
Published as a conference paper at ICLR 2022

LATENT VARIABLE SEQUENTIAL SET TRANSFORMERS
FOR JOINT MULTI-AGENT MOTION PREDICTION

Roger Girgis1,2 Florian Golemo2,3 Felipe Codevilla2,4 Martin Weiss1,2
Jim Aldon D’Souza5 Samira E. Kahou2,6,7,8 Felix Heide5,9 Christopher Pal1,2,3,8

1Polytechnique Montréal, 2Mila, Quebec AI Institute 3ElementAI / Service Now,
4Independent Robotics, 5Algolux, 6McGill University, 7École de technologie supérieure,
8Canada CIFAR AI Chair, 9Princeton University. Correspondence: roger.girgis@gmail.com
https://fgolemo.github.io/autobots/

ABSTRACT

Robust multi-agent trajectory prediction is essential for the safe control of robotic
systems. A major challenge is to efficiently learn a representation that approxi-
mates the true joint distribution of contextual, social, and temporal information to
enable planning. We propose Latent Variable Sequential Set Transformers which
are encoder-decoder architectures that generate scene-consistent multi-agent tra-
jectories. We refer to these architectures as “AutoBots”. The encoder is a stack
of interleaved temporal and social multi-head self-attention (MHSA) modules
which alternately perform equivariant processing across the temporal and social
dimensions. The decoder employs learnable seed parameters in combination with
temporal and social MHSA modules allowing it to perform inference over the
entire future scene in a single forward pass efficiently. AutoBots can produce either
the trajectory of one ego-agent or a distribution over the future trajectories for all
agents in the scene. For the single-agent prediction case, our model achieves top
results on the global nuScenes vehicle motion prediction leaderboard, and produces
strong results on the Argoverse vehicle prediction challenge. In the multi-agent
setting, we evaluate on the synthetic partition of TrajNet++ dataset to showcase
the model’s socially-consistent predictions. We also demonstrate our model on
general sequences of sets and provide illustrative experiments modelling the se-
quential structure of the multiple strokes that make up symbols in the Omniglot
data. A distinguishing feature of AutoBots is that all models are trainable on a
single desktop GPU (1080 Ti) in under 48h.

1 INTRODUCTION

Many problems require processing complicated hierarchical compositions of sequences and sets. For
example, multiple choice questions are commonly presented as a query (e.g. natural language) and an
unordered set of options (Kembhavi et al., 2017; Richardson et al., 2013). Machine learning models
that perform well in this setting should be insensitive to the order in which the options are presented.
Similarly, for motion prediction tasks (Biktairov et al., 2020; Sadeghian et al., 2018) where the inputs
are agent trajectories evolving over time and outputs are future agent trajectories, models should be
insensitive to agent ordering.

In this work, we focus on the generative modelling of sequences and sets and demonstrate this method
on a variety of different motion forecasting tasks. Suppose we have a set of M ∈ N sequences
X = {(x1, . . . , xK)1, . . . , (x1, . . . , xK)M} each withK ∈ N elements. Allowing also that X evolves
across some time horizon T , we denote this sequence of sets as X = (X1, . . . ,XT ).

This problem setting often requires the model to capture high-order interactions and diverse futures.
Generally, solutions are built with auto-regressive sequence models which include t steps of context.
In our approach, to better model the multi-modal distribution over possible futures, we also allow to
include a discrete latent variable Z, to create sequential models of sets of the form

P (Xt+1|Xt, . . . ,X1) =
∑
Z

P (Xt+1, Z|Xt, . . . ,X1).
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Figure 1: Overview: Our model generates multi-
ple possible futures for agents based on several input
timesteps. The input trajectories are encoded into a
context tensor that captures their respective behav-
ior and interaction with surrounding agents. While
Transformer-based architectures are often autoregres-
sive, we decode all future steps at once. This is ac-
complished via learnable seed parameters. Our de-
coder transforms these, together with the map and the
context into the possible future trajectories that we
call “modes”.

In this work, we propose this type of parameterized conditional mixture model over sequences
of sets, and call this model a Latent Variable Sequential Set Transformer (affectionately referred
to as “AutoBot”). We evaluate AutoBot on nuScenes (Caesar et al., 2020) and Argoverse (Chang
et al., 2019), two autonomous driving trajectory prediction benchmarks, on the synthetic partition
of the TrajNet++ (Kothari et al., 2021) dataset, a pedestrian trajectory forecasting benchmark, and
Omniglot (Lake et al., 2015), a dataset of hand-drawn characters that we use for predicting strokes. All
of these provide empirical validation of our model’s ability to perform robust multi-modal prediction.
Specifically, we make the following contributions:

• We propose a novel approach for modelling sequences of set-structured continuous variables,
and extend this to a latent-variable formulation to capture multi-modal distributions.

• We provide a theoretical analysis highlighting our model’s permutation sensitivity with
respect to different components of the input data structures.

• We validate our method with strong empirical results on diverse tasks, including the large-
scale nuScenes and Argoverse datasets for autonomous driving (Caesar et al., 2020; Chang
et al., 2019), the multi-lingual Omniglot dataset of handwritten characters (Lake et al.,
2015), and the synthetic partition of the TrajNet++ pedestrian trajectory prediction task
(Sadeghian et al., 2018).

2 BACKGROUND

We now review several components of the Transformer (Vaswani et al., 2017) and Set Transformer
(Lee et al., 2019) architectures, mostly following the notation found in their manuscripts. For
additional background, see their works and Appendix A.

Multi-Head Self Attention (MHSA) can be thought of as an information retrieval system, where a
query is executed against a key-value database, returning values where the key matches the query
best. While (Vaswani et al., 2017) defines MHSA on three tensors, for convenience, we input a single
set-valued argument. Internally, MHSA then performs intra-set attention by casting the input set X to
query, key and value matrices and adding a residual connection, MHSA(X) = X+MHSA(X,X,X).

Multi-Head Attention Blocks (MAB) resemble the encoder proposed in Vaswani et al. (2017), but
lack the position encoding and dropout (Lee et al., 2019). Specifically, they consist of the MHSA
operation described in Eq. 8 (appendix) followed by a row-wise feed-forward neural network (rFFN),
with residual connections and layer normalization (LN) (Ba et al., 2016) after each block. Given an
input set X containing nx elements of dimension d, and some conditioning variables C containing nc
elements of dimension d, the MAB can be described by the forward computation,

MAB(X) = LN(H + rFFN(H)), where H = LN(X + MHSA(X,X,X)). (1)

Multi-head Attention Block Decoders (MABD) were also introduced in Vaswani et al. (2017), and
were used to produce decoded sequences. Given input matrices X and Y representing sequences, the
decoder block performs the following computations:

MABD(Y,X) = LN(H + rFFN(H))

where H = LN(H′ + MHSA(H′,X,X))

and H′ = LN(MHSA(Y))

(2)

Our model, described throughout the following section, makes extensive use of these functions.
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Figure 2: Architecture Overview. Our model takes as input a tensor of dimension K,M, t. A row-wise
feed-forward network (rFFN) is applied to each row along the t×M plane transforming vectors of dimension
K to dK . After adding positional encoding (PE) to the t axis, the encoder passes the tensor through L repeated
layers of multi-head attention blocks (MAB) that are applied to the time axis (time encoding) and the agent
axis (social encoding) before outputting the context tensor. In the decoder, the encoded map and the learnable
seed parameters tensor are concatenated and passed through an rFFN before being passed through L repeated
layers of a multi-head attention block decoder (MABD) along the time axis (using the context from the encoder)
followed by a MAB along the agent axis. This figure shows the process for predicting one possible future
trajectory (“mode”). When multiple modes are predicted, each mode has its own learnable seed parameters and
the decoder is rolled out once for each mode.

3 LATENT VARIABLE SEQUENTIAL SET TRANSFORMERS

Latent Variable Sequential Set Transformers is a class of encoder-decoder architectures that process
sequences of sets (see Fig 2). In this section, we describe the encoding and decoding procedures,
the latent variable mechanism, and the training objective. Additionally, we provide proof of the
permutation equivariance of our model in Appendix B, and implementation details in Appendix C as
well as a discussion of the special case of AutoBot-Ego, which is similar to AutoBots but predicts a
future sequence for only one element in a scene.

