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Abstract

Online alignment in machine translation refers
to the task of aligning a target word to a
source word when the target sequence has only
been partially decoded. Good online align-
ments facilitate important applications such as
lexically constrained translation where user-
defined dictionaries are used to inject lexical
constraints into the translation model. We
propose a novel posterior alignment technique
that is truly online in its execution and su-
perior in terms of alignment error rates com-
pared to existing methods. Our proposed in-
ference technique jointly considers alignment
and token probabilities in a principled man-
ner and can be seamlessly integrated within
existing constrained beam-search decoding al-
gorithms. On five language pairs, including
two distant language pairs, we achieve con-
sistent drop in alignment error rates. When
deployed on three lexically constrained trans-
lation tasks, we achieve significant improve-
ments in BLEU specifically around the con-
strained positions. We show that our align-
ment guided constrained inference yields ad-
ditional benefits of fluency with negligible ad-
ditional computational costs.

1 Introduction

Online alignment seeks to align a target word
to a source word at the decoding step when the
word is output in an auto-regressive neural trans-
lation model [Kalchbrenner and Blunsom, 2013,
Cho et al., 2014, Sutskever et al., 2014]. This
is unlike the more popular offline alignment task
that assumes the presence of the entire target sen-
tence [Och and Ney, 2003]. State of the art methods
of offline alignment based on matching of whole
source and target sentences are not applicable for
online alignment [Jalili Sabet et al., 2020, Dou and
Neubig, 2021], where we need to commit on the
alignment of a target word based on only the gen-
erated prefix thus far.

An important application of online alignment
is lexically constrained translation which allows
injection of domain-specific terminology and other
phrasal constraints during decoding [Hasler et al.,
2018, Hokamp and Liu, 2017, Alkhouli et al., 2018,
Crego et al., 2016]. Other applications include
preservation of markups between the source and
target [Miiller, 2017], and supporting source word
edits in summarization [Shen et al., 2019]. These
applications need to infer the specific source token
which aligns with output token. Thus, alignment
and translation is to be done simultaneously.

Existing online alignment methods can be cate-
gorized into Prior and Posterior alignment methods.
Prior alignment methods [Garg et al., 2019, Song
et al., 2020] extract alignment based on the atten-
tion at time step ¢ when outputting token y;. The at-
tention probabilities at time-step ¢ are conditioned
on tokens output before time ¢. Thus, the alignment
is estimated prior to observing y;. Naturally, the
quality of alignment can be improved if we condi-
tion on the target token %, [Shankar and Sarawagi,
2019]. This motivated Chen et al. [2020] to propose
a posterior alignment method where alignment is
calculated from the attention probabilities at the
next decoder step ¢ + 1. While alignment qual-
ity improved as a result, their method is not truly
online since it does not generate alignment syn-
chronously with the token. The delay of one step
makes it difficult and cumbersome to incorporate
terminology constraints during beam decoding.

We propose a truly online posterior alignment
method that provides higher alignment accuracy
than existing online methods, while also being syn-
chronous. Because of that we can easily integrate
posterior alignment to improve lexicon-constrained
translation in state of the art constrained beam-
search algorithms such as VDBA [Hu et al., 2019].
We propose a principled joint distribution over to-
ken and alignment probability to score constraint
placement. Our method provides higher BLEU



around the constrained span both compared to the
ad hoc inference proposed in Chen et al. [2021]
and VDBA that ignores source alignment.

Contributions

* A truly online posterior alignment method that
integrates into existing NMT sytems via a train-
able light-weight module.

* Higher online alignment accuracy on five lan-
guage pairs including two distant language pairs.

* Principled method of modifying VDBA to in-
corporate posterior alignment probabilities in
lexically-constrained decoding.

* Significant improvement in BLEU around con-
strained span, while yielding more fluent transla-
tions than VDBA that ignores alignments.

2 Posterior Online Alignment

Given a sentence X = z1, ..., xg in the source lan-
guage and a sentence y = ¥1, . . ., Y in the target
language, an alignment .4 between the word strings
is a subset of the Cartesian product of the word po-
sitions [Brown et al., 1993, Och and Ney, 2003]:
ACH{(s,t):s=1,...,5t=1,...,T} such
that the aligned words can be considered transla-
tions of each other. An online alignment at time-
step ¢ commits on alignment of the ™ output token
conditioned only on x and Y« = y1,¥Y2, - - - Yr—1.
Additionally, if token y, is also available we call
it a posterior online alignment. We seek to embed
online alignment with existing NMT systems. We
will first briefly describe the architecture of state
of the art NMT systems. We will then elaborate
on how alignments are computed from attention
distributions in prior work and highlight some limi-
tations, before describing our proposed approach.

2.1 Background

Transformer-based models have become a
ubiquitous choice for neural machine trans-
lation [Vaswani et al., 2017]. Transformers
adopt the popular encoder-decoder paradigm
used for sequence-to-sequence modeling [Cho
et al., 2014, Sutskever et al., 2014, Bahdanau
et al., 2015]. The encoder and decoder are both
multi-layered networks with each layer consisting
of a multi-headed self-attention and a feedforward
module. The decoder layers additionally make use
of multi-headed attention to encoder states. We
elaborate on this attention mechanism next since it
plays an important role in alignments.

