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Abstract
Despite significant advancements in deep
learning-based CSI compression, current
approaches primarily view it as a source cod-
ing problem, neglecting transmission errors.
Separate source and channel coding proves
suboptimal in finite block length regimes, while
autoencoder-based compression schemes strug-
gle with complex channel distributions. We pro-
pose Residual-Diffusion Joint Source-Channel
Coding (RD-JSCC), leveraging diffusion models
to learn robust CSI representations. Our archi-
tecture combines a lightweight autoencoder with
a residual diffusion module for iterative CSI
reconstruction, enabling graceful performance
degradation across variable SNR conditions and
robust estimation under multipath fading in the
uplink feedback channel. Our flexible decoding
strategy dynamically selects between autoen-
coder decoding and diffusion-based refinement
based on channel conditions, minimizing the
overall computational complexity. Simulations
demonstrate RD-JSCC significantly outperforms
existing approaches in challenging wireless en-
vironments, without adding substantial decoding
latency via a two-step inference, offering an
efficient solution for next-generation wireless
systems.

1. Introduction
As data transmission volumes continue to increase, mas-
sive multiple-input multiple-output (MIMO) has emerged
as a fundamental technology for scaling next-generation
wireless networks. By employing a large array of anten-
nas at the base station (BS), multiple user equipment (UE)
can achieve high-throughput communication, even under
suboptimal channel conditions. However, achieving this
requires accurate channel state information (CSI) to en-
able effective precoding for downlink transmission. In fre-
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quency division duplexing (FDD) systems, the uplink CSI
is obtained via channel estimation, while the downlink CSI
must be fed back from the user equipment (UE) in an effi-
cient manner (Sim et al., 2016).

Deep learning (DL) has significantly advanced various ar-
eas within physical layer communication, including non-
linear channel code design (Kim et al., 2018; Makkuva
et al., 2021; Jamali et al., 2022; Ankireddy et al., 2024;
2025), neural channel decoding (Nachmani et al., 2016;
Shlezinger et al., 2020; Choukroun & Wolf, 2022; Heb-
bar et al., 2022; Ankireddy & Kim, 2023; Hebbar et al.,
2024), and MIMO channel estimation (Wen et al., 2018;
Chun et al., 2019; Soltani et al., 2019). This work fo-
cuses specifically on the challenge of lossy compression of
CSI at the physical layer. Traditional compression tech-
niques, such as compressed sensing (Kuo et al., 2012), do
not work well CSI compression due to the lack of inher-
ent sparsity in CSI structures, making deep learning a bet-
ter alternative. The field of lossy compression using neu-
ral networks, commonly referred to as neural lossy com-
pression, has gained considerable attention in applications
such as image compression (Ballé et al., 2016; 2018; Li
et al., 2023b) and video compression (Li et al., 2023a).
More recently, similar methodologies have been leveraged
to significantly enhance the efficiency of CSI compres-
sion (Guo et al., 2022), starting with CSINet (Wen et al.,
2018), which achieved substantial improvements over the
then state-of-the-art compressed sensing methods by lever-
aging convolutional neural networks (CNNs). This break-
through led to a series of subsequent studies that further
refined CNN-based compression techniques (Wang et al.,
2019; Li et al., 2020; Liu & Simeone, 2021; Lu et al., 2020;
Kim et al., 2022). Further, similar approaches have been
adapted for joint source channel coding (JSCC) of CSI (Xu
et al., 2022).

Recently, neural image compression has witnessed a sig-
nificant breakthrough in both compression efficiency and
reconstruction quality with the adoption of diffusion mod-
els (Ho et al., 2020; Song et al., 2020). Originally de-
signed to generate novel images based on various condi-
tioning variables, these models were rapidly adapted for
image compression. In (Yang & Mandt, 2023), the au-
thors introduced a diffusion-based compression framework
that reconstructs images through a reverse diffusion process
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conditioned on contextual information, outperforming cer-
tain GAN-based methods. Further, in (Careil et al., 2023),
an extremely low rate compression scheme was developed
by leveraging the strong image priors of pretrained diffu-
sion models.

While diffusion models have recently garnered consider-
able attention in image compression, their potential for
CSI compression remains comparatively underexplored.
A notable advancement in this direction is the genera-
tive diffusion-based CSI compression framework proposed
in (Kim et al., 2025), demonstrating significant improve-
ments over traditional autoencoder-based methods. Build-
ing upon this promising foundation, our work aims to fur-
ther enhance diffusion-based CSI compression in two key
dimensions. First, we prioritize reconstruction fidelity by
balancing output diversity, shifting the model’s objective
from generating novel samples towards maximizing recon-
struction accuracy. Next, instead of assuming an ideal
noiseless feedback, we simulate a realistic multi-path fad-
ing channel to learn robust representations, optimizing the
performance end-to-end.

