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Abstract— Navigating dynamic, real-world environments us-
ing natural language commands requires a system to be open-
vocabulary, computationally efficient, and robust to object
relocation. We present DualMap, an online open-vocabulary
mapping system for language-guided navigation in dynamic
scenes. DualMap features a hybrid segmentation frontend and
lightweight intra-object checks, enabling the construction of
high-quality semantic maps while avoiding costly 3D merging.
The core of our system is a novel dual-map representation.
It combines a global abstract map for high-level candidate
selection with a local concrete map for precise goal-reaching.
This structure is crucial for handling dynamic changes, as it
allows for efficient online updates when an object is moved from
its expected location. Extensive experiments in both simulation
and the real world demonstrate state-of-the-art performance in
mapping efficiency and navigation success in static and dynamic
scenes. Project page: https://eku127.github.io/DualMap/

I. INTRODUCTION

Imagine asking a home-assistant robot to “find the cracker
box”, a simple request in a household environment. The
robot might first navigate to the kitchen counter where the
box was last seen, only to find it missing. To succeed, the
robot must realize the object has moved, and adapt its search
accordingly. This common scenario highlights three critical
challenges for robotic systems: 1) Open-vocabulary under-
standing, to interpret natural language queries for arbitrary
objects; 2) Efficient online mapping, to incrementally build
and maintain semantic maps in real-time; and 3) Navigation
with dynamic changes, to adapt to objects that frequently
move in human-centric environments.

Existing approaches struggle to address all three chal-
lenges simultaneously. While efficient online semantic map-
ping systems [1], [2] operate in real-time, they are built upon
closed-set detectors and thus cannot handle open-ended nat-
ural language queries. Recent efforts have integrated vision
foundation models to enable open-vocabulary mapping [3]–
[5], but these methods fundamentally assume a static envi-
ronment. Conversely, other open-vocabulary systems that do
tackle dynamic changes [6], [7] typically require significant
offline processing time to construct a map, leaving them
impractical for real-time, lifelong navigation tasks.

In this work, we present DualMap, an online open-
vocabulary map representation designed to meet all three
aforementioned requirements. To achieve efficient mapping,
our system first constructs a high-quality 3D semantic con-
crete map through two key innovations. A hybrid segmenta-
tion frontend provides fast, open-vocabulary object detection,
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while lightweight intra-object status checks enhance map fi-
delity by removing noise and correcting segmentation errors.
Crucially, these designs eliminate the need for costly 3D
inter-object merging common in prior works [4], [5].

To support robust navigation in dynamic environments,
this fine-grained concrete map is then converted into a
lightweight abstract map composed of typically static anchor
objects and scene layout. This abstraction is based on the
insight that global structural cues are sufficient for high-level
planning, while precise object details can be retrieved locally
via online perception. Our dual-map navigation strategy
leverages this: it uses the global abstract map for initial
candidate selection and the local concrete map for accurate
localization. This enables efficient re-planning for navigation
when a queried object has been moved, as the abstract map is
continuously updated online using new observations gathered
during navigation.

II. METHODS

A. Online Concrete Map Construction

The concrete map Mc is a collection of all object instances
observed in the environment, built efficiently without costly
3D processing. This efficiency is achieved through two key
designs: a hybrid segmentation frontend and lightweight
intra-object checks that replace the need for expensive 3D
inter-object merging used in prior works.

a) Hybrid Open-Vocabulary Segmentation: For each
RGBD frame, we use YOLO [8] and MobileSAM [9] to
rapidly obtain object detections and their corresponding
masks. YOLO’s predefined category list is generated once
at startup by prompting a large language model [10] with
the robot’s working context. In parallel, we run the open-
set model FastSAM [11] to segment objects beyond these
predefined categories to ensure open-vocabulary ability. This
hybrid strategy achieves open-vocabulary, comprehensive
object coverage in an online manner. Each segment is further
arranged as an observation, which is represented by its 3D
point cloud, class ID, and a fused semantic CLIP feature [12]
derived from both visual and textual information for rich
language grounding.