2.1.1 Decoder-Encoder Attention in NMTs

The encoder transforms the S input tokens into
a sequence of token representations H € R5*4,
Each decoder layer (indexed by ¢ € {1,...,L})
computes multi-head attention over H by aggregat-
ing outputs from a set of 7 independent attention

heads. The attention output from a single head
n € {1,...,n} in decoder layer ¢ is computed
as follows. Let the output of the self-attention

sub-layer in decoder layer ¢ at the t target to-
ken be denoted as gf. Using three projection ma-
trices W', W', Wi € R¥dn_ the query
vector qf’" € R1*4» and key and value matrices,
K" € RS%n and VE" € RS%4n | are computed
using the following projections: q." = ngé"
K" = HWY, and VA" = HWL".! These are
used to calculate the attention output from head n,
Zf’" = P(af’"\x, y<t) V5™, where:

e’n Zn
q; " (K"")T 1
o ) (1)

For brevity, the conditioning on x, y «; is dropped
and P(al™) is used to refer to P(a.™|x,y) in
the following sections.

Finally, the multi-head attention output is given
[Zf’l, e Zf’"]WO where [ | denotes the column-
wise concatenation of matrices and W¢ ¢ Rx4
is an output projection matrix.

P(ai™|x,y ;) = softmax (

2.1.2 Alignments from Attention

Several prior work have proposed to extract
word alignments from the above attention prob-
abilities. ~ For example Garg et al. [2019]
propose a simple method called NAIVEATT
that aligns a source Word to the t target to-

ken using argmax; — ZP (ar; "Ix,y<¢). In
.

NAIVEATT we note that the attention probabil-
ities P (at ;|X, y<t) at decoding step ¢ are not con-
ditioned on the current output token y;. The quality
of the alignment would benefit from conditioning
on y; as well. This observation prompted Chen
et al. [2020] to extract alignment of token %; us-
ing attention P(af”ﬂx, y<¢) computed at time step
t + 1. The asynchronicity inherent to this shift-
by-one approach (SHIFTATT) makes it difficult
and more computationally expensive to incorporate
lexical constraints during beam decoding.

'd,, is typically set to % so that a multi-head attention layer

does not introduce more parameters compared to a single head
attention layer.



2.2 Our Proposed Method: POSTALN

We propose POSTALN that produces posterior
alignments synchronously with the output tokens,
while being more computationally efficient com-
pared to previous approaches like SHIFTATT. We
incorporate a lightweight alignment module to con-
vert prior attention to posterior alignments in the
same decoding step as the output. Figure 1 illus-
trates how this alignment module fits within the
standard Transformer architecture.

The alignment module is placed at the penulti-
mate decoder layer / = L — 1 and takes as input
1) the encoder output H, 2) the output of the self-
attention sub-layer of decoder layer /, gf and, 3)
the embedding of the decoded token e(y;). Like
in standard attention it projects H to obtain a key
matrix, but to obtain the query matrix it uses both
decoder state gf (that summarizes y ;) and e(y;)
to compute the posterior alignment P(aP*") as:

o) = 13 ot e
t n \/a )

4
q?,post = [gt7 e(yt)]wg,postv Kgost = HW?{,post

n=1

Here W¢, o € R24xdn and Wi post € RdXdn,

This computation is synchronous with produc-
ing the target token y;, thus making it compatible
with beam search decoding (as elaborated further
in Section 3). It also accrues minimal computa-
tional overhead since P(al™) is defined using H
and gtL ~1, that are both already cached during a
standard decoding pass.

Note that if the query vector gy, 1s computed
using only g~ !, without concatenating e(y; ), then
we get prior alignments that we refer to as PRIO-
RATT. In our experiments, we explicitly compare
PRIORATT with POSTALN to show the benefits of
using ¥ in deriving alignments while keeping the
rest of the architecture intact.

2.2.1 Training

Our posterior alignment sub-layer is trained using
alignment supervision, while freezing the rest of
the translation model parameters. Specifically, we
train a total of 3d> additional parameters across the
matrices Wi o and Wg) o

Since gold alignments are very tedious and ex-
pensive to create for large training datasets, align-
ment labels are typically obtained using existing
techniques. We use bidirectional symmetrized

SHIFTATT alignments, denoted by S; ; that refers
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Figure 1: Our alignment module is an encoder-

decoder attention sub-layer, similar to the existing
cross-attention sub-layer. It takes as inputs the encoder
output H as the key, and the concatenation of the output
of the previous self-attention layer g/ and the currently

decoded token y; as the query, and outputs posterior

alignment probabilities aP*™".

to an alignment between the i target word and
the j® source word, as reference labels to train our
alignment sub-layer. Then the objective (follow-
ing Garg et al. [2019]) can be defined as:

T S
1 S
o post .
o S 720 > Sy log (PGl ik y<))

Q,post? K ,post i=1 j:1

In Section 4, we will show that both posterior align-
ments and the above training have a huge impact
on alignment accuracy.

