
Spectral Learning of Shared Dynamics Between
Generalized-Linear Processes

Lucine L. Oganesian
Ming Hsieh Department of Electrical and Computer Engineering

University of Southern California
Los Angeles, CA

loganesi@usc.edu

Omid G. Sani
Ming Hsieh Department of Electrical and Computer Engineering

University of Southern California
Los Angeles, CA

omid.ghasemsani@usc.edu

Maryam M. Shanechi ∗

Ming Hsieh Department of Electrical and Computer Engineering
Thomas Lord Department of Computer Science

Alfred E. Mann Department of Biomedical Engineering
Neuroscience Graduate Program
University of Southern California

Los Angeles, CA
shanechi@usc.edu

Abstract

Generalized-linear dynamical models (GLDMs) remain a widely-used framework
within neuroscience for modeling time-series data, such as neural spiking activity or
categorical decision outcomes. Whereas the standard usage of GLDMs is to model
a single data source, certain applications require jointly modeling two generalized-
linear time-series sources while also dissociating their shared and private dynamics.
Most existing GLDM variants and their associated learning algorithms do not
support this capability. Here we address this challenge by developing a multi-step
analytical subspace identification algorithm for learning a GLDM that explicitly
models shared vs. private dynamics within two generalized-linear time-series. In
simulations, we demonstrate our algorithm’s ability to dissociate and model the
dynamics within two time-series sources while being agnostic to their respective
observation distributions. In neural data, we consider two specific applications of
our algorithm for modeling discrete population spiking activity with respect to a
secondary time-series. In both synthetic and real data, GLDMs learned with our
algorithm more accurately decoded one time-series from the other using lower-
dimensional latent states, as compared to models identified using existing GLDM
learning algorithms.

∗Corresponding author. Project code: https://github.com/ShanechiLab/PGLDM
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1 Introduction

Generalized-linear dynamical models (GLDMs) are a commonly used framework for modeling
dynamics using a low-dimensional latent variable that evolves over time [1–3]. Due to their inter-
pretability, data efficiency, and amenability to real-time engineering operations, GLDMs remain a
widely popular tool in neuroscience for modeling time-series data, whether it be Poisson spiking
neural activity, Bernoulli/Binomial categorical task variables, or Gaussian behavior [4–9]. Whereas
most existing GLDM variants and their associated analytical learning algorithms focus on modeling
the dynamics within a single time-series, there exist applications that require explicit dissociation of
shared vs. private dynamics within two generalized-linear observation sources. For example, such
functionality is helpful when modeling the dynamical relationship between recorded neural activity
and certain behaviors of interest [10–15].

Here we fill these methodological gaps by deriving a novel covariance-based subspace system
identification (SSID) algorithm that is capable, with its multi-staged learning approach, of identifying
the shared dynamics between two generalized-linear time-series with priority, before modeling the
dynamics private to each observation. We design the method to seamlessly generalize to different
observation distributions, such as Poisson or Bernoulli. To illustrate the method, we first show in
simulations that our method successfully dissociates the shared dynamics within two generalized-
linear time-series, agnostic of their respective observation models; to compare against existing
GLDM methods, we focused on Poisson, Bernoulli, and Gaussian generalized-linear observations.
Next we demonstrate our method on two public non-human primate (NHP) datasets of discrete
population spiking activity recorded from different brain regions and during different contexts [16–
18]. Compared with existing Poisson GLDMs and their learning algorithms, our method learned
models that more accurately decoded one time-series from the other using lower-dimensional latent
states, suggesting improved learning of shared dynamics.

2 Background

For linear state-space models with continuous Gaussian observations, subspace system identification
(SSID) theory provides computationally efficient non-iterative algorithms for analytically learning
state-space models, both with and without identification of shared dynamics [14, 19–24]. These
methods, however, either are not applicable to generalized-linear time-series with non-Gaussian
observations [14, 19, 20, 23] or do not have the ability to dissociate shared vs. private dynamics
between two time-series [21, 22, 24]. To help with the exposition of our method in section 3, we
first review standard covariance-based SSID and an existing SSID method for modeling Poisson
point-processes [21], a widely-used class of generalized-linear observations.

2.1 Standard covariance-based SSID

The standard formulation for a linear state-space model with continuous Gaussian observations is as{
xk+1 = Axk +wk

rk = Crxk + vk
(1)

where xk ∈ Rnx is the latent state variable, rk ∈ Rnr corresponds to continuous Gaussian ob-
servations, and w and v are state and observation noise terms, respectively, with distributions
N (wk;0,Q) and N (vk;0,R), and cross-covariance S. Further, we define G := Cov(xk+1, rk),
as the covariance between future latent state and current observation, and Λr0 := Cov(rk, rk), as the
instantaneous covariance of the observations. Standard covariance-based SSID learns the parameters
of a latent dynamical system Θ = (A,Cr,G,Λr0) given training samples rk and hyperparameter
nx that specifies the latent state dimensionality. To do so, a future-past Hankel matrix, Hr, is first
constructed from the cross-covariances of the system’s linear observations as [19, 20]

Hr := Cov(rf , rp) =


Λri Λri−1 · · · Λr1
Λri+1

Λri · · · Λr2
...

... · · ·
...

Λr2i−1 Λr2i−2 · · · Λri

 , rf :=

 ri
...

r2i−1

 , rp :=

 r0
...

ri−1

 , (2)

where the integer i denotes the user-specified maximum temporal lag (i.e., horizon) used to construct
Hr and Λrτ := Cov(rk+τ , rk) is the τ -th lag cross-covariance for any timepoint k, under time-
stationary assumptions. We note that the rank of Hr must be at least nx in order to identify a
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model with a latent dimension of nx. Thus the user-specified horizon i must satisfy i × nr ≥ nx.
Covariance-based SSID then decomposes Hr into a product of observability (Γr) and controllability
(∆) matrices as [19, 20]

Hr
SVD
= Γr∆ =


Cr

CrA
...

CrA
i−1

 [Ai−1G · · · AG G
]

(3)

where G is defined as above. The factorization of Hr is done by computing a singular value
decomposition (SVD) of Hr and keeping the top nx singular values and corresponding singular
vectors. From the factors of Hr, Cr is read off as the first nr rows of Γr and G is read off as
the last nr columns of ∆. A is learned by solving Γr = ΓrA, where Γr and Γr denote Γr from
which the top or bottom nr rows have been removed, respectively. This optimization problem has
the following closed-form least-squares solution A = Γ†

rΓr, with † denoting the pseudo-inverse
operation. The final parameter Λr0 is computed as the empirical covariance of rk. See appendix A.4
on how (G,Λr0) specify (Q,R,S).

2.2 SSID for a single generalized-linear time-series

There has been some work extending SSID to generalized-linear time-series, such as Poisson and
Bernoulli observations [21, 24]. These methods, however, only learn the dynamics of a single
generalized-linear time-series rather than model shared vs. private dynamics between two time-series.
Here we present one of our baselines, PLDSID [21], which models a single Poisson time-series, as
an example. A Poisson linear dynamical system (PLDS) model is defined as{

xk+1 = Axk +wk

rk = Crxk + b
yk | rk ∼ Poisson(exp(rk))

(4)

where xk ∈ Rnx is the latent state as before and yk ∈ Rny corresponds to discrete (e.g., neural
spiking) observations which, conditioned on the latent process rk, are Poisson-distributed with a
rate equal to the exponential of rk (i.e., log-rate). Finally, wk is Gaussian-distributed state noise
with covariance parameter Q, as before, and b is a constant baseline log-rate. The PLDS model is
commonly used for modeling Poisson process events, such as neural spiking activity [2, 4, 6, 21, 25].
Buesing et al. [21] developed a SSID algorithm, termed PLDSID, to learn the PLDS model parameters
ΘPLDS = (A,Cr, b,Q) given training samples yk and hyperparameter nx.

Standard covariance-based SSID algorithms (section 2.1) are not directly applicable to Poisson-
distributed observations. This is because the log-rates rk that are linearly related to the latent states
in equation (4) are not observable in practice – rather, only a stochastic Poisson emission from
them (i.e., yk) is observed. As a result, the second moments constituting Hr (i.e., Λrτ ) cannot be
directly estimated. The critical insight by Buesing et al. [21] was to leverage the log link function
(i.e., exp−1) and the known conditional distribution yk|rk to compute the first (µr±) and second
(Λr±) moments of the log-rate rk from the first (µy±) and second (Λy±) moments of the discrete
observations yk. The ± denotes that moments are computed for the future-past stacked vector of
observations r± :=

[
rTf rTp

]T
and y± :=

[
yT
f yT

p

]T
, where

µr± := E[r±] µy± := E[y±] Λr± := Cov(r±, r±) Λy± := Cov(y±,y±).