b) Object Association and Status Checks: New ob-
servations are associated with existing objects in Mc

based on geometric and semantic similarity. We then per-
form lightweight intra-object status checks—namely stability
check and split detection. Stability check filters out noisy
or insufficiently observed objects. This check is triggered
for any object that has not been updated for a prolonged
period. An object passes if it is both sufficiently observed
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Fig. 1: DualMap system overview: a) A detailed 3D semantic concrete map Mc is built from online observations of posed
RGBD frames; b) An anchor-based abstract map Ma is derived from Mc, retaining global layout and static objects; c) Given
a natural language query Q, the agent retrieves a global candidate a∗ from Ma and starts navigation. During execution,
it incrementally builds a local concrete map Mlocal

c , checks for target object presence, and updates the abstract map Ma

accordingly. If the target is not found near the a∗, a new navigation attempt is made using the updated map M′
a. This loop

continues until the target is found or the attempt limit is reached.

and has a dominant class ID (accounting for over two-
thirds of its observation history); otherwise, it is pruned.
To correct under-segmentation errors where adjacent items
are merged, we use a split operation. This is triggered
when an object receives observations with different class
IDs at the same timestamp across frames. The object is then
partitioned into new instances by class ID, preserving detail
and improving scene fidelity. These status checks maintains
high map fidelity without expensive 3D inter-object merging.

B. Abstract Map and Navigation Strategy

The abstract map Ma provides a simplified, stable scene
representation for efficient long-range planning and robust
navigation failure handling.

a) Map Abstraction: We first classify the objects from
Mc into static anchor objects (e.g., desks, beds) and mov-
able volatile objects (e.g., cups, books). We classify each
object o ∈ Mc using a two-step process. First, we compare
its CLIP feature similarity to predefined anchor and volatile
category lists. If the similarity to one list exceeds the other by
a margin of ∆τ = 0.05, the object is classified accordingly.
In ambiguous cases, we then compare the object’s feature
fo to a generic anchor template feature ft, encoded from
descriptive phrases (e.g., “furniture that is not often moved”).
The object is classified as an anchor a only if this final
similarity exceeds a threshold τa; otherwise, it is deemed
volatile v.

For the abstract map Ma, we retain the geometry of
anchor objects for global planning while abstracting volatile
objects to their semantic features. These features are then
associated with a supporting anchor if a spatial “on” relation
is detected. This relation is established if the volatile object’s
2D projection falls within the anchor’s footprint and its base

is vertically proximate (within δ = 0.1m) to the anchor’s
primary supporting plane, which is derived from the anchor’s
point cloud Z-axis histogram. This abstraction design allows
us to maintain a compact yet informative map of the scene’s
stable structure for high-level navigation.

b) Navigation with Online Updates: Our navigation
strategy leverages this dual representation to robustly handle
dynamic object changes. The process, illustrated in Fig. 1-c,
unfolds as follows:

1) Candidate Retrieval: Given a language query Q, the
system retrieves the most relevant anchor candidate
a∗ from the global abstract map Ma via similarity
calculation. The selected anchor a∗ suggests that the
queried object is most likely situated nearby. Both the
anchor a∗ and its similarity score s(a∗) are used for
further navigation.

2) Local Concrete Mapping: A global path toward a∗

is planned using a Voronoi-based planner over the
abstract map [13]. During the process of navigation
towards a∗, the system incrementally building a local,
up-to-date concrete map, Mlocal

c , of its current sur-
roundings. For each object o ∈ Mlocal

c , we compute the
cosine similarity s(o) between its feature and the query
feature. If s(o) is within a margin ϵ of s(a∗) and o lies
within the projected footprint of a∗, it is considered
a confident match. A local path is then planned via
RRT* [14] to reach the target.

3) Re-planning & Map Update: If no confident match is
found near a∗, suggesting the queried object may have
changed location, the system re-executes the candidate
retrieval over the updated abstract map M′

a \ {a∗}
and selects a new anchor a∗′. Here, M′

a is obtained
by updating the original abstract map Ma with the



Fig. 2: Qualitative comparison of semantic segmentation results on ScanNet scene0011 00. Red arrows highlight
semantically inaccurate predictions, while blue arrows indicate meaningless segmentations, suggesting noisy predictions.