Next, we demonstrate the role of posterior online
alignments on an important downstream task.

3 Lexicon Constrained Translation

In the lexicon constrained translation task, for each
to-be-translated sentence x, we are given a set
of source text spans and the corresponding target
tokens in the translation. A constraint C; com-
prises of a pair (C;”,C;’) where C} = (pj,p; +
1...,pj + ¢;) indicates input token positions, and
C;.’ = (y{, y% e ,y%l ;) denote target tokens that
are translations of the input tokens x,; ... 2y 10,
For the output tokens we do not know their po-
sitions in the target sentence. The different con-
straints are non-overlapping and each is expected
to be used exactly once. The goal is to translate the



given sentence x and satisfy as many constraints
in C = |J;C; as possible while ensuring fluent
and correct translations. Since the constraints do
not specify target token position, it is natural to
use online alignments to guide when a particular
constraint is to be enforced.

3.1 Background: Constrained Decoding
Methods

Existing inference algorithms for incorporating lex-
icon constraints differ in how pro-actively they en-
force the constraints. A passive method is used in
Song et al. [2020] where constraints are enforced
only when the prior alignment is at a constrained
source span. Specifically, if at decoding step ¢,
i = argmax; P(ay) is present in some constraint
CJ”-C , the output token is fixed to the first token y{
from C}J. Otherwise, the decoding proceeds as
usual. Also, if the translation of a constraint C; has
started, the same is completed (yg through y%‘j) for
the next m; — 1 decoding steps before resuming
unconstrained beam search. The pseudocode for
this method is provided in Appendix D.

For the posterior alignment methods of Chen
et al. [2020] this leads to a rather cumbersome in-
ference [Chen et al., 2021]. First, at step ¢ they pre-
dict a token gy, then start decoding step ¢ + 1 with
¥ as input to compute the posterior alignment from
attention at step ¢ + 1. If the maximum alignment
is to the constrained source span C7 they revise the

output token to be y{ from ij, but the output score
for further beam-search continues to be of ;. In
this process both the posterior alignment and token
probabilities are misrepresented since they are both
based on ¢ instead of the finally output token y].
The decoding step at ¢ 4 1 needs to be restarted
after the revision. The overall algorithm continues
to be normal beam-search, which implies that the
constraints are not enforced pro-actively.

Many prior methods have proposed more pro-
active methods of enforcing constraints, including
the Grid Beam Search (GBA, Hokamp and Liu
[2017]), Dynamic Beam Allocation (DBA, Post
and Vilar [2018]) and Vectorized Dynamic Beam
Allocation (VDBA, Hu et al. [2019]). The latest
of these, VDBA, is efficient and available in pub-
lic NMT systems [Ott et al., 2019, Hieber et al.,
2020]. Here multiple banks, each corresponding to
a particular number of completed constraints, are
maintained. At each decoding step, a hypothesis
can either start a new constraint and move to a new

bank or continue in the same bank (either by not
starting a constraint or progressing on a constraint
mid-completion). This allows them to achieve near
100% enforcement. However, VDBA enforces the
constraints by considering only the target tokens
of the lexicon and totally ignores the alignment of
these tokens to the source span. This could lead
to constraints being placed at unnatural locations
leading to loss of fluency. Examples appears in
Table 4 where we find that VDBA just attaches the
constrained tokens at the end of the sentence.

3.2 Our Proposal: Align-VDBA

We modify VDBA with alignment probabilities to
better guide constraint placement. The score of a
constrained token instead of being only the token
probability, is now the joint probability of the to-
ken, and the probability of the token being aligned
with the corresponding constrained source span.
Formally, if the current token g is a part of the
4™ constraint i.e. y; € C;’, the generation proba-
bility of y;, P(y:|X,y<¢) is scaled by multiplying
with the alignment probabilities of y; with C7, the
source span for constraint ¢. Thus, the updated
probability is given by:

P(y:, C5 %, y<t) = P(yelx,y<e) > P(af%|x,y<i)

Token Prob "¢
Src Align. Prob.

(@)
P(y:, C7|x,y<t) denotes the joint probability of
outputting the constrained token and the align-
ment being on the corresponding source span.
Since the supervision for the alignment proba-
bilities was noisy, we found it useful to recali-
brate the alignment distribution using a temper-
ature scale 7', so that the recalibrated probability is
x Pr(a?ﬁft\x, ygt)%. We used 7' = 2 which cor-
responds to taking the square-root of the estimated
alignment probability.