To compute moments of the log-rate, Buesing et al. [21] derived the following moment conversion

µr±m
= 2 ln(µy±

m
)−

1

2
ln(Λy±

mm
+ µ2

y±
m
− µy±

m
)

Λr±mm
= ln(Λy±

mm
+ µ2

y±
m
− µy±

m
)− ln(µ2

y±
m
)

Λr±mn
= ln(Λy±

mn
+ µy±

m
µy±

n
)− ln(µy±

m
µy±

n
)

(5)

where m ̸= n correspond to different indices of the first and second moments of the future-past
stacked observation vectors r± and y±, and n,m = 1, · · · ,Kny where K is the total number of
time points. With the first and second moments computed in the moment conversion above, the
baseline log rate b parameter is read off the first nr rows of µr± and the Hankel matrix, Hr, is
constructed as per equation (2). From here, we can proceed with the standard covariance-based
SSID algorithm using Hr, as outlined in section 2.1. Discussion regarding learning the state noise
covariance parameters (e.g., Q) is postponed to appendix section A.3, where we use an approach that
– unlike Buesing et al. [21] – ensures validity of learned noise statistics.
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3 Method

3.1 Model definition and assumptions

Both the standard linear state-space model (equation (1)) and PLDS model (equation (4)) only model
a single observation on its own. To enable identification of shared and private dynamics between two
generalized-linear time-series, we write the following general multi-observation GLDM

xk+1 = Axk +wk

rk = Crxk + vk + b
zk = Czxk + ϵk + d
yk|rk ∼ Py|r(yk; g(rk))
tk|zk ∼ Pt|z(tk; h(zk))

(6)

where xk, rk, wk, vk, and b are defined as in equations (1) and (4). We introduce tk ∈ Rnt

to represent the second generalized-linear observation time-series, zk ∈ Rnz (with nt = nz by
construction) to represent the latent process underlying this second observation, ϵk ∼ N (ϵk;0,F ) to
represent the associated noise term, and d to represent the associated baseline value. We generically
denote the probability distribution for yk conditioned on the latent rk with Py. For example, in the
PLDS model Py|r := Poisson(exp(rk)). Pt|z is defined similarly but for tk and zk. Finally, g(·) and
h(·) correspond to the link function in the generalized-linear model, for example g(rk) = exp(rk) in
PLDS models. In order to dissociate between shared and private dynamics within the observation
time-series, we introduce the following definition:

Definition 3.1. We take the system to be written in a block structure form as defined below [14],
allowing us to dissociate shared from private latents

A =

[
A11 0 0
A21 A22 0
0 0 A33

]
Cz =

[
C

(1)
z 0 C

(3)
z

]
Cr =

[
C

(1)
r C

(2)
r 0

]
x =

x(1)

x(2)

x(3)

 (7)

where x
(1)
k ∈ Rn1 corresponds to latent states that drive both zk and rk, x(2)

k ∈ Rn2 corresponds to
states that only drive rk, and x

(3)
k ∈ Rn3 corresponds to states that only drive zk – with total states

nx = n1 + n2 + n3. The parameter G can also be written in block partition format such that

G = E


x

(1)
k+1

x
(2)
k+1

x
(3)
k+1

 rTk

− E


x

(1)
k+1

x
(2)
k+1

x
(3)
k+1


E[rk]

T =

E[x
(1)
k+1r

T
k ]

E[x
(2)
k+1r

T
k ]

E[x
(3)
k+1r

T
k ]

−

E[x
(1)
k+1]E[rk]

T

E[x
(2)
k+1]E[rk]

T

E[x
(3)
k+1]E[rk]

T

 =

G(1)

G(2)

G(3)

 .

We can further simplify the definition of G using the following assumptions:

Assumption 3.2. The state noise covariance Q is assumed to have a block diagonal structure such
that Q = diag(Q(1,2),Q(3)), where Q(1,2) is a square matrix of dimension n1 + n2 and Q(3) is a
square matrix of dimension n3. Formally, the superscript notation (1, 2) designates attribution of the
parameter to the first and second set of latent states.
Assumption 3.3. Initial latent states are assumed to be mutually-independent, making Cov(x0,x0)
diagonal.

These assumptions allow us to fully decouple the private latent states of the secondary time-series
(x(3)) from the latent states driving the primary time-series (x(1),x(2)). As a result, we can take
G(3) = Cov(x

(3)
k+1, rk) = 0. From the perspective of state estimation, this simplification implies

that rk provides no information to help estimate x(3)
k+1, for all k; this understanding is consistent with

our definition of shared and private states.

3.2 Prioritized generalized-linear dynamical modeling (PGLDM)

Our method, which we term Prioritized Generalized-Linear Dynamical Modeling (PGLDM), uses a
multi-staged learning approach to model a primary generalized-linear time-series while prioritizing
identification of the dynamics shared with a secondary time-series. Note, “primary" refers to the
data source whose modeling is of primary interest and that can optionally be used to predict the
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secondary data source. For example, within the context of decoding continuous behaviors from
discrete population spiking activity, Poisson observations (i.e., neural activity) are the primary time-
series whereas Gaussian observations (e.g., kinematics) are the secondary time-series. During stage 1,
shared dynamics are learned using both observations. In stage 2, any private dynamics in the primary
time-series are optionally learned. This two-staged approach allows prioritized learning of shared
dynamics in the sense that latent states will be dedicated to explaining non-shared dynamics in the
primary time-series only if there are enough latent states to explain the shared dynamics. Finally, an
optional stage 3 allows identification of the dynamics private to the secondary time-series.

Below we will outline the first two stages of our algorithm and leave the optional stage 3 to appendices
A.1.4 and A.9. A crucial component of our method is a new covariance-based SSID algorithm for
identifying shared and private dynamics between two observation time-series using their first and
second moments only. This covariance-based algorithm is what enables our method to be applicable
to generalized-linear observations, which we will expand on further in section 3.2.3. We first present
this new covariance-based SSID algorithm, or equivalently PGLDM for linear state-space models
with continuous Gaussian observations (the first three lines of equation (6)), before showing support
for generalized-linear time-series broadly. The derivation of PGLDM is provided in appendix A.1.

3.2.1 Stage 1: shared dynamics

In the first stage, our algorithm identifies the parameter set corresponding to the shared dynamical
subspace, (A11,C

(1)
r ,C

(1)
z , b,d), given hyperparameter n1 and using both zk and rk, both of which

are observable in the Gaussian case (i.e., equation (1) or equivalently the first three lines of equation
(6)). To do this, we first construct a Hankel matrix between future observations of the secondary
process and past observations of the primary process

Hzr := Cov(zf , rp) =


Λzri Λzri−1

· · · Λzr1
Λzri+1

Λzri · · · Λzr2
...

... · · ·
...

Λzr2i−1
Λzr2i−2

· · · Λzri

 , (8)

with zf := [zi . . . z2i−1]
T and rp defined as in equation (2). Although equation (8) uses the

same horizon for both observations, in practice we implement the method for a more general version
with distinct horizon values ir for the primary observations and iz for the secondary observations,
resulting in Hzr ∈ Riz∗nz×ir∗nr . This allows users to independently specify the horizons for the
two observations, which can improve modeling accuracy especially if the two observations have
very different dimensionalities (see section 4.2 and appendix A.1.6). After constructing Hzr, we
decompose it using SVD and keep the top n1 singular values and their corresponding singular vectors

Hzr
SVD
= Γz∆

(1) =


Cz

CzA11

...
CzA

i−1
11

 [Ai−1
11 G(1) · · · A11G

(1) G(1)
]

(9)

where n1 is the user-specified dimensionality of the shared latent states x(1)
k , Γz denotes the observ-

ability matrix for the secondary observations, and ∆(1) denotes the controllability matrix associated
with the shared latent states (defined as in equations (3) and (16) in the appendix). At this point, we
extract C(1)

z by reading off the first nz rows of Γz. To extract C(1)
r we first form Hr per equation (2)

and extract the observability matrix for r associated with the shared latent dynamics, Γ(1)
r , by right

multiplying Hr with the pseudoinverse of ∆(1)

Hr∆
(1)† = Γ

(1)
r =


C

(1)
r

C
(1)
r A11

...
C

(1)
r Ai−1

11

 .

We then read C
(1)
r from the first nr lines of Γ(1)

r (defined as in equation (20) in the appendix).
The baseline parameters b and d are empirically computed as the means of rk and zk, respectively.
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Lastly, to learn the shared dynamics summarized by the parameter A11, we solve the optimization
problem ∆(1) = A11∆

(1)
where ∆(1) and ∆

(1)
denote ∆(1) from which nr columns have been

removed from the right or left, respectively. The closed-form least-squares solution for this problem is
A11 = ∆(1)(∆

(1)
)†. This concludes the learning of the desired parameters (A11,C

(1)
r ,C

(1)
z , b,d),

given hyperparameter n1.

3.2.2 Stage 2: private dynamics in primary process

After learning the shared dynamics, our algorithm can learn the dynamics private to the primary
process that were not captured by x

(1)
k . Specifically, we learn the following parameters from equation

(7): ([A21 A22] ,C
(2)
r ), with hyperparameter n2 determining the unshared latent dimensionality of

r. To do so, we first compute a “residual” Hankel matrix, H(2)
r , using Γ

(1)
r and ∆(1) from stage 1

and decompose it using SVD, keeping the first n2 singular values and vectors

H(2)
r = Hr − Γ(1)

r ∆(1)SVD
= Γ(2)

r ∆(2). (10)

With C
(2)
r , which corresponds to the first nr rows of Γ(2)

r , we construct Cr =
[
C

(1)
r C

(2)
r

]
. We

then use ∆(2) to form the controllability matrix ∆(1,2) as the concatenation of ∆(1) and ∆(2)

(derivation in appendix A.1):

∆(1,2) =
[
A(1,2)i−1

G(1,2) · · · A(1,2)G(1,2) G(1,2)
]
=

[
∆(1)

∆(2)

]
where A(1,2) refers to the upper left block of the dynamics matrix A that corresponds to the
latent states x(1) and x(2). Given ∆(1,2), we extract [A21 A22] by solving the problem ∆(2) =

[A21 A22]∆
(1,2)

where

∆(2) :=
[
[A21 A22]A(1,2)i−2

G(1,2) · · · [A21 A22]G(1,2)
]
, ∆ :=

[
A(1,2)i−2

G(1,2) · · · G(1,2)
]
.

Concatenating the sub-blocks together, A(1,2) =

[
A11 0
A21 A22

]
. Thus, given hyperparameters n1 and

n2, we now have all model parameters associated with the shared dynamics and dynamics private
to the primary signal: (A(1,2),Cr,C

(1)
z , b,d). The remaining model parameters (A33,C

(3)
z ) are

learned in stage 3 (appendices A.1.4 and A.9).