3.1 ENCODER: INPUT SEQUENCE REPRESENTATION

AutoBot takes as an input a sequence of sets, X1:t = (X1, . . . ,Xt), which in the motion prediction
setting may be viewed as the state of a scene evolving over t timesteps. Let us describe each set
as having M elements (or agents) with K attributes (e.g. x/y position). To process the social and
temporal information the encoder applies the following two transformations. Appendix B.2 provides
a proof of equivariance with respect to the agent dimension for this encoder.

First, the AutoBots encoder injects temporal information into the sequence of sets using a sinusoidal
positional encoding function PE(.) (Vaswani et al., 2017). For this step, we view the data as a
collection of matrices, {X0, . . . ,XM}, that describe the temporal evolution of agents. The encoder
processes temporal relationships between sets using a MAB, performing the following operation on
each set where m ∈ {1, . . . ,M}:

Sm = MAB(rFFN(Xm))

where rFFN(.) is an embedding layer projecting each element in the set to the size of the hidden state
dK . Next, we process temporal slices of S, retrieving sets of agent states Sτ at some timestep τ and is
processed using Sτ = MAB(Sτ ). These two operations are repeated Lenc times to produce a context
tensor C ∈ R(dK ,M,t) summarizing the entire input scene, where t is the number of timesteps in the
input scene.

3.2 DECODER: MULTIMODAL SEQUENCE GENERATION

The goal of the decoder is to generate temporally and socially consistent predictions in the context
of multi-modal data distributions. To generate c ∈ N different predictions for the same input scene,
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the AutoBot decoder employs c matrices of learnable seed parameters Qi ∈ R(dK ,T ) where T is
the prediction horizon, where i ∈ {1, ..., c}. Intuitively, each matrix of learnable seed parameters
corresponds to a setting of the discrete latent variable in AutoBot. Each learnable matrix Qi is
then repeated across the agent dimension M times to produce the input tensor Q′i ∈ R(dK ,M,T )

Additional contextual information (such as a rasterized image of the environment) is encoded using
a convolutional neural network to produce a vector of features mi where i ∈ {1, ..., c}. In order
to provide the contextual information to all future timesteps and to all set elements, we copy this
vector along the M and T dimensions, producing the tensor Mi ∈ R(dK ,M,T ). Each tensor Q′i is
concatenated with Mi along the dK dimension, as shown on the left side of Figure 2 (bottom). This
tensor is then processed using a rFFN(.) to produce the tensor H ∈ R(dK ,M,T ).

We begin to decode by processing the time dimension, conditioning on the encoder’s output C, and
the encoded seed parameters and environmental information in H. The decoder processes each of m
agents in H separately with an MABD layer:

H′m = MABD(Hm,Cm)

where H′ is the output tensor that encodes the future time evolution of each element in the set
independently. In order to ensure that the future scene is socially consistent between set elements, we
process each temporal slice of H′, retrieving sets of agent states H′τ at some future timestep τ where
each element h′τ ∈ Hτ is processed by a MAB layer. Essentially, the MAB layer here performs a
per-timestep attention between all set elements, similar to the Set Transformer (Lee et al., 2019).

These two operations are repeated Ldec times to produce a final output tensor for mode i. The
decoding process is repeated c times with different learnable seed parameters Qi and additional
contextual information mi. The output of the decoder is a tensor O ∈ R(dK ,M,T,c) which can then
be processed element-wise using a neural network φ(.) to produce the desired output representation.
In several of our experiments, we generate trajectories in (x, y) space, and as such, φ produces the
parameters of a bivariate Gaussian distribution.

Note on the learnable seed parameters. One of the main contributions that make AutoBot’s
inference and training time faster than prior work is the use of the decoder seed parameters Q. These
parameters serve a dual purpose. Firstly, they account for the diversity in future prediction, where
each matrix Qi ∈ R(dk,T ) (where i ∈ {1, ..., c}) corresponds to one setting of the discrete latent
variable. Secondly, they contribute to the speed of AutoBot by allowing it to perform inference on
the entire scene with a single forward pass through the decoder without sequential sampling. Prior
work (e.g., Tang and Salakhutdinov (2019)) uses auto-regressive sampling of the future scene with
interlaced social attention, which allows for socially consistent multi-agent predictions. Other work
(e.g., Messaoud et al. (2020)) employ a single output MLP to generate the entire future of each agent
independently with a single forward pass. Using the attention mechanisms of transformers, AutoBot
combines the advantages of both approaches by deterministically decoding the future scene starting
from each seed parameter matrix. In Appendix C.5, we compare the inference speed of AutoBots
with their autoregressive counterparts.

3.3 TRAINING OBJECTIVE

Given a dataset D =
{

(X1, . . . ,XT )
}N
i=1

consisting of N sequences, each having T sets, our goal is
to maximize the likelihood of the future trajectory of all elements in the set given the input sequence
of sets, i.e., max p(Xt+1:T |X1:t). In order to simplify notation, we henceforth refer to the ego-agent’s
future trajectory by Y = Xt+1:T . As discussed above, AutoBot employs discrete latent variables,
which allows us to compute the log-likelihood exactly. The gradient of our objective function can
then be expressed as follows:

∇θL(θ) = ∇θ log pθ(Y|X1:t) = ∇θ log

(∑
Z

pθ(Y, Z|X1:t)

)
=
∑
Z

pθ(Z|Y,X1:t)∇θ log pθ(Y, Z|X1:t)
(3)

As previously discussed in Tang and Salakhutdinov (2019), computing the posterior likelihood
pθ(Z|Y,X1:t) is difficult in general and varies with θ. As discussed in Bishop (2006), one can
introduce a distribution over the latent variables, q(Z), that is convenient to compute. With this
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distribution, we can now decompose the log-likelihood as follows:

log pθ(Y|X1:t) =
∑
Z

q(Z) log
pθ(Y, Z|X1:t)

q(Z)
+DKL(q(Z)||pθ(Z|Y,X1:t)), (4)

where DKL(.||.) is the Kullback-Leibler divergence between the approximating posterior and the
actual posterior. A natural choice for this approximating distribution is q(Z) = pθold(Z|Y,X1:t),
where θold corresponds to AutoBot’s parameters before performing the parameter update. With this
choice of q(Z), the objective function can be re-written as

L(θ) = Q(θ, θold) + const.

Q(θ, θold) =
∑
Z

pθold(Z|Y,X1:t) log pθ(Y, Z|X1:t)

=
∑
Z

pθold(Z|Y,X1:t)
{

log pθ(Y|Z,X1:t) + log pθ(Z|X1:t)
}
.

(5)

where the computation of pθ(Z|X1:t) is described in Appendix C.2. Note that the posterior
pθold(Z|Y,X1:t) can be computed exactly in the model we explore here since AutoBot operates with
discrete latent variables. Therefore, our final objective function becomes to maximize Q(θ, θold) and
minimize DKL(pθold(Z|Y,X1:t)||pθ(Z|X1:t)).

As mentioned, for our experiments we use a function φ to produce a bivariate Gaussian distribution
for each agent at every timestep. We found that to ensure that each mode’s output sequence does not
have high variance, we introduce a mode entropy (ME) regularization term to penalize large entropy
values of the output distributions,

LME = λe max
Z

T∑
τ=t+1

H(pθ(Xτ |Z,X1:t)). (6)

As we can see, this entropy regularizer penalizes only the mode with the maximum entropy. Our
results in Section D.2 show the importance of this term in learning to cover the modes of the data.