We present the pseudocode of our modification
(steps 5 and 6, in blue) to DBA in Algorithm 1.
Other details of the algorithm including the han-
dling of constraints and the allocation steps (step
10) are involved and we refer the reader to Post
and Vilar [2018] and Hu et al. [2019] to understand
these details. The point of this code is to show that
our proposed posterior alignment method can be
easily incorporated into these algorithms so as to
provide a more principled scoring of constrained
hypothesis in a beam than the ad hoc revision-based
method of Chen et al. [2021]. Additionally, pos-

Joint Prob




Algorithm 1 Align-VDBA: Modifications to DBA shown in blue. (Adapted from Post and Vilar [2018])

1: Inputs beam: K hypothesis in beam, scores: K x |Vp| matrix of scores where scores|k, y| denotes
the score of k' hypothesis extended with token y at this step, constraints: {(C%,CY)}

1777

> Go over current beam
> Expand new constraints
> Modification in blue (Eqn (2))

> Original DBA Alg.

> Best single word

2: candidates < [(k, y, scores[k, y], beam[k].constraints.add(y)] for k, y in ARGMAX_K(scores)
3: forl <k < Kdo

4: for all y € V7 that are unmet constraints for beam[k] do

5: alignProb <— Xcongiraint_xs(y) POSTALN(E, )

6: candidates.append( (k, y, scores[k, y] x alignProb), beam[k].constraints.add(y) ) )

7:

8: w = ARGMAX(scores[k, :])

9: candidates.append( (k, w, scores[k, w], beam[k].constraints.add(w) ) )

10: newBeam <~ ALLOCATE(candidates, K)

terior alignments lead to better placement of con-
straints than in the original VDBA algorithm.

4 [Experiments

We first compare our proposed posterior online
alignment method on quality of alignment against
existing methods in Section 4.2, and in Section 4.3,
we demonstrate the impact of the improved align-
ment on the lexicon-constrained translation task.

4.1 Setup

We deploy the fairseq toolkit [Ott et al., 2019]
and use transformer_iwslt_de_en pre-
configured model for all our experiments. Other
configuration parameters include: Adam optimizer
with 51 = 0.9, B2 = 0.98, a learning rate of 5e—4
with 4000 warm-up steps, an inverse square root
schedule, weight decay of 1e—4, label smoothing
of 0.1, 0.3 probability dropout and a batch size of
4500 tokens. The transformer models are trained
for 50,000 iterations. Then, the alignment module
is trained for 10,000 iterations, keeping the other
model parameters fixed. A joint byte pair encoding
(BPE) is learned for the source and the target lan-
guages with 10k merge operation [Sennrich et al.,
2016] using subword-nmt?,

All experiments were done on a single 11GB
Nvidia GeForce RTX 2080 Ti GPU on a machine
with 64 core Intel Xeon CPU and 755 GB memory.
The vanilla Transformer models take between 15
to 20 hours to train for different datasets. Starting
from the alignments extracted from these models,
the POSTALN alignment module trains in about 3
to 6 hours depending on the dataset.

https://github.com/rsennrich/
subword-nmt

de-en en-fr ro-en | en-hi ja-en
Training IOM 1L.IM 05M | 1L.6M 0.3M
Validation 994 1000 999 25 1166
Test 508 447 248 90 1235

Table 1: Number of sentence pairs for the five datasets
used. Note that gold alignments are available only for
a handful of sentence pairs in the test set.

4.2 Alignment Task

We evaluate online alignments on ten translation
tasks spanning five language pairs. Three of these
are popular in alignment papers [Zenkel et al.,
2019]: German-English (de-en), English-French
(en-fr), Romanian-English (ro-en). These are all
European languages that follow the same subject-
verb-object (SVO) ordering. We also present re-
sults on two distant language pairs (English-Hindi
and English-Japanese) that follow a SOV word or-
der which is different from the SVO word order
of English. Data statistics are shown in Table 1
and more details of the datasets are described in
Appendix B.

Evaluation Method: For evaluating alignment
performance, it is necessary that the target sentence
is exactly the same as for which the gold alignments
are provided. Thus, for the alignment experiments,
we force the output token to be from the gold tar-
get and only infer the alignment. We then report
the Alignment Error Rate (AER) [Och and Ney,
2000] between the gold alignments and the pre-
dicted alignments for different methods. Though
our focus is online alignment, for comparison to
previous works, we also report results on bidirec-
tional symmetrized alignments in Appendix C.

Methods compared: We compare our method
with both existing statistical alignment models,


https://github.com/rsennrich/subword-nmt
https://github.com/rsennrich/subword-nmt

& de-en en-fr ro-en en-hi ja-en
Method K de—en en—de | en—fr fr—en | ro—~en en—ro | en—hi hi—en | ja—en en—ja
Statistical Methods (Not Online)

GIZA++ [Och and Ney, 2003] | End 18.9 19.7 7.0 27.6 28.3 35.9 36.4 41.8 39.0
FastAlign [Dyer et al., 2013] End 28.4 32.0 16.4 15.9 33.8 355 - - - -
No Alignment Training
NAIVEATT [Garg et al., 2019] 0 324 40.0 24.0 31.2 37.3 332 50.5 529 62.2 63.5
SHIFTATT [Chen et al., 2020] +1 20.0 229 14.7 204 26.9 274 38.6 423 53.6 48.6
With Alignment Training
PRIORATT 0 234 25.8 14.0 16.6 29.3 27.2 38.5 355 52.7 50.9
SHIFTAET [Chen et al., 2020] +1 15.8 19.5 10.3 10.4 224 23.7 31.9 333 42.5 41.9
POSTALN [Ours] 0 15.5 19.5 10.4 21.8 23.2 31.8 324 41.2 422