3.2.3 Supporting generalized-linear processes

The covariance-based SSID algorithm that we have just derived is what enables our framework
to be broadly applicable to generalized-linear time-series data. As discussed in section 2.2, the
variables that are linearly related to latent states x are unobservable in generalized-linear models.
However, because the algorithm outlined in sections 3.2.1-3.2.2 only relies on empirical covariances
and cross-covariances of the two observation time-series, we can support generalized-linear processes
by using moment-conversions (e.g., section 2.2) [21, 24]. When computationally tractable moment
conversion equations exist, we can compute both a Hankel matrix Hr, as described in section 2.2, and
also a cross-term Hankel matrix Hzr. For example, for the scenario wherein the Poisson observations
constitute the primary process and Gaussian observations the secondary process (i.e., the first four
lines of equation (6)), we can compute a moment conversion to estimate joint moments of zk and rk
from the joint moments of the observed signals zk and yk with the following equation (derived using
the conditional statistical properties, see appendix A.1.5)

Λzfmrpn = Cov(zfm ,ypn
) / µypn

(11)
where, similar to equation (5), m and n correspond to indices of the first and second moments of the
observation vectors zf and rp (or yp), respectively. As another example, if both generalized-linear
observations (e.g., y and t from equation (6)) are Poisson distributed, the joint moments can be
computed as

Λzfmrpn = ln(Cov(tfm ,ypn
) + µtfm

µypn
)− ln(µtfm

µypn
). (12)

For both of these scenarios the baseline log-rates are learned as in PLDSID (section 2.2). Thus, our
novel multi-staged covariance-based SSID learning algorithm enables identification of shared vs.
private dynamics across various generalized-linear processes.
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Table 1: Shared mode identification error (log10, i.e., -2 means 1%) at the shared latent dimensionality
(nx = n1). ✗ indicates that a method (row) does not support the primary observation model (column).

Primary time-series (rk or yk) / Secondary time-series (zk or tk)

Method Name Gaussian/Gaus. Poisson/Gaus. Pois./Pois. Bernoulli/Gaus.

PGLDM (stage 1) -2.757 ± 0.070 -2.707 ± 0.091 -1.969 ± 0.079 -2.864 ± 0.072
Laplace-EM [26] -1.320 ± 0.091 -1.083 ± 0.119 -1.088 ± 0.110 -1.027 ± 0.067
PSID (stage 1) [14] -2.985 ± 0.102 ✗ ✗ ✗
Covariance SSID [19] -1.467 ± 0.080 ✗ ✗ ✗
PLDSID [21] ✗ -1.319 ± 0.132 -1.203 ± 0.112 ✗
bestLDS [24] ✗ ✗ ✗ -1.209 ± 0.117

4 Experimental Results

4.1 Shared dynamics are accurately identified in generalized-linear simulations

To evaluate how well our method identified the shared dynamics between two generalized-linear
time-series, we simulated observations from random dynamical models as per equation (6). All
state and observation dimensions were randomly selected, and the corresponding system parameters
were randomly generated to simulate stable and slow-decaying dynamics (see appendix A.7.1 for
details). In our first experiment, we evaluated how well the shared dynamical subspace could be
identified when learning models at the true shared dimensionality. We performed this analysis for
four combinations of generalized-linear observation pairs (rk or yk and zk or tk, respectively): (1)
Gaussian/Gaussian, (2) Poisson/Gaussian, (3) Poisson/Poisson, and (4) Bernoulli/Gaussian. Within
each configuration, we compared models learned by our method against models learned with either
Laplace-EM (expectation-maximization) [26] or a SSID algorithm with the appropriate observation
distribution. For the Gaussian/Gaussian case we also compare against PSID [14], an SSID algorithm
that preferentially learns the shared dynamics between two Gaussian time-series. PGLDM (our
method) and PSID were trained using both the primary and secondary time-series, whereas all other
methods used only the primary time-series as they only model a single data source. We evaluated
identification of shared dynamics by computing the normalized eigenvalue error between ground truth
shared modes (i.e., eigenvalues of A11 in equation (7)) and the identified modes (i.e., the learned A11

for PGLDM/PSID or A for the other baselines); see appendix A.8.1 for evaluation details. We report
the results of this analysis for 20 systems per configuration in Table 1. For almost all conditions
PGLDM more accurately identified the shared dynamics.

In our second simulation experiment, we studied the effect of latent state dimension on learning.
We generated 16 systems with fixed dimensions for shared and private latent states given by n1 =
4, n2 = 12, and n3 = 4, accordingly. We swept the learned latent state dimension from 1 to the
true dimensionality of the primary observation time-series n1 + n2 = 16, with the dimensionality
of shared dynamics set to min(current nx, n1). We found that our method accurately identified the
shared modes with the minimal latent state dimension of 4; in contrast, PLDSID and Laplace-EM did
not reach such high accuracy even when using higher latent state dimensions (figure 1c). In these
simulations we also evaluated the predictive power (i.e., correlation coefficient, CC) of the model
when using discrete Poisson observations to predict continuous Gaussian observations in a held-out
test set (see appendix A.8.2). This second metric allowed us to test our hypothesis that PGLDM’s
explicit modeling of the shared subspace improved decoding of Gaussian observations from Poisson
observations compared with our baselines PLDSID [21] and Laplace-EM [26]. We observed that
our method achieved higher decoding performance in low-dimensional regimes, even when using
as few as 4 latent states, whereas PLDSID required much larger latent state dimensions (around 12)
to reach comparable performance (figure 1a). We also evaluated Poisson self-prediction using area
under the receiver operating characteristic curve, AUC (figure 1b). With the inclusion of stage 2 and
sufficient model capacity, models learned by PGLDM were able to achieve comparable performance
in self-prediction as compared to our baselines.
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Figure 1: In simulations, PGLDM more accurately learns the shared dynamical modes and
better predicts Gaussian observations from Poisson observations, especially in low-dimensional
regimes. Solid traces show the mean and shaded areas denote the standard error of the mean, (s.e.m.)
for each condition. (a-b) Predictive power as a function of latent state dimensionality for all learned
models compared against oracle model, i.e., a model with the ground-truth parameters. Left panel
(a) shows prediction CC for the Gaussian observations and right panel (b) Poisson self-prediction
AUC. (c) The normalized identification error of the shared dynamical modes (in log10 scale) as a
function of latent dimensionality. (d) Mode identification with models of size nx = n1 = 2 for a
sample Bernoulli/Gaussian system with true dimensions n1 = 2, n2 = 6, n3 = 4.

4.2 Modeling shared dynamics improves motor decoding from population spiking activity

As a demonstration on real data, we used PGLDM to model the shared dynamics between discrete
Poisson population neural spiking activity and continuous Gaussian arm movements in a publicly
available NHP dataset from the Sabes lab [17]. The dataset is of a NHP moving a 2D-cursor in a
virtual reality environment based on fingertip position. We use the 2D cursor position and velocity
as the continuous observations z. For all methods we used 50ms binned multi-unit spike counts for
the discrete observations y. We evaluated decoding performance of learned models using five-fold
cross validation across six recording sessions (see appendix A.7.2 for cross-validation details). For
PGLDM, we use the shared dynamics dimensionality of n1 = min(current nx, 8), i.e., a maximum
n1 of 8, because behavior decoding using stage 1 roughly plateaued at this dimension.

Compared with PLDSID and Laplace-EM, our method learned models that led to better behavioral
decoding at all latent state dimensions, including at the maximum latent state dimension (figure 2a).
This result suggests that our method better learns the shared dynamics between Poisson spiking and
continuous movement observations due to its ability to dissociate shared vs. private latent states.
Interestingly, despite the focus on learning the shared latent states in the first stage, PGLDM was
also able to extract the private latent states in the Poisson observations because of its second stage.
This stage led to improved neural self-prediction AUC, while still maintaining the more accurate
behavioral decoding (figure 2b-c). Indeed, even with the inclusion of just two additional latent states
to model private Poisson dynamics (n2 = 2, nx = 10), neural self-prediction was approaching that
of models learned by PLDSID (figure 2b). Finally, given its analytical nature, PGLDM required a
substantially lower training time compared with Laplace-EM (see appendix Table 2).
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Figure 2: In NHP data, PGLDM improves movement decoding from Poisson population spiking
activity. (a) Solid traces show the average cross-validated kinematic prediction CC (shaded areas
denote the s.e.m.) for models of different latent dimensions learned by PGLDM, PLDSID, and
Laplace-EM. (b) Same as (a) but visualizing one-step ahead neural self-prediction AUC. (c) Kinematic
prediction CC and neural self-prediction AUC for models of latent dimensionality nx = 12. Asterisks
indicate statistical significance (Wilcoxon signed-rank test) with *: p < 0.05 and ***: p < 0.0005.
(d) Example decoding of cursor (x,y) position and velocity from test data.

4.3 PGLDM models better decode spiking activity of one visual area from another

As a second demonstration on real data but with a different combination of observation distributions
(Poisson/Poisson), we used PGLDM to decode neural population spiking activity in one visual area
from another. In a publicly available dataset from Zandvakili and Kohn [16, 18], simultaneous
V1/V2 population recordings were performed in anaesthetized NHPs as they were presented visual
stimuli. We used five-fold cross validation to evaluate learned model performance in decoding V1
activity from V2 activity and in V2 self-prediction. We again compare with PLDSID and Laplace-
EM. For all learning algorithms we tested four latent state dimensions such that nx = n1 + n2 ∈
{2, 4, 6, 8}. For PGLDM we used the first two stages, setting the shared dynamics dimensionality
to n1 = min(current nx, 4). Similar to results in figure 2, we chose a maximum n1 of 4 because
decoding roughly plateaued at this dimension. The conclusions were consistent with those in figure
2: modeling the shared vs. private dynamics by PGLDM allowed for better decoding of V1 activity
while maintaining comparable self-prediction of V2 activity. Analysis details are in appendix A.7.3.
We present the results of the complementary analysis (i.e., predicting V1 from V2) in appendix A.12.