4 EXPERIMENTS

We now demonstrate the capability of AutoBots to model sequences of set-structured data across
several domains. In subsection 4.1 we show strong performance on the competitive motion-prediction
dataset nuScenes (Caesar et al., 2020), a dataset recorded from a self-driving car, capturing other
vehicles and the intersection geometry. In subsection 4.2, we demonstrate our model on the Argoverse
autonomous driving challenge. In subsection 4.3, we show results on the synthetic partition of the
TrajNet++ (Sadeghian et al., 2018) dataset which contains multi-agent scenes with a high degree
of interaction between agents. Finally in subsection 4.4, we show that our model can be applied to
generate characters conditioning across strokes, and verify that AutoBot-Ego is permutation-invariant
across an input set. See Appendix D.2, for an illustrative toy experiment that highlights our model’s
ability to capture discrete latent modes.

4.1 NUSCENES, A REAL-WORLD DRIVING DATASET

In this section, we present AutoBot-Ego’s results on the nuScenes dataset. The goal of this benchmark
dataset is to predict the ego-agent’s future trajectory (6 seconds at 2hz) given the past trajectory (up
to 2 seconds at 2hz). Additionally, the benchmark provides access to all neighbouring agents’ past
trajectories and a birds-eye-view RGB image of the road network in the vicinity of the ego-agent.
Figure 3 shows three example predictions produced by AutoBot-Ego trained with c = 10. We observe
that the model learns to produce trajectories that are in agreement with the road network and covers
most possible futures directions. We also note that for each direction, AutoBot-Ego assigns different
modes to different speeds to more efficiently cover the possibilities.

We compare our results on this benchmark to the state-of-the-art in Table 1. Min ADE (5) and (10)
are the average of pointwise L2 distances between the predicted trajectory and ground truth over
5 and 10 most likely predictions respectively. A prediction is classified as a miss if the maximum
pointwise L2 distance between the prediction and ground truth is greater than 2 meters. Miss Rate
Top-5 (2m) and Top-10 (2m) are the proportion of misses over all agents, where for each agent,
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Model Min ADE
(5)

Min ADE
(10)

Miss Rate
Top-5 (2m)

Miss Rate
Top-10 (2m)

Min FDE
(1)

Off Road
Rate

Noah_prediction 1.59 1.37 0.69 0.62 9.23 0.08
CXX 1.63 1.29 0.69 0.60 8.86 0.08
LISA(MHA_JAM) 1.81 1.24 0.59 0.46 8.57 0.07
Trajectron++ 1.88 1.51 0.70 0.57 9.52 0.25
CoverNet 2.62 1.92 0.76 0.64 11.36 0.13
Physics Oracle 3.70 3.70 0.88 0.88 9.09 0.12
WIMP 1.84 1.11 0.55 0.43 8.49 0.04
GOHOME 1.42 1.15 0.57 0.47 6.99 0.04

AutoBot-Ego (c=10) 1.43 1.05 0.66 0.45 8.66 0.03
AutoBot-Ego (ensemble) 1.37 1.03 0.62 0.44 8.19 0.02

Table 1: Quantitative Results on the nuScenes dataset. Other methods: LISA (Messaoud et al., 2020);
Trajectron++ (Salzmann et al., 2020); CoverNet (Phan-Minh et al., 2020); Physics Oracle (Caesar et al., 2020);
WIMP (Khandelwal et al., 2020); GOHOME (Gilles et al., 2021)

Figure 3: NuScenes Trajectory Prediction. Top
row: birds-eye-view of road network with ground
truth trajectory data where given trajectory is cyan
and held-out trajectory information is pink. Bottom
row: diverse trajectories generated by the different
modes of AutoBot-Ego. The model generates trajec-
tories that adhere to the road network and captures
distinct possible futures.

5 and 10 most likely predictions respectively are evaluated to check if they’re misses. Min FDE
(1) is the L2 distance between the final points of the prediction and ground truth of the most likely
prediction averaged over all agents. Off Road Rate is the fraction of predicted trajectories that are
not entirely contained in the drivable area of the map.

We can see that AutoBot-Ego obtains the best performance on the Min ADE (10) metric and on Off
Road Rate metric, and strong performance on the other metrics. Furthermore, using an ensemble of
three AutoBot-Ego models slightly improves the performance. This demonstrates our model’s ability
to capture multi-modal distributions over future trajectories due to the latent variables. AutoBot-Ego
excelled in maintaining predictions on the road, showing that the model has effectively used its
capacity to attend to the map information. Finally, we note that like all other models, AutoBot-Ego
struggles to predict the probability of the correct mode, which results in poor performance of the Min
FDE (1). The most interesting part of AutoBot-Ego is its computational requirements. We highlight
that AutoBot-Ego was trained on a single Nvidia GTX 1080 Ti for 3 hours. This is in large part
due to the use of the decoder seed parameters which allow us to predict the future trajectory of the
ego-agent in a single forward pass. Note that in Appendix C.5, we present the inference speed of
AutoBot-Ego compared to an auto-regressive version. Ablation studies on various components of
AutoBot-Ego are also presented in Appendix D.1.

4.2 ARGOVERSE RESULTS

Table 2 shows the results of AutoBot-Ego (with c = 6) on the Argoverse test set. While our method
does not achieve top scores, it uses much less computation, less data augmentation and no ensembling
compared to alternatives. Further, we compare quite well to the 2020 Argoverse competition winner,
a model called “Jean”. In addition, we note that the Argoverse challenge does not restrict the use of
additional training data and that many of the top entries on the leaderboard have no publicly available
papers or codebases. Many methods are therefore optimized for Argoverse by means of various data
augmentations. For example, Scene Transformer (Ngiam et al., 2021) used a data augmentation
scheme that includes agent dropout and scene rotation which we have not, and the current top method
and winner of the 2021 challenge (QCraft) makes use of ensembling.

6



Published as a conference paper at ICLR 2022

Model Min ADE (↓) Min FDE (↓) Miss Rate (↓) DAC (↑)
AutoBot-Ego (Valid Set) 0.73 1.10 0.12 -
AutoBot-Ego (Test Set) 0.89 (top-5) 1.41 (top-5) 0.16 (top-6) 0.9886 (top-3)

Jean (2020 winner) 0.97 1.42 0.13 0.9868
WIMP 0.90 1.42 0.17 0.9815
TNT 0.94 1.54 0.13 0.9889
LaneGCN 0.87 1.36 0.16 0.9800
TPCN 0.85 1.35 0.16 0.9884
mmTransformer 0.84 1.34 0.15 0.9842
GOHOME 0.94 1.45 0.105 0.9811
Scene Transformer 0.80 1.23 0.13 0.9899

Table 2: Quantitative Results on the Argoverse test set. Other methods that had an associated paper:
Jean (Mercat et al., 2020); WIMP (Khandelwal et al., 2020); TNT (Zhao et al., 2020a); LaneGCN (Liang
et al., 2020); TPCN (Ye et al., 2021); mmTransformer (Liu et al., 2021); GOHOME (Gilles et al., 2021); Scene
Transformer (Ngiam et al., 2021).

Model Ego Agent’s
Min ADE(6) (↓)

Number Of
Collisions (↓)

Scene-level
Min ADE(6) (↓)

Scene-level
Min FDE(6) (↓)

Linear Extrapolation 0.439 2220 0.409 0.897
AutoBot-AntiSocial 0.196 1827 0.316 0.632
AutoBot-Ego 0.098 1144 0.214 0.431
AutoBot 0.095 139 0.128 0.234

Table 3: TrajNet++ ablation studies for a multi-agent forecasting scenario. We investigate the impact of
using the social attention in the encoder and in the decoder. We found that AutoBot is able to cause significantly
fewer collisions between agents compared to variants without the social attention, and improves the prediction
accuracy on the scene-level metrics while maintaining strong performance on the ego-agent. Metrics are reported
on the validation set.

