

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 EFFECTIVE INTERACTION BETWEEN QUANTIZATION AND LOW-RANK DECOMPOSITION BASED ON LLMs

Anonymous authors

Paper under double-blind review

ABSTRACT

As the parameter size of language models continues to grow, effective model compression is required to reduce their computational and memory overhead. Low-rank decomposition and quantization are two prominent compression methods that have been proven to significantly reduce the computational and memory requirements of Large Language Models (LLMs) while maintaining model accuracy. However, how these two methods interact when combined remains a critical question for developers, as many assume they are orthogonal, meaning their combination would not introduce additional errors beyond those independently introduced by each method. This paper provides the first mathematical proof that low-rank decomposition and quantization are non-orthogonal. We validate these findings through a series of experiments on large language models. Our results demonstrate that these methods are non-orthogonal, and their combination leads to significant performance degradation. Importantly, we propose a novel approach Diagonal Adhesive Method (DAM), which can effectively combine the two methods and mitigate the performance loss. Our research provides deep insights into model compression and lays a solid theoretical and experimental foundation for future related studies.

1 INTRODUCTION

In recent years, Large Language Models (LLMs) have demonstrated excellent performance in numerous natural language processing tasks, thanks to their increasing parameter counts (Huang et al., 2021; 2022). However, this growth in parameter size comes at the cost of significantly higher computational and storage demands (Meng et al., 2022). Consequently, efficient and low-cost deployment of LLMs has become a critical area of research (Gupta et al., 2023). Prior work in this field can be broadly categorized into two main approaches: Architecture-modifying techniques and Architecture-agnostic techniques (Ding et al., 2023).

Architecture-modifying techniques include distillation and pruning (Hwang et al., 2021). Distillation explicitly extracts knowledge from a large model and utilizes it to train a smaller one (Porada et al., 2021). Pruning, on the other hand, removes less important parameters to reduce computational and storage overhead. However, both distillation and pruning are often impractical for LLMs due to their substantial requirements for training data and compute resources. Architecture-agnostic techniques include quantization and low-rank decomposition (Levy et al., 2017). Quantization reduces the precision of model weights or activations, typically from 32-bit floating-point to lower bit representations like 8-bit or 4-bit integers, or even binary (Ashkboos et al., 2025). Low-rank decomposition approximates weight matrices with lower-rank matrices, reducing parameter count while keeping the weights in floating-point format (Yuan et al., 2023). Quantization and low-rank decomposition are popular choices for deploying LLMs practically because they are low-cost, architecture-agnostic, and generally perform well.

Existing quantization and low-rank decomposition methods both face performance bottlenecks (Sun et al., 2025; Yuan et al., 2023). For example, quantization can maintain good performance at precisions above W4A4KV4, but when the model is further compressed to lower bit-widths, there is a significant and unacceptable drop in accuracy (Hu et al., 2025). Similarly, low-rank decomposition suffers a notable decline in performance when the compression ratio exceeds 50% (Wang et al., 2024). Extensive experiments indicate that W4A4KV4 and a 50% compression ratio represent the

054 current bottlenecks for model compression techniques, limiting the potential for further high-fidelity
 055 compression. An inspiring idea is to effectively combine these two architecture-agnostic techniques.
 056

057 It is natural to expect that directly combining quantization and low-rank decomposition can yield
 058 significant benefits in terms of computation and storage costs. However, the potential drawbacks
 059 remain unclear. Previous studies have assumed that these two methods are orthogonal, meaning their
 060 combination would not introduce additional errors beyond those of each individual method (Wang
 061 et al., 2024). However, these studies have primarily focused on quantizing weights only, making extra
 062 error from combining quantization and low-rank decomposition less noticeable, and overlooking
 063 the widespread presence of outliers when quantifying activation values. These studies have failed
 064 to properly investigate the overall impact of utilizing both methods together or to provide effective
 065 strategies for their integration. This poses a major challenge for further low-cost deployment of
 LLMs.