4.4 Limitations

PGLDM, similar to other SSID methods, uses a time-invariant model which may not be suitable if
the data exhibits non-stationarity, such as in chronic neural recordings. To handle non-stationarities,
one would need to either intermittently refit the model after a predetermined duration of time, or
develop adaptive extensions [27, 28]. As an example of the latter, one can gradually update the
model parameters by incorporating a learning rate that weighs recent observations more heavily in
the moment computations while gradually forgetting past observations [27]. Moreover, as with other
covariance-based SSID methods, PGLDM may be sensitive to the accuracy of the empirical estimates
of the first- and second-order moments. However, with increasing number of samples these empirical
estimates will approach true statistical values, thereby improving overall performance, as seen in
appendix figure 4. Due to errors in the empirical estimates of the covariances, SSID methods may
also occasionally learn unstable dynamics (see appendix A.5). Future work may address this by
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Figure 3: In NHP data, PGLDM improves V1 decoding from V2 population spiking activity
while maintaining comparable V2 self-prediction performance. (a) Average cross-validated V1
decoding AUC (shaded areas denote the s.e.m.) for models of different latent dimensions. (b) Same
as (a) but visualizing V2 one-step ahead self-prediction AUC. (c) V1 decoding AUC at nx = 8.
Whiskers correspond to s.e.m. Scatter points are individual trials. (d) Same as (c) but for V2
self-prediction.

incorporating techniques from control theory, such as mode stabilization and covariance matching [29–
32]. Finally, although the GLDMs that PGLDM learns are widely used (e.g., in neuroscience), such
models may not be suitable for time-series with nonlinearly evolving states. We did not compare our
method against nonlinear deep learning methods, such as recurrent neural networks and transformers
[33–38], because the goals of these two modeling approaches are different. While nonlinear deep
learning methods are typically used to boost overall decoding performance, GLDMs are used for
their interpretability and utility in scientific investigations and in real-time, computationally-efficient
engineering applications (e.g., brain-computer interfaces).

5 Discussion

We developed PGLDM, a novel analytical multi-staged covariance-based SSID algorithm for mod-
eling two generalized-linear processes while also dissociating shared from private dynamics. In
simulations we demonstrate that our method successfully achieves this capability agnostic to the
generalized-linear observation distribution. As a result, our approach more accurately models system
dynamics compared to several commonly-used GLDM variants and their corresponding learning
algorithms. We also demonstrate our method’s applicability to real data by modeling two distinct NHP
datasets recorded under different contexts and from different brain regions. In both simulations and
in real data, PGLDM’s ability to dissociate shared from private dynamics improved decoding of a sec-
ondary time-series from a primary time-series despite using lower-dimensional latent states. Further,
although here we specifically focused on modeling Gaussian, Poisson, and Bernoulli observations,
our algorithm can be extended to alternate distributions described with generalized-linear models or to
other link functions than the ones used here, as long as there exists a corresponding computationally
tractable moment conversion equation. This is possible, if a closed-form equation exists, because
the covariance-based approach of PGLDM only requires the second-order moments after moment
conversion (equations (2), (5), (8), (11), (12)); as such, in these scenarios the moment conversion
algorithm can be modified for the desired link function and/or generalized-linear observation model
[21, 24]. Beyond neuroscience, due to the high-prevalence of GLDMs across various application
domains, our method may be a useful tool for modeling the shared and private dynamics of joint
generalized-linear processes with distinct observation distributions.
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A Appendix

A.1 Derivation

Here we provide the derivation for PGLDM (prioritized generalized-linear dynamical modeling),
a covariance-based subspace identification algorithm that learns a dynamical model of a primary
time-series while dissociating shared vs. private latents with a secondary time-series. We define the
following equivalent formulation for our dynamical model (equation (6)), where the block structure
delineates shared (x(1)) and private (x(2),x(3)) latent states
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tk|zk ∼ Pt|z(tk; h(zk))

(13)

with parameters and noise terms defined as in sections 2.1-2.2 and 3.1.

A.1.1 Standard Covariance-Based SSID

Before we present the derivation for PGLDM, we review a few steps in standard covariance-based
SSID (section 2.1) that will help us in the derivation. First, it can be shown that the τ -th lag cross-
covariance terms for r can be written in terms of model parameters as Λrτ = Cov (rk+τ , rk) =
CrA

τ−1G, where G := Cov(xk+1, rk). Using this relationship, the Hankel matrix, Hr, can be
expanded as [19, 20]

Hr = Cov(rf , rp) =

 Λri Λri−1
· · · Λr1

...
... · · ·

...
Λr2i−1 Λr2i−2 · · · Λri



=


CrA

i−1G CrA
i−2G · · · CrG

...
... · · ·

...

CrA
2i−2G CrA

2i−3G · · · CrA
i−1G

 .

(14)

Second, using a singular-value decomposition the above Hankel matrix Hr can be decomposed into
observability, Γr, and controllability, ∆, matrices from which model parameters can be extracted
[19, 20]

Hr
SVD
= Γr∆ =


Cr

CrA
...

CrA
i−1

 [Ai−1G · · · AG G
]
. (15)

We note that there exists a canonical correlation analysis (CCA) version of this algorithm wherein Hr

is left and right normalized by the square root matrices of the future and past observation covariance
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matrices, respectively, prior to the singular-value decomposition. Specifically L−1HrM
−T SVD

=

Û Σ̂V̂ T , where Λff = Cov(rf , rf ) = LLT and Λpp = Cov(rp, rp) = MMT . The observability
and controllability matrices can be recovered as Γr = LÛ Σ̂1/2 and ∆ = Σ̂1/2V̂ TMT , respectively.

We refer readers to section 8.7 of Katayama [20] for more detail. We can similarly derive a CCA
version of PGLDM, which we present next. This can be achieved by applying the appropriate
normalizations to both Hr and Hzr, the cross-term Hankel matrix defined below, prior to the
singular-value decomposition. The resulting decomposition would then have to be un-normalized to
retrieve the appropriate observability and controllability matrices.

A.1.2 PGLDM: Stage 1 derivation

In the first stage of our algorithm, our goal is to learn the model parameters that correspond to
the shared dynamical subspace of z and r via the latent state x

(1)
k : (A11,C

(1)
r ,C

(1)
z , b,d). Before

deriving the first stage, we first present a few parameter definitions and simplifying assumptions. As

noted in section 3.1, G can be partitioned as G =
[
G(1)T G(2)T G(3)T

]T
due to the block structure

of equation (13). Further, based on assumptions 3.2 and 3.3 we can set G(3) = 0. Leveraging the
block structure of G we can also define a simplified block-partitioned structure for the controllability
matrix ∆ (equation (15)) as
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The block-partition structure of ∆ will play an important role in the separation of learning between
stages 1 and 2 and will enable the prioritized identification of shared dynamics A11.

To begin the derivation, it can be shown that the τ -th lag cross-covariance between z and r can be
written in terms of model parameters as Λzrτ = Cov (zk+τ , rk) = CzA

τ−1G. Using the block
definition of G, we can simplify the cross-covariance term as
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[
C

(1)
z 0 C

(3)
z

] [A11 0 0
A21 A22 0
0 0 A33

]τ−1
G(1)

G(2)

G(3)

 = C(1)
z Aτ−1

11 G(1).

The Hankel matrix between future secondary observations and past primary observations can then be
expanded as

Hzr = Cov(zf , rp) =
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A singular-value decomposition of Hzr yields the observability matrix for z (i.e., Γz) and the
controllability matrix ∆(1) associated with the shared dynamics

Hzr
SVD
= Γz∆

(1) =


C

(1)
z

C
(1)
z A11

...
C

(1)
z Ai−1

11

 [Ai−1
11 G(1) · · · A11G

(1) G(1)
]
. (17)

At this point, C(1)
z can be read off the first nz rows of Γz. The shared latent dynamics matrix A11 can

be learned by solving a least-squares problem based on the controllability matrix ∆(1) (as introduced
in section 3.2.1)

∆(1) = A11∆
(1)

where (18)

∆(1) :=
[
Ai−1

11 G(1) · · · A11G
(1)
]
, ∆

(1)
:=
[
Ai−2

11 G(1) · · · G(1)
]
,

which has the following closed-form solution: A11 = ∆(1)(∆
(1)

)†.

To extract C(1)
r , we first note that the Hankel expansion in equation (15) can be rewritten with

the block-structure of ∆ in mind as (we omit partitions corresponding to latents x(3) due to the
decoupling)

Hr = UΣVT =
Γr

(UΣ1/2)
∆

(Σ1/2VT ) =
Γr

(UΣ1/2)

[
∆(1)

∆(2)

]
(Σ1/2VT )

(a)
=

([
U(1) U(2)

] [Σ(1)1/2 0

0 Σ(2)1/2

])([
Σ(1)1/2 0

0 Σ(2)1/2

][
V(1)T

V(2)T

])

= (U(1)Σ(1)1/2)
∆(1)

(Σ(1)1/2V(1)T ) + (U(2)Σ(2)1/2)
∆(2)

(Σ(2)1/2V(2)T )

(b)
= Γ

(1)
r ∆(1) + Γ

(2)
r ∆(2)

(19)

where equivalence (a) is due to the block-partition structure of ∆ and equivalence (b) implicitly
introduces a block structure to observability matrix Γr, where Γ

(1)
r and Γ

(2)
r correspond to the

observability matrices associated with the shared and private latents, respectively. More formally,

Γr =
[
Γ
(1)
r Γ

(2)
r

]
=


Cr

CrA
...