We believe that a fair comparison of the performance between neural network methods should
ensure that each architecture is parameter-matched and the training is FLOP-matched. While the
Argoverse leaderboard does not require entrants to report their parameter or FLOP count, we report
available public statistics to enable comparison here. First, Scene Transformer (Ngiam et al., 2021)
reports that their model trains in 3 days on TPUs and TPU-v3s have a peak performance of 420
TeraFLOPS, which means their model could have consumed up to 3 days× 24 hours× 420 TFLOPS,
or 108,000,000 TFLOPS. On the other hand, AutoBot-Ego was trained on a Nvidia 1080ti for 10
hours, consuming roughly 396,000 TFLOPs, or 0.4% as much. Jean’s method (Mercat et al., 2020)
consumes roughly 8,600,000 TFLOPs (training our method uses only 5% of that compute). While
the method currently topping the leaderboard has not revealed their model details, the fact that they
used ensembles very likely requires significantly more compute than our method.

4.3 TRAJNET++ SYNTHETIC DATASET

In this section, we demonstrate the utility of the having social and temporal attention in the encoder
and decoder of AutoBot. We chose to evaluate on the synthetic partition of the TrajNet++ dataset
since this was specifically designed to have a high-level of interaction between scene agents (Kothari
et al., 2021). In this task, we are provided with the state of all agents for the past 9 timesteps and are
tasked with predicting the next 12 timesteps for all agents. The scene is initially normalized around
one (ego) agent such that the agent’s final position in the input sequence is at (0, 0) and its heading is
aligned with the positive y direction. There are a total of 54, 513 unique scenes in the dataset, which
we split into 49, 062 training scenes and 5, 451 validation scenes. For this experiment, we apply our
general architecture (AutoBot) to multi-agent scene forecasting, and perform an ablation study on the
social attention components in the encoder and the decoder.
Table 3 presents three variants of the model, and a baseline extrapolation model which shows that
the prediction problem cannot be trivially solved. The first, AutoBot-AntiSocial, corresponds to
a model without the intra-set attention functions in the encoder and decoder (see Figure 2). The
second variant, AutoBot-Ego, only sees the past social context and has no social attention during
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Figure 4: Omniglot qualitative results. Left: stroke completion task. We show examples of characters
generated using AutoBot and an LSTM baseline. The first two columns show the ground-truth image of the
character and the corresponding ground-truth strokes. In this task, the models are provided with the first half
of all strokes (cyan) and are tasked with generating the other half (pink). The four other columns show the
generated future strokes, one for each latent mode. We can see that AutoBot produces more consistent and
realistic characters compared to the LSTM baseline. Right: character completion task. We show two examples
of characters completed using AutoBot-Ego and an LSTM baseline. The first two columns show the ground-truth
image of the character as before. In this case, the models are provided with two complete strokes and are tasked
with generating a new stroke to complete the character. We observe that AutoBot-Ego generates more realistic
characters across all modes, given ambiguous input strokes.

the trajectory generation process. The third model corresponds to the general architecture, AutoBot.
All models were trained with c = 6 and we report scene-level error metrics as defined by Casas
et al. (2020). Using the social attention in the decoder significantly reduces the number of collisions
between predicted agents’ futures and significantly outperforms its ablated counterparts on scene-level
minADE and minFDE. We expect this at a theoretical level since the ego-centric formulation makes
the independence assumption that the scene’s future rollout can be decomposed as the product of the
individual agent’s future motion in isolation, as remarked in Casas et al. (2020). AutoBot does not
make this assumption as it forecasts the future of all agents jointly. We refer the reader to Appendix
D.3 for additional ablation experiments and qualitative results on this dataset.

4.4 OMNIGLOT, STROKE-BASED IMAGE GENERATION

To demonstrate the general efficacy of our approach to sequence generation, we demonstrate AutoBots
on a character completion task, a diverse alternative to automotive and pedestrian trajectory prediction.
We set up two different tasks on the Omniglot dataset (Lake et al., 2015): (a) stroke-completion
task in which the model is presented with the first half of each stroke and has to complete all of them
in parallel and (b) character-completion task in which the model is given several full strokes and
has to draw the last stroke of the character. In task (a), the model is trained on the entire Omniglot
dataset (training set), in which strokes are encoded as sequential sets of points, and we are comparing
the performance of AutoBot qualitatively against that of an LSTM baseline with social attention and
discrete latents (similar to AutoBot but with classic RNN architecture) on a held-out test set. With
the first task, we illustrate that our model is flexible enough to learn to legibly complete characters
from a variety of different languages. In task (b), we train AutoBot-Ego only on characters “F”, “H”,
and “Π” to demonstrate that our discrete latent variable captures plausible character completions
given the context of the other strokes, e.g. a character “F” can be completed as an “H” when the top
stroke is missing. The results of these experiments can be found in Fig. 4. Implementation details
and additional results can be found in Appendix section D.5.

5 RELATED WORK

Processing set structured data. Models of set-valued data (i.e. unordered collections) should be
permutation-invariant (see Appendix B for formal definitions), and be capable of processing sets with
arbitrary cardinality. Canonical forms of feed forward neural networks and recurrent neural network
models do not have these properties (Lee et al., 2019). One type of proposed solution is to integrate
pooling mechanisms with feed forward networks to process set data (Zaheer et al., 2017; Su et al.,
2015; Hartford et al., 2016). This is referred as social pooling in the context of motion prediction
(Alahi et al., 2016; Deo and Trivedi, 2018; Lee et al., 2017). Attention-based models (Lee et al.,

8



Published as a conference paper at ICLR 2022

2019; Casas et al., 2020; Yuan et al., 2021; Ngiam et al., 2021; Zhao et al., 2020b) or graph-based
models (Zhao et al., 2020a; Messaoud et al., 2020; Li et al., 2020b; Gao et al., 2020) have performed
well in set processing tasks that require modelling high-order element interactions. In contrast, we
provide a joint single pass attention-based approach for modelling more complex data-structures
composed by sets and sequence, while also addressing how to generate diverse and heterogeneous
data-structures. Although those properties exist in concurrent motion prediction papers (Tang and
Salakhutdinov, 2019; Casas et al., 2020; Yuan et al., 2021; Ngiam et al., 2021; Li et al., 2020a), our
proposed method is targeting a more general set of problems while still getting competitive results in
motion prediction benchmarks at a fraction of other models’ compute.

Diverse set generation. Generation of diverse samples using neural sequence models is an important
part of our model and a well-studied problem. For example, in Bowman et al. (2015) a variational
(CVAE) approach is used to construct models that condition on attributes for dialog generation. The
CVAE approach has also been integrated with transformer networks (Lin et al., 2020; Wang and Wan,
2019) for diverse response generation. For motion prediction, Lee et al. (2017) and Deo and Trivedi
(2018) use a variational mechanism where each agent has their own intentions encoded. Li et al.
(2020a) output Gaussian mixtures at every timestep and sample from it to generate multiple futures.
The most similar strategy to ours was developed by Tang and Salakhutdinov (2019). Other recent
works (Suo et al., 2021; Casas et al., 2020) use continuous latent variables to model the multiple
actors’ intentions jointly. We built on this method by using one joint transformer conditioned on the
latent variables and added a maximum entropy likelihood loss that improves the variability of the
generated outcomes.

Sequential state modelling. We are interested in data that can be better represented as a sequence.
The main example of this is language modelling (Vaswani et al., 2017; Devlin et al., 2018), but also
includes sound (Kong et al., 2020), video (Becker et al., 2018), and others (Kant et al., 2020; Yang
et al., 2021). For motion prediction, prior work has largely focused on employing RNNs to model
the input and/or output sequence (Alahi et al., 2016; Lee et al., 2017; Deo and Trivedi, 2018; Tang
and Salakhutdinov, 2019; Messaoud et al., 2020; Casas et al., 2020; Li et al., 2020b;a). With its
recent success in natural language processing, Transformers (Vaswani et al., 2017) have been adopted
by recent approaches for motion forecasting.Yu et al. (2020) uses a graph encoding strategy for
pedestrian motion prediction. Giuliari et al. (2021) and Liu et al. (2021) propose a transformer-based
encoding to predict the future trajectories of agents separately. In contrast, AutoBots produces
representations that jointly encode both the time and social dimensions by treating this structure as a
sequence of sets. This provides reuse of the model capacity and a lightweight approach. Concurrent
to our method, Yuan et al. (2021), also jointly encodes social and time dimensions but flattens both of
those axis into a single dimension.

