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ABSTRACT

Zero-shot generative model adaptation (ZSGM) aims to adapt a pre-trained gen-
erator to a target domain using only text guidance and without any samples from
the target domain. Central to recent ZSGM approaches are directional loss which
use the text guidance in the form of aligning the image offset with text offset in
the embedding space of a vision-language model like CLIP. This is similar to the
analogical reasoning in NLP where the offset between one pair of words is used to
identify a missing element in another pair by aligning the offset between these two
pairs. However, a major limitation of existing ZSGM methods is that the learning
objective assumes the complete alignment between image offset and text offset in
the CLIP embedding space. Our work makes two main contribution. Inspired by
the offset misalignment studies in NLP, as our first contribution, we perform an
empirical study to analyze the misalignment between text offset and image off-
set in CLIP embedding space for various large publicly available datasets. Our
important finding is that offset misalignment in CLIP embedding space is corre-
lated with concept distance, i.e., close concepts have a less offset misalignment.
To address the limitations of the current approaches, as our second contribution,
we propose Adaptation with Iterative Refinement (AIR) which mitigates the offset
misalignment issue in directional loss by iteratively selecting anchor points closer
to the target domain. Extensive experimental results show that the proposed AIR
approach achieves SOTA performance across various adaptation setups. Code
and additional experiments in Supp.

1 INTRODUCTION

Generative models like Generative Adversarial Networks (GANSs) (Goodfellow et al.| (2014); Karras
et al.| (2019; 2020Db); Brock et al.| (2019) and Diffusion Models Rombach et al.| (2022); Nichol &
Dhariwal| (2021)); [Dhariwal & Nichol (2021)) have recently shown promising results in image gener-
ation with significant advancements in the fidelity and diversity of the generated images. Training
these generative models typically requires large amounts of data (e.g., 70K images required for
training StyleGAN?2 Karras et al.[(2020c) or 400M images used for training Latent Diffusion Model
Rombach et al.|(2022))). However, in many real-world scenarios, a limited amount of data is available
from the target domain (e.g., medical domains, rare animal species, and artistic domains). Training
a generative model under this limited data regime is extremely challenging, resulting in issues like
mode collapse or quality degradation|Abdollahzadeh et al.|(2023)). To address this, generative model
adaptation uses transfer learning to adapt a generator pre-trained on a similar, well-represented do-
main to a new target domain with limited data|Li et al.[(2020); Zhao et al.[(2022a}b; 2023). Leverag-
ing the recent advances in vision language models like CLIP|Radford et al.|(2021)), takes this one step
further and enables the zero-shot generative model adaptation (ZSGM) which shifts a pre-trained
model to a target domain using only text guidance (no images from target domain).

ZSGM with Offset Alignment. NADA |Gal et al.| (2022) is the pioneering work that uses text off-
set between source and target domains in CLIP embedding space as guidance to shift a pre-trained
generative model to the target domain. Specifically, the learning objective is to align the image
offset between the pre-trained generator and the adapted generator with the text offset. IPL |Guo
et al.| (2023) improves on this by using prompt learning to enhance diversity, addressing NADA’s
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Figure 1: Overview and our contributions: (a) We perform an empirical analysis of the offset
misalignment in CLIP embedding space. Our analysis reveals that there is a misalignment between
image offset (orange arrow) and text offset (blue arrow) in CLIP space, and this misalignment is
correlated with concept distance. For example, in the ImageNet-1K dataset, the “Gray Wolf” is a
more distant concept to the “Bernese Mountain Dog” (concept distance=0.4259) than the “Scot-
tish Terrier” (concept distance=0.3066). Therefore, considering “Bernese Mountain Dog” as the
target, the “Gray Wolf” has more concept misalignment (0.5760 vs 0.2854). This misalignment is
ignored in the existing approaches which results in sub-optimal learning with directional loss (See
Sec.[3). (b) We propose Adaptation with Iterative Refinement (AIR) to mitigate the issue with offset
misalignment. We iteratively sample anchor points closer to the target domain and use these anchors
to refine the adaptation direction (Sec. ). (¢) Our proposed AIR consistently archives SOTA perfor-
mance across different adaptation setups (Detailed quantitative and qualitative results in Sec. E[)

limitations in image-specific feature representation. SVL advances further by
modeling semantic variations to tackle mode collapse. The idea of offset alignment has some sim-
ilarities to analogical reasoning in NLP literature Mikolov et al.| (2013cfalb); [Levy & Goldberg|
where the offset between one pair of word vectors is used to identify the unknown member
of a different pair of words, commonly via alignment of offsets. For example the offset F,(“Man”)
- E,(“Woman”) and E,(“King”) being used to identify 2, (“Queen”), with £, denoting the vector
representation in some embedding space. See Sec. [G]for detialed discussion on related work.

Research Gap. All current ZSGM approaches|Gal et al.| (2022));|Guo et al.|(2023); Jeon et al.[(2023)

assume that the image and text offsets are completely aligned in the CLIP embedding space and
leverage this in their learning objective while adapting the pre-trained generator to the target domain.
However, this assumption can have two major limitations: i) CLIP embedding space is trained
to maximize the similarity between corresponding image-text pairs, and the degree of alignment
between image and text offsets is not studied properly, and ii) this degree of alignment could also
vary based on the distance between source and target domains. Recalling the similarity between
ZSGM with offset alignment and analogical reasoning, previous studies in NLP have shown that the
accuracy of analogical reasoning increases if the concepts are nearby and similar (e.g.,, E,(“King”)

E,(“Queen”) (2015); [Koper et al.|(2015); Vylomova et al.| (2015); Rogers et al.| (2017);
Fournier et al.[(2020)), and decreases when the concepts are distant.