CrA
i−1

 =

C(1)
r C

(2)
r

Γ
(1)

r Γ
(2)

r

 , (20)

where Γr denotes Γr from which the top nr rows have been removed. Taken together, Hr can be
viewed as the sum of “shared” and “private” components (equation (19)). Thus, we can compute Γ(1)

r

as
Hr∆

(1)† = (Γ(1)
r ∆(1) + Γ(2)

r ∆(2))∆(1)† = Γ(1)
r (21)

where we have used the orthonormal property of right singular vectors V to conclude ∆(2)∆(1)† = 0.
At this point, we can extract C(1)

r by reading the top nr rows of Γ(1)
r . Finally, b and d can both be

learned directly from the data either by computing the empirical mean (when working with continuous
Gaussian observations) or during the moment transformation (section 2.2). This concludes the learn-
ing of all parameters associated with the shared dynamical subspace, i.e., (A11,C

(1)
r ,C

(1)
z , b,d).

A.1.3 PGLDM: Stage 2 derivation

In the second stage of our algorithm, our goal is to learn model parameters that describe the private
dynamics of r via the latent state x

(2)
k : ([A21 A22] ,C

(2)
r ). To learn these parameters, we first

extract the private component in equation (19), termed H
(2)
r , by subtracting Γ

(1)
r ∆(1) from Hr,
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and decompose it via a singular-value decomposition to get Γ(2)
r and ∆(2) as (we omit reference to

private latents x(3) due to the decoupling)

H(2)
r = Hr − Γ(1)

r ∆(1)SVD
= Γ(2)

r ∆(2). (22)

At this point, we take C
(2)
r as the top nr rows of Γ(2)

r and concatentate with C
(1)
r to complete Cr.

To complete the state dynamics matrix A, we refer back to the block-structure representation of the
controllability matrix in equation (16)[

∆(1)

∆(2)

]
=

[[
A11 0
A21 A22

]
Ai−2G · · ·

[
A11 0
A21 A22

] [
G(1)

G(2)

] [
G(1)

G(2)

]]
from which we construct the following relationship[

∆(1)

∆(2)

]
=

[
A11 0
A21 A22

][
∆

(1)

∆
(2)

]
(23)

where ∆ and ∆ are defined as in equation (18). We can further isolate the residual state transitions
as the solution to the following equation (taken from the second row of equation (23))

∆(2) = [A21 A22]

[
∆

(1)

∆
(2)

]
= [A21 A22]∆, (24)

which has the following closed-form least-squares solution: [A21 A22] = ∆(2)∆
†
. The full state

dynamics is the concatenation A =

[
A11 0
A21 A22

]
. This concludes the learning of parameters for the

private dynamics in r, i.e., ([A21 A22] ,C
(2)
r ).

A.1.4 PGLDM: Stage 3 derivation

Finally, in the third state we can learn the model parameters associated with the private dynamics in z,
that is (A33,C

(3)
z ), in an approach similar to stage 2. We first construct a future-past Hankel matrix,

Hz, associated with the secondary observation z. Using an analysis similar to equations (19) and
(21), we can show that Hz as the sum of “shared" and “private" components. In the case of secondary
observation z, we can explicitly show that its observability matrix, Γz, assumes a block form as

Γz =


Cz

CzA
...

CzA
i−1

 (a)
=


C

(1)
z 0 C

(3)
z

C
(1)
z A11 0 C

(3)
z A33

...
C

(1)
z Ai−1

11 0 C
(3)
z Ai−1

33

 =
[
Γ
(1)
z 0 Γ

(3)
z

]
, (25)

where equivalence (a) is due to the block-partition definitions of Cz and A in equation (13). Hence-
forth, we omit the middle block of Γz, without any loss of generality, and simplify Hz as

Hz = UΣVT =
Γz

(UΣ1/2)
∆z

(Σ1/2VT ) =

[
Γ
(1)
z Γ

(3)
z

]
(UΣ1/2)

∆z

(Σ1/2VT )

(a)
=

([
U(1) U(3)

] [Σ(1)1/2 0

0 Σ(3)1/2

])([
Σ(1)1/2 0

0 Σ(3)1/2

][
V(1)T

V(3)T

])

=

Γ(1)
z

(U(1)Σ(1)1/2)(Σ(1)1/2V(1)T ) +

Γ(3)
z

(U(3)Σ(3)1/2)(Σ(3)1/2V(3)T )

(b)
= Γ

(1)
z ∆

(1)
z + Γ

(3)
z ∆

(3)
z

(26)
where equivalence (a) used the block structure of Γz and equivalence (b) implicitly introduced a
block structure on the controllability matrix associated with observation z. In stage 1 we had learned
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Γ
(1)
z , thus we can use an approach similar to equations (21)-(22) to extract the private component of

Hz. We first compute ∆
(1)
z , the z controllabilty matrix associated with the shared dynamics, as

Γ(1)†
z Hz = Γ(1)†

z (Γ(1)
z ∆(1)

z + Γ(3)
z ∆(3)

z ) = ∆(1)
z . (27)

Then we can extract and decompose the private component of the Hankel matrix

H(3)
z = Hz − Γ(1)

z ∆(1)
z

SVD
= Γ(3)

z ∆(3)
z . (28)

As in the previous stages, C(3)
z is taken as the top nz rows of Γ(3)

z , thus completing Cz. To learn
A33 we use the same approach as standard covariance-based SSID (section 2.1) and solve the
problem Γ

(3)

z = Γ(3)
z A33, where Γz and Γz denote Γz from which the top or bottom nz rows

have been removed, respectively. This optimization problem has the closed-form least-squares
solution A33 = Γ†

zΓz. This concludes the learning of parameters for the private dynamics in z, i.e.,
(A33,C

(3)
z ).

A.1.5 Transformation of joint Gaussian and Poisson moments

In sections A.1.1-A.1.4 we demonstrated how all model parameters can be extracted in three stages
with prioritization, starting from the second-moments of the r and z. As an example of how these
moments can be computed from generalized-linear observations, we consider the specific case of
Poisson/Gaussian observations as y and z, respectively. The joint second-moment Λzfmrpn can be
analytically recovered from the computable moments of y (the Poisson observations) and z (the
Gaussian observations), using equation (11) as

Λzfmrpn = Cov(zfm ,ypn) / µypn

where m and n indicate index-wise notation. Here we provide a sketch of the proof. Without loss of
generality, assume z and r are stationary with a mean of 0 (e.g., demeaned during preprocessing).
We can compute the covariance of any two elements j and k of vectors zf and yp respectively as

Cov(zfj ,ypk
) = E

[
zfjypk

]
= E

[
E
[
zfjypk

|rpk

]]
(a)
= E

[
E
[
zfj |rpk

]
E [yfk |rpk

]
]
= E

[
E
[
zfj |rpk

]
exp(rpk

)
]

where (a) is because zfj and ypk
are independent when conditioned on latent log-rate rpk

. Next, we
use the fact that zf and rp are jointly Gaussian random processes and, as a result, the mean of the
conditional distribution, E[zfj |rpk

], is equal to Λzfj
rpk

Λ−1
rpkk

rpk
(i.e., the linear least-square estimate

of zfj using rpk
). The last step is to compute the expectation

E
[
Λzfj

rpk
Λ−1
rpkk

rpk
exp(rpk

)
]
= Λzfj

rpk
µypk

= Cov(zfj ,ypk
)

which, after rearranging terms, yields

Λzfmrpn = Cov(zfm ,ypn
) / µypn

.

We note that the final equation is equivalent to a derivation provided by Buesing et al. [21] as
their supplementary equation (6) to compute cross-covariances between Poisson observations and
Gaussian inputs, instead of between joint Poisson and Gaussian observations (as was in our case).
The remaining unimodal (i.e., Poisson-only) moment conversions that are required to compute Hr

are performed per equation (5) in section 2.2. For Bernoulli-Gaussian moment conversion equations,
we refer the reader to section 3.3 equations (5) and (6) in Stone et al. [24].

A.1.6 Generalized cross-term Hankel matrix with different horizons per observation

For ease of exposition, the derivation in section A.1.2 was provided for a cross-term Hankel matrix
Hzr that was formed with equal horizons for z and r as

Hzr := Cov(zf , rp) =


Λzri Λzri−1

· · · Λzr1
Λzri+1 Λzri · · · Λzr2

...
... · · ·

...
Λzr2i−1

Λzr2i−2
· · · Λzri

 , zf :=

 zi
...

z2i−1

 , rp :=

 r0
...

ri−1

 .
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In general, the rank of Hankel matrices formed from ideal data covariances can be shown to be
the same as the state dimension associated with it [19, 20], i.e., n1 = rank(Hzr) per equation (17)
and n1 + n2 = rank(Hr) per equation (15). However, during system identification these Hankel
matrices are formed from non-ideal empirical sample covariances and, as a result, are typically full
rank. Nevertheless, we expect the singular values associated with real dynamics (e.g., the first n1

singular values in Hzr) to be larger than subsequent singular values that are due to noise. Indeed, the
goal of the SVD applied to Hankel matrices, e.g., in equations (15), (17), and (22), is to remove noisy
singular values and only keep the largest singular values that are most likely due to real dynamics.