6 CONCLUSION

In this paper, we propose the Latent Variable Sequential Set Transformer to model time-evolution
of sequential sets using discrete latent variables. We make use of the multi-head attention block to
efficiently perform intra-set attention, to model the time-dependence between the input and output
sequence, and to predict the prior probability distribution over the latent modes. We validate our
AutoBot-Ego by achieving competitive results on the nuScenes benchmark for ego-centric motion
forecasting in the domain of autonomous vehicles. We further demonstrate that AutoBot can model
diverse sequences of sets that adhere to social conventions. We validate that since our model can
attend to the hidden state of all agents during the generative process, it produces scene-consistent
predictions on the TrajNet++ dataset when compared with ego-centric forecasting methods.

Limitations: Our approach is limited to operate in a setting where a perceptual pipeline is providing
structured sets representing the other entities under consideration. If our approach is used in a robot
or autonomous car, any errors or unknown entities not captured by sets used as input to the algorithm
would not be modelled by our approach. Memory limitations may also limit the number of sets
that can be processed at any time. In future work, we plan to extend this line of work to broader
and more interpretable scene-consistency. Further, we would like to investigate the combination
of a powerful sequence model like AutoBot with a reinforcement learning algorithm to create a
data-efficient model-based RL agent for multi-agent settings.
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A BACKGROUND

We now review several components of the Transformer (Vaswani et al., 2017) and Set Transformer
(Lee et al., 2019) architectures, mostly following the notation found in their manuscripts.

Multi-Head Self Attention (MHSA) as proposed in (Vaswani et al., 2017) is a function defined on
nq query vectors Q ∈ Rnq×dq , and key-value pairs (K ∈ Rnk×dq and V ∈ Rnk×dv ). With a single
attention head, the function resolves the queries Q by performing the computation:

Attn(Q,K,V) = softmax(QK>)V, (7)

where dq is the dimension of the query and key vectors and dv is the dimension of the value vector.
MHSA consists of h attention heads performing the operation shown in Eq. 7 with h linear projections
of keys, queries, and values. The final output is a linear projection of the concatenated output of each
attention head. These computations can be expressed as

MHSA(Q,K,V) = concat(head1, . . . , headh)WO, where

headi = Attn(QWQ
i ,KWK

i ,VWV
i ),

(8)

and where WQ
i , WV

i and WK
i along with the output projection matrix WO are the learnable

projection matrices of each attention head in the MHSA. Note that WQ
i , WV

i and WK
i project the

initial set of inputs to smaller dimensionality. For example, WQ
i ∈ Rdq×d

M
q projects the original

queries with dimension dq to dMq which is typically chosen to be dq/h. This operation has useful
applications in learning a representation of an input set where all its elements interact with each other.

An interesting application of MHSA is to perform self-attention on an input set (Lee et al., 2019).
Given an input set X , one can perform intra-set attention by using X as the queries, keys and values
and having a residual connection, i.e., MHSA(X) = X+MHSA(X,X,X). This operation has
useful applications in learning a representation of an input set where all its elements interact with
each other.

Multi-head Attention Block Decoders (MABD) were also introduced in Vaswani et al. (2017),
and were used to produce decoded sequences. Given an input matrix X and an output matrix Y
representing sequences, the decoder block performs the following computations:

MABD(Y,X) = LN(H + rFFN(H))

where H = LN(H′ + MHSA(H′,X,X))

and H′ = LN(MHSA(Y))

(9)

During training, MABD can be trained efficiently by shifting Y backward by one (with a start token
at the beginning) and computing the output with one forward pass. During testing where one does
not have access to Y , the model would then generate the future autoregressively. In order to avoid
conditioning on the future during training, the MHSA(Y ) operation in MABD employs time-masking.
This would prevent the model from accessing privileged future information during training.

B PERMUTATION EQUIVARIANCE OF THE MODEL

In this section, we prove the permutation equivariance of the Latent Variable Sequential Set Trans-
former with respect to the dimension M . To do so, we analyze the model’s response to permu-
tation along this dimension of the input tensor. This tensor, X, is of dimension (K,M, t), where
K,M, t ∈ N. The dimensions t and K are ordered, i.e. if we index into the tensor along dimension
M (we denote this operation as Xm where m ∈ {1, . . . ,M}) then we retrieve a (K, t)-dimensional
matrix. However, the M dimension is unordered. This implies that when we index by another
dimension, for example t, we retrieve an invertible multiset of vectors, denoted Xτ = {x1, . . . ,xM}
where τ ∈ {1, . . . , t} and xm ∈ Xτ are K-dimensional.

Our proof that our model is permutation equivariant on M demonstrates a clear difference with the
properties of similar models. For example, the model proposed in Set Transformers (Lee et al., 2019)
features a permutation equivariant encoder combined with a permutation invariant decoder. And
while Deep Sets (Zaheer et al., 2017) provides a theoretical framework for designing neural network
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models that operating on sets, they do not directly address the processing of hetereogeneous data
structures as we do here.

The rest of the section will proceed in the following manner:

1. Provide definitions and lemmas of the mathematical structures we will use in our proofs.
2. Show the permutation equivariance of the AutoBot encoder on M .
3. Show the permutation equivariance of the AutoBot decoder on M .

For clarity, we re-state the motivation for proving permutation equivariance in this particular model.
In tasks like motion prediction, we may not be able to uniquely identify moving objects (perhaps
due to occlusion or similar visual features). Therefore, we may wish to represent these objects
as a collection of states evolving over time. Readers may benefit from this perspective on X as
a time-evolving (t) collection of M objects with K attributes. We described Xτ as a multiset for
generality, as it permits repeated elements. However, in motion prediction tasks it might be safe to
assume that no two distinct objects will share the same attribute vector. By proving that our model is
equivariant with respect to M , we ensure that it will not waste capacity on spurious order-specific
features. The inductive bias for this type of task differs from other settings like machine translation
where word order is meaningful.

B.1 DEFINITIONS AND LEMMAS

A permutation equivariant function is one that achieves the same result if you permute the set then
apply the function to the permuted set, as you would achieve if you had applied the function to the
set then applied the same permutation to the output set. We provide a formal description in Def B.1.
Definition B.1 (Permutation Equivariance). Let X be the set of n vectors {x1, . . . ,xn}, and Sn the
group of permutations of n elements π : X→ X. Suppose we have a function f : X→ X, we call f
Permutation Equivariant iff f(π(X)) = π(f(X)).

One of the central components of the Sequential Set Transformer is the Multi-Head Self Attention
function (MHSA : X → X) originally introduced in (Vaswani et al., 2017). MHSA computes an
updated representation for one input vector in a set of input vectors by processing its relation with
a collection of other vectors. Without the explicit addition of positional information to the content
of these vectors, this operation is invariant to input order. MHSA is a content-based attention
mechanism, and updates the contents of a single input vector based on the contents of the others.
However, if we define fMHSA as the function applying MHSA to update each input vector, then we
have created a permutation equivariant function, described in Lemma B.1.
Lemma B.1 (fMAB is Permutation Equivariant on M ). Let X be a set of D-dimensional vectors
{x1, . . . ,xM}, and fMAB : RD×M → RD×M be a function that applies MAB (as defined in
Equation 1 of the main text) to each xm ∈ X. Then fMAB(Xτ ) is permutation equivariant because
∀π ∈ Sm, fMAB(π(X)) = π(fMAB(X)).

Having discussed the preliminaries, we now show the permutation equivariance of AutoBot’s encoder.

B.2 AUTOBOT ENCODER PROPERTIES

Theorem B.2 (AutoBot Encoder is Permutation Equivariant on M ). Let X be a tensor of dimension
(K,M, t) where K,M, t ∈ N, and where selecting on t retrieves an invertible multiset of sequences,
denoted Xτ = {x1, . . . ,xM}, where τ ∈ {1, . . . , t} and xm ∈ Xτ are K-dimensional. The AutoBot
encoder, as defined in Section 3.1, is permutation equivariant on M .