Contributions. This paper takes an important step toward addressing the research gaps in ZSGM.
First, we take a closer look to analyze the offset misalignment in CLIP embedding space. Specif-
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ically, we perform an empirical study on large public datasets to analyze the degree of the offset
alignment between image and text offsets in CLIP embedding space vs concept distance. Our re-
sults suggest that offset misalignment exists in the CLIP embedding space and it increases as the
concepts are more distant (Fig.[T[a)). Additionally, we perform a set of experiments to show that for
closer source and target domains, the offset misalignment is less problematic during ZSGM. Second,
informed by our analysis, we propose Adaptatoin with Iterative Refinement (AIR) to mitigate the
offset misalignment issue. Our intuition is that after limited iterations of the adaptation, the adapted
generator is already closer to the target domain than the pre-trained generator, and therefore it suffers
less from offset misalignment. Then, we iteratively sample anchor points during adaptation and use
these anchor points to calculate the offsets (Fig.[T[b)). Since the textual description of these anchor
points is unknown, we propose a new prompt learning strategy to learn these descriptions. Our main
contributions are summarized as follows:

* We conduct an empirical analysis of the offset misalignment between image and text modali-
ties in the CLIP embedding space. For the first time in literature, our analysis reveals that the
misalignment is larger for distance concepts and less for close concepts.

* We propose the Adaptation with Iterative Refinement to address the offset misalignment in CLIP
embedding space. Our approach includes an iterative sampling of anchor points during adap-
tation coupled with a new prompt learning approach to learn the textual description of these
anchor points.

» Extensive experimental results show that our proposed AIR approach consistently outperforms
existing ZSGM approaches achieving new SOTA performance. We remark that for the first time
in the literature, we perform zero-shot adaptation for the diffusion models.

2 PRELIMINARIES: DIRECTIONAL CLIP LoSS

In zero-shot generative model adaptation setup |Gal et al.| (2022), given a pre-trained generator G s
on the source domain S, and textual descriptions of source and target domains, denoted by 7's and
T+ respectively, the goal is to shift Gs to target domain 7 to generate diverse and high-quality
images from this domain |Abdollahzadeh et al.[(2023). For this adaptation, current approaches Gal
et al.| (2022)); |Guo et al.| (2023)); |Jeon et al.| (2023)) use the CLIP model Radford et al.| (2021)) as the
source of supervision, and assume that text and image offsets (between S and 7) are well-aligned
in CLIP representation space. Therefore, the text offset is computed based on the provided textual
descriptions of the source and target. Then, the trainable generator is initialized with the parameters
of the Gs, and optimized in a way to align image offset with text offset, leading to the directional
CLIP loss:

£direction =1- COS(AIS*ﬁ, ATS*)T),
where Als_,; = E1(Gi(w)) — Er(Gs(w)), (1)
and ATs_.7 = Er(T7) — Er(Ts)

where cos(z,y) = = - y/|z||y| represents the cosine similarity. E7 and E; denote the CLIP text
and image encoders, respectively. G; denotes the trainable generator in iteration ¢ of adaptation.
Als_,; denotes the image offset computed from the source generator to the trainable generator, and
ATs_,7 denotes the text offset from source to target.

3 A CLOSER LOOK AT OFFSET MISALIGNMENT IN CLIP SPACE

Previous works assume that for two different concepts o and (3, the image offset Al,_,g and text
offset AT, _, 3 are completely aligned in the multimodal CLIP embedding space. This assumption of
perfect alignment is the foundation of the directional loss in Eq.[T}] We postulate that this assumption
may have two major limitations:

» CLIP Radford et al.|(2021)) is trained using a contrastive loss to maximize the cosine similarity
between corresponding image-text pairs, i.e., maximize cos(Er(I), Er(Ty,)) for concept «
(e.g., cat), or maximize cos(E(Ig), Er(T;)) for concept 5 (e.g., dog). Note that the degree of
alignment of image offset Al,_,5 and text offset AT, _,5 in CLIP space is not studied in the
literature.
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* In addition, this degree of alignment between Al,_,g and AT, _,3 may vary based on the dis-
tance between two concepts « and .

In this section, we take a closer look at this degree of offset alignment between two different modal-
ities in CLIP space. First, inspired by offset misalignment in NLP, we conduct an empirical study
on large public datasets to analyze the offset misalignment between image and text modalities in
CLIP embedding space. Our analysis suggests that there is a misalignment between A/, _, 3 and
AT, 5 in CLIP embedding space, and this misalignment increases as concepts « and 3 be-
come more distant. Second, we take a further step and design an experiment to evaluate the effect
of this offset misalignment in generative model adaptation using directional loss (Eq.[I)). Our exper-
imental results suggest that less offset misalignment in CLIP embedding space leads to a better
generative model adaptation with directional loss.
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Figure 2: Empirical analysis of offset misalignment in CLIP space: We plot the offset misalign-
ment (Eq.[2) vs concept distance (Sec. [A.T) for N = 5000 of text-image pairs in CLIP space which
are sampled from 6 large publicly available datasets. Our results show that there is a meaningful cor-
relation (measured by Spearman’s coefficient|Zar| (2005)) between offset misalignment and concept
distance for datasets with different distributions, i.e., close concepts has less offset misalignment.

3.1 EMPIRICAL ANALYSIS OF OFFSET MISALIGNMENT

In this section, we conduct an empirical experiment on public datasets to evaluate the degree of
alignment between image and text offsets. For each dataset, we randomly sample two classes as a
pair of concept («, 3). Then, the images within each class are used alongside the related textual
description (e.g., label) of each class to measure offset misalignment M («, ) in a similar approach
to directional loss:

M(a,8) =1- COS(AIa—%yATa—),@)’

where Ala_ﬂg = E](Iﬂ) — E]([a), (2)
and AT,_,5 = Ep(Ts) — E(T,)

where E(1,,) is the average embedding of all images of the class (concept) « in CLIP space. In
addition, to measure the distance between two concepts denoted by D(«, ), we use the cosine
similarity between images of two classes, i.e., D(«,3) = 1 — cos(E[(I), Er(I,)). We repeat
this process to have N = 5000 pairs of concepts for each dataset. Then, we plot M («, 3) against
D(«, B) for each pair of concepts.