066 To address these challenges, we first conduct a theoretical analysis from both the tensor and dot-
 067 product perspectives, demonstrating that quantization and low-rank decomposition are non-orthogonal
 068 and thus introduce additional error. In addition, we find that the order in which these two methods are
 069 applied significantly affects model performance, and we derive the theoretically optimal sequence—
 070 applying low-rank decomposition before quantization. Finally, we identify outliers of activation as
 071 a key factor impacting compressed model performance, and propose a Diagonal Adhesive Method
 072 (DAM) that can significantly reduce the extra losses caused by the combination of quantization and
 073 low-rank decomposition.

074 To the best of our knowledge, we are the first to theoretically demonstrate that quantization and
 075 low-rank decomposition are non-orthogonal and provide the correct compression order. Based on
 076 the outliers issue inherent in low-rank decomposition, we propose the DAM method. Extensive
 077 experiments have shown that the DAM method significantly improves the performance of compressed
 078 models. Our research provides deep insights into model compression, and lays a solid theoretical and
 079 experimental foundation for future related studies. Our contributions are summarized below:

- 080 • We mathematically prove that quantization and low-rank decomposition are non-orthogonal
 081 operations. Based on compression error analysis, their combination introduces compound er-
 082 rors and leads to performance degradation. Our findings provide a theoretical foundation and
 083 challenge the conventional belief that combining quantization and low-rank decomposition
 084 does not significantly impact performance.
- 085 • To improve the performance of combining quantization and low-rank decomposition, we are
 086 the first to derive the optimal order—applying low-rank decomposition before quantization.
 087 This finding is further supported by extensive experimental results.
- 088 • We propose a Diagonal Adhesive Method (DAM) to address the performance degradation
 089 caused by the combination of quantization and low-rank decomposition. Extensive exper-
 090 iments demonstrate that while maintaining low cost and high speed, DAM significantly
 091 improves performance.

093 2 RELATED WORK

095 **Quantization.** Post-training quantization (PTQ) has emerged as a prominent technique for large
 096 language models (LLMs) due to its efficiency. Current PTQ methods can generally be categorized
 097 into weight-only and weight-activation quantization. To minimize memory usage, some strategies
 098 concentrate on weight-only quantization. GPTQ employs Hessian-based error compensation to
 099 achieve significant compression rates by reducing quantization errors (Frantar et al., 2022). AWQ
 100 (Lin et al., 2024) enhances performance by tackling the effects of activation outliers on weight
 101 quantization (Lee et al., 2023). QuIP (Chee et al., 2023) and QuIP# (Tseng et al., 2024) utilize
 102 random Hadamard matrices for incoherent processing and apply vector quantization to weights,
 103 resulting in improved performance compared to reduced precision quantization. SmoothQuant (Xiao
 104 et al., 2023) shifts the difficulty of quantization from activations to weights through a mathematical
 105 transformation. OmniQuant (Shao et al., 2023) further boosts performance by training quantization
 106 parameters and transformation coefficients. Additionally, I-LLM (Hu et al., 2024) proposes a strategy
 107 for integer-only quantization and inference through fully-smooth block reconstruction and fully
 integer operators. Recently, QuaRot (Ashkboos et al., 2025) employs random rotation matrices to

108 facilitate 4-bit quantization of weights and activations, while SpinQuant (Liu et al., 2024) learns these
 109 matrices to refine the 4-bit quantization process.
 110

111 **Low-Rank Decomposition.** Singular Value Decomposition (SVD) is a common technique for
 112 reducing matrix size by approximating a matrix with two smaller low-rank matrices (Golub et al.,
 113 1987). In the realm of LLM compression, only a limited number of SVD-based methods have been
 114 suggested. Specifically, standard SVD focuses solely on compressing the original weight matrix
 115 without accounting for the significance of the parameters, which may result in a higher compression
 116 error. To tackle this issue, FWSVD method was introduced that incorporates Fisher information to
 117 assess parameter importance (Hsu et al.). However, this approach necessitates a complex gradient
 118 calculation, requiring significant resources for LLM compression. Another challenge with standard
 119 SVD is the distribution of activation, which can influence compression accuracy. To address this,
 120 ASVD method was proposed that scales the weight matrix utilizing a diagonal matrix to reflect the
 121 impact of input channels on the weights (Yuan et al., 2023). Nonetheless, both methods do not
 122 establish a clear relationship between singular values and compression loss.
 123

124 **Combining Quantization and Low-rank Decomposition.** Previous studies have explored the
 125 combination of quantization and low-rank decomposition for model compression. SVD-LLM only
 126 compresses the model’s weights without addressing the activation values and neglects their existence
 127 (Wang et al., 2024). Prior research has not provided clear conclusions regarding the optimal order
 128 of these two methods, nor has it offered solutions to the problem of outliers. These issues pose
 129 significant challenges for further high-quality model compression.