Proof. What follows is a direct proof of the permutation equivariance of the AutoBot encoder. The
encoder is a composition of three functions, rFFN: RK×t → RdK×t, fMAB : Rdk×M → Rdk×M , and
fMAB : RdK×t×M → RdK×t×M .

First, we show that the embedding function rFFN is equivariant on M . Let rFFN represent the
application of a function e: RK → RdK to each element of a set Xτ where τ ∈ {1, . . . , t}. Then
rFFN is equivariant with respect to M by Definition B.1. Specifically, we can see that the function
rFFN satisfies the equation ∀π ∈ SM , rFFN(π(Xτ )) = π(rFFN(Xτ )). In the AutoBot encoder, the
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function rFFN is applied to each set Xτ , and because it is permutation equivariant on M for each, the
application to each set represents a permutation equivariant transformation of the entire tensor.

Next, we show that the function fMAB, which applies a Multi-Head Attention Block (MAB) to each set,
(X1, . . . ,Xt), is equivariant on M . fMAB is permutation equivariant with respect to the M dimension
of X because MAB is permutation equivariant on each set Xτ by Lemma B.1.

Finally, we define a function fMAB which applies a positional encoding along the time dimension of X
then a Multi-head Attention Block (MAB) to each matrix in X, {X1, . . . ,XM}. fMAB is permutation
equivariant with respect to the M dimension of X because the collection of matrices {X1, . . . ,XM}
is an unordered set, and the uniform application of a function to each element of this set satisfies
permutation equvariance.

A composition of equivariant functions is equivariant, so the encoder is equivariant on M .

B.3 AUTOBOT DECODER PROPERTIES

We now provide a direct proof the the permutation equivariance of the AutoBot decoder on M .
The decoder is an auto-regressive function initialized with a seed set Xt containing M vectors of
dimension dk, each concatenated with a vector of latent variables and other context of dimension
2dk. For τ ∈ {1, . . . , T − t} iterations, we concatenate the output of the decoder with the seed, the
previous decoder output, and the latents to produce a tensor of dimension (3dK ,M, τ). In particular,
the decoder is a composition of three functions, rFFNdec: R3dK×τ → RdK×τ , fMAB : Rdk×M →
Rdk×M , and fMABD : RdK×M×τ → RdK×M×τ .

Theorem B.3 (AutoBot Decoder is Permutation Equivariant on M ). Given an invertible multiset Xt
with M vector-valued elements, and an auto-regressive generator iterated for τ ∈ {1, . . . , T − t},
the AutoBot decoder, formed by a composition of three functions, rFFNdec: R3dK×M → RdK×M ,
fMAB : Rdk×M → Rdk×M , and fMABD : RdK×τ×M → RdK×τ×M , is equivariant on M .

Proof. First, we must establish that the function rFFNdec: R3dK×M → RdK×M is equivariant with
respect to M . The AutoBot decoder applies rFFNdec to each set Xτ where τ ∈ {1, . . . , T − t},
transforming the M vectors of dimension 3dK → dk. Because rFFNdec represents a uniform
application of edec to each element of the set, we can see that it satisfies the definition of permutation
equivariance, specifically that ∀π ∈ SM , rFFNdec(π(Xτ )) = π(rFFNdec(Xτ )).

Next, we take the function fMABD, which first applies a function PE : Rdk,M,τ → Rdk,M,τ to X
adding position information along the temporal dimension, then applies fMABD : RdK×τ → RdK×τ
to each matrix {X1, . . . ,XM}. fMABD is permutation equivariant with respect to the M dimension of
X because the collection of matrices {X1, . . . ,XM} is an unordered set, and the uniform application
of a function to transform each element independently does not impose an order on this set.

Similar to the final step of the previous proof, we see that a function fMAB applying a multi-head self-
attention block (MAB) to each set {Xt+1, . . . ,Xτ} is equivariant on M because MAB is permutation
equivariant on each set (see Lemma B.1).

The composition of equivariant functions is equivariant, so the decoder is equivariant.

C MODEL DETAILS

C.1 EGO-CENTRIC FORECASTING

AutoBots can be used to predict the future trajectories of all agents in a scene. However, in some
settings we may wish to forecast the future trajectory of only a single agent in the set. We call this
variant “AutoBot-Ego”. Referring back to the encoder presented in Section 3.1, instead of propagating
the encoding of all elements in the set, we can instead select the state of that element produced by
the intra-set attention, s ∈ Sτ . With this, our encoder proceeds with the rest of the computation
identically to produce the tensor Cm

1:t, which is an encoding of the ego element’s history conditioned
on the past sequence of all elements.

AutoBot-Ego’s decoder proceeds as presented in section 3.2, with one exception. Since AutoBot-Ego
only generates the future trajectory of an ego element, we do not perform intra-set attention in the
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Figure 5: AutoBots Context Encoder.
Example of the birds-eye-view road net-
work provided by the Nuscenes dataset.
Our CNN encoder produces a volume
which we partition equally into K modes.
This allows each generated trajectory to be
conditioned on a different representation
of the input image.

Figure 6: TrajNet Map Example. Ex-
ample birds-eye-view map provided by
the TrajNet benchmark. The footage was
captured by a drone and pedestrians and
bicycles are freely moving through the
scene.

decoder. As a consequence of only dealing with a single ego-agent in the future generation, we do not
repeat the seed parameter matrices Qi across the M dimension, where i ∈ {1, . . . , c}. The objective
function is updated to compute the likelihood of one element’s future given the entire input sequence.
That is, in AutoBot-Ego, Y = Xm

t+1:T .

C.2 EXPECTATION MAXIMIZATION DETAILS

Our model also computes the distribution P (Z|X1:t) of discrete random variables. To achieve this,
we employ c learnable vectors (one for each mode) concatenated into the matrix P ∈ R(dK ,c),
which behave like seeds to compute distribution over modes prior to observing the future (these
seed parameters should not be confused with the decoder seed parameters Q). The distribution is
generated by performing the computations

p(Z|X1:t) = softmax(rLin(F)), where F = MABD(P1:c,C),

where rLin is a row-wise linear projection layer to a vector of size c.

C.3 CONTEXT ENCODING DETAILS

In the nuScenes dataset, we are provided with a birds-eye-view 128× 128 RGB image of the road
network, as shown in Figure 5. In the TrajNet dataset, we are also provided with a birds-eye-view
of the scene, as shown in Figure 6. We process this additional context using a 4 layer convolutional
neural network (CNN) which encodes the map information into a volume of size 7×7× (7∗ c) where
c is the number of modes. We apply a 2D dropout layer with a rate of 0.1 on this output volume before
processing it further. As our model employs discrete latent variables, we found it helpful to divide
this volume equally among all c modes, where each mode receives a flattened version of the 7× 7× 7
volume. As described in Section 3.2, this context is copied across the M and T dimensions, and
concatenated with the decoder seed parameters during the sequence generation process. Intuitively,
each mode’s generated trajectory is conditioned on a different representation of the context.