In this work, we propose a novel residual diffusion-based
CSI compression framework tailored to compress CSI mea-
surements in massive MIMO systems efficiently. The pro-
posed framework features an encoder leveraging a low-
complexity convolutional neural network (CNN) architec-
ture and a two-stage decoding process at the receiver.
Specifically, the decoder comprises an initial CNN-based
reconstruction stage followed by a U-Net-based diffusion
refinement model, progressively enhancing CSI recon-
struction quality. The main contributions of this paper are
summarized as follows:

• We propose a residual-diffusion-based JSCC scheme
that enhances the CSI reconstruction by initializing
the reverse diffusion with a coarse CSI estimate, rather
than conventional random Gaussian noise.

• We propose a flexible two-stage decoding framework
that adaptively switches between low-complexity au-
toencoder and high-fidelity diffusion-based decoders,
based on channel conditions (Sec. 4).

• We validate the efficacy of our proposed method by
conducting performance evaluations against state-of-
the-art deep learning-based JSCC schemes for CSI
compression, using the widely recognized COST2100
outdoor dataset (Wen et al., 2018) and 3GPP in-
door dataset using QuaDRiGa (Jaeckel et al., 2017)
(Sec. 5).

• We perform a systematic comparative study across
multiple neural architectures and diverse channel sce-
narios, revealing that diffusion-based models signif-

icantly outperform autoencoder-based methods only
when channel complexity is sufficiently high (Sec. 6).

2. System Model and Problem Formulation
In this work, we consider a massive MIMO system oper-
ating in frequency division duplex (FDD) mode, where a
base station (BS) with Nt antennas communicates with a
user equipment (UE) equipped with Nr antennas. Consid-
ering the large-scale nature of MIMO, we assume Nt ≫ 1
and set Nr = 1 for simplicity. The downlink CSI is Hd ∈
CNc×Nt and the uplink CSI is denoted by Hu ∈ CNc×Nt in
the spatial-frequency domain, where Nc is the number of
subcarriers.

The encoder fenc at the UE is designed to efficiently com-
press the high-dimensional channel measurement Hd into
a fixed-length representation s ∈ Ck. The compression rate
is thus given by

r =
k

Nt ×Nc
.

The compressed representation can be transmitted on a
noisy uplink channel using k subcarriers, while imposing
an unit power constraint for the subcarriers 1

k E
[
s s∗

]
= 1.

The received signal at the BS is processed using maximal
ratio combining (MRC).

The compressed representation at the receiver is processed
in two stages. First, the decoder fdec reconstructs an esti-
mate Ĥd from the compressed representation s, aiming to
minimize distortion relative to the original input Hd. Next,
to further refine the reconstruction, the noisy estimate Ĥd

is processed by a denoising diffusion model fden, iteratively
reducing the distortion using the reverse diffusion. Specif-
ically, we use the residual diffusion formulation (Liu et al.,
2024). Following standard practice in CSI compression lit-
erature, we adopt mean squared error (MSE) as the distor-
tion metric.

The encoder function is defined as fenc : Hd 7→ s, while
the decoder function is given by fdec : s 7→ Ĥd, and the
denoising model operates as fden : Ĥd 7→ H ′

d. Given the
encoder parameters θenc, the compressed representation s
is obtained as s = fenc(Hd; θenc). Similarly, the decoder,
parameterized by θdec, reconstructs an estimate of the tar-
get as Ĥd = fdec(s; θdec). Finally, the denoising model,
governed by θden, further enhances the reconstruction, pro-
ducing H ′

d = fden(Ĥd; θden). The complete set of model
parameters is thus given by θ = (θenc, θdec, θden).

The learning process is designed to minimize the following
objective function:

θ∗ = argmin
θ

Ep(Hd,H′
d)

[
d(H ′

d, fden(fdec(fenc(Hd; θenc); θdec)))
]

(1)
where d(·, ·) represents a distortion metric that quan-
tifies reconstruction quality. The parameters θ =
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(θenc, θdec, θden) are optimized using a two-stage training
process, detailed in Sec. 4.

3. Deep Learning for CSI compression
In this section, we introduce a low-complexity
autoencoder-based solution for CSI compression. By
considering the task of CSI compression as an image
compression problem, several works based on an au-
toencoder structure were proposed (Wen et al., 2018; Lu
et al., 2018; Guo et al., 2020; Lu et al., 2020; Hu et al.,
2021; Chen et al., 2021; Cao et al., 2021; Ji & Li, 2021).
Notable works among them include CSINet (Wen et al.,
2018), which was one of the first deep learning approaches
proposed and outperformed compressed sensing baselines
such as LASSO and BM3D-AMP. CRNet (Lu et al., 2020)
proposed a multi-resolution deep learning framework
for CSI feedback in massive MIMO systems, enabling
scalable compression across different feedback overheads.
Recently, a transformer-based architecture that utilizes
stripe-wise spatial features was introduced in (Hu et al.,
2023) to enhance the efficiency of CSI compression in
massive MIMO systems.

