS-Hard 0.834±0.007 0.465±0.006 0.274±0.023 0.401±0.003 0.283±0.016 0.407±0.012
SynMulitplet 0.862±0.002 0.432±0.001 0.205±0.002 0.371±0.001 – –

Table 17: Results for RNA design for SynMultiplet Dataset and experimentally validated structures
from PDB using RNAinformer.

Test Set Solved Valid Seq. Diversity F1 Seq. Rec. NC

TS1 0.119±0.015 0.135±0.026 0.590±0.021 0.832±0.004 0.461±0.003 0.546±0.038
TS2 0.214±0.015 0.150±0.035 0.575±0.011 0.923±0.004 0.479±0.007 0.751±0.006
TS3 0.035±0.030 0.013±0.015 0.191±0.330 0.866±0.010 0.454±0.001 0.333±0.577
TS-Hard 0.167±0.041 0.081±0.032 0.558±0.037 0.834±0.007 0.465±0.006 0.433±0.111
SynMultiplet 0.089±0.006 0.035±0.008 0.712±0.001 0.862±0.002 0.432±0.001 0.421±0.038

Table 18: Results for RNA design for SynMultiplet Dataset and experimentally validated structures
from PDB with target GC-content using RNAinformer.

Test Set Solved Valid Seq. Diversity F1 Seq. Rec NC GC-Error

TS1 0.114±0.017 0.093±0.005 0.656±0.032 0.834±0.004 0.470±0.004 0.648±0.070 0.005±0.001
TS2 0.188±0.039 0.131±0.037 0.569±0.035 0.922±0.002 0.489±0.002 0.797±0.056 0.007±0.001
TS3 0.018±0.030 0.007±0.012 0.176±0.305 0.858±0.002 0.462±0.007 0.167±0.289 0.004±0.001
TS-Hard 0.179±0.036 0.059±0.008 0.576±0.063 0.842±0.007 0.478±0.017 0.492±0.138 0.004±0.001
SynMultiplet 0.037±0.009 0.018±0.002 0.711±0.002 0.839±0.008 0.433±0.001 0.409±0.066 0.010±0.001
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Table 19: Comparison between different versions of the RNAinformer pre-trained on synthetic or
real-world data with and without finetuning on the experimentally validated structures from PDB.
RNAinformerSyn refers to the RNAinformer model trained on synthetic data; RNAinformerSyn +
FT refers to the model that was trained on synthetic data and finetuned with experimentally vali-
dated structures from PDB; RNAinformerNAT + FT refers to the model trained on existing (known)
RNA secondary structures from publicly available sources and finetuned on experimentally validated
structures from PDB.

Test Set RNAinformerSyn RNAinformerSyn + FT RNAinformerNAT + FT

F1 Seq. Rec F1 Seq. Rec F1 Seq. Rec

TS1 0.832±0.004 0.461±0.003 0.861±0.003 0.520±0.005 0.346±0.022 0.427±0.005
TS2 0.923±0.004 0.479±0.007 0.924±0.003 0.537±0.005 0.459±0.021 0.444±0.008
TS3 0.866±0.010 0.454±0.001 0.877±0.005 0.500±0.015 0.324±0.004 0.413±0.014
TS-Hard 0.834±0.007 0.465±0.006 0.842±0.007 0.503±0.010 0.364±0.036 0.412±0.004

Table 20: Comparison of RNAinformer with and without finetuning on experimentally validated
structures from PDB evaluated on the CASP15 RNA data.

Test Set RNAinformer RNAinformer + FT

F1 MCC F1 MCC

CASP15 0.901±0.005 0.902±0.005 0.877±0.021 0.878±0.021

Table 21: Comparison between F1 Scores of designed sequences and PDB test set sequences using
different folding algorithms.

Folding Algo. Sequence TS1 TS2 TS3 TS-Hard

RNAformer
Designed-Syn 0.832 0.923 0.866 0.834
Designed-Nat 0.346 0.459 0.324 0.364
PDB 0.716 0.797 0.709 0.641

SPOT-RNA
Designed-Syn 0.719 0.824 0.731 0.677
Designed-Nat 0.304 0.436 0.260 0.298
PDB 0.714 0.800 0.671 0.663

MXFold2
Designed-Syn 0.689 0.792 0.739 0.663
Designed-Nat 0.269 0.406 0.197 0.242
PDB 0.663 0.763 0.640 0.667

UFold
Designed-Syn 0.662 0.790 0.682 0.628
Designed-Nat 0.256 0.410 0.219 0.246
PDB 0.673 0.892 0.648 0.587

Table 22: Comparison of TM-scores of designed sequences and PDB test set sequences using Al-
phaFold3 for 3D structure predictions.

Folding Algo. Sequence TS1 TS2 TS3 TS-Hard

AlphaFold3
Designed(Avg) 0.331 0.289 0.325 0.280
Designed(Best) 0.376 0.320 0.358 0.308
PDB 0.537 0.354 0.500 0.410
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Table 23: Difference in TM-scores of designed sequences and PDB test set sequences using Al-
phaFold3 for 3D structure predictions. We observe that RNAinformer predictions improve the TM
score for orphan RNAs (where there is no MSA available for the ground truth sequence) but become
worse for the sequences where MSA is available for the ground truth. Note that for all the designed
sequences, AlphaFold did not find any MSA.

Folding Algo. MSA TS1 TS2 TS3 TS-Hard

AlphaFold3 Orphan 0.008 -0.035 0.031 0.006
Non-Orphan -0.224 -0.033 -0.188 -0.197

Table 24: Evaluations of the designed sequences for the CASP15 data using AlphaFold 3 as the
folding algorithm. We compare a version with and one without finetuning on known sequences
(FT).

Task Id FT TM-score ↑ RMSD ↓

CPEB3 ribozyme (7QR4 1 B) R1107 no 0.439 3.103
yes 0.391 3.507

CPEB3 Ribozyme (7QR3 1 C) R1108 no 0.373 3.490
yes 0.275 3.533

CPEB3 Ribozyme (7QR3 1 D) R1108 no 0.311 3.250
yes 0.307 3.327

Cloverleaf RNA (8S95 1 C) R1116 no 0.357 4.797
yes 0.395 4.050

SARS-CoV-2 SL5 (8UYS 1 A) R1149 no 0.325 3.640
yes 0.329 4.003

BtCoV-HKU5 SL5 (8UYE 1 A) R1156 no 0.379 3.803
yes 0.312 3.867

BtCoV-HKU5 SL5 (8UYG 1 A) R1156 no 0.326 3.743
yes 0.352 4.293

BtCoV-HKU5 SL5 (8UYJ 1 A) R1156 no 0.313 3.833
yes 0.314 4.090

A-6B (7YR7 1 A) R1189 no 0.259 4.003
yes 0.240 4.167

A-4B (7YR6 1 A) R1190 no 0.251 3.503
yes 0.270 2.873

25


	Introduction
	Related Work
	The RNAinformer
	A Homology Aware Synthetic Data Pipeline for RNA Design
	Experiments
	RNA Design for Nested Structures
	RNA Design with Pseudoknots
	Automated Design of Theophylline Riboswitches
	RNA Design with all Kinds of Base Interactions

	Conclusion, Limitations & Future Work
	Model Details
	Training Details
	Datasets
	Evaluation
	Notation
	Metrics

	Additional Results
	RNA Design for Nested Structures
	RNA Design with Pseudoknots
	Automated Design of Theophylline Riboswitches.
	RNA Design with all Kinds of Base Interactions