TABLE I: Open-vocabulary 3D Semantic Segmentation and Efficiency

Dataset Method mIoU ↑ FmIoU ↑ mAcc ↑ ODR ≈ 1 Avg. Mem (MB) ↓ Peak Mem (MB) ↓ TPF (s) ↓

Replica
ConceptGraphs 0.1501 0.3858 0.3559 2.02 7148.9 23551.9 4.188

HOV-SG 0.2050 0.4846 0.3835 3.81 73368.0 158126.6 42.005
Ours 0.2538 0.5207 0.4024 0.97 3095.2 4564.0 0.276

ScanNet
ConceptGraphs 0.0882 0.3077 0.3538 6.97 9780.3 26155.2 6.301

HOV-SG 0.1333 0.3381 0.3714 20.34 9223.0 25735.0 8.039
Ours 0.1604 0.3288 0.3794 2.56 2120.9 2820.2 0.163

local concrete map Mlocal
c . The agent then resumes

navigation toward a∗′, using the original similarity
score s(a∗) to remain consistent with the initial query.
This strategy enables the agent to leverage contextual
cues encountered in the earlier navigation process,
increasing the likelihood of success if the target object
was partially observed along the way.

This online update loop is the key to DualMap’s robustness,
as it turns a navigation failure into an opportunity to improve
its scene representation and successfully complete the task.

III. EXPERIMENTS

A. Experimental Setup

a) Baselines and Metrics: We evaluate DualMap
against two competitive open-vocabulary mapping systems:
ConceptGraphs [4] and HOV-SG [5]. We assess mapping
quality using standard segmentation metrics (mIoU, F-mIoU,
mAcc) and efficiency (memory usage, time per frame). We
also introduce the Object Density Ratio (ODR)—the ratio
of predicted to ground-truth object counts—to measure how
realistically the map’s object density reflects the scene.
Navigation capability is measured by Success Rate (SR),
defined as the agent stopping within 1 meter of the queried
object. In dynamic scenes, success requires finding the target
within three attempts.

b) Environments and Scenarios: Our evaluation spans
both simulated and real-world settings. For quantitative
analysis, we use the Replica [15], ScanNet [16], and
HM3D [17] datasets. Crucially, to evaluate robustness to
dynamic changes, we create custom scenarios with three
HM3D scenes in Habitat Simulator where objects are re-
located during a task. We define two types of changes: In-
anchor relocation (an object moves within a local region,
e.g., a cup on a table) and the more challenging Cross-anchor

relocation (an object moves between regions, e.g., from a
table to a shelf). Real-world validation is performed on both
wheeled and quadrupedal robots equipped with a LiDAR and
an RGBD camera (Fig. 3-a).

B. Mapping Performance and Efficiency

We first evaluate the quality and efficiency of our online
map construction, with quantitative and qualitative results
presented in Table I and Fig. 2.

a) Mapping Quality: DualMap achieves state-of-the-art
semantic segmentation results across all datasets. As shown
in Table I, on the Replica dataset, our method improves
mIoU by 10.3% over ConceptGraphs and 2.8% over HOV-
SG. This performance gain stems from our object-level split
detection mechanism that preserves object diversity and a
text-enhanced feature embedding that improves semantic
understanding. The qualitative results in Fig. 2 corroborate
these findings. While baselines often produce misclassified
objects (red arrows) or noisy, meaningless segments from
sensor noise (blue arrows), DualMap’s stability check ef-
fectively filters such errors, resulting in a cleaner and more
accurate scene representation.

b) Efficiency: The efficiency gains of our approach
are substantial. DualMap reduces peak memory usage by
over 96% and is 99.3% faster per frame (TPF) compared
to the next best-performing method, HOV-SG. This is a
direct result of our hybrid open-vocabulary detection strategy
and lightweight 2D refinement, which completely avoid the
costly 3D post-processing and merging steps required by
prior works.

C. Navigation in Static and Dynamic Scenes

We evaluate the navigation performance in both simulated
and real-world environments.
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Fig. 3: Real-world navigation in dynamic environments. a) Robotic platforms equipped with a perception module that
integrates a LiDAR and an RGB-D camera, both mounted on a rigid 3D-printed mount. b–c) Two examples of language-
guided navigation in dynamic real-world scenes, where the agent tries to locate relocated objects across multiple attempts.

TABLE II: Object Navigation Success Rate (SR) on HM3D.