3.1. Autoencoder based CSI compression

Given the three-dimensional spatially correlated structure
of the CSI matrix, using a convolution-based architecture
is an efficient choice for compressing the input. We chose
a low-complexity design for the auto-encoder. The en-
coder is implemented as lightweight CNN layers followed
by a fully connected layer. To maintain robustness under
changing SNR, we use an SNR-adaptation module that dy-
namically scales the feature activations based on SNR. The
complete architecture of both the encoder and the SNR-
adaptation block is shown in Fig. 1.
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Figure 1: Low-complexity CSI encoder.

The decoder employs a moderately deeper architecture to
extract richer representations. It starts with a fully con-
nected layer, followed by an initial convolutional layer and
a stack of five residual blocks that enhance feature propa-

gation and stabilize training. An identical SNR-adaptation
module is employed in the decoder, mirroring the encoder
design. A schematic of the decoder, including the residual
block layout, is provided in Fig. 2.
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(a) CNN decoder
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Figure 2: Low-complexity CSI decoder.

We train the autoencoder in a supervised manner to learn
an effective low-complexity compression scheme. The en-
coder compresses the continuous channel measurement Hd

into a compact latent vector s ∈ Ck. The decoder recon-
structs the approximate channel measurement Ĥd. The en-
coder and decoder are jointly optimized in an end-to-end
fashion to minimize the reconstruction loss for CSI. We use
the MSE loss to enforce reconstruction fidelity by ensur-
ing that the reconstructed output closely matches the input,
given by:

LMSE(Hd, Ĥd) = ∥Hd − Ĥd∥2, (2)

where ∥ · ∥ denotes the Frobenius norm.

Several works have demonstrated that CNN–based autoen-
coders can effectively minimize the reconstruction NMSE
for both standalone CSI compression (Wen et al., 2018; Hu
et al., 2023) and joint source–channel coding of CSI (Xu
et al., 2022). Although this supervised formulation suf-
fices for relatively simple channel distributions, it strug-
gles when the underlying channel distribution becomes
more complex. Recent work on CSI compression over
the COST2100 outdoor channel (Kim et al., 2025) demon-
strated that generative diffusion models significantly out-
perform conventional CNN autoencoders in such challeng-
ing settings. Motivated by these findings, we augment our
autoencoder with a diffusion refinement stage at the base
station. This hybrid design invokes the diffusion module
only when the channel complexity warrants it, thereby de-
livering superior reconstruction quality without incurring
unnecessary computational overhead in simpler channel
conditions.
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4. Residual Diffusion for CSI Enhancement
In this section, we introduce a framework for enhanc-
ing CSI reconstruction at the receiver using residual dif-
fusion (Liu et al., 2024). Unlike conventional generative
diffusion-based approaches, the proposed method can be
seamlessly integrated with both learning-based and tradi-
tional non-learning-based techniques, as the diffusion mod-
ule is trained as a standalone denoising model, making it
more suitable for practical adaptation.

Preprocessing. To reduce computational complexity, we
first transform the complex matrix Hd from the spatial-
frequency domain to the angular-delay domain by apply-
ing a two-dimensional inverse fast Fourier transform (2D
IFFT). This transformation exploits the inherent sparsity
in the angular-delay domain, supported by established as-
sumptions (Wang et al., 2018a). Subsequently, we retain
only the first 32 elements along the delay dimension, as
the remaining coefficients typically approach zero, yield-
ing compact angular-delay domain representations of Hd.
The original CSI matrices can then be reconstructed by ap-
pending zero matrices of size 32× (Nc− 32) and perform-
ing a 2D FFT. This preprocessing procedure is widely rec-
ognized as an efficient CSI representation technique (Wen
et al., 2018; Wang et al., 2018b; Lu et al., 2020). Note that
for the COST2100 outdoor dataset, the performance evalu-
ations reported in this work are conducted in terms of nor-
malized mean squared error (NMSE) within the cropped
angular-delay domain. However, for other datasets where
spatial-frequency domain data is available, we convert the
estimated channel matrices from the angular-delay domain
back to the spatial-frequency domain, and subsequently
present the final NMSE results in that domain.

The receiver first obtains a coarse estimate of the channel
using the autoencoder described in Sec. 3.1, which we re-
fer to as Stage 1. Unlike certain CSI compression methods
that quantize the latent representation into a fixed number
of bits using vector quantization, we instead map the latent
to a fixed-length continuous vector. This continuous rep-
resentation allows direct mapping of encoded data to the
uplink subcarriers and simulates complex channel impair-
ments such as multi-path within the feedback channel.