C.4 IMPLEMENTATION AND TRAINING DETAILS

We implemented our model using the Pytorch open-source framework. Table 4 shows the values of
parameters used in our experiments across the different datasets. The MAB encoder and decoder
blocks in all parts of AutoBots use dropout. We train the model using the Adam optimizer with an
initial learning rate. For the Nuscenes and TrajNet++ datasets, we anneal the learning rate every
10 epochs for the first 20 epochs by a factor of 2, followed by annealing it by a factor of 1.33 every
10 epochs for the next 30 epochs. For the Argoverse dataset, we anneal the learning rate every 5
epochs by a factor 2 for the first 20 epochs. In all datasets, we found it helpful to clip the gradients
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Parameter Description Toy OmniGlot Nuscenes Argoverse TrajNet TrajNet++

dk
Hidden dimension throughout all
parts of the model. 64 128 128 128 128 128

Learning Rate Learning rate used in Adam Optimizer. 1e-4 5e-4 7.5e-4 7.5e-4 7.5e-4 5e-4
Batch size Batch size used during training. 6 64 64 64 64 64
c Number of discrete latent variables. 10 4 10 6 5 6
λe Entropy regularization strength. 3.0 1.0 30.0 30.0 5.0 30.0
Dropout Amount of dropout used in MHSA functions. 0.0 0.2 0.1 0.1 0.3 0.05

Lenc
Number of stacked social/Temporal blocks
in the encoder. 1 1 2 2 2 2

Ldec
Number of stacked social/Temporal blocks
in the decoder. 1 1 2 2 2 2

H Number of attention heads in all MHSAs. 8 8 16 16 8 16

Table 4: Hyperparameters used for AutoBots across all four datasets.

to a maximum magnitude of 5.0. For the Nuscenes experiments, our model takes approximately
80 epochs to converge, which corresponds to approximately 3 hours of compute time on a single
Nvidia Geforce GTX 1080Ti GPU, using approximately 2 GB of VRAM. We used mirroring of
all trajectories and the map information as a data augmentation method since the dataset’s scenes
originate from Singapore and Boston. For Argoverse experiments, our model takes approximately 30
epochs to converge, which corresponds to approximately 10 hours on the same resources. In order
to improve the performance, we use other agents in the certain scenes as an ego-agent, effectively
doubling the size of the dataset. We chose agents that move by at least 10 meters. This, in-turn,
increases the training time to approximately 24 hours. For the TrajNet, TrajNet++ and Omniglot
datasets, our model takes approximately 100 epochs which corresponds to a maximum 2 hours of
compute time on the same resources.

C.5 PERFORMANCE - COMPARING SEED PARAMETER DECODER WITH AUTOREGRESSIVE
DECODER

One of the main architectural contributions of our work compared to our contemporaries is the use of
seed parameters in the decoder network to allow for one-shot prediction of the entire future trajectory
(compared to the established way of rolling out the model autoregressively timestep by timestep).
To this end, we created an ablation of our model that predicts the future timesteps autoregressively
and we compare its performance to ours across different variables (number of agents, input sequence
length, output sequence length, and number of modes). Figure 7 shows the inference rate (i.e. full
trajectory predictions per second) of AutoBot-Ego (top) and AutoBot (bottom). We can see that in
the single-agent case (AutoBot-Ego ), both the seed parameter version of the model as well as the
autoregressive ablation are able to operate in real-time (≥ 30 FPS), save for when using a prediction
horizon longer than 20 steps. We chose 30 FPS as a real-time indicator line since most cameras used
in self-driving cars output at least 30 FPS (Yeong et al., 2021); Lidar data is usually slower to retrieve
at 5-20 FPS. The performance difference is more obvious when comparing AutoBot to its ablation.
The autoregressive model is barely able to perform at 30 FPS when the number of agents is low, the
number of input steps is very low, the predicted future steps are under 20, and the number of modes
is low.
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Figure 7: AutoBots’s Inference Rate To show the impact of using a seed parameter decoder as opposed to
an autoregressive decoder, we compare the inference rate of AutoBots with its autoregressive but otherwise
identical ablation. We plot how the inference rate varies with increasing size of input/output variables. From
left-to-right, these variables correspond to 1) number of agents, 2) number of observable timesteps for each
agent, 3) prediction horizon, and 4) number of modes. The top row corresponds to AutoBot-Ego while the
bottom row corresponds to AutoBot.

D AUTOBOTS ADDITIONAL RESULTS

D.1 ABLATION STUDY ON NUSCENES

Table 5 shows the results of ablating various components from AutoBot-Ego on the Nuscenes dataset.
As we can see, the model trained without the map information performs significantly worse across
all metrics. This shows that indeed AutoBot-Ego learns to attend to the map information effectively.
The ‘No Latent Variable’ version of our model is a model without the latent variable, and therefore,
without the decoder seed parameters. This model then becomes auto-regressive and samples from
the output bivariate Gaussian distribution at every timestep. We note that this version of the model
is significantly slower to train (taking approximately three times as long) due to its autoregressive
nature. In order to generate ten trajectories, the generation process is repeated c = 10 times. This
model uses the same transformer encoder and decoder blocks as described in Section 3. As we can
see from its performance on the ADE metrics, without latent variables, the model is not capable of
generating diverse enough trajectories. This is expected since the output model φ is now tasked with
accounting for both the aleatoric and epistemic uncertainties in the process. Finally, the ‘No Data
Augmentation’ model shows that although it is helpful to augment the data with mirroring, even
without it the model is still capable of producing strong performance.

AutoBot-Ego Min ADE
(5)

Min ADE
(10)

Miss Rate
Top-5 (2m)

Miss Rate
Top-10 (2m)

Off Road
Rate

No Map Information 1.88 1.35 0.72 0.58 0.22
No Latent Variable 1.77 1.34 0.76 0.64 0.07
No Data Augmentation 1.47 1.08 0.66 0.47 0.03
AutoBot-Ego 1.43 1.05 0.66 0.45 0.03

Table 5: NuScenes Ablation Study.. We study the performance benefits of AutoBot-Egoover various
ablated counterparts.
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D.2 ANALYSIS OF ENTROPY REGULARIZATION

This dataset contains the trajectories of a single particle having identical pasts but diverse futures,
with different turning rates and speeds, as shown in Figure 8 (top row). In the second row of Figure
8, we show that our model trained without entropy regularization, λe = 0.0, can cover all modes.
However, the short trajectory variants are all represented using only one of the modes (2nd row, 3rd
column), as shown by the growth of the uncertainty ellipses as the trajectory moves forward. This
shows that AutoBots learn to increase the variance of the bivariate Gaussian distribution in order
to cover the space of trajectories. The third row of Figure 8, shows the learned trajectories for this
variant trained with λe = 3.0. As we can see, the entropy regularization penalizes the model if the
uncertainty of bivariate Gaussians is too large. By pushing the variance of the output distribution to
a low magnitude, we restrict the model such that the only way it can achieve high likelihood is to
minimize the distance between the mean of the bivariate distributions and ground-truth trajectories.

Figure 8: Influence of entropy loss on
particle experiment. The input trajec-
tory (cyan, only shown in top row) is iden-
tical in all cases. The model trained with-
out an entropy loss term (middle row) cov-
ers all modes with high variance, while
the model with moderate entropy regu-
larization (bottom row) is able to learn
the modes with low variance and without
overlap.

Ablation Study - Importance of Entropy Loss Term. In Table 6, we show an ablation study to
evaluate the importance of the entropy component on training the model for nuScenes. Again, we
observe that for multi-modal predictions, enforcing low entropy on the predicted bivariate distributions
has a great positive impact on the results, with an increased λe resulting in better performance. This
was observed on all evaluated metrics with the exception of the min FDE, which was poor regardless
of the model. Furthermore, we can see from Table 1 that, in general, all prior models have a difficulty
obtaining strong performance on the min FDE (1) metric, with the best value having an overall error
of 8.49 meters. This may be due to the difficulty of predicting the correct mode when one only has
access to two seconds of the past sequence.

λe
Min ADE
(5)

Min ADE
(10)

Miss Rate
Top-5 (2m)

Miss Rate
Top-10 (2m)

Min FDE
(1)

Off Road
Rate

0 1.75 1.29 0.67 0.58 9.55 0.10
1 1.71 1.22 0.65 0.57 9.03 0.08
5 1.70 1.14 0.62 0.53 9.11 0.05
30 1.75 1.14 0.63 0.54 9.51 0.04
40 1.72 1.11 0.60 0.51 9.01 0.04

Table 6: NuScenes Quantitative Results by Entropy Regularization. We study AutoBot-Ego’s
performance when varying the entropy regularization term on nuScenes, and see that increased
entropy improves model performance (particularly Min ADE 10 and Off Road Rate) up to a limit.

D.3 TRAJNET++ ABLATION AND QUALITATIVE RESULTS

Table 7 shows the effect of increasing the number of social/temporal encoder and decoder layers in
the general AutoBot architecture. We can see that increasing the number of layers in the decoder
has a positive impact on the performance of the joint metrics. This is expected since as we increase
the number of social layers, the model can use high-order interactions to model the scene. Figure 9
shows an example scene generated by each of the model variants.