Table 2: AER for German-English, English-French, Romanian-English, English-Hindi, Japanese-English language
pairs. The delay column indicates the decoding step at which the alignment of the target token is available.
NAIVEATT, PRIORATT and POSTALN are the only true online methods that output alignment at the same time
step (delay=0), while SHIFTATT and SHIFTAET output one decoding step later.

namely GIZA++ [Och and Ney, 2003] and FastAl-
ign [Dyer et al., 2013], and recent Transformer-
based alignment methods of Garg et al. [2019]
(NAIVEATT) and Chen et al. [2020] (SHIFTATT
and SHIFTAET). Chen et al. [2020] also propose
a variant of SHIFTATT called SHIFTAET that em-
ploys the same idea of delaying computations by
one time-step as in SHIFTATT, and additionally in-
cludes a learned attention sub-layer to compute
alignment probabilities. As mentioned in Sec-
tion 2.2, we also present results on PRIORATT
which is similar to POSTALN but does not use yy.

Results: The alignment results are shown in Ta-
ble 2. First, AERs using statistical methods FastAl-
ign and GIZA++ are shown. Here, for fair compar-
ison, the IBM models used by GIZA++ are trained
on the same sub-word units as the Transformer
models and sub-word alignments are converted to
word level alignments for AER calculations. (Even
with deep learning based translation models gain-
ing popularity, GIZA++ has remained a state-of-
the-art technique for word alignments, although it
is not online.) Next, we present alignment results
for two vanilla Transformer models - NAIVEATT
and SHIFTATT - that do not train a separate align-
ment module. The high AER of NAIVEATT shows
that attention-as-is is very distant from alignment
but posterior attention is closer to alignments than
prior. Next we look at methods that train alignment-
specific parameters: PRIORATT, a prior attention
method; SHIFTAET and POSTALN, both posterior
alignment methods. We observe that with training
even PRIORATT has surpassed non-trained poste-
rior. The posterior attention methods outperform
the prior attention methods by a large margin, with
a difference of 4.0 to 8.0 points between the pos-

terior and prior alignment methods. Within each
group, the methods with a trained alignment mod-
ule outperform the ones without by a huge margin.
POSTALN performs better or matches the perfor-
mance of SHIFTAET while avoiding the one-step
delay in alignment generation. We observe that
POSTALN has the lowest AER in nine out of ten
cases in Table 2. Even on the distant languages,
POSTALN achieves significant reductions in error.
For example, for ja—en we achieve a 1.3 AER
reduction compared to SHIFTAET which is not a
truly online method. Figure 2 uses two examples
to illustrate the superior alignments of POSTALN
compared to NAIVEATT and PRIORATT.

4.3 Impact of POSTALN on
Lexicon-Constrained Translation

We next depict the impact of improved AERs from
our posterior alignment method on a downstream
lexicon-constrained translation task. Following pre-
vious work [Hokamp and Liu, 2017, Post and Vilar,
2018, Song et al., 2020, Chen et al., 2020, 2021],
we extract constraints using the gold alignments
and gold translations. Up to three constraints of
up to three words each are used for each sentence.
Spans correctly translated by a greedy decoding
are not selected as constraints.

Metrics: We report BLEU [Papineni et al.,
2002] scores, Constraint Satisfaction Rate (CSR),
and the time required to translate all test sentences
as reported by others [Song et al., 2020]. Addition-
ally to evaluate the appropriateness of constraint
placement, we compute the BLEU of spans consist-
ing of the constraints and a window of a few words,
specifically three, on both sides of the constraint.
We call this measure SpanBLEU. All numbers are
averages over five different sets of randomly sam-
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Figure 2: Alignments for de—en (top-row) and en—hi (bottom-row) by NAIVEATT, PRIORATT, and POSTALN.

Note that POSTALN is most similar to Gold alignments in the last column.

de—en en—fr ro—en
Method SpanBLEU CSR BLEU Time(s) | SpanBLEU CSR BLEU Time(s) | SpanBLEU CSR BLEU Time(s)
No constraints - 400 329 79 - 739 346 79 - 785 333 61
NAIVEATT 28.6 84.41 36.0 98 31.4 8729 37.1 100 27.0 83.86 352 87
PRIORATT 36.8 94.21 37.1 104 39.0 9249 38.2 108 32.1 86.01 359 90
SHIFTATT 39.5 96.77 37.6 208 419 93.62 38.0 160 345 89.97 359 150
SHIFTAET 41.0 97.75 37.8 223 42.6 93.92 38.1 165 355 9143 362 157
POSTALN 41.4 97.78 37.8 177 42.2 93.66 38.1 126 352 90.47 36.1 111
VDBA 45.6 98.74 38.0 197 48.5 99.33 38.6 112 37.8 98.65 363 108
Align-VDBA 46.1 99.02 379 233 49.2 99.20 38.7 130 38.5 98.58 36.6 125

Table 3: Constrained translation results showing SpanBLEU, CSR (Constraint Satisfaction Rate), BLEU scores

and total decoding time (in seconds) for the test set. Align-

pled constraint sets. We show the standard devi-
ation of the metrics across these runs in the Ap-
pendix E. The beam-size is set to five by default
but for de—en we use ten since it provided signifi-
cantly higher BLEU scores. Results for beam-size
5 for de—en appear in the Appendix E.