Scene Type Method 00829 00848 00880 Trials Avg. SR

Static
ConceptGraphs 69.2% 53.8% 61.5%

78
61.5%

HOV-SG 53.8% 46.2% 57.7% 52.6%
Ours 73.1% 69.2% 69.2% 70.5%

Dynamic
In-anchor (Ours) 66.7% 66.7% 61.1% 54 64.8%

Cross-anchor (Ours) 55.6% 61.1% 64.7% 53 60.3%

TABLE III: Success Rates under Different Candidate Selec-
tion Strategies for Relocated Objects on HM3D

Strategy Random Pick Based on Ma Based on M′
a

SR 13.2% 47.2% 60.3%

a) Simulated Environments: As shown in Table II,
DualMap consistently achieves the highest Success Rate (SR)
in static scenes across all HM3D environments. Its key ad-
vantage, however, is demonstrated in dynamic scenes. For in-
anchor relocations, DualMap accurately localizes the moved
object using its local concrete map. For more challenging
cross-anchor relocations, its ability to update the abstract
map online is crucial. This online update mechanism allows
DualMap to maintain a high success rate even when objects
undergo large positional changes.

b) Importance of Online Map Updates: To validate the
effectiveness of our navigation strategy, we conducted an ab-
lation study on the challenging cross-anchor task (Table III).
The focus of this experiment is specifically on the robot’s
ability to handle positional shifts of dynamic objects, rather
than structural changes to the static environment, such as the
addition or removal of furniture. Simply using the original,
static abstract map Ma for re-planning yields a success rate
of only 47.2%. By using our final strategy of updating the
map to M′

a during navigation, the success rate improves to
60.3%. This confirms that actively using new observations to
handle navigation failures is critical for success in dynamic
worlds.

c) Real-World Deployment: To confirm the practical
applicability of our system, we deployed DualMap on both
wheeled and quadrupedal robots in four diverse real-world
scenes (Fig. 3). The results, summarized in Table IV, show
that DualMap achieves robust performance levels comparable
to those in simulation, successfully navigating to objects in
both static and dynamic scenarios.

TABLE IV: Real-World Object Navigation Results

Platform Scene Type Static Dynamic
Trials SR Trials SR

Wheeled Meeting Room 14 85.7% 27 70.3%
Apartment 46 69.6% 33 51.5%

Quadruped Indoor Hallway 19 78.9% 27 55.6%
Outdoor 12 75.0% 18 50.0%

IV. LIMITATIONS AND FUTURE WORK

While DualMap demonstrates robust performance, we
identify several limitations that present promising directions
for future research. Primarily, the system’s reliance on an
external localization module [18] limits its self-sufficiency;
integrating a lightweight SLAM component would create a
more self-contained and easily deployable framework. Fur-
thermore, DualMap currently lacks a model for short-term
dynamics, such as moving people. A promising direction
is to incorporate lightweight human representations (e.g.,
SMPL models) to reason about motion and human-object
interactions without the overhead of full mesh reconstruction.
The framework’s reasoning is also constrained by its singular
spatial “on” relation and the assumption of static anchors.
This could be overcome by generalizing spatial relations
(e.g., to “against” or “under”) and treating foundational
elements like floors and walls as ultimate anchors, thus
handling relocatable furniture and wall-mounted objects.
Finally, performance degrades in outdoor environments due
to increased sensor noise and a scarcity of the “object-on-
object” configurations the system relies on. Future work
should therefore focus on robust sensor fusion and adapting
the framework to sparse, unstructured outdoor settings.

V. CONCLUSION

We present DualMap, an online open-vocabulary semantic
mapping system for language-guided navigation in dynamic
environments. By combining a hybrid segmentation fron-
tend with intra-object checks, it achieves efficient mapping
without costly 3D merging. The dual-map design enables
robust navigation through online updates and candidate re-
selection. Extensive experiments show that our work pro-
vides a practical and effective solution for robots operating
in environments with frequent object relocations.



REFERENCES

[1] N. Hughes, Y. Chang, and L. Carlone, “Hydra: A real-time spatial
perception system for 3D scene graph construction and optimization,”
in Proc. Robotics: Science and Systems (RSS), 2022.

[2] L. Schmid, M. Abate, Y. Chang, and L. Carlone, “Khronos: A Unified
Approach for Spatio-Temporal Metric-Semantic SLAM in Dynamic
Environments,” in Proc. Robotics: Science and Systems (RSS), 2024.

[3] K. M. Jatavallabhula, et al., “Conceptfusion: Open-set multimodal 3d
mapping,” in Proc. Robotics: Science and Systems (RSS), 2023.

[4] Q. Gu, et al., “Conceptgraphs: Open-vocabulary 3d scene graphs
for perception and planning,” in IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2024, pp. 5021–5028.
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