130 3 NON-ORTHOGONALITY OF QUANTIZATION AND LOW-RANK 131 DECOMPOSITION

132 **Definition 3.1 (Quantization Method).** The existing quantization method is a block based quantization
 133 method that divides the weight matrix into multiple blocks and quantizes each block independently. For each block, utilize the maximum absolute value within that block as the scaling
 134 factor.
 135

$$136 \quad Q(W) = \text{Round}\left(\frac{W}{\max(|W|)} \cdot 2^{b-1}\right) \quad (1)$$

137 among them, $Q(W)$ represents the quantized block, W represents the original weight block,
 138 $\max(|W|)$ represents the maximum absolute value of the elements in block W , b represents the
 139 quantization bit width, $\text{Round}(\cdot)$ represents rounding operation. The inverse quantification formula is
 140

$$141 \quad D(Q(W)) = Q(W) * \max(|W|)/(2^b - 1) \quad (2)$$

142 **Definition 3.2 (Quantization Error).** We formalize the quantification error and theoretical error
 143 boundary as follows
 144

$$145 \quad E(Wx) = |Wx - D(Q(W))x|, \quad |E(Wx)| \leq \max(|W|)/(2 * (2^b - 1))x \quad (3)$$

146 where $E(Wx)$ is the quantization error and $|E(Wx)|$ is the maximum error boundary, x is the input
 147 for weight W . The detailed proof process is provided in Appendix A.
 148

149 **Definition 3.3 (Low-Rank Decomposition Method).** For any matrix $W \in \mathbb{R}^{m \times n}$, its Singular
 150 Value Decomposition (SVD) can be expressed as
 151

$$152 \quad W = U\Sigma V^T \quad (4)$$

153 where $U \in \mathbb{R}^{m \times m}$ is a left singular vector matrix (orthogonal matrix), $\Sigma \in \mathbb{R}^{m \times n}$ is a singular value
 154 diagonal matrix, $V \in \mathbb{R}^{n \times n}$ is the transpose (orthogonal matrix) of the right singular vector matrix.
 155 Appendix B shows the Low-Rank Decomposition Error.
 156

162 3.1 TENSOR-LEVEL ANALYSIS
163164 **Definition 3.5 (Compression Error).** Previous studies did not consider the optimal application
165 order of quantization and low-rank decomposition, and we provided compression errors for different
166 orders. For the compression error of $l \circ q$, we have:
167

168
$$E_l = \|W - U_r * \Sigma_r * V_r^T\|_F, E_q = \|Q(U_r) * Q(\Sigma_r) * Q(V_r^T) - U_r * \Sigma_r * V_r^T\|_F,$$

169
170
$$E_{l \circ q} = \|Q(U_r) * Q(\Sigma_r) * Q(V_r^T) - W\|_F \quad (5)$$

171

172 where $l \circ q$ represents utilizing low-rank decomposition first, and then utilizing quantization methods, r
173 represents the compression ratio of low-rank decomposition. $Q(\cdot)$ represents the utilize of quantitative
174 methods. For the compression error of $q \circ l$, we have:
175

176
$$E_{q'} = \|Q(W) - W\|_F, E_{l'} = \|SVD_r(Q(W)) - Q(W)\|_F$$

177
178
$$E_{q \circ l} = \|SVD_r(Q(W)) - W\|_F \quad (6)$$

179

180
181 **Definition 3.6 (Tensor-level Orthogonality).** If any combination order of q and l does not introduce
182 additional errors, we define the two compression methods as orthogonal, satisfying the following
183 inequality:
184