Experimental Setup. In this experiment, we use CLIP ViT-Base/32 as the vision encoder. We
use 6 large and multi-class datasets that are publicly available, including ImageNet |Deng et al.
(2009), Caltech-101 |[Fei-Fei et al.| (2007), Openlmages Kuznetsova et al.| (2020), MS COCO |Lin
et al.[(2014), Visual Genome |Krishna et al.|(2017)), and CIFAR-100 Krizhevsky et al.|(2009)) (details

in Sec. [A.T).
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Results. Fig[2] shows the offset misalignment against the concept distance for N = 5000 pairs of
concepts for 6 public datasets. As shown in the plots, for all datasets, apart from their different
distributions and characteristics, there is a correlation between offset misalignment and concept
distance. Particularly, if two concepts « and (3 are distant, there is a higher misalignment between
image offset Al,_,3 and corresponding text offset AT, _,5. This means that given I, T, and Tj,
it is sub-optimal to align Al,_,3 and AT, to find Ig. On the other hand, if two concepts « and
B are closer, potentially, it is more accurate to align Al,_,3 and AT, _,3 to find Ig.

Remark: Our work is the first to find that offset misalignment between image and text modalities
in CLIP space depends on concept distance. In what follows, we design an experiment to show
that less offset misalignment leads to a better generative adaptation with directional loss.

3.2 IMPACT OF OFFSET MISALIGNMENT ON GENERATIVE MODEL ADAPTATION

In the previous section, we performed an empirical study that revealed the offset misalignment for
natural data. In this section, we take a step further and investigate the effect of this misalignment
on the generative model adaptation from a source domain (concept) S to a target domain (concept)
T. Specifically, following zero-shot generative domain adaptation setup|Gal et al.|(2022), for source
domain S, we assume a pre-trained generator Gs and a text description Ts is available. However,
for the target domain, only text description 7’ is available. To simulate different degrees of mis-
alignment between source and target, we augment target text to get a set of text descriptions {77 }.
Then, we perform zero-shot adaptation using the directional loss (Eq. [I) from the source domain S
to each of these target text 77; and measure the generation performance of the adapted generator.

Experimental Setup. For this experiment, we perform adaptation on Human — Baby and Dog
— Cat. We use StyleGAN2-ADA |Karras et al.| (2020a) pre-trained on FFHQ [Karras et al.| (2019)
and AFHQ-Dog|Choi et al.|(2020) as the pre-trained model. We fix the source text T's and augment
the target text T by sampling handcrafted prompts from the CLIP ImageNet template (INtﬂ which
leads to increasing the misalignment (see Supp. Sec. for details). Then, we follow exactly the
same hyperparameters as NADA (see Supp. Sec. [A.3) to adapt the source generator to different
target text 7;. We use FID to measure the performance of the adapted generator against offset
misalignment.

Our results in Fig. [3|demonstrates that in general, increasing the offset misalignment degrades
the performance of the zero-shot generative adaption with directional loss. Motivated by this
finding, in the next section, we propose an approach to iteratively refine the adaptation direction.
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Figure 3: Impact of offset misalignment on zero-shot generative model adaptation with direc-
tional loss: For each of the two setups, we fix the source domain and augment the description of
the target domain to achieve various degrees of misalignment between image offset and text offset.
Then, we perform the adaptation using directional loss in Eq. [I] for each setup. Results show that
adaptation performance degrades by increasing the offset misalignment.

'https://github.com/openai/CLIP/blob/main/notebooks/Prompt_ Engineering_for_
ImageNet.ipynb
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Algorithm 1: Zero-Shot Learning using Adaptation with Iterative Refinement (AIR)

Require: Pre-trained generator G s, textual descriptions T's and T, tqdapt, tehreshs tints
learning rate v, CLIP image and text encoder E; and Er
Output: Trained generator G, to produce high-quality target domain images

Initialize G+ by weights of G's and freeze weights of Gs, © = 0, Lydaptive = 0
ATs7 = Er(T7) — Er(Ts)
fort = 0; t++4; t < tgdap: do
Als_y; = Er(Gi(w)) — Er(Gs(w))
Laiirection =1 — COS(AIS—H‘,v ATS—>T)
if t%t;n; = O then
1+ +
G.Aq‘, = Gt
Py, = Prompt-Learning (Ga,,Ga,_,, Pa,_,) /* refer to Algorithm 2 for details  */
end
if t > tipresn then
ALyt = Ef(Gi(w)) — Er(Ga, (w)) /* if Gy = G 4, add perturbation to Gy (w) */
ATAi*)T = ET(TT) - ET(PAi)
£adapti’ue =1- COS(AIA1—>M ATAi—YT)
end
L= »Cdi'r‘ection + ['adaptive
Update Gy < G — aVg, L
end

4 METHODOLOGY: ADAPTATION WITH ITERATIVE REFINEMENT

Our analysis in Sec. [3|suggests that for the closer concepts, there is less offset misalignment in CLIP
space, resulting in a more accurate directional loss (Eq.|[1) for adaptation. Here, we leverage this
property to enhance the zero-shot generative model adaptation with directional loss.

Specifically, even though the concept distance between source S and target T is fixed, our intuition
is: ‘after limited iterations of adaptation using directional loss, the encoded concept in the adapted
generator is already closer to the target domain than the encoded concept in source generator’.
For example, when adapting a generator pre-trained on Photo to the target domain Painting, after
limited iterations, the adapted generator already encodes some knowledge related to the “Painting”
domain, while this knowledge does not exist in the pre-trained generator.

Following this intuition, we use the adapted generator as the new anchor (denoted by G 4), and
compute the directional loss from this anchor point to the target. We update this anchor point iter-
atively during adaptation, as we move closer to the target domain. Because of the smaller concept
distance, we believe the directional loss computed based on G4 can provide better guidance and
rectify the adaptation direction solely computed based on Gs. The major challenge of using G 4
within directional loss is that related text prompt P4 that describes this concept is unknown. In what
follows, first, we discuss the details of the proposed Adaptation with Iterative Refinement (AIR)
in Sec. @ Then, to address the challenge of unknown P4 within the directional loss of AIR, we
discuss the proposed prompt learning approach in Sec. .2}

4.1 ADAPTATION WITH ITERATIVE REFINEMENT (AIR)

In our proposed approach, first, we adapt the generator to the target domain for t;p,..sp iterations
using directional loss in Eq.[I]to make sure the adapted generator has moved closer to the target do-
main. Then, in each ¢;,; interval of adaptation, we sample the adapted generator as the new anchor
point. We denote i*" sampled anchor by G 4,. To reduce offset misalignment and provide more
accurate direction, we use the anchor point .4; instead of source point S for computing the direc-
tional loss. The image offset with anchor point .A; is computed based on the sampled generator G 4,,
and the trainable generator Gy: Al4, 1 = E1(Gi(w)) — Er(G 4, (w)). Assuming that the anchor
point is described by the prompt P4, in the text domain (details of acquiring P4, will be discussed in
Sec.[4.2), the text offset with anchor point is calculated as follows: ATy, .7 = Er(T7)—Er(Pa,).



noR W N =

Under review as a conference paper at ICLR 2025

Algorithm 2: Proposed Prompt Learning

Require: Current and previous anchor generators G 4, and G 4, _,, learned text prompt for
previous anchor P4, ,, learning rate 3, CLIP image and text encoder £y and Er
Output: Prompt vector P4, to represent current anchor.