In Stage 2, the denoising process leverages the output of
the autoencoder to initialize the reverse diffusion proce-
dure with the coarse CSI estimate. Following standard
practice in the generative modeling literature, we adopt
the U-Net architecture (Ronneberger et al., 2015) as the
backbone for the denoising network. Unlike recent gen-
erative diffusion-based CSI reconstruction methods (Kim
et al., 2025), which initialize reverse diffusion from random
Gaussian noise, we employ a residual diffusion approach
that iteratively refines the initial CSI estimate, as illustrated
in Fig. 3.

While initializing with random noise facilitates the gen-
eration of diverse samples from the underlying distribu-
tion—an objective well-suited for data synthesis—it is sub-
optimal for compression and reconstruction tasks, where
compressed latent features already provide a strong prior.
Residual diffusion addresses this by starting from a coarse
channel estimate, leading to more accurate reconstructions.
The effectiveness of residual diffusion for reconstruction
tasks has been well demonstrated in the context of image
compression (Li et al., 2024). We now formally describe
the complete CSI compression and reconstruction pipeline.

In Stage 1, the encoder produces a compressed represen-
tation s, which is then used to obtain a coarse reconstruc-
tion Ĥd of the input channel Hd. During the denoising
stage, the objective is to further refine Ĥd by sampling
Z ∼ p(z | Ĥd). This leads to the formulation of a residual
denoising diffusion process, given by

p(z0:T | Ĥd) = p(zT )

T∏
t=1

N (zt−1;µθ(zt, Ĥd, t), βtI),

(3)
where z0:T = (z0, . . . , zT ) denotes a realization of the
stochastic process (Z0, . . . ,ZT ), µθ is the learnable mean
function parameterized by θ, βt defines the variance sched-
ule at each time step t, and I is the identity matrix.

In a generative diffusion-based approach, the forward pro-
cess is defined by progressively adding Gaussian noise with
variance βt ∈ (0, 1) to the clean latent features z0 accord-
ing to a predefined schedule, as given by

zt =
√
ᾱtz0 +

√
1− ᾱtϵt, t = 1, 2, . . . , T, (4)

where ϵt ∼ N (0, I), αt = 1 − βt, and ᾱt =
∏t

i=1 αi.
As t increases, the noisy latent variable zt gradually con-
verges to a standard Gaussian distribution. Typically, T
is chosen as a relatively large value (e.g., 20–50), with
the reverse diffusion process initialized from pure Gaus-
sian noise. However, in the context of CSI compression,
this strategy is suboptimal, as a coarse channel estimate Ĥd

can be readily obtained using either conventional compres-
sion techniques (Sim et al., 2016) or low-complexity deep
learning-based methods (Sun et al., 2024).

To exploit the availability of the coarse estimate Ĥd, we
adopt a residual diffusion approach as presented in (Li
et al., 2024), which modifies the initialization step as

zN =
√
ᾱN Ĥd +

√
1− ᾱNϵN , (5)

where N ≪ T . This leads to the following residual diffu-
sion formulation:

zt =
√
ᾱt (z0 + ηtr) +

√
1− ᾱtϵt, t = 1, 2, . . . , N,

(6)
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Figure 3: A lightweight autoencoder compresses the MIMO CSI matrix into a low-dimensional latent representation, which is transmitted
over a noisy channel. Decoding occurs in two stages: (1) a low-complexity decoder produces a coarse reconstruction, and (2) a diffusion-
based denoising model refines the output for enhanced quality.

where r denotes the residual between the clean channel
z0 = Hd and the coarse estimate Ĥd, i.e., r = Ĥd−z0. The
weighting sequence {ηt}Nt=1 is designed such that η1 → 0
and ηN = 1.

Since the residual r is not available during inference, resid-
ual diffusion assumes a linear relationship among zt−1, zt,
and z0, analogous to the DDIM framework (Song et al.,
2020), given by

zt−1 = ktz0 +mtzt + σtϵ, (7)

where σt = 0 for simplicity and kt and mt are weighing
coefficients from (Li et al., 2024) .Combining (6) and (7)
yields

ηt
ηt−1

=

√
1− ᾱt/

√
αt√

1− ᾱt−1/
√
αt−1

⇒ ηt = λ

√
1− ᾱt√
αt

,

(8)
where the scaling factor λ is set to

√
ᾱN√

1−ᾱN
to satisfy the

condition ηN = 1.

Substituting (8) into (6), the forward diffusion process can
be expressed as

zt =
√
ᾱt

(
z0 + λ

√
1− ᾱt√
ᾱt

r

)
+
√
1− ᾱtϵt, (9)

which simplifies to

zt =
√
ᾱtz0 +

√
1− ᾱt(λr+ ϵt). (10)

Ultimately, the denoising network is trained to recover the
clean channel z0 from noisy observations at various noise
levels encountered during the forward diffusion process.
The corresponding diffusion loss is formulated as

Ldiff = EZ0,T

[
ᾱT

1− ᾱT

∥∥∥Z0 − fden(ZT , Ĥd, T ; θden)
∥∥∥2] ,
(11)

Algorithm 1 Training the autoencoder model

Input: Initial model (θenc, θdec), Adam optimizer
Output: Updated model (θenc, θdec)

1: for i = 0 to Ntrain do
2: Sample Hd from the channel distribution
3: s = fenc(Hd; θenc)
4: Ĥd = fdec(s; θdec)
5: LMSE = ∥Hd − Ĥd∥2
6: Adam(θenc, θdec,LMSE)
7: end for

where fden(·) is the denoising network parameterized by
θden.