185
186
$$\forall W \in \mathbb{R}^n, \|E_{l \circ q}(W)\| \leq E_l(W) + E_q(W)$$

187
188 and $\|E_{q \circ l}(W)\| \leq E_{q'}(W) + E_{l'}(W)$ (7)

189 **Theorem 3.7.** According to the Appendix C, we prove that low-rank decomposition followed by
190 quantization does not introduce additional compression errors, satisfying the following inequality:
191

192
193
$$\forall W \in \mathbb{R}^n, \|E_{l \circ q}(W)\| \leq E_l(W) + E_q(W) \quad (8)$$

194

195 Eq.8 states that after low-rank decomposition, the maximum error in the matrix has a specific
196 limit and is strongly correlated with the singular values σ_i , ensuring the determinacy of the scale
197 quantization parameter. Therefore, the quantization error of non-zero vectors before and after
198 low-rank decomposition remains unchanged.199 **Theorem 3.8.** According to the Appendix D, we demonstrate that quantization before low-rank
200 decomposition introduces additional errors:
201

202
203
$$\exists W \in \mathbb{R}^n, \|E_{q \circ l}(W)\| > E_{q'}(W) + E_{l'}(W) \quad (9)$$

204

205 Eq.9 states that the quantization operation $Q(\cdot)$ introduces rounding errors, which can alter the singular
206 value distribution of the matrix, affecting the accuracy of SVD decomposition and ultimately leading
207 to a cumulative effect of errors greater than simple superposition. This indicates that the compression
208 strategy of quantization first and then SVD will lead to larger errors, and it is better to adopt the
209 strategy of SVD first and then quantization.210 3.2 DOT-PRODUCT LEVEL ANALYSIS
211212 In this section, we delve into the combined effects of quantification and low-rank decomposition at the
213 dot product level. Our analysis focuses on the application of quantization and low-rank decomposition
214 to weight, while activation only applies quantization operations. We first extend the definition of
215 compression error to the dot-product level.

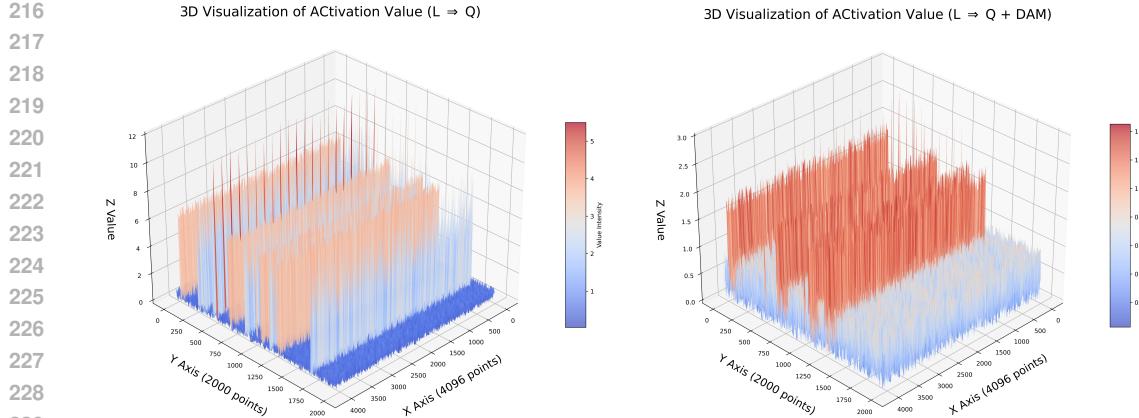


Fig. 1: Visualization of activation values $\langle \Sigma_r V_r^T \rangle$, the left and right images respectively show the 3D visualization of activation values before and after utilizing DAM. The X and Y axes represent the dimensions of the activation matrix, while the Z axis indicates the magnitude of the values. The left figure shows that before applying the DAM method, the activation values are steeply distributed with clear outliers, resulting in a Z-axis maximum of 32, which significantly increases compression error. The right figure demonstrates that the DAM method effectively eliminates outliers, reducing the Z-axis maximum to 3.0.