Methods Compared: First we compare all the
alignment methods presented in Section 4.2 on the
constrained translation task using the alignment
based token-replacement algorithm of Song et al.
[2020] described in Section 3.1. Next, we present
a comparison between VBDA [Hu et al., 2019] and
our modification Align-VDBA.

Results: Table 3 shows that VDBA and our
Align-VDBA that pro-actively enforce constraints
have a much higher CSR and higher SpanBLEU

VDBA has the highest SpanBLEU on all datasets.

compared to the other lazy constraint enforcement
methods. Within the lazy methods, those based
on posterior alignment provide higher BLEU than
prior alignment. POSTALN performs as well as
SHIFTAET, with an almost equal BLEU (differ-
ence < 0.1) and CSR (difference < 1%). But,
by avoiding the additional decoder pass for each
token, it is more than 20% faster. On average,
Align-VDBA has a 0.6 point greater SpanBLEU
compared to VDBA. It also has a greater BLEU,
on average, than VDBA and statistically compara-
ble CSRs (less than 1 constraint on average). In
Table 4, we compare some example translations
produced by VDBA vs Align-VDBA. We observe
instances where VDBA places constraints at the
end of the translated sentence (e.g., “pusher”, “de-



Constraints (gesetz zur, law also), (dealer, pusher)

VDBA

Gold of course, if a drug addict becomes a pusher, then it is right and necessary that he should pay and answer before the law also.
certainly, if a drug addict becomes a dealer, it is right and necessary that he should be brought to justice before the law also pusher.

VDBA

Align-VDBA

Align-VDBA | certainly, if a drug addict becomes a pusher, then it is right and necessary that he should be brought to justice before the law also.
Constraints (von mehrheitsverfahren, of qualified)

Gold ... whether this is done on the basis of a vote or of consensus, and whether unanimity is required or some form of qualified majority.
VDBA ... whether this is done by means of qualified votes or consensus, and whether unanimity or form of majority procedure apply.
Align-VDBA | ... whether this is done by voting or consensus, and whether unanimity or form of qualified majority voting are valid.

Constraints (zustimmung der, strong backing of)

Gold ... which were adopted with the strong backing of the ppe group and the support of the socialist members.

VDBA ... which were then adopted with broad agreement from the ppe group and with the strong backing of the socialist members.
Align-VDBA | ... which were then adopted with strong backing of the ppe group and with the support of the socialist members.

Constraints (den usa, the usa), (sicherheitssystems an, security system that), (entwicklung, development)

Gold matters we regard as particularly important are improving the working conditions between the weu and the eu

and the development of a european security system that is not dependent on the usa .

we consider the usa ’s european security system to be particularly important in improving working conditions

between the weu and the eu and developing a european security system that is independent of the united states development .
we consider the development of the security system that is independent of the usa to be particularly important

in improving working conditions between the weu and the eu .

Table 4: Anecdotes showing constrained translations produced by VDBA vs. Align-VDBA.

velopment") unlike Align-VDBA. It is also inter-
esting to see that in some cases where constraints
contain frequent stop words (like of, the, etc.) ap-
pearing multiple times in the translated sentence,
VDBA picks the token in the wrong position to
tack on the constraint (e.g., “strong backing of",
“of qualified") while Align-VDBA places the con-
straint correctly.

5 Related Work

Online Prior Alignment from NMTSs: Zenkel
et al. [2019] find alignments using a single-head
attention submodule, optimized to predict the next
token. Garg et al. [2019] and Song et al. [2020]
supervise a single alignment head from the penul-
timate multi-head attention with prior alignments
from GIZA++ alignments or FastAlign. Bahar et al.
[2020] and Shankar et al. [2018] treat alignment
as a latent variable and impose a joint distribution
over token and alignment while supervising on the
token marginal of the joint distribution.

Online Posterior Alignment from NMTs:
Shankar and Sarawagi [2019] first identify the role
of posterior attention for more accurate alignment.
However, their NMT was a single-headed RNN.
Chen et al. [2020] implement posterior attention in
a multi-headed Transformer but they incur a delay
of one step between token output and alignment.
We are not aware of any prior work that extracts
truly online posterior alignment in modern NMTs.
Offline Alignment Systems: Several recent meth-
ods apply only in the offline setting: Zenkel et al.
[2020] extend an NMT with an alignment module;
Nagata et al. [2020] frame alignment as a question
answering task; and Jalili Sabet et al. [2020], Dou

and Neubig [2021] leverage contextual embeddings
from pretrained multilangual models.