AIAi—l_hA'i = EI(G-Ai (w)) - EI(G-A'i—l (w))

for k = 0; k++; k < kjter do
APy a4, = Er(Pa,) — Er(Pa,_,).
Ealign =1- COS(AIA,;_l—).AmAP.Al_1—>A7‘,)
Update P.A,; — P.Ai, — ﬂVpAi Ealign

end

Finally, the adaptive loss Lq4qptive is computed by aligning the image and text offsets from anchor
point A; to target 7

Cadaptive =1- COS(AI_Ai_n, AT.A{,-)T) 3)
We empirically find that adding this adaptive loss to L g, cction results in a more stable adaptation.
The proposed AIR scheme is summarized in Alg][T]

4.2 ALIGNING PROMPT TO IMAGES

Here, we explain the details of the proposed method for learning the text prompt P4, that describes

the i*" anchor point A; in text domain. Inspired by Zhou et al.|(2022b), we define the prompt

Py, € RMTXd a5 combination of M learnable tokens [V]* € R?, and a label token Y4, € R%:
Pa,=[VHVEy - VI [Yal] @)

i

Early approaches of prompt learning directly learn the learnable tokens [V]; from related images
Zhou et al.[(2022bja)). However, recently, ITI-GEN Zhang et al.|(2023)) shows that learning from the
offsets is more efficient for capturing the specific attribute of interest.

Remark: Similar to NADA, ITI-GEN also uses the mechanism of the aligning offsets for learning
target prompts which could be susceptible to offset misalignment. However, there are two major
differences between them: i) ITI-GEN aligns AP to the target Al which could provide a better
supervisory signal, ii) the number of trainable parameters in ITI-GEN is significantly lower (2K in
ITI-GEN compared to 2.7 millions in NADA). In what follows, we propose two design choices to
make learning A P less susceptible to the offset misalignment issue.

Design Choices. To mitigate the possible issue of offset misalignment, we propose to decrease the
distance between concept pairs and use a regulirzer token during prompt learning. More specifically:

* Given that offset misalignment is less for closer concepts, we use the previous anchor point
Aj;_1 as the source to learn the prompt for the i!” anchor A;. Since consecutive anchor points
are close together, the directional loss is more accurate.

* We use the interpolation between tokenized source and target descriptions as anchor label, i.e.,
Ya, = (1 —pi)Ys + p; Y7, with p; denoting the proportion of the training progress until anchor
point A;. The label token acts like a regularizer during prompt learning.

We empirically find that using these two design choices results in better adaptation with our AIR
mechanism compared to learning the prompts directly from generated images by G 4,.

Therefore, the image offset is calculated between the current and previous anchors: Al 4, |, 4, =
Er(Ga,(w)) — Er(Ga,_,(w)). Similarly, the text prompt offset is calculated as follows:
APy, 4, = Er(Pa,) — Er(Pa,_,). Note that the only trainable parameter is the unknown
prompt P4, which is learned by aligning image and prompt offsets:

[’align =1- COS(AIAifl*ﬂAi?APAifl*XAi) (5)

The proposed prompt learning approach is summarized in Alg.[2} We remark that Py, is the tok-
enized text prompt before the CLIP text encoder, and for simplicity, we slightly abuse the notation
and use E7 (P, ) to show CLIP text embedding for anchor A,;.
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Source NADA IPL SVL Source NADA IPL SVL

Human - Baby
Dog - Cat

FID (1) 68.35 6848 15876 6213 | FID (1) 7087 8329 6579  56.20

Intra-LPIPS (1) 0.4474 0.4518  0.4506  0.4520 ! Intra-LPIPS (1) 0.4439  0.4522 0.4547  0.4628

Figure 4: Qualitative and quantitative comparison results: proposed AIR achieves SOTA perfor-
mance indicated by lower FID (better quality) and higher Intra-LPIPS (higher diversity). Here, we
use StyleGAN2 as the pre-trained generator (qualitative results for diffusion model in Supp).

5 EXPERIMENTS

In this section, first, we discuss the details of our experimental setup. Then, we compare our pro-
posed AIR method with SOTA approaches both quantitatively and qualitatively. We are the first
work in the literature that studies zero-shot adaptation of the diffusion models. Finally, we conduct
an ablation study on the design of our prompt learning strategy.

5.1 EXPERIMENTAL SETUP

Generative Models. In this work, we implement zero-shot generative model adaptation for both
GANSs and diffusion models. Note that we perform the first zero-shot adaptation on the diffusion
model. The implementation details for each type of model is as follows:

 Zero-Shot Adaptation of GANSs. In this setup, we follow the previous works (2022));

Guo et al| (2023)); Teon et al.| (2023) settings to adapt StyleGAN2-ADA [Karras et al.| (20204)
pre-trained on FFHQ [Karras et al|(2019) and AFHQ-Dog (2020) to various target

domains.

 Zero-Shot Adaptation of Diffusion Models. In this setup, we use Guided Diffusion

(2021) pre-trained on FFHQ and AFHQ-Dog from P2-Weighting (2022)
as our source generator. To speedup training, we use DPM-Solver [Lu et al| (2022) to generate

images in 10 steps. To prevent overfitting, instead of fully fine-tuning the pre-trained model, we

fine-tune it with LoRA (2022).