Definition 3.9 (Compression Error on Dot-product Level). Let $x, w \in \mathbb{R}^n$ denote the inputs of a compression $l/q : \mathbb{R}^n \Rightarrow \mathbb{R}^n$ and the dot product operation $\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \Rightarrow \mathbb{R}$. We define $E_{q,l}^D(x, w) = \langle x, w \rangle - \langle q(x), q \circ l(w) \rangle$ as the compression error on dot-product level. Meanwhile, we define $E_{l,q}^D(x, w) = \langle x, w \rangle - \langle q(x), l \circ q(w) \rangle$ as the compression error when utilizing another order to compress weight.

Definition 3.10 (Dot-product Level Orthogonality). Let f denote a composition of q and l in any order, $f := q \circ l$ or $f := l \circ q$. We assume that if the combination of quantization and low-rank decomposition does not introduce additional errors, then they are orthogonal, defined as follows:

$$\forall x, w \in \mathbb{R}^n, |E_{l,q}^D(x, w)| = |E_{q,l}^D(x, w)| \quad (10)$$

Theorem 3.11. Let q be the quantization, s be low-rank decomposition. We demonstrate that any order of quantization and low-rank decomposition will result in additional compression errors:

$$\exists x, w \in \mathbb{R}^n, |E_{l,q}^D(x, w)| < |E_{q,l}^D(x, w)| \quad (11)$$

The Appendix E provides a detailed proof process. We have demonstrated that quantization and low-rank decomposition are non orthogonal at the dot-product level.

4 DIAGONAL ADHESIVE METHOD

The theory in Section 3 suggests that utilizing low-rank decomposition before quantization is the optimal compression strategy. However, these two compression methods have been utilized independently in the past, and existing research has not yet explored the problems and solutions when combined.

After undergoing low-rank decomposition, the weight is decomposed into the form of $U_r \Sigma_r V_r^T$, where U_r and V_r^T are relatively smooth states. In the quantization process, we choose to quantize $Q(U_r)$ and $Q(\Sigma_r V_r^T)$. However, due to the presence of Σ_r , there is a significant quantization error when quantizing $Q(\Sigma_r V_r^T)$. This is because $\langle \Sigma_r V_r^T \rangle$ contains outliers (As shown in the left image of Figure 1), which poses a huge challenge for quantifying LLM. Outliers refer to a small

270 number of elements that are significantly larger than the mean of the entire matrix. They reduce the
 271 effective utilization of the quantization space and increase quantization error.
 272

273 **4.1 PROBLEM MODELING**
 274

275 To address this issue, we propose a Diagonal Adhesive Method (DAM). Introduce diagonal matrix a
 276 and rewrite the decomposition as:
 277

$$278 \quad U_r \Sigma_r V_r^T = (U_r a) \cdot (a^{-1} \Sigma_r V_r^T) \quad (12)$$

280 where the diagonal elements $a_i > 0$ of a are used to scale the columns of U_r and rows of $\Sigma_r V_r^T$.
 281 DAM shifts the burden of outlier removal from $\Sigma_r V_r^T$ to U_r . While eliminating outliers,
 282 DAM has no impact on the model's inference speed or storage cost. The quantized product is:
 283

$$284 \quad Q(U_r a) \cdot Q(a^{-1} \Sigma_r V_r^T) \quad (13)$$

285 The objective is to choose a to minimize the quantization error, that is to minimize:
 286

$$288 \quad \|Q(U_r a) \cdot Q(a^{-1} \Sigma_r V_r^T) - U_r \Sigma_r V_r^T\|_F^2 \quad (14)$$

290 **4.2 QUANTIZATION ERROR ANALYSIS**
 291

292 Assume the quantization error is additive noise, that is:
 293

$$294 \quad Q(W) = W + E \quad (15)$$

296 where each element of E is independent with zero mean, and the variance is related to the quanti-
 297 zation step size. For the scaled matrices $U_r a$ and $a^{-1} \Sigma_r V_r^T$, their quantization error variances are
 298 proportional to a_i^2 and $\frac{\sigma_i^2}{a_i^2}$ respectively, where σ_i is the i -th diagonal element of Σ_r . The quantized
 299 product error can be approximated as:
 300

$$301 \quad Q(U_r a) \cdot Q\left(\frac{1}{a} \Sigma_r V_r^T\right) - U_r \Sigma_r V_r^T \approx U_r a E_2 + E_1 \frac{1}{a} \Sigma_r V_r^T \quad (16)$$