Diffusion with χ-prediction. In Equation (11), the loss
is computed between the clean image and the model’s pre-
diction, compelling the network to directly predict the im-
age rather than the conventional approach of predicting
the added noise. This technique, known as χ-prediction,
proves particularly advantageous when operating with a
limited number of denoising steps (e.g., T < 50). As
our experimental results in subsequent sections demon-
strate, this approach facilitates low-latency inference by en-
abling a transition to one-step decoding during inference
with minimal or no degradation in reconstruction quality.

4.1. Training

We propose a two-stage training strategy to optimize per-
formance while maintaining computational efficiency. In
the first stage, the autoencoder model is trained using the
MSE loss (2) between the input CSI matrix and the esti-
mated CSI matrix. Due to the relatively small number of
parameters and faster convergence, the computational over-
head for Stage 1 is minimal. The detailed training proce-
dure for this stage is outlined in Alg. 1.
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Algorithm 2 Training the denoising U-Net

Input: Pretrained (θenc, θdec). Initial parameters for de-
noising network θden, variance schedule {ᾱt}Tt=0,
Adam optimizer

Output: Updated denoising network θden
1: for i = 0 to Ntrain do
2: Sample Hd form the channel distribution
3: s = fenc(Hd; θenc)
4: Ĥd = fdec(s; θdec)
5: Ldiff = ᾱt

1−ᾱt
∥z0 − fden(

√
ᾱtz0 +

√
1− ᾱt(λr +

ϵt))∥2
6: Adam(θden,Ldiff)
7: end for

In the second stage, the weights of the autoencoder model
are frozen, while a residual conditional denoising diffu-
sion model, based on the U-Net architecture, is trained.
This training process optimizes the diffusion loss defined
in (11), essentially training a denoising network. The de-
tailed training procedure for this stage is outlined in Alg. 2.

5. Experimental Setup and Results
5.1. Baselines and comparison.

To evaluate our diffusion-based approach, we benchmark
against ADJSCC (Xu et al., 2022), a recent state-of-the-
art non-linear transform method. ADJSCC employs a
neural network to transform CSI information from the
spatial frequency domain to a low-dimensional represen-
tation—bypassing the traditional IFFT approach—before
further compression via a secondary network. We also in-
clude the deep JSCC variant of CSINet+ (Guo et al., 2020),
another widely recognized benchmark in CSI compression
literature. To maintain fairness in comparison, we utilize
identical datasets and training protocols across all evalu-
ated models.

We implement two variants of the ADJSCC baseline:
(1) the original architecture as presented in (Xu et al.,
2022), and (2) a parameter-scaled version that matches
the complexity of our proposed RD-JSCC model, by in-
creasing the layers and channel dimensions. Addition-
ally, we examine a supervised variant of RD-JSCC, where
both the autoencoder and U-Net components are trained
end-to-end using an MSE loss function. Our primary
contribution, RD-JSCC—which integrates an autoencoder
with diffusion-based U-Net training—demonstrates perfor-
mance improvements of an order of magnitude compared
to (Xu et al., 2022) at equivalent NMSE targets.

5.2. Dataset

We evaluate our method on the COST2100 outdoor
dataset (Liu et al., 2012), which is widely adopted due to its
realistic and complex channel characteristics. The dataset
provides 105 training samples and 2× 104 test samples. It
is important to note that the original spatial-frequency do-
main representations are not publicly available; instead, we
utilize the provided 32× 32 cropped complex channel ma-
trices in the angular-delay domain. Consequently, we omit
the non-linear transformation module used in ADJSCC and
retain only the inner encoder-decoder components that op-
erate directly on the 32 × 32 angular-delay domain com-
plex inputs. Since the input dimensions of the inner module
match those of the COST2100 cropped channels, this setup
enables a fair and consistent comparison. All evaluations
are reported in terms of NMSE measured in the angular-
delay domain.

To simulate a realistic feedback channel, we generate up-
link channel realizations using QuaDRiGa (Jaeckel et al.,
2017), adhering to the 3GPP TR 38.901 channel specifica-
tion (TR), with an uplink carrier frequency of 5.4 GHz. We
adopt the simulation configuration outlined in (Xu et al.,
2022) and assume line-of-sight (LOS). The base station
(BS) is positioned at the center of a 20 m × 20 m area
and is equipped with a uniform linear array (ULA) com-
prising Nt = 32 omnidirectional elements spaced at half-
wavelength intervals. The user equipment (UE) employs
a single omnidirectional antenna (Nr = 1). The antenna
heights are set to 3m at the BS and 1.5m at the UE. The
simulation includes Nc = 32 subcarriers in the uplink
transmission.