During the adaptation of both generators, we utilize the pre-trained ViT-Base/32 [Dosovitskiy et al.|

as the vision encoder for CLIP (2021). The details of the hyperparameters
used during the adaptation can be found in Supp. Sec. [A.4]

Evaluation Metrics. A well-trained image generator is defined by its ability to produce high-quality
and diverse images from target distribution. Following the zero-shot works in literature, in this work
we conduct both visual inspections for qualitative evaluations and quantitative evaluations using the
following metrics:

* FID. For target domains with large and publicly available datasets (e.g., Baby and Cat), we
follow previous work (2023) to use these datasets as target distribution. Then, we
generate 5000 samples for each target domain [Zhao et al|(20224;[2023)), and use FID to evaluate
the generated images’ quality and diversity.
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Source  NADA  IPL SVL AIR Internet Source  NADA  IPL SVL AIR Internet
(Ours) examples (Ours) examples

Human - Pixar character
B
Photo > Wall painting

Photo - Cartoon

Photo - Watercolor

Figure 5: Qualitative comparison results: proposed method does not suffer from artifacts, and
adapts better to the style of the target domains. StyleGAN?2 is used as the pre-trained generator.

¢ CLIP Distance. The public data is scarce for other target domains, e.g., Pixar. For these do-
mains, following|Guo et al | we collect a set of images using a simple query and crawling
process. Then, we use the CLIP Distance (2023) which is defined as the cosine dis-
tance between the clip embeddings of the collected images and the generated images to measure
the similarity of the generated images to the target domain.

¢ Intra-LPIPS. To measure the diversity of the generated images, we use Intra-LPIPS metric
(2021)) which first assigns generated images to one of K clusters, then averages pair-wise
distance within the cluster members and reports the average value over K clusters. In zero-shot

setup, since there are no training images, we follow [Gal et al.| (2022)); (2023)) to cluster
around generated images using K -Medoids |Kaufman & Rousseeuw|(2009), with K = 10.

¢ User Study. We also conduct a user study to compare the quality and the diversity of the gener-
ated images with different schemes based on human feedback. The questionnaire is performed
using the generated images by different schemes including NADA, IPL, SVL, and our proposed
AIR. It includes 12 questions for quality evaluation and 4 questions for diversity assessment.
Finally, we report the percentage of the user preference for each method and for both quality
and diversity metrics.
More details about the evaluation can be found in Supp. Sec. [A.5]

5.2 EXPERIMENTAL RESULTS

Qualitative results. We report qualitative results of zero-shot GAN adaptation across a wide range
of target domains and compare with SOTA methods [Gal et al.| (2022), (Guo et al.| (2023), Jeon et al.
(2023) as shown in Fig[T| 4] and [5] The results of NADA show the adaptation often introduces
undesirable changes in features, e.g., eyes shifting in Photo — Cartoon and red cheeks in Photo
— Wall painting. For IPL and SVL, the adaptations are incomplete, resulting in images that
retain too much of the source domain features, especially for adaptations that require drastic feature
change, such as Human — Werewolf and Photo — Sketch. Our proposed method can fully adapt
to the target domain without generating undesired features. We also show the qualitative results of
zero-shot diffusion model adaptation in Fig. [6] and additional results for GAN adaptation in Fig. [TT}

Quantitative results. We report FID, Intra-LPIPS, and CLIP Distance to quantify the performance
of zero-shot adaptation of both GAN and diffusion model. As shown in Fig[T] and Tab. [} 2} IPL
and SVL perform better for most scenarios in terms of diversity compared to NADA, but the quality
is degraded. We emphasize that our method AIR significantly outperforms SOTA methods in both
quality and diversity by performing more accurate adaptation in CLIP space. Our user study results
in Tab. [3| further confirm the advancement of our method in both quality and diversity.

Ablation Study. We conduct ablation studies to verify the effectiveness of our prompt learn-
ing design. We compare three different schemes to learn prompts and fix all other settings to
perform ZSGM with iterative refinement: i) Z — 7: We follow IPL to learn a latent map-
per that directly produces prompt descriptions from each image. ii) S — A;: We learn the
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Table 1: Quantitative evaluation of zero-shot GAN adaptation. Best results are bold.

Pre-trained Ad . ‘ CLIP Distance ({) | Intra-LPIPS (1)
Dataset aptation
‘ NADA IPL SVL AIR ‘ NADA IPL SVL AIR ‘
Human — Baby 0.3327 0.3562 0.3838 0.3325 | 04474 0.4518 0.4506 0.4520
Human — Werewolf 0.3175 0.2819 0.3868 0.2125 | 0.4114 0.4387 0.4316 0.4410
FFHQ Human — Pixar 0.2335 0.2343 04224 0.2213 | 04759 0.4488 0.4618 0.4717
Photo — Sketch 0.3739 0.3955 0.4092 0.3469 | 0.3870 0.4292 0.4476 0.4493
Photo — Wall painting | 0.4382 0.4898 0.4952 0.4306 | 0.4217 0.4320 0.4332 0.4381
Dog — Cat 0.1493  0.1530 0.1644 0.1320 | 0.4439 0.4522 0.4547 0.4628
AFHQ-Dog Photo — Cartoon 0.2433  0.2419 0.2543 0.2258 | 0.4356 0.4413 0.4400 0.4427
Photo — Walltercolor | 0.1535 0.1711 0.1646 0.1507 | 0.4639 0.4703 0.4622 0.4665

Table 2: Quantitative evaluation of zero-shot diffusion model adaptation.