304 where E_1 and E_2 are quantization error matrices.
 305

306 **4.3 ERROR DECOMPOSITION AND OPTIMIZATION**
 307

308 For each rank i , analyze independently where u_i and v_i are the i -th columns of U_r and V_r respectively,
 309 and σ_i is the i -th diagonal element of Σ_r . The squared Frobenius norm of the quantization error is:
 310

$$311 \quad \left\| a_i u_i e_{2,i} + \frac{\sigma_i}{a_i} e_{1,i} v_i^T \right\|_F^2 \Rightarrow \mathbb{E} \left[\|a_i u_i e_{2,i}\|_F^2 \right] + \mathbb{E} \left[\left\| \frac{\sigma_i}{a_i} e_{1,i} v_i^T \right\|_F^2 \right] \quad (17)$$

314 where $e_{1,i}$ and $e_{2,i}$ are quantization error vectors. Assuming quantization error variances are
 315 $\text{Var}(e_{1,i}) = c_1 a_i^2$ and $\text{Var}(e_{2,i}) = c_2 \frac{\sigma_i^2}{a_i^2}$, the total error is:
 316

$$317 \quad c_2 \sigma_i^2 n + c_1 \sigma_i^2 m \quad (18)$$

319 To balance both terms, choose a_i such that:
 320

$$321 \quad c_2 \sigma_i^2 n = c_1 \sigma_i^2 m \implies \frac{c_2}{c_1} = \frac{m}{n} \quad (19)$$

323 This shows there exists an a_i that balances both terms, thus minimizing the total error.

324 4.4 EXISTENCE OF OPTIMAL DIAGONAL MATRIX
325326 For each rank i , choose a_i to balance the variance terms of quantization error, that is:
327

328
329
$$a_i^2 \propto \sqrt{\frac{c_2 \sigma_i^2 n}{c_1 m}} \quad (20)$$

330
331

332 Then, the diagonal elements of diagonal matrix a are:
333

334
335
$$a_i = \left(\frac{c_2 \sigma_i^2 n}{c_1 m} \right)^{1/4} \quad (21)$$

336
337

338 Since the objective function is continuous and has a lower bound, according to the extreme value
339 theorem, there exists such a diagonal matrix a that minimizes the quantization error. We constructed
340 an error reconstruction loss to optimize the diagonal matrix a :
341

342
343
$$\mathcal{L}_{recon} = \|Wx - Q(U_r a)Q(\frac{1}{a} \Sigma_r V_r^T)x\|_F^2 \quad (22)$$

344

345 5 EXPERIMENTS
346347
348 **Models and Datasets.** We apply our method to the entire LLaMA family, including LLaMA-1
349 (7B-30B) (Touvron et al., 2023a), LLaMA-2 (7B-13B) (Touvron et al., 2023b), and LLaMA-3-8B.
350 We report perplexity (PPL) scores on the WikiText2 (Merity et al., 2016) test set. In addition, we also
351 evaluate the models on up to nine zero-shot tasks utilizing the lm-evaluation-harness (Gao
352 et al., 2024), including BoolQ (Clark et al., 2019), HellaSwag (Zellers et al., 2019), LAMBADA
353 (OpenAI) (Radford et al., 2019), OpenBookQA (OBQA) (Mihaylov et al., 2018), PIQA (Bisk et al.,
354 2020), SIQA (Sap et al., 2019), WinoGrande (Sakaguchi et al., 2021), ARC-Easy, and ARC-Challenge
355 (Boratko et al., 2018).
356357 **Experiments Setup.** In all experiments, quantization and low-rank decomposition will be applied
358 to weights, while activation will only utilize quantization. For low-rank decomposition, we adopt the
359 state-of-the-art SVD-LLM (Wang et al., 2024) approach. For quantization, we leverage the commonly
360 utilized GPTQ (Frantar et al., 2022) technique. In addition, the weights compressed in the model
361 are only trainable parameters. Specifically, we focus on all linear layers in LLM, excluding the
362 embedding layer and lm-head layer. Appendix F offers more experimental results.
363