5.3. Model configuration

Encoder. To ensure a low-complexity design for the UE,
we choose a small number of convolution channels and do
not utilize any residual connections in the encoder archi-
tecture. The detailed architectural choices are summarized
in Tab. 1.

Layer Channels Kernel size

Input Conv 2 (11,11)
Conv layer 1 32 (9,9)
Conv layer 2 48 (7,7)
Output Conv 2 (5,5)

Table 1: CNN encoder.

Decoder. The receiver employs a series of residual blocks
with varying channel widths and kernel sizes. This
deeper architecture, combined with residual connections,
enhances reconstruction performance while introducing
only a modest increase in decoding latency. The detailed
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architectural choices are summarized in Tab. 2.

Layer Channels Kernel size

Input Conv 2 (7,7)
Residual Block Conv layer 1 16 (7,7)
Residual Block Conv layer 2 24 (5,5)
Residual Block Conv layer 3 2 (3,3)

Table 2: Residual Block decoder.

Diffusion. The architecture for the diffusion denoising net-
work is based on (Yang & Mandt, 2023) and (Kim et al.,
2025). We choose an initial embedding width of 64 chan-
nels and dimension multipliers {1, 2, 3, 4} for the succes-
sive down-sampling and mirrored up-sampling stages. Skip
connections link each down-sampling block to its sym-
metric up-sampling counterpart, preserving high-resolution
features throughout the reverse diffusion trajectory. The U-
Net outputs a refined estimate of the CSI matrix that is fed
back, iteratively refining the coarse estimate, based on the
number of steps used in reverse diffusion. Th edetails of
Hyperparametrs are provided in Appendix.

5.4. Results

In Fig. 4, we present the NMSE in reconstruction
for the angular-delay domain CSI measurements of the
COST2100 outdoor dataset. We configured the feedback
bandwidth to k = 16, compressing each 32× 32 CSI mea-
surement (1024 complex coefficients) to a 16-dimensional
latent vector, achieving a compression rate of 164.

Our evaluation begins with the exact architectures from
ADJSCC (Xu et al., 2022) and CSINet+ (Guo et al., 2020),
which demonstrate notably poor performance. When scal-
ing these architectures by incorporating additional interme-
diate layers and increasing convolutional channels, perfor-
mance improves marginally, but all schemes still saturate
at an NMSE greater than −4 dB. This reveals that con-
ventional autoencoder approaches trained with supervised
learning objectives exhibit poor scaling characteristics rel-
ative to model size and fail to adequately capture the under-
lying channel characteristics despite substantial parameter
counts.

We then developed a hybrid architecture combining the
original autoencoder model from (Xu et al., 2022) with a
U-Net backbone for denoising. The U-Net backbone has
been widely employed in image processing for enhanced
denoising, de-blurring, and more recently, image genera-
tion. Our hybrid model, termed U-Net based JSCC, was
trained with the same supervised training objective as (Xu
et al., 2022), minimizing the end-to-end MSE. Remark-
ably, despite having a similar parameter count as the larger
variants of ADJSCC and CSINet+, the U-Net based JSCC
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Figure 4: RD-JSCC achieves an order-of-magnitude improvement
in performance over state-of-the-art deep JSCC baselines on the
COST2100 outdoor dataset for feedback bandwidth of k = 16.

shows significant performance improvements, achieving an
NMSE lower than −9 dB. This highlights the importance
of architectures that scale effectively with increasing model
size.

Finally, we trained the U-Net based JSCC model with a dif-
fusion objective instead of the supervised objective. This
approach, which we refer to as RD-JSCC, achieves the
best performance among all evaluated schemes. During de-
coding at the receiver, the autoencoder head first produces
a coarse estimate of the CSI. The U-Net model then ini-
tializes the reverse diffusion with this coarse estimate and
refines the CSI at each denoising step, iteratively feeding
the improved estimate back into the U-Net until complet-
ing the specified number of denoising steps. While our de-
fault configuration uses 20 denoising steps, we found that
to minimize inference latency, a 2-step reverse diffusion
performs remarkably well with only a negligible NMSE
penalty, achieving an NMSE below −12 dB. These findings
underscore the fundamental advantage of diffusion-based
modeling for complex channel distributions where tradi-
tional supervised approaches reach their representational
limits.