Given that the Hankel matrices formed during system identification are typically full rank, their rank is
determined based on their dimensions, i.e., rank(Hzr) = min(i×nr, i×nz) and rank(Hr) = i×nr.
Thus, the horizon parameter i that is used to form the Hankel matrix plays an important role in its
final dimensions, rank, and, consequently, on the maximum number of non-zero singular values that
can be preserved after applying SVD. This, in turn, determines the maximum state dimension that can
be learned for the resulting model. Thus, to provide more flexibility over the state dimensions that
can be learned in each stage of PGLDM, we generalize the Hankel matrix Hzr to support different
horizon values for each of the observations, iz and ir, such that

Hzr =


Λzriz Λzriz−1

· · · Λzriz−ir+1

Λzriz+1
Λzriz · · · Λzriz−ir+2

...
... · · ·

...
Λzr2iz−1

Λzr2iz−2
· · · Λzr2iz−ir

 with zf :=

 ziz
...

z2iz−1

 , rp :=

 r0
...

rir−1

 .

The observation horizon ir is also used when forming the Hankel matrix Hr, per equation (14).
The additional flexibility gained from having different horizon values can be especially critical in
scenarios wherein the dimensionalities of z and r are very different, such as in the case of our NHP
analysis in section 4.2, where nz = 4 and nr = 15. We select the final horizons iz and ir via an
inner cross-validation based on which values achieve the best decoding accuracy in the training data.

A.2 Assumptions and generalizability of the block structure formulation

Here we explain the assumptions underlying the proposed block formulation of A, as defined in
equation (7), and discuss the model’s generalizability. First, we assume that the private latents of
y (i.e., x(2)) and of t (i.e., x(3)) do not drive the shared latents (i.e., x(1)) so as not to leak private
dynamics into shared dynamics. Thus, we take A12 = 0 and A13 = 0. Second, we assume that the
private dynamical latents of the two signals (i.e., x(2) and x(3)) do not drive each other, and so we
take A23 = 0 and A32 = 0. Finally, the asymmetrical decision to set A21 ̸= 0 and A31 = 0 was
dictated by the asymmetrical roles played by the primary (i.e., y) and secondary (i.e., t) time-series
in our formulation. We initially made the assumption that A31 = 0 to simplify the derivation of
our method because it allowed the optional third stage (i.e., extraction of the dynamics private to
t) to operate independently of the first stage (i.e., extraction of the shared dynamics). However,
this assumption was still in line with our notion of shared and private dynamics; if A31 ̸= 0, then
the primary time-series (y) would be informative (i.e., predictive) of the private dynamics in the
secondary time-series (t) through the influence of the shared dynamics x(1) on future x(3).

Although A21 fundamentally has a similar information leakage impact in the reverse direction, we
chose to keep the more general form of A21 ̸= 0. Unlike the A31 case, a non-zero A21 does not
couple the multi-stage learning. This is because we designate a primary time-series in our formulation
(taken as y here) that acts as a predictor for the secondary time-series (taken as t here). Given this
designation, we exclusively calculate all Hankel matrices using the primary/predictor time-series as
the past observations. Specifically, we only compute Λzrτ = Cov(zk+τ , rk) (equation (8)) and not
Λrzτ

= Cov(rk+τ , zk). From a derivation perspective, this means that A21 only appears in stage 2
and not in stage 1, thereby never coupling the learning of private and shared dynamics. However,
we clarify that if the user requires a strictly symmetrical definition of A wherein all latent states
are fully decoupled from each other (i.e., a block-diagonal structure), our algorithm can, with a
minimal modification to stage 2, cover the case where A21 = 0. To learn a block diagonal A, one
would only need to compute the solution to ∆(2) = A22∆

(2)
instead of the original formulation

∆(2) = [A21 A22]∆
(1,2)

(see section 3.2.2 and equation (24)).
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Finally, taking A21 ̸= 0 also has particular significance in the case when there are no private latents
associated with t, that is when n3 = 0. In this case, taking A21 non-zero allows the block-structured
state-space form defined in equations (6) and (7) to be assumed without any loss of generality.
Specifically, when n3 = 0, the latent states in our model describe the primary time-series y with a
subset also explaining the secondary time-series t. Formally, we define the true dimensionality of the
shared states (denoted by n1) based on the rank of the observability matrix for the pair (A,Cz). It
can be shown using linear systems theory that an invertible linear transformation of the latent states
(i.e., a similarity transformation) always exists that can place the n1 dimensional latent subspace that
is observable via t as the first few dimensions of the latent space, thus giving the block-structured
formulation of equation (7). This can be seen by applying Theorem 3.8 from Subspace Methods for
System Identification [20] to the first two lines of equation (6). As a result, the blocked formulation
of equation (7) is equivalent to the formulation from (6) and we can aim to learn our model in the
form of equation (7) without any loss of generality. Thus, our choice to keep A21 ̸= 0 was also in
part motivated by a desire to maintain a more general state-space form for the case when n3 = 0.

A.3 Noise statistics

Standard SSID algorithms (e.g., section 2.1) learn linear state-space models of the following form{
xk+1 = Axk +wk

rk = Crxk + vk
, (29)

where state noise, wk, and observation noise, vk, are typically additive Gaussian noise and may have
a non-zero instantaneous cross-covariance S = Cov(wk,vk). SSID in general does not assume any
restrictions on the noise statistics. However, the Poisson observation model (equations (4) and (6))
has no additive Gaussian noise for rk and instead exhibits Poisson noise in yk when conditioned on
rk. This means that vk = 0 in equation (6), and thus R = 0 and S = 0. Imposing these constraints
is important for accurate parameter identification for Poisson observations, but was not previously
addressed by Buesing et al. [21]. Thus, we require our algorithm to find a complete parameter set
Θ′ that is close to the learned (A,Cr,Cz, b) by PGLDM and imposes the noise statistic constraints
R = 0 and S = 0. To do this, inspired by Ahmadipour et al. [22], we form and solve the following
convex optimization problem to satisfy the noise statistics requirements

minimize
Λx

∥S(Λx)∥2F + ∥R(Λx)∥2F

such that Λx ⪰ 0, Q(Λx) ⪰ 0, R(Λx) ⪰ 0
(30)

where Λx := Cov(xk,xk) denotes the latent state covariance. Further, we enforce the following
covariance relationships, derived from equation (1) [19], as constraints Q(Λx) = Λx − AΛxA

T

R(Λx) = Λr0 − CrΛxC
T
r

S(Λx) = G − AΛxC
T
r

. (31)

This approach has multiple benefits. First, it finds noise statistics that are consistent with the
assumptions of the model (e.g., R = 0). Second, it enforces the validity of learned parameters,
i.e., parameters corresponding to a valid positive semidefinite covariance sequence (see section 4.4).
It also enables state prediction (see appendix A.8.2). Combining the previously found parameters
and the matrix Q that corresponds to the minimizing solution Λx of equation (30), we have the full
parameter set Θ′ = (A,Cr,Cz, b,Q). We used Python’s CVXPY package to solve the semidefinite
programming problem defined in equation (30) [39, 40]. For all of our comparisons against PLDSID,
we learned the noise statistics associated with the method’s identified parameters using this approach,
but keeping the rest of the algorithm the same.

A.4 GLDM parameter equivalencies

Here we briefly discuss the equivalence of learnable parameters by SSID for linear dynamical
models of the form in equation (1). In section 2.1 we stated that standard covariance-based SSID
learned the parameters Θ = (A,Cr,G,Λr0), but not any of the noise statistics (e.g., covariances
Q and R). Indeed, there also exist SSID approaches that instead learn the following parameter set
(A,Cr,Q,R,S) [19, 20]. Both sets of parameters are valid and knowledge of either completely
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defines the model in equation (1). Moreover, the two sets of model parameters can be related to
each other using equations (31) [19] – the same relationships we use as constraints in the convex
optimization problem defined in appendix A.3 for learning the noise statistics of the PLDS model (4).

A.5 Possibility of learning unstable modes in small data regimes

Subspace identification methods generally only converge to the correct system parameters asymp-
totically (see figure 4 in appendix A.11), as the empirically estimated covariances also converge to
their true values [19]. For finite samples, however, there will always be some error in the learned
parameters. Although such errors are generally benign, extreme scenarios can result in unstable
state dynamics, i.e., the identified A has at least one eigenvalue with magnitude larger than 1. We
omitted any learned unstable models in our analyses, which was reflected in the reduced number of
samples in the standard error of the mean (s.e.m). However, we rarely encountered unstable models;
for example, in the results presented in figure 4, there were no unstable models for training set sizes
typical of neuroscience datasets (i.e., 1e5 or 1e6 training samples).

A.6 Possibility of accumulation of error in multi-staged learning

There are two aspects of the learning to consider. First, there is a signal-to-noise (SNR) consideration
that is fundamental to learning methods in general. In stage 1, our method requires high SNR in the
cross-correlations between future secondary time-series observations and past primary time-series
observations. If most of the signal present in the primary time-series is not attributable to the shared
latent states (i.e., the residual Hankel in equation (10) dominates), then most of Hzr’s singular values
will be small and stage 1 may have greater estimation error. If the reverse situation holds and the
shared latent states explain most of the signal in the primary time-series, then the residual Hankel,
H

(2)
r will mostly have small singular values, possibly resulting in estimation errors during stage

2. Inspection of the singular values prior to model parameter extraction can, however, help guide
method usage. For example, if the singular values of Hzr are small, then this may indicate that the
two time-series do not have shared dynamics and only stage 2 of the method is needed (i.e., standard
GLDM). If the singular values of the residual Hankel are small, then this may indicate that almost all
dynamics are shared and only stage 1 is needed.

A second consideration is a numerical one that could result in an accumulation of errors in downstream
stages. If during stage 1 the modes are identified inaccurately because there is minimal shared
dynamics between the two time-series and/or the training sample size is too small, then this estimation
error could impact the computation of the residual matrix H

(2)
r thereby introducing error in stage 2.