Lexicon Constrained Translation: Hokamp and
Liu [2017] and Post and Vilar [2018], Hu et al.
[2019] modify beam search to ensure that tar-
get phrases from a given constrained lexicon are
present in the translation. These methods ignore
alignment with the source but ensure high success
rate for appearance of the target phrases in the con-
straint. Song et al. [2020] and Chen et al. [2021]
do consider source alignment but they do not en-
force constraints leading to lower CSR. Dinu et al.
[2019] and Lee et al. [2021] propose alternative
training strategies for constraints, whereas we fo-
cus on working with existing models. Recently,
non autoregressive methods have been proposed
for enforcing target constraints but they require that
the constraints are given in the order they appear in
the target translation [Susanto et al., 2020].

6 Conclusion

In this paper we proposed a simple architectural
modification to modern NMT systems to obtain ac-
curate online alignments. The key idea that led to
high alignment accuracy was conditioning on the
output token. Further, our designed alignment mod-
ule enables such conditioning to be performed syn-
chronously with token generation. This property
led us to Align-VDBA, a principled decoding algo-
rithm for lexically constrained translation based on
joint distribution of target token and source align-
ments. Future work includes harnessing such joint
distributions for other forms of constraints, for ex-
ample, nested constraints that arise when translat-
ing structured documents.
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A Alignment Error Rate

Given gold alignments consisting of sure align-
ments S and possible alignments P, and the pre-
dicted alignments A, the Alignment Error Rate
(AER) is defined as [Och and Ney, 2000]:

_ANPI+[ANS]
Al + S

AER =1

Note that here S C P. Also note that since our
models are trained on sub-word units but gold align-
ments are over words, we need to convert align-
ments between word pieces to alignments between
words. A source word and target word are said to
be aligned if there exists an alignment link between
any of their respective word pieces.

B Description of the Datasets in Table 1

The European languages consist of parallel sen-
tences for three language pairs from the Europarl
Corpus and alignments from Mihalcea and Peder-
sen [2003], Och and Ney [2000]. Following pre-
vious works [Ding et al., 2019, Chen et al., 2020],
the last 1000 sentences of the training data are used
as validation data.

For English-Hindi, we use the dataset from Mar-
tin et al. [2005] consisting of 3440 training sentence
pairs, 25 validation and 90 test sentences with gold
alignments. Since training Transformers requires
much larger datasets, we augment the training set
with 1.6 million sentences from the IIT Bombay
Parallel Corpus [Kunchukuttan et al., 2018].

For Japanese-English, we use The Kyoto Free
Translation Task [Neubig, 2011]. It comprises
roughly 330K training, 1166 validation and 1235
test sentences. As with other datasets, gold align-
ments are available only for the test sentences. The
Japanese text is already segmented and we use it
without additional changes. The gold alignments
were provided by Mihalcea and Pedersen [2003]
and Vilar et al. [2006].

C Bidirectional Symmetrized Alignment

We report AERs using bidirectional symmetrized
alignments in Table 5 in order to provide fair com-
parisons to results in prior literature. The sym-
metrization is done using the grow-diagonal heuris-
tic [Koehn et al., 2005, Och and Ney, 2000]. Since
bidirectional alignments need the entire text in both
languages, these are not online alignments.
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Method de-en en-fr ro-en en-hi ja-en
Statistical Methods
GIZA++ 1866 55 263 359 397
FastAlign 270 105 321 - -
No Alignment Training
NAIVEATT | 292 169 314 460 57.1
SHIFTATT 169 7.8 243 364 46.2
With Alignment Training
PRIORATT | 22.0 10.1 263 349 482
SHIFTAET 154 56 21.0 319 40.1
POSTALN 153 55 21.0 309 395

Table 5: AERs for bidirectional symmetrized align-
ments. POSTALN is consistently the best performing
method.

D Alignment-based Token Replacement
Algorithm

The pseudocode for the algorithm used in Song
et al. [2020], Chen et al. [2021] and our non-VDBA
based methods in Section 4.3 is presented in Al-
gorithm 2. As described in Section 3.1, at each
decoding step, if the source token having the max-
imum alignment at the current step lies in some
constraint span, the constraint in question is de-
coded until completion before resuming normal
decoding.

Though different alignment methods are rep-
resented using a call to the same ATTENTION
function in Algorithm 2, these methods incur
varying computational overheads. For instance,
NAIVEATT incurs little additional cost, PRIO-
RATT and POSTALN involve a multi-head atten-
tion computation. For SHIFTATT and SHIFTAET,
an entire decoder pass is done when ATTENTION is
called, thereby incurring a huge overhead as shown
in Table 3.

E Additional Lexicon-Constrained
Translation Results

Constrained translation results for de—en with
beam-size 5 are shown in Table 6. The standard
deviations for Table 3 are shown in Table 7.