6. Channel Distribution vs. Model
Complexity

While it is clear that diffusion models have the poten-
tial to enhance CSI reconstruction quality at the base sta-
tion significantly, they also introduce substantial compu-
tational complexity. Therefore, it is crucial to justify this
added complexity by employing diffusion-based refine-
ment only when truly necessary. In the current state-of-the-
art diffusion-based CSI compression method (Kim et al.,

7



2025), the same network architecture is applied across both
the Clustered Delay Line (CDL) and the more challeng-
ing COST2100 outdoor datasets, despite the latter being
considerably more complex. Moreover, the comparisons to
existing baselines do not account for the substantial differ-
ences in model size. For example, baseline models used
in (Kim et al., 2025) such as CSINet and CRNet typi-
cally have around 400K parameters, whereas the genera-
tive diffusion-based approach presented utilizes approxi-
mately 15M parameters. This significant disparity in pa-
rameter count complicates the assessment of whether per-
formance gains arise from the diffusion modeling itself or
simply from increased model size.

In this section, we conduct a systematic ablation study to
isolate the benefits of diffusion modeling and to understand
its advantages relative to the underlying channel complex-
ity.

Architecture Choices. We evaluate three different archi-
tectures for this study. First, we consider a simple convo-
lutional autoencoder trained in a supervised manner. Sec-
ond, we consider an autoencoder followed by a U-Net de-
noising network, also trained end-to-end with supervised
loss. Finally, we evaluate the RD-JSCC model, where the
autoencoder and U-Net are trained jointly using the resid-
ual diffusion objective. In all three cases, the architectures
are appropriately scaled to maintain comparable parameter
counts across models and the details are provided in Ap-
pendix.

Channel Model Choices. In addition to the COST2100
outdoor scenario (Liu et al., 2012) analyzed in Sec. 5,
we now evaluate performance under the indoor open-area
channel model specified in 3GPP TR 38.901 (TR). This
environment is characterized by significantly lower spatial
complexity and information density than COST2100, pro-
viding a useful contrast in dataset complexity.

Analysis of results in Figure 5 reveals that the perfor-
mance gap between our diffusion-based approach and au-
toencoder baselines narrows considerably for the 3GPP
indoor dataset, in stark contrast to the COST2100 out-
door results presented in Figure 4. This observation high-
lights an important nuance: Despite the general superior-
ity of diffusion-based CSI compression, the complexity-
performance trade-off becomes less favorable when mod-
eling simpler channel environments, where conventional
low-complexity autoencoder architectures may offer a
more efficient solution.

Notably, the flexible formulation of our residual diffusion
framework provides an additional operational advantage,
allowing for early termination of the decoding process af-
ter stage 1, regardless of prevailing channel conditions,
thereby offering adaptive decoding complexity scaling on
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Figure 5: Under low-complexity channel conditions, such as the
3GPP indoor scenario, the performance gap between diffusion-
based and autoencoder-based approaches narrows significantly.

application requirements.

7. Conclusion and Remarks
In this work, we introduce a hybrid JSCC scheme for
MIMO CSI compression combining autoencoder-based
initial estimation with diffusion-based refinement. Our
residual diffusion approach initializes reverse diffusion
with a coarse autoencoder estimate, tailoring the reverse
diffusion specifically for reconstruction. This two-stage
framework can be exited after either stage based on channel
conditions and performance requirements, balancing com-
putational complexity against fidelity. Further, using x-
prediction, we enable single-step diffusion inference with
minimal performance loss, substantially reducing latency.
Our experiments across varying channel complexities show
diffusion-based refinement delivers optimal value for com-
plex channel distributions, while autoencoder solutions ef-
ficiently serve simpler channel distributions. These find-
ings highlight diffusion models’ potential for enhancing
CSI reconstruction at base stations under challenging up-
link conditions. Future work includes developing multi-
rate compression within a single model, investigating quan-
tization effects, exploring weight quantization techniques,
and optimizing the U-Net backbone for improved compu-
tational efficiency while preserving performance.
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8. Hyperparameters for training
To train the diffusion model, we adopt a similar train-
ing methodology and set of hyperparameters used in (Kim
et al., 2025). The Adam optimizer is employed with a co-
sine annealing learning rate scheduler that goes from an
initial learning rate of 3 × 10−4 to 1 × 10−5 and a batch
size of 100 is used. For the diffusion process, we use a
cosine beta schedule for determining the noise variance at
each step.