Examining the singular values of Hzr may, however, also help avoid this situation. Although the
multi-stage learning can lead to error accumulation in some situations, it comes with the benefit that
our method has the ability to more accurately identify the shared dynamics (when they exist) in stage
1, compared to existing GLDM methods. Moreover, Figures 1b, 2b, and 3b suggest that the impact
of error accumulation is not severe and can be situation-dependent; for example, self-prediction
performance of PGLDM reaches that of PLDSID in 1b, reaches very close to it in 2b, and exceeds it
in 3b.

A.7 Experimental details

Below we provide details on how simulations were generated and about our real data analyses.

A.7.1 Simulations

For our synthetic data in section 4.1, we simulated generalized-linear observations from random
models as per equation (6). For the simulations used to generate the results in Table 1, we fixed the
number of shared and private latent states as n1 = 2, n2 = 6, and n3 = 4. We randomly selected
the observation dimensions with uniform probability from the following ranges: 10 ≤ nr ≤ 15
and either 5 ≤ nz ≤ 10, when the secondary observation was Gaussian, or 10 ≤ nz ≤ 15, when
Poisson. For the simulations used to generate figure 2, we fixed the latent dimensions as n1 =
4, n2 = 12, and n3 = 4 and randomly sampled observation dimensions with uniform probability
from: 20 ≤ nr ≤ 30 and 5 ≤ nz ≤ 10. Across all simulations we used these dimensions to generate
random model parameters Θ = (A,Cr,Cz, b,d,Q). We constrained the complex eigenvalues (i.e.,
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modes) of the state transition matrix A to have magnitudes uniformly distributed between [0.93, 0.99]
and phases uniformly distributed between [0.019, 0.314]. These restrictions correspond to stable,
slow-decaying systems with time-constants within [0.138, 0.995] seconds and frequencies within
[0.3, 5] Hz that are representative of various real time-series data, such as neural dynamics [41, 42].

For all Gaussian simulations we set the time-series mean (e.g., b or d) to 0. Additive Gaussian noise
covariances (e.g., Q) were randomly generated to be positive definite matrices. For observation time-
series, the observation matrix C was generated to hit a target signal-to-noise, defined as the variance
associated with latent states normalized by observation noise variance (e.g., (CzΛxC

T
z )/(Λϵ)).

Target SNR values were fixed at 10 for the simulations used in Table 1 or were randomly generated
as 10α with α uniformly distributed between [0, 2] for the simulations in figure 1. All Poisson
simulations were generated on a 10 ms timescale with a baseline log rate (e.g., b) randomly selected
within [0.5, 15] Hz. Observation matrix C was scaled to achieve a desired per-dimension 95th
percentile modulation depth of 10, where modulation depth is defined as exp(Cxk). All Bernoulli
observations were also generated on a 10ms timescale with a baseline set to 0. In this scenario, the
observation matrix C was scaled such that the corresponding Gaussian latent defined by Cxk would
have a standard deviation approximately equal to 1.

To simulate a state noise covariance Q that adhered to the block-structure assumption defined in
assumption 3.2, we leveraged the fact that latent x(3) is completely decoupled from latents x(1) and
x(2) in our model definition (as per equations (7) and (13), and assumptions 3.2 and 3.3). We chose
to simulate the dynamics private to the secondary observation time-series as a separate 4-dimensional
latent dynamical model. Specifically, we chose to generate one dynamical model corresponding to
the latents x(1) and x(2), and a separate dynamical model corresponding to x(3). This approach,
however, only works for Gaussian secondary observations. For the Poisson-Poisson case we instead
generated an unconstrained Q. Despite this deviation from assumption 3.2, our method’s ability to
identify the shared dynamical modes was not impacted, as shown by the results in Table 1.

Finally, for all simulation experiments we use horizon values of 10 for both observations by default.
For the simulations used in Table 1 we generated 25600 training samples, and for the simulations
used in figure 1 we generated 2e6 samples, splitting 50/50 into training and test data.

A.7.2 NHP Dataset 1: motor cortex recordings during reaching

All NHP analyses in figure 2 were performed on a public dataset released by the Sabes lab
[17], using the following sessions from monkey I: 20160915/01, 20160916/01, 20160921/01,
20160927/04, 20160927/06, 20160930/02. We performed cross-validation using randomly-selected,
non-overlapping subsets of 15 channels (nr = 15) binned at 50ms resolution within each session.
We used a nested inner cross-validation to select hyperparameters per fold based on the prediction
CC of kinematics in the training data. Hyperparameters in this context were discrete horizon ir,
continuous horizon iz, and time lag, which specifies how much the neural time-series should be
lagged to time-align with the corresponding behavioral time-series [33, 43, 44]. We swept ir values
of 5 and 10 time bins, iz values of 10, 20, 22, 25, 28, and 30 time bins; and lag values of 0, 2, 5,
8, and 10 time bins. We removed channels that had average firing rates less than 0.5 Hz or greater
than 100 Hz. Similar to Lawlor et al. [45], we also removed channels that were correlated with other
channels using a correlation coefficient threshold of 0.4.

A.7.3 NHP Dataset 2: visual areas V1-V2 during stimulation

All NHP analyses in figure 3 were performed on a public dataset released by Zandvakili and Kohn
[16, 18], using a randomly selected session 107l002p67. In the released dataset, each recording
session consisted of repetitions of 1.28s of stimulus presentation (1 of 8 possible orientation gratings)
followed by 1.5s of a blank screen. For our analysis, we only considered neural activity during periods
of stimulation binned at 20ms resolution. Further, we performed five-fold cross-validated modeling
within each stimulation condition. For both observation time-series, we removed channels that had
average firing rates less than 0.5 Hz or greater than 100 Hz. Because there were more V1 units than
V2 units, we performed cross-validation using randomly-selected, non-overlapping subsets of V1
units equal to the number of available V2 units, that is nr = nz = |V2 units|. We present averaged
results across folds, stimulation conditions, and non-overlapping subsets, which we collectively refer
to as “trials" for a total of 120 trials. No hyperparameter optimization was performed for this analysis;
discrete horizons for SSID-based methods were set to a fixed value of ir = iz = 5.
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A.8 Model evaluation

We evaluated learning using two different metrics: (1) shared dynamical mode identification for
models with the true shared latent state dimensionality and (2) predictive power of inferred latent
states.

A.8.1 Shared dynamical mode identification accuracy

To evaluate the learning of shared dynamics, we computed the normalized eigenvalue error as
∥Ψtrue −Ψid∥2 / ∥Ψtrue∥2, where Ψtrue and Ψid denote vectors containing the true (i.e., the eigenvalues
of A11) and learned shared eigenvalues, respectively, and ∥ · ∥2 denotes the Euclidean L2-norm. To
compute the first metric for our baselines that did not explicitly model shared dynamics, we needed
to select the n1 modes identified from the primary time-series only that were the most representative
of the secondary time-series. To do so, we first trained our baselines on the primary time-series
observations and extracted the latent states. Then, we sorted these learned latent states based on their
accuracy in predicting the secondary observations (appendix A.8.2). We computed the eigenvalues
associated with the top n1 most predictive latent states, which we considered as the shared modes
identified by our baselines. This was only necessary for configurations where the learned latent
dimensionality was greater than the shared dimensionality (i.e., n1 + n2 > n1). For configurations
wherein learned nx is smaller than true n1, we substituted missing modes with 0 prior to computing
the normalized error.

A.8.2 Predictive power of inferred latent states

We also evaluate the predictive power of our learned models in two scenarios: (1) prediction of the
secondary observation time-series from the primary time-series, a common use-case in neuroscience
[2, 7, 46], and (2) one-step ahead self-prediction of the primary time-series from itself. Using models
learned from the training data, we constructed recursive Bayesian filters to estimate the latent states
in a test dataset. Because our analyses in figures 1-3 used Poisson observations as the primary
time-series, we chose to use a Poisson point-process filter (PPF) [47] for state estimation. (We note
that using the PPF for state estimation is only possible if the learned noise statistics are valid, see
appendix A.3.) We denote the one-step ahead latent state prediction of xk using all samples of yk up
to time k−1 by x̂k|k−1. These state estimates can be used to predict both sets of (latent) observations
as either Czx̂k|k−1 or Crx̂k|k−1.

In order to compare the predictive power of our learned models with those of our baselines (PLDSID
and Laplace-EM), it was necessary to learn an observation model (e.g., Cz) for the secondary time-
series. To do so, we first estimate the latent states in the training data using a PPF and then fit
a regression model (scikit-learn; statsmodels) from the latent states to the secondary observation
[48, 49]. For example, when the secondary observation, zk, is a continuous Gaussian time-series,
the parameter Cz was learned using ordinary least-squares such that Cz = ZX̂T (X̂X̂T )†, where
columns of Z and X̂ contain zk and x̂k|k−1 for all training timepoints k. To make all methods
more comparable, we use the same approach to refit the secondary observation’s model learned by
PGLDM.