Pre-trained . \ FID (}) | CLIP Distance (|) | Intra-LPIPS (1)
Adaptation
Dataset | NADA AIR | NADA AR | NADA  AIR

Human — Baby 65.54  58.05 | 0.2598  0.2162 | 0.5700 0.5779
Photo — Sketch 0.4405 0.3576 | 0.4868 0.4860

Dog — Cat 85.02 77.61 | 0.1406  0.1402 | 0.5423 0.5445
oto — Cartoon 0.2544  0.2472 | 0.5574 0.5603

FFHQ

AFHQ-Dog Ph

Table 3: Results of our user study Table 4: Ablation study on prompt learning scheme.
(%) experiments.
Methods ‘ Human — Baby | Dog — Cat
Evaluation Quality Diversity | FID () Intra-LPIPS (1) | FID (}) Intra-LPIPS (1)
NADA 29.55 22.73 NADA | 6835 0.4474 | 70.87 0.4439
IPL 3.03 15.91 I—-T | 9835 0.4308 | 104.59 0.4452
SVL 8.33 4.54 S—A; | 6439 0.4503 | 61.75 0.4630
AIR 59.09 56.82 A1 — A ‘ 62.13 0.4520 ‘ 56.20 0.4628

prompt by capturing the semantic difference between S and A with directional loss, denoted as
Eahgn =1—cos(Als—ya,, APs_ 4,). iil) A;—1 — A;: Our proposed prompt learning scheme,
which captures the semantic difference between consecutive anchors A; 1 and A with directional
loss as denoted in Eq. [5] Tab. ] shows that learning prompts directly from images cannot produce
accurate text descriptions for anchor domains. A4;_; — A; suffer less from offset misalignment
compared to S — A;, therefore the learned prompt is more accurate and results in better zero-shot
adaptations.

Additional Experiments. We conduct additional experiments to demonstrate the well-behaved
latent space of the pre-trained generator is preserved in our method. We report results in Supp due to
lack of space. Specifically, we perform latent space interpolation (Sec. [C), cross-model interpolation
(Sec. D), and cross-domain image manipulation with both GAN and diffusion model (Sec. [E).

6 CONCLUSION

Previous methods in ZSGM assume that image offset and text offset are perfectly aligned in CLIP
embedding space. In this paper, inspired by the studies in analogical reasoning of NLP, we conduct
an empirical study to analyze the misalignment between image offset and text offset in CLIP space.
Our analysis reveals that there is offset misalignment in CLIP space which correlated with concept
distances. Building on this insight, we propose AIR, a new approach that iteratively samples anchor
points closer to the target and mitigates offset misalignment issues. Extentsive experimental results
on both GAN and diffusion models shows that the proposed AIR achieves SOTA performance across
various setups.

10
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SUPPLEMENTAL MATERIAL

Please find the following anonymous link for code and other resources: https://drive.google.
com/drive/folders/1zJ1o5URefAhpcUrSd4TsxVOCH14gEM8v7usp=sharing

A DETAILED EXPERIMENTAL SETTING

A.1 DETAILS OF EMPIRICAL ANALYSIS

For datasets with a single class label for each image, such as ImageNet, Caltech-101, and CIFAR-
100, we use the original images from the dataset. For datasets with multiple objects in an image,
such as Openlmages, MS COCO, and Visual Genome, to better align with the setting in NADA, we
extract the objects using bounding boxes and classify them into their labeled classes.

For a certain concept o, we use the images of the class as I, and the corresponding class label with
INt as T,.

A.2 DETAILS OF IMPACT OF OFFSET MISALIGNMENT

We randomly sample prompt template from INt, and perform zero-shot adaptation with NADA as
shown in Fig. [3] We list the details of the sampled prompts and their offset misalignment M as well
as the adaptation quality (measured by FID) in Tab. [3]

Table 5: Prompt templates used in Sec.

Prompis Human—Baby Dog—Cat
Offset FID Offset FID
Misalignment Misalignment
A bad photo of a { }. 0.6971 62.76 0.3545 69.47
A sculpture of a { }. 0.7895 68.08 0.4713 101.49
A photo of the hard to see { }. 0.7989 76.36 0.4219 75.24
A low resolution photo of the { }. 0.7729 83.18 0.3942 76.06
A rendering of a { }. 0.7577 73.56 0.4028 111.74
Graffiti of a { }. 0.7715 92.34 0.5332 83.03
A bad photo of the { }. 0.7202 66.58 0.3774 66.58
A cropped photo of the { }. 0.8215 89.66 0.4512 132.33
A tattoo of a { }. 0.8060 108.78 0.5490 119.40
The embroidered { }. 0.8185 104.13 0.5514 109.27
A photo of a hard to see { }. 0.7680 74.58 0.4066 79.07
A bright photo of a { }. 0.7315 69.54 0.4305 77.50
A dark photo of the { }. 0.7758 83.50 0.4592 114.12
A drawing of a { }. 0.7765 89.28 0.4304 123.84
A photo of my { }. 0.6949 58.39 0.3566 77.76
The plastic { }. 0.7812 119.73 0.5092 113.99
A photo of the cool { }. 0.8094 103.78 0.4496 93.12
A close-up photo of a { }. 0.7213 69.61 0.4370 72.75
A black and white photo of the { }. 0.7463 64.99 0.5288 140.25
A painting of the { }. 0.8152 121.74 0.4862 150.15
A painting of a { }. 0.7576 87.01 0.4513 89.32
A pixelated photo of the { }. 0.7154 62.85 0.5168 105.32
A sculpture of the { }. 0.7794 82.22 0.5086 115.97
A bright photo of the { }. 0.8029 114.31 0.4203 83.28
A cropped photo of a { }. 0.7493 86.87 0.3929 93.22
A plastic { }. 0.7420 75.65 0.5247 127.82
A photo of the dirty { }. 0.8276 96.47 0.5004 85.62
A jpeg corrupted photo of a { }. 0.7972 92.56 0.5872 88.73
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A.3 HYPERPARAMETERS OF IMPACT OF OFFSET MISALIGNMENT

For the hyperparameter choices in Sec. we strictly follow the settings in NADA except that only
the ViT-B/32 is used as vision encoder. The details of hyperparameters are shown in Tab. [6]

Table 6: Hyperparameters choices of NADA in Sec.

Source  Target Prompttemplate Iterations Adaptivek Mixing

Human Baby INt 300 18 0.0
Dog Cat INt 2000 3 0.0

A.4 HYPERPARAMETERS OF ZERO-SHOT ADAPTATION

In Alg. [T} for both GAN and diffusion model adaptation the batch size is set to 2. Adaptation
iteration €44, is set to 300 for texture-based changes such as Photo— Sketch, and 2,000 for animal
changes like Dog—Cat. We set t¢presn = 0.6%q4qp: to ensure there are some target domain concept
encoded in G, and t;,; = 0.1¢,44p: to facilitate a stable and efficient training.