As described in Sec. 4, the model is trained in two stages.
In the first stage, the autoencoder model is trained for
Ntrain = 105 iterations using the MSE loss (2). In the sec-
ond stage, the diffusion-based U-Net is trained for Ntrain =
106 iterations. The coarse estimate produced by the autoen-
coder serves as the initialization point for reverse diffusion,
with denoising performed over T = 20 steps during train-
ing. However, during inference, we can use a 2-step de-
noising for the reverse diffusion, with a small penalty in
performance. This is primarily enabled by training the dif-
fusion model using x-prediction instead of Gaussian noise,
thus making the inference 10× faster. Performance is eval-
uated using the NMSE, which is given as E [∥z− ẑ∥/∥z∥]
for the ground truth z and reconstruction ẑ,

9. Computational Complexity
We now evaluate the computational complexity of RD-
JSCC by measuring the throughput of each module on
both the COST2100 outdoor and 3GPP indoor datasets.
Throughput is measured in terms of samples processed
per second (samples/s), averaged over multiple runs with
a batch size of 103. All simulations were conducted on a
system equipped with an AMD Ryzen Threadripper
PRO 5975WX 32-Core processor and an NVIDIA
GeForce RTX 4090 GPU.

As shown in Tables 5 and 6, the encoder and decoder ex-
hibit high throughput due to their lightweight convolutional
architecture. The encoder consistently achieves throughput
near 9.5 × 104 samples/s across both datasets, making it
suitable for low-power UEs. The decoder is slightly more
complex due to residual layers, but still maintains a high
throughput of approximately 8.25× 104 samples/s.

In contrast, the diffusion model, though delivering signif-
icant performance improvements under complex channel
conditions, introduces higher computational cost. The 2-
step residual diffusion refinement achieves throughput of
3.9×103 samples/s on COST2100 and 8.2×103 samples/s
on the 3GPP indoor dataset. For applications requiring
higher fidelity, the full 20-step diffusion yields throughput
in the 102 samples/s range, although the improvements in
NMSE are marginal compared to 2-step diffusion. Hence,
invoking the diffusion refinement module at the decoder

Model Encoder Decoder Denoising

DJSCC-CSINet+ (Small) 152K 118K –
DJSCC-CSINet+ (Large) 152K 12M –
ADJSCC (Small) 152K 118K –
ADJSCC (Large) 152K 12M –

U-Net-based JSCC 152K 118K 13.7M
RD-JSCC 152K 118K 13.9M

Table 3: Parameter count for each model architecture used for
COST2100 dataset experiment.

Model Encoder Decoder Denoising

DJSCC-CSINet+ (Small) 167K 191K –
DJSCC-CSINet+ (Large) 167K 1.3M –
ADJSCC (Small) 168K 197K –
ADJSCC (Large) 168K 1.3M –

U-Net-based JSCC 152K 118K 1.25M
RD-JSCC 152K 118K 1.28M

Table 4: Parameter count for each model architecture used for
3GPP indoor dataset experiment.

can incur a throughput penalty of 10× to 100×, and should
therefore be used judiciously, only when necessary based
on the underlying channel complexity.

These results reinforce the practicality of RD-JSCC’s hy-
brid decoding strategy, unlike a single diffusion-based so-
lution presented in (Kim et al., 2025). For simple channels,
the decoder alone may suffice, while complex scenarios
can selectively invoke diffusion-based refinement. Further-
more, early-exit and low-step inference modes offer flexi-
ble complexity-performance trade-offs.

Complete details of parameters used in each experiment are
provided below, in Tab. 3 and Tab. 4.

10. Ablation: Effect of Residual Diffusion
Formulation

To quantify the impact of the residual formulation in our
denoising diffusion process, we conduct an ablation study
comparing our proposed RD-JSCC scheme against a con-
ventional GD-JSCC baseline. The baseline follows the
standard formulation introduced in (Kim et al., 2025),
where the reverse diffusion process is initialized from pure
Gaussian noise and trained to generate the CSI purely based
on the conditioning signal. In contrast, RD-JSCC initial-
izes the reverse diffusion with a coarse reconstruction ob-
tained from a lightweight autoencoder, and performs itera-
tive denoising on the residual between the ground-truth CSI
and this initial estimate.

This residual formulation enables a modified diffusion ob-
jective that focuses on learning the residual signal, which
is often sparser and easier to model. As shown in Fig. 6,
RD-JSCC consistently outperforms the GD-JSCC baseline
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Module Throughput (samples/s)

Encoder 9.5× 104

Decoder 8.2× 104

Diffusion (2-step) 3.9× 103

Diffusion (20-step) 3.9× 102

Table 5: Throughput of each module in RD-JSCC for COST2100.

Module Throughput (samples/s)

Encoder 9.5× 104

Decoder 8.2× 104

Diffusion (2-step) 8.5× 103

Diffusion (20-step) 8.5× 102

Table 6: Throughput of each module in RD-JSCC for 3GPP in-
door.

across all tested SNR levels. Notably, it achieves up to a
1 dB improvement in effective SNR for a given NMSE tar-
get, clearly demonstrating the advantages of the residual
formulation in diffusion-based compression.
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Figure 6: Comparison between standard GD-JSCC and our pro-
posed RD-JSCC. By initializing reverse diffusion with a coarse
CSI estimate and modifying the denoising objective to predict
residual noise, RD-JSCC achieves up to 1 dB SNR improvement
at a fixed NMSE target.
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