Algorithm 2 k-best extraction with argmax replacement decoding.

Inputs: A k£ x |Vr| matrix of scores (for all tokens up to the currently decoded ones). k beam states.

1: function SEARCH_STEP(beam, scores)
2 next_toks, next_scores <— ARGMAX_K(scores, k=2, dim=1) > Best 2 tokens for each beam
3 candidates < []
4: for0<h<2-kdo
5: candidate <— beam[h//2]
6 candidate.tokens.append(next_toks[h//2, h%?2])
7 candidate.scores < next_scores[h//2, h%2]
8 candidates.append(candidate)
o: attention <— ATTENTION(candidates)
10: aligned_x <— ARGMAX(attention, dim=1)
11: for0<h<2-kdo
12: if aligned_x[h] € C; for some 7 and not candidates[h].inprogress then > Start constraint
13: candidates[h].inprogress <— True
14: candidates[h].constraintNum < ¢
15: candidates[h].tokenNum <+ 0
16: if candidates[h].inprogress then > Replace token with constraint tokens
17: candidates[h].tokens[-1] < constraints[candidates[h].constraintNum][candidates[h].tokenNum]
18: candidates[h].tokenNum < candidates[h].tokenNum + 1
19: if constraints[candidates[h].constraintNum].length == candidates[h].tokenNum then
20: candidates[h].inprogress <— False > Finish current constraint
21: candidates <~ REMOVE_DUPLICATES(candidates)
22: newBeam < TOP_K(candidates)
23: return newBeam
Method SpanBLEU CSR BLEU Time(s) the two translation directions.
No constraints - 486 329 103 For the European language pairs, this turns out to
NAIVEATT 29.1 84.82 359 136 be layer 3 as suggested by Chen et al. [2020]. How-
PRIORATT 36.9 94.22 37.1 150 ever, for the distant language pairs Hindi-English
SHIFTATT 392 96.88  37.5 246 and Japanese-English, this is not the case and layer
SHIFTAET 40.7 9765 376 257 selection needs to be done. The AER between the
POSTALN 41.0 97.56 37.7 195 . . . L. .
VDBA 3907 9937 372 192 tv&{o translation d.1rect10ns on'the validation set, with
Align-VDBA 406 9952 372 217 alignments obtained from different decoder layers,

Table 6: Constrained translation results using a beam
size of 5 for German-English.

F Layer Selection for Alignment
Supervision of Distant Language Pairs

For the alignment supervision, we used align-
ments extracted from vanilla Transformers using
the SHIFTATT method. To do so, however, we
need to choose the decoder layers from which to
extract the alignments. The validation AERs can
be used for this purpose but since gold validation
alignments are not available, Chen et al. [2020] sug-
gest selecting the layers which have the best con-
sistency between the alignment predictions from
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are shown in Tables 8 and 9.



de—en en—fr ro—en
Method SpanBLEU CSR BLEU Time(s)|SpanBLEU CSR BLEU Time(s) | SpanBLEU CSR BLEU Time(s)
No constraints - 1.5 0.0 4.2 - 1.3 0.0 1.7 - 1.8 0.0 5.6
NAIVEATT 1.5 2.1 0.2 4.4 1.1 7.1 0.2 1.3 1.3 2.1 0.4 3.2
PRIORATT 1.7 1.3 0.4 3.5 1.8 04 0.0 5.3 1.1 1.8 0.4 2.8
SHIFTATT 1.1 0.6 0.4 9.5 1.3 1.6 0.2 1.9 1.3 1.2 0.2 5.7
SHIFTAET 1.3 0.6 0.3 17.9 1.2 14 0.2 3.0 2.0 09 0.3 7.0
POSTALN 1.6 0.8 0.4 8.5 1.9 16 0.2 5.5 1.1 1.7 0.6 1.8
VDBA 1.0 0.5 0.4 12.6 1.6 04 0.3 5.4 1.8 0.8 0.5 3.0
Align-VDBA 09 0.6 0.4 24.9 1.7 0.6 0.3 1.0 1.4 04 0.4 2.4

Table 7: Standard deviations of the metrics shown in Table 3 across five sets of randomly sampled constraint sets.

1 2 3 4 5 6 1 2 3 4 5 6
11655 558 56.1 952 94.6 96.6 11935 900 944 922 951 95.1
21592 475 445 951 919 958 21865 587 869 694 872 862
31626 521 483 937 914 952 31874 594 87.1 69.1 8.1 86.2
4 |88.6 833 82.1 89.9 88.0 903 4189.1 69.1 859 742 849 854
5191.6 877 885 914 88.8 90.2 51934 885 89.1 87.1 86.8 88.1
61935 91.1 925 925 905 90.7 61935 894 900 88.1 87.7 88.7

Table 8: AER between en—hi and hi—en SHIF- Table 9: AER between ja—en and en—ja SHIF-
TATT alignments on the validation set for EnHi TATT alignments on the validation set for JaEn
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