364 5.1 VERIFICATION OF COMPRESSION ORDER

365 To verify the optimal compression order, we performed order validation experiments. This section
366 offers empirical evidence that applying low-rank decomposition before quantization achieves superior
367 model performance compared to the opposite sequence. These findings align with the conclusions
368 presented in Section 3.1. Table 1 details the performance across different quantization bit-widths and
369 low-rank decomposition ratios, examining both compression orders. For instance, “4-16-16” signifies
370 that the weights in the quantized model are 4-bit, while activations and the KV cache maintain full
371 precision. “40%” represents a 40% compression ratio for low-rank decomposition. Optimal results
372 are displayed in bold.
373374 We experimentally validated two different orderings: (Q⇒L)—Quantization then Low-rank decom-
375 position, and (L⇒Q)—Low-rank decomposition then Quantization. As shown in Table 1, the L⇒Q
376 configuration demonstrates significantly better model performance than Q⇒L. Furthermore, the
377 performance gap favoring L⇒Q widens with increasing compression ratios. Consistent with the
378 discussion in Section 3.1, SVD Low-rank decomposition bounds the maximum error in the matrix,
379 ensuring effective control over the accumulated error in the L⇒Q approach.
380

Model	Method (Ratio)	ARC.C	ARC.E	HellaSwag	LAMBADA	PIQA	Winogrande	BoolQ	OBQA	SIQA	Avg.
2-7B	Original	46.16	74.54	75.98	73.92	79.05	69.06	77.71	44.20	45.91	65.21
	$Q \Rightarrow L(50\%)$	22.46	35.67	34.68	30.55	39.96	27.43	35.43	20.55	36.57	30.57
	$L \Rightarrow Q(50\%)$	35.67	47.43	48.66	31.05	50.57	38.74	48.90	31.97	47.93	42.43
2-13B	Original	49.15	77.44	79.39	76.73	80.47	72.14	80.58	45.20	47.49	67.61
	$Q \Rightarrow L(50\%)$	34.65	38.99	38.57	35.26	44.79	30.57	39.08	24.49	38.75	35.59
	$L \Rightarrow Q(50\%)$	39.27	51.26	52.43	35.67	54.29	42.77	53.09	35.96	51.43	46.63
2-70B	Original	57.17	81.02	83.81	79.60	82.70	77.98	83.81	48.80	49.18	71.59
	$Q \Rightarrow L(50\%)$	39.67	43.27	41.09	38.94	48.36	33.63	42.57	28.99	43.82	39.97
	$L \Rightarrow Q(50\%)$	44.73	56.24	56.78	39.42	57.77	47.08	59.03	39.43	55.62	51.42
3-8B	Original	53.50	77.57	79.12	75.51	80.74	72.93	81.10	44.80	47.08	68.09
	$Q \Rightarrow L(50\%)$	37.43	41.35	39.07	36.68	46.52	31.30	39.67	25.87	41.26	37.26
	$L \Rightarrow Q(50\%)$	40.39	52.26	51.30	34.79	52.89	44.09	56.46	35.38	51.72	47.43
3-70B	Original	64.25	85.94	84.93	79.37	84.44	80.74	85.14	48.46	50.82	73.81
	$Q \Rightarrow L(50\%)$	43.36	46.62	45.76	40.33	49.37	37.65	43.54	29.87	45.98	42.47
	$L \Rightarrow Q(50\%)$	46.32	56.94	57.43	37.48	58.36	48.79	61.42	41.78	56.55	52.43

Table 1: The results of validating the compression order, we highlight the superior metrics, with the quantization set to W4A4KV4. The compression ratio of the low-rank decomposition is 50%.