D.4 TRAJNET, A PEDESTRIAN MOTION PREDICTION DATASET

We further validate AutoBots on a pedestrian trajectory prediction dataset TrajNet (Sadeghian et al.,
2018) where we are provided with the state of all agents for the past eight timesteps and are tasked
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Model Ego Agent’s
Min ADE(6) (↓)

Number Of
Collisions (↓)

Scene-level
Min ADE(6) (↓)

Scene-level
Min FDE(6) (↓)

Lenc = 1, Ldec = 1 0.108 273 0.152 0.281
Lenc = 2, Ldec = 1 0.102 214 0.138 0.254
Lenc = 3, Ldec = 1 0.099 227 0.135 0.245
Lenc = 1, Ldec = 2 0.099 164 0.132 0.248
Lenc = 1, Ldec = 3 0.091 123 0.121 0.225
Lenc = 2, Ldec = 2 0.095 139 0.128 0.234
Lenc = 3, Ldec = 3 0.090 98 0.119 0.216

Table 7: TrajNet++ ablation studies for a multi-agent forecasting scenario. We investigate the impact of the
number of social/temporal layers in the encoder and the decoder.

Figure 9: TrajNet++ qualitative results. In this example scene, we see five agents moving towards each
other with their input trajectories (blue) and their ground-truth future trajectories (black) shown in the left
figure. The different rows show three of the c = 6 scene predictions made by each model variant. AutoBot-Ego
and AutoBot-AntiSocial produce some modes containing collisions or socially inconsistent trajectories, while
AutoBot, which has social attention in the decoder, achieves consistent trajectories.

with predicting the next 12 timesteps. In this experiment, we apply our general architecture (AutoBot)
to a multi-agent scene forecast situation, and ablate various the social components in the decoder
only, and decoder and encoder.

Model Number Of
Collisions

Scene-level
Min ADE(5)

Scene-level
Min FDE(5)

AutoBot-AntiSocial 474 0.571 1.02
AutoBot-Ego 466 0.602 1.07
AutoBot 326 0.471 0.833

Table 8: TrajNet ablation studies for a multi-agent forecasting scenario. We evaluate the impact
of using the extra social data as a set and the actual multi-agent modelling on this context. We found
that AutoBot is able to cause fewer collisions between agents compared to variants without the social
attention.

In Table 8, we present three variants of the model. The first, AutoBot-AntiSocial corresponds to
a model without the intra-set attention functions in the encoder and decoder (see Figure 2). The
second variant, AutoBot-Ego, only sees the past social context and has no social attention during
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the trajectory generation process. The third model corresponds to the general architecture, AutoBot.
All models were trained with c = 5 and we report scene-level error metrics as defined by (Casas
et al., 2020). Using the social data with the multi agent modelling in the decoder greatly reduces
the number of collisions between predicted agent futures. Furthermore, we can see that AutoBot
significantly outperforms its ablated counterparts on generating scenes that match ground-truth, as
observed by the reduced scene-level minADE and minFDE. We expect this theoretically since the
ego-centric formulation makes the independence assumption that the scene’s future evolution can
be decomposed as the product of the individual agent’s future motion in isolation, as remarked in
(Casas et al., 2020). AutoBot does not make this assumption as we condition between agents at every
timestep.

Figure 10 shows an example of multi-agent trajectory generation using the three different approaches
for predicting the scene evolution. We present four of the five modes generated by the model for this
example input scene. One can observe that the only model achieving scene-consistent predictions
across all modes is AutoBot . Interestingly, we also observe that the different modes correspond to
different directions of motion, highlighting the utility of using modes. In fact, the modes in AutoBot
condition the entire scene future evolution, producing alternative realistic multi-agent futures. We
refer the reader to Figures 11, 12, 13 and 14 where we show some additional qualitative results
of AutoBots’ variants compared to AutoBot on the TrajNet dataset. These results highlight the
effectiveness of the sequential set attention mechanism in the decoding process of our method and
how important it is to predict all agents in parallel compared to a 1-by-1 setup.

Figure 10: TrajNet qualitative results. In this example, we see two agents moving together in the past (cyan)
and future (pink, left). We compare how different variants of AutoBots make predictions in this social situation.
AutoBot-Ego and AutoBot-AntiSocial produce some modes containing collisions or unrealistic trajectories,
while AutoBot, which has intra-set attention during decoding, achieves consistent trajectories.

D.5 OMNIGLOT ADDITIONAL DETAILS AND RESULTS

The LSTM baseline used in our Omniglot experiments have a hidden size of 128 and use c = 4
latent modes. The input is first projected into this space using an embedding layer, which is identical
to the one used in AutoBot. All input sequences of sets are encoded independently using a shared
LSTM encoder. During the decoding phase, we autoregressively generate the next stroke step using
an LSTM decoder. In order to ensure consistency between the predicted future strokes, inspired by
Social LSTM (Alahi et al., 2016), the LSTM baseline employs an MHSA layer at every timestep
operating on the hidden state of the different strokes making up the character. We concatenate a
transformation of the one-hot vector representing the latent mode with the socially encoded hidden
state at every timestep. The output model is identical to the one used AutoBot, generating a sequence
of bivariate Gaussian distributions for each stroke. We performed a hyperparameter search on the
learning rate and found the optimal learning rate to be 5e − 4. Furthermore, as with all our other
experiments, we found it helpful to employ gradient clipping during training.

We provide additional results on the two tasks defined in Section 4.4. Figure 15 shows additional
successful AutoBot results on task 1 (completing multiple strokes) compared to an LSTM baseline
equipped with social attention. These results highlight the effectiveness of sequential set transformers
for generating consistent diverse futures given an input sequence of sets. Figure 16 shows examples
where both models fail to correctly complete the character in task 1. Figure 17 compares AutoBot-Ego
with the LSTM baseline on predicting a new stroke given the two first strokes of a character (task 2).
These results highlight that although not all modes predict the correct character across all modes, all
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Figure 11: TrajNet qualitative results 1/4. Example scene with multiple agents moving together.
These trajectories are plotted over the birds-eye-view image of the scene where we zoom into
interesting trajectories. We can see that only AutoBot produces trajectories that are realistic in a
group setting across all modes.

Figure 12: TrajNet qualitative results 2/4. Example scene with two agents moving separately in a
road setting. We want to highlight this interesting scenario where some modes of AutoBots-Solo and
AutoBots-AntiSocial results in trajectories that lead into the road, while AutoBot seems to produces
trajectories more in line with the ground-truth, and lead the agent to cross the road safely.

generated predictions are consistent with realistic characters (i.e., confusing “F" with “Π" or “H"
with “Π").
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Figure 13: TrajNet qualitative results 3/4. Additional example scenes with multiple agents moving
together. Again, we wish to highlight the advantage of modelling the scene jointly, which is evident
by the results of AutoBot.

Figure 14: TrajNet qualitative results 4/4. Example scenes with two agents moving together.
Again, we see that AutoBot produces trajectories consistent with the scene across all modes (e.g., not
crashing into the bushes) and maintains the social distance between the walking agents.
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Figure 15: Omniglot Task 1 Additional Results. These are some additional random characters from
the Omniglot stroke completion task. We can see that AutoBot produces plausible characters on the
test set, while the LSTM struggles to create legible ones.
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Figure 16: Omniglot Task 1 Failure Cases. There were some characters where AutoBot failed to
learn the correct character completion. We can currently only speculate why that is the case. Our first
intuition was that this might occur when there are 90 degree or less angles in the trajectory that is
to be predicted but in Fig. 15, we can see that there are examples where this does not seem to be a
problem. We believe that this might be due to a rarity of specific trajectories in the dataset but more
investigation is required.
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Figure 17: Omniglot Task 2 Additional Results. These are some additional random characters
from the Omniglot character completion task. Again, we can see that AutoBot produces plausible
characters on the test set, where different modes capture plausible variations (e.g. F to H and H to
PI), while the LSTM struggles to capture valid characters in its discrete latents.
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