For continuous Gaussian observations, we quantify the decoding performance using correlation
coefficient (CC). For discrete Poisson observations we instead evaluate prediction using the area
under the receiver operating characteristic curve (AUC). Since all Poisson predictions were made
using the recursive Bayesian filter’s estimates of the latent states, our goal was to validate if our
model could accurately predict the occurrence of point process events (versus no events) in a given
time step when using all past observations of the primary time-series yk. For example, in the results
shown in figure 2b-c we computed the probability of an event for the m-th dimension of y at time k
conditioned on all observations y1:k−1, as

P (ymk > 0|y1:k−1) =
∑

xk
p(ym

k > 0 | y1:k−1,xk)p(xk | y1:k−1)

(a)
= Exk | y1:k−1

[p(ym
k > 0 | xk)]

(b)
= Exk | y1:k−1

[1− exp(exp(rmk )) | xk]

(c)
≈ Exk | y1:k−1

[exp(rmk ) | xk]
(d)
= exp

(
r̂mk|k−1 +

1
2Λr̂mm

)
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Table 2: Average learning runtime over 25 fits with 30484 training samples

Method Name Runtime in seconds (± s.e.m)

PGLDM, n1 = nx = 8 (SSID / optimization) 0.269 ± 0.008 / 0.080 ± 0.005
PGLDM, n1 = 4, nx = 8 (SSID / optimization) 0.253 ± 0.005 / 0.125 ± 0.046
PLDSID, nx = 8 (SSID / optimization) 0.199 ± 0.002 / 0.063 ± 0.011
Laplace-EM, nx = 8 (100 iterations) 109.656 ± 0.662
Laplace-EM, nx = 8 (1 iteration) 1.097 ± 0.007

where in (a) we simplify using yk’s conditional independence from the past y1:k−1, in (b) we
simplify based on yk | xk ∼ Poisson(exp(rk)), in (c) we use the Taylor series approximation of
exp(exp(rk)) for small exp(rk), and (d) is simply the mean of a log-normal random variable. Note
that r̂k = Crx̂k|k−1 + b and Λr̂ = CrΛx̂k|k−1

CT
r , where x̂k|k−1 is the current estimate for the state

and Λx̂k|k−1
the estimate for the state-prediction covariance. We can similarly compute AUC for the

prediction of secondary Poisson observations, as in figure 3.

A.9 Stage 3 simulation results

We validated our algorithm’s third stage for learning the dynamics private to the secondary observation
z using simulations. We simulated 10 random models with the following dimensions n1 = n2 =
n3 = 4, nr = 20, nz = 4, with the primary/secondary observation pair being Poisson/Gaussian. The
Gaussian observations were set to have SNR of 10 (see appendix A.7.1). We constrained the complex
eigenvalues of the state transition matrix A to have magnitudes uniformly distributed between
[0.93, 0.99] (as before) and phases uniformly distributed between [0.019, π]. Using a training set size
of 1e6 samples, we used PGLDM with all three stages to learn all sets of shared and private modes.
We then computed the normalized eignevalue error between the ground truth private modes (i.e.,
eigenvalues of A33) and the identified private modes. We found an average normalized identification
error of 1.12% for learning the dynamics associated with the latent states x(3). For comparison, this
is approximately equivalent to -2.05 on the y-axis of figure 1.

A.10 Computation time details

We compared the computational runtime efficiency between our method PGLDM (using either stage
1 only or both stages 1 and 2), PLDSID, and Laplace-EM on one session of NHP data binned at
50ms resolution (section 4.2 and appendix A.7.2). We repeatedly trained on 25 distinct time-series
datasets and computed an average runtime for learning across all fits. Each dataset consisted of
a 6097-by-15 matrix (timesteps-by-features) of Poisson observations and a 6097-by-4 matrix of
Gaussian observations. All methods learned latent models of dimension 8 (i.e., nx = 8). When both
stages of PGLDM were used, we fixed n1 = 4 while keeping nx = 8. Laplace-EM was run for 100
iterations (the default setting) and learning times are reported both as an average for 100 iterations as
well as for a single iteration. For PGLDM and PLDSID we separately report average running times
for the SSID portion of the algorithm and for the convex optimization problem used to learn state
noise, as outlined in appendix A.3. The results are presented in Table 2.

Most of the computational cost of our algorithm is involved in the matrix operations associated with
1) computing the necessary covariance/Hankel matrices, 2) performing the moment conversion, and
3) performing the SVD of the future-past Hankel matrices. To perform the moment conversion our
method requires a covariance matrix for stacked future-past Poisson-Poisson observations (section 2.2)
and a future-past Gaussian-Poisson Hankel matrix (section 3.2.1). Both of these empirical estimates
of second-order covariances are computed using matrix multiplications which scale with the number
of samples. As an example, we can consider the setup used for the computational cost analysis in
Table 2, wherein nr = 15 and ir = 10 (horizon). The computed square Poisson-Poisson covariance
matrix was of dimension 2 ∗ nr ∗ ir = 2 ∗ 15 ∗ 10 and was the result of a matrix multiplication
between two matrices of dimension (2*10*15)-by-6078, where 6078 = timesteps − 2 ∗ ir + 1. Thus,
this operation would scale linearly with the length of the training data. Similarly, the computational
cost of this matrix multiplication scales linearly with feature dimension and horizon. The remaining
operations (i.e., the SVD and the moment conversion itself) are functions of the latent-state dimension
and the feature dimensions for each observation timeseries.
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All running time analyses were performed on a 2020 Macbook Pro using 2 GHz Quad-Core Intel
Core i5 CPU with 16GB of 3733 MHz RAM.

A.11 Data Efficiency

We also investigated the data efficiency of our method by generating 20 random Poisson/Gaussian
systems and studying the effect of training set size on learning. The random systems used here
were generated using the same procedure as the systems used in figure 1 except for the latent
dimensionalities of the primary signal. We instead uniformly sampled the total latent dimensionality
of r as 1 ≤ n1 + n2 ≤ 10 and the shared dimensionality as 1 ≤ n1 ≤ n1 + n2; we kept a fixed size
for the secondary observations private states n3 = 4. We used 1e3, 1e4, 1e5, or 1e6 samples to train
models, and then tested them on 1e6 samples of independent held-out data (figure 4). We found that
with increasing training set sizes the performance of our method improved, both in identification of
shared dynamics and in overall predictive power. This is expected because empirically estimated
covariances converge towards their true values with increasing training set sizes, thereby improving
the overall performance of our algorithm.

Figure 4: PGLDM’s overall performance improves with increasing number of samples, hitting
peak performance with training set sizes of 1e5 samples.. Solid traces show the mean and the
shaded areas denote the standard error of the mean (s.e.m.) for each condition. (a-b) Predictive
power of learned models as a function of training set size, with (a) depicting Gaussian observation
decoding CC and (b) Poisson self-prediction AUC. (c) The normalized identification error of the
shared dynamical modes (in log10 scale) as a function of training size.

A.12 V1-V2 Results (time-series designation swap)

For completion we also present the complementary analysis to the results in figure 3, wherein we
take neural population spiking activity from V1 as yk and activity from V2 as tk. The rest of the
analysis is kept the same as described in sections 4.3 and A.7.3, and the results are presented in figure
5. In this scenario, PGLDM does not make a substantial difference in predicting V2 activity from
V1 activity when compared with PLDSID and Laplace-EM. Prior work using this same dataset has
shown that the feedback direction, that is the V2 (past) to V1 (future) direction, generally exhibited
higher correlations between the two time-series as compared to the feedforward direction [50]. We
hypothesize that this finding might also explain the differences that we see in our results (i.e., the
differences between figures 3 and 5).
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Figure 5: All methods perform comparably in V2 decoding from V1 population spiking activity;
PGLDM’s V1 self-prediction performance improves with stage 2. (a) Average cross-validated
V2 decoding AUC (shaded areas denote s.e.m.) for models of different latent dimensions. (b) Same
as (a) but for V1 one-step ahead self-prediction AUC. (c) V2 decoding AUC at nx = 8. Whiskers
correspond to s.e.m. Scatter points are individual trials. (d) Same as (c) but for V1 self-prediction.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We state that our aim in this work is to improve upon existing GLDMs, and
their associated learning algorithms, that only consider a single generalized-linear time-
series and therefore cannot dissociate shared vs private dynamics in two generalized-linear
time-series. We derive and present a novel algorithm with this capability and demonstrate in
both simulations and real data, as stated in the abstract.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have a specific subsection called “Limitations" wherein we discuss the
limitations of our model assumptions and methodology. We also have a supplementary sec-
tion that discusses the computational efficiency of our method. Finally, in our experimental
details we discuss the number of simulated systems and amount (and type) of real data we
have validated our method on.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We have a full derivation of our method, with its associated assumptions, in
our appendix. We provide a proof-sketch and outline of our method in the main manuscript.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We believe we have provided all the necessary information regarding simula-
tion configurations, open dataset locations, data preprocessing procedures, model hyperpa-
rameters, and cross-validation settings needed to reproduce the results. For the computational
running time analysis we have also specified the hardware/compute resources used to run
the analysis. Beyond reproducing analysis results, we have also outlined our analytical
algorithm step-by-step in thorough detail to enable re-implementation by readers, if desired.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have provided our current code with our submission and will provide a
public camera ready version upon acceptance. We also provide links to the open datasets
used as well as to the codebase of one of our baselines.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide details on experimental settings in the main text and in the
appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer: [Yes]
Justification: For all figure and table results we reported averages and their associated
standard error of measures. For figure 2 results we also performed significance tests
(Wilcoxon) and report statistically significant p-values.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Most of our experimental results are agnostic to the compute resources used.
For the computational efficiency results reported in the appendix we do provide information
on the compute resources used to run the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have adhered to the conference Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Although our primary intention with this work was to develop a novel SSID
method from a foundations perspective, methods like ours have previously found utility in
brain-computer interfaces and therefore our work may have positive societal impacts by
benefitting individuals with disability.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work does not make use of any models or data that could have a high risk
of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We provide citations and/or links to all existing assets used in the manuscript
including: scikit-learn, statsmodels, cvxpy, the Python ssm package, bestLDS package on
Github, and both publicly-available non-human primate datasets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: All model derivations and algorithm implementations are described in detail in
the manuscript. We have also submitted our code along with a README with instructions
and a tutorial that will be publicly released upon publication.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work does not use crowdsourced experiments or research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work did not rely on data collected from human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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