In Alg. [2| we generate 1,000 pairs of source and anchor images with the same batch of w for each
update. The number of prompt vectors m is set to 4, and is initialized by "A photo of a". Each of
the prompt learning sessions requires k¢, = 200 iterations.

For all experiments, we use an ADAM optimizer with a learning rate of 0.002. We conduct all the
experiments on a single NVIDIA RTX 6000 Ada GPU. The training time is comparable to NADA
as prompt learning in Alg. 2Jonly requires ~20 seconds in our environment.

A.5 EVALUATAION DETAILS

We did our best to follow existing zero-shot works in evaluation setup and further improve on them.
Specifically, following previous works |Gal et al.| (2022); |Guo et al.| (2023)); Jeon et al.| (2023), we
have conducted comparisons on both public datasets and images collected from internet. For evalu-
ation on the public datasets, we have used FFHQ-Baby |Ojha et al|(2021])) (for target domain Baby),
and AFHQ-Cat [Choi et al.| (2020) (for target domain Cat). We report FID and Intra-LPIPS on
these two datasets for different approaches. We remark that similarly NADA reports Intra-LPIPS on
AFHQ-Cat, and SVL reports both FID and Intra-LPIPS on AFHQ-Cat.

For evaluation of collected images from the internet, we follow IPL’s idea to collect internet images
as reference. However, since IPL did not make the collected images publicly available, we had to
repeat this practice and collect the images.

In addition, we believe the included visual results in all cases, can help in transparency and reflecting
the superior performance of our proposed method in terms of adaptation quality.

B ZERO-SHOT DIFFUSION MODEL ADAPTATION

In this section, we show the results of zero-shot diffusion model adaptation. As illustrated in Fig. [6]
the generated images of baseline NADA suffer from mode collapse issue, e.g., wrinkle in Human
— Baby, missing left eye in Photo — Cartoon. Our AIR method can generate images that encode
more target domain information while preserving the diversity. Note that both methods struggles to
generate cat images for Dog — Cat. This could be because diffusion models learn to model the
exact data distribution, therefore it is inherently tied to the learned data distribution and struggle to
generate images from substantially different domains like cats in a zero-shot setting.

C LATENT SPACE INTERPOLATION

Building on prior research, we demonstrate that the target domain generators refined through our
method retain a smooth latent space property. As illustrated in Fig[7] each row features a series of
images from the same target domain. The left-most and right-most images in each row, labeled as
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Human -» Baby Photo - Sketch
AIR NADA AIR

Dog -» Cat Photo - Cartoon
Source NADA AIR NADA AIR
s o ‘ ‘

2z

Figure 6: Qualitative results of zero-shot diffusion model adaptation.

“Photo” —*“A painting in Ukiyo-e style”

G(w,,0) . G((l —a)w; + awy, ) > G(w,, 0)

Figure 7: Latent space interpolation. For each row, the left-most column and right-most column are
respectively two images synthesized with two different latent codes. The remaining columns refer
to images synthesized with interpolated latent codes.

Gi(w1) and G¢(ws) respectively, are generated using distinct latent codes w; and wo. Latent space
interpolation between these codes produces an image G ((1 — a)w; + aws), where « varies from
0 to 1. The visual results show that our method has good robustness and generalization ability. The
various target domain spaces obtained by our method are consistently smooth.

D CROSS-MODEL INTERPOLATION

In addition to demonstrating latent space interpolation, we also explore the model’s weight smooth-
ness across various domains. Specifically, we perform linear interpolation in the weight space be-
tween G(-,05) and G(-, 0y, ), or between G (-, 6, ) and G(-, 0;,). Here, G(-, 0,) represents the source
domain generator, while G(-, 6;,) and G(-,0;,) are generators adapted to two different target do-
mains. Given a latent code w, we produce images via an interpolated model, G(w, (1 — )61 + afs),
where « ranges from 0 to 1. As illustarted in Fig[8] our approach effectively supports smooth cross-
model interpolation, whether transitioning from a source to a target domain or between different
target domains.
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“Pixar character”

“Anime painting”

“Wall painting” “Painting by Gogh”
«3.!, T i

i

“Photo” “Cartoon” “Watercolor”

i

G(w,65) 6(w, (1 — a)bs + ab,,) G(w,6y,) G(w, (1 — a)8y, + ab,,) G(w,6,)

Figure 8: Cross-model interpolation. In each row, the left-most image is generated by the source
generator. The middle and the right-most images are synthesized by two different target domain
generators. The other images represent cross-model interpolations between two different domains.

“Photo” — “Sketch”

“Human” — “Pixar characters”

CLIP 0 0.4058 0.3267 0.3484 0.3826
distance

CLIP W 0.4116 0.3438 0.3609 0.4124 0.2927
distance (-

Figure 9: Image manipulation with GAN. The reference image are the same as in Fig. El

E IMAGE MANIPULATION

To further demonstrate the effectiveness of our proposed method, we also conduct experiments on
text-to-image manipulation. It first inverts a image to the latent code by a pre-trained inversion
model and then feeds it to the trained target domain generator to get the translated target domain
image.

We experiment on both GAN and diffusion model. We use RestyleAlaluf et al| (2021)) with ede
encoder to invert a real image into the latent space w for StyleGANSs. For the
diffusion model, we follow the setting of DiffusionCLIP (2022) to diffuse a real image
and fintune the model to generate an image with target domain features using the diffused image.

E.1 GAN-BASED IMAGE MANIPULATION

For GAN-based generators, we perform the experiment by utilizing the inversion model Restyle
[ATaluf et al.| (2021) with e4e encoder Tov et al (2021). As illustrated in Fig[9] our method qualita-
tively exhibits a higher fidelity of target domain features compared to previous methods. Quantita-
tively, our approach more closely aligns with the reference target images in CLIP space, indicating
a greater semantic similarity.

E.2 DIFFUSION-BASED IMAGE MANIPULATION

We implement based on Diffusion-CLIP (2022) which seamlessly integrates with the
existing zero-shot adaptation methods.
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Figure 10: Diffusion model image manipulation. The reference images are the same as in Fig

Source

“Neanderthal”

“A painting in §
Ukiyo-e style™#

“Painting

by Gogh”

Source
“Zombie dog” |

“Hamster”

“Wolf”

Figure 11: Additional results of zero-shot GAN adaptation with AIR.

As illustrated in Fig [I0] our method qualitatively exhibits a higher fidelity of target domain feature
compared to previous methods. Quantitatively, our approach more closely aligns with the reference
target images in CLIP space, indicating a greater semantic similarity.

F ADDITIONAL VISUAL RESULTS

We present additional visual results for domain adaption and image manipulation. Specifically,
Fig[TT] showcases further generative model adaptation outcomes for AIR, while Fig[T2] illustrates
real-world image manipulation results for diffusion AIR. While domain adaptation brings more
target features, image manipulation with diffusion model retains more image-specific features.

G RELATED WORK

Zero-shot Generative Model Adaptation Zero-shot generative model adaptation is the task of
adapting the source domain knowledge of a well-trained generator to the target domain without
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Source

“Tolkien elf”

“Painting by
Gogh”

“Pixar
character”

“Sketch”

Figure 12: Additional results of image manipulation with diffusion model.

accessing any target samples. Unlike the zero-shot image editing methods [Patashnik et al| (2021
Shen & Zhou| (2021)) where available modifications are constrained in the domain of the pre-trained
generator, zero-shot generator adaptation can perform out-of-domain manipulation by directly op-
timizing the generator parameters. Previous works (2022); (2023);
(2023)) utilized the cross-modal representation in CLIP Radford et al.|(2021) to bypass the need for
extensive data collection. Specifically, NADA |Gal et al.| (2022) first proposes to use the embedding
offset of textual description in the CLIP space to describe the difference between source and target
domains. By assuming the text offset and image offset are well-aligned in CLIP space, it uses the
text offset as adaptation direction and optimizes the trainable generator to align image offset with
text offset. IPL points out that adaptation directions in NADA for diverse image
samples is computed from one pair of manually designed prompts, which will cause mode collapse,
therefore they produce different adaptation directions for each sample. Similarly, SVL [Jeon et al/|
use embedding statistics (mean and variance) for producing adaptation direction instead of
only mean of embeddings in NADA to prevent mode collapse.

However, the adaptation direction in previous work only focuses on the source and target domains
and computes once before the generator adaptation. More importantly, all these methods assume the
image and text offsets in the CLIP space are well aligned. In this paper, we draw inspiration from a
similar problem called analogical reasoning in NLP, and empirically discover that the alignment of
image and text offset in CLIP space is correlated to the concept proximity in CLIP space. Based on
this finding, we proposed a method that iteratively updates the adaptation direction, which is more
aligned with the image offset and more accurate for zero-shot adaptation with directional loss.

Analogical Reasoning Research in NLP has shown that word representations of language models

are surprisingly good at capturing semantic regularities in language [Collobert & Weston| (2008);
Turian et al (2010). Specifically, analogical reasoning [Mikolov et al.| (2013czaib); [Levy & Gold-

berg| (2014), utilizing the semantic regularities of word representations, aims to solve analogy tasks
by using one pair of word vectors to identify the unknown member of a different pair of words,
commonly via alignment of offsets, This is commonly modeled as using the vector offset between
two words @’ — a, and applying it to a new word b to predict the missing word b’ that pair with b,
as illustrated by the famous example of using v(“Man”) - v(“Woman”) and v( “King”) to identify
v("Queen"), where v(-) denotes word representation. This approach attracted a lot of attention for
the vital role that analogical reasoning plays in human cognition for discovering new knowledge
and understanding new concepts. It is already used in many downstream NLP tasks, such as split-

ting compounds [Daiber et al.| (2015)), semantic search [Cohen et al|(2013)), cross-language relational
search |Duc et al.| (2015)), etc.

Importantly, previous works [Levy et al.|(2015)); [Koper et al.| (2015));[Vylomova et al.| (2015) demon-
strate that the effectiveness of analogical reasoning varies across different categories and semantic
relations. More recent studies [Rogers et al.| (2017); [Fournier et al.| (2020), present a series of experi-
ments performed with BATS dataset|Gladkova et al.|(2016)) on various pre-trained vector space, e.g.,
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Models License

StyleGAN2 [Karras et al.| (2020b) Nvidia Source Code License
CLIP |Radford et al.| (2021} MIT License
StyleGAN2-pytorch [Karras et al.[(2020b) | MIT License

ede(Tov et al.[(2021) MIT License
StyleGAN-NADA |Gal et al.| (2022) MIT License

IPL|Guo et al. (2023) MIT License

Datasets License

FFHQ [5] CCBY-NC-SA 4.0

AFHQ [1] CCBYNC4.0

Table 7: Sources and licenses of the utilized models and datasets

GloVe [Pennington et al.| (2014}, Word2Vec Mikolov et al.| (2013b), and Skip-gram Mikolov et al.
(20134), indicate that it is more effective to use @’ — a and b to determine b’ when b and b’ are close
in vector space; and less so when b and b’ are more apart.

Inspired by these studies, in this work, we perform an empirical study of offset misalignment in
CLIP space and observe that for distant concepts in CLIP, image and text offset suffer from more
misalignment, while closely related concepts suffer less. Based on our analysis, we proposed a
method that iteratively refined the text offset for adaptation, which results in less offset misalignment
and leads to a better generative model adaptation with directional loss.

H LIMITATION

Our proposed iterative refinement method seeks to improve the quality of zero-shot adaptation.
However, it relies entirely on the pre-trained CLIP representation space, inheriting any biases and
errors present in CLIP. Additionally, as noted by \Guo et al|(2023), achieving adaptation across large
domain gaps, such as "Human" to "Cat," is particularly challenging. Our approach necessitates that
the trained generator closely approximate the target domain before initiating iterative refinement.

I SocIiAL IMPACT

The AIR methodology holds potential for enhancing artistic image synthesis in social media con-
texts and could serve as a beneficial data augmentation tool in other computer vision tasks such as
recognition and detection. However, its capability to generate realistic images from real-world data
raises ethical considerations. It is crucial to address these issues thoughtfully to prevent misuse and
ensure responsible application of this technology.

J LICENSES

In Table [/} we specify the source and licenses of the models and datasets used in our work. Note
that the FFHQ dataset consists of facial images collected from Flickr, which are under permissive
licenses for non-commercial purposes.
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