Ratio	2-7B		2-13B		2-70B		3-8B		3-70B	
	0-shot	THo	0-shot	THo	0-shot	THo	0-shot	THo	0-shot	THo
Original	65.21	-	67.61	-	71.59	-	68.09	-	73.81	-
10%	55.71	58.45	57.43	59.65	62.35	65.41	58.98	60.34	62.48	65.63
20%	52.63	52.37	52.86	57.39	55.13	59.78	54.56	58.75	57.46	62.92
40%	44.76	47.34	48.58	53.66	53.82	55.14	49.53	53.43	54.64	58.77
50%	42.43	44.79	46.63	51.34	51.47	51.39	47.43	50.77	52.43	56.41

Table 2: The results of the orthogonality verification experiment: 0-shot refers to the average performance across the nine downstream tasks in Table 1, and THo represents the orthogonality threshold. When 0-shot is lower than THo, it demonstrates that quantization and low-rank decomposition are non-orthogonal.

5.2 NON-ORTHOGONALITY VERIFICATION OF QUANTIZATION AND LOW-RANK DECOMPOSITION

Orthogonality Threshold: Following Equation 11, we introduce an orthogonality threshold, THo . Let P_o represent the performance of the original model. The performance of the quantized model (e.g., accuracy) is denoted as P_{oq} , and the resulting quantization loss is $L_{oq} = P_o - P_{oq}$. Similarly, the low-rank decomposition loss is $L_{ol} = P_o - P_{ol}$. The orthogonality threshold, THo , is then defined as:

$$THo = P_o - L_{oq} - L_{ol} \quad (23)$$

For accuracy, where higher values indicate better performance, THo will be less than P_o . Conversely, for perplexity, where lower values are better, THo will be greater than P_o .

This section aims to validate our conclusion from Section 3.2: combining quantization and sparsity introduces additional error, indicating non-orthogonality. We present results for the L-Q (Low-rank decomposition followed by Quantization) order only. As shown in Table 2, when utilizing accuracy as the metric, the combined model’s performance significantly below the orthogonality threshold THo . These empirical findings support the validity of Equation 11, confirming the non-orthogonal nature of quantization and low-rank decomposition.

Intriguingly, despite the substantial difference in parameter layer count between LLaMA-2-7B and LLaMA-2-70B, the performance deviation from THo remains comparable. This contradicts our expectation, as we would typically anticipate a significant increase in accumulated compression error with more layers. We posit that this is due to the smaller outlier magnitudes across layers in LLaMA-2-70B. Consequently, quantizing after low-rank decomposition does not introduce a proportionally larger additional error. To explore this, we performed ablation studies.

#Bits	W-A-KV	Method(Ratio)	LLaMA-3-8B		LLaMA-3-70B		LLaMA-2-7B		LLaMA-2-13B		LLaMA-2-70B		LLaMA-7B	
			0-shot(L)	Wiki(L)										
16-16-16	FP16 (70%)	FP16 (70%)	68.09	6.14	73.81	2.86	65.21	5.47	67.61	4.88	71.59	3.32	64.45	5.68
		$\text{Q} \Rightarrow \text{L}$ (40%)	42.3	43.8	47.7	27.9	36.4	37.4	41.2	39.7	45.3	29.9	35.4	37.8
		$\text{L} \Rightarrow \text{Q}$ (40%)	52.8	28.4	58.3	22.8	47.8	27.6	51.7	26.4	56.2	24.5	47.0	27.8
		Ours (40%)	57.7	21.4	64.7	15.3	54.4	20.5	57.3	20.5	62.3	17.8	53.2	21.3
4-16-16	$\text{Q} \Rightarrow \text{L}$ (20%)	47.3	36.9	52.4	24.7	45.4	35.7	47.2	34.3	49.3	30.5	44.5	35.4	
		$\text{L} \Rightarrow \text{Q}$ (20%)	57.9	23.4	60.4	13.6	55.6	21.2	56.3	20.5	58.4	22.6	55.4	25.1
		Ours (20%)	63.6	16.5	66.8	7.1	60.4	15.4	62.4	13.4	64.4	11.3	59.4	16.4
		$\text{Q} \Rightarrow \text{L}$ (40%)	40.4	45.1	45.7	28.9	34.2	38.9	39.1	41.0	43.1	31.0	33.2	39.3
4-4-16	$\text{Q} \Rightarrow \text{L}$ (20%)	50.4	30.2	56.5	25.0	45.9	29.1	49.6	28.3	54.9	26.8	44.9	29.7	
		Ours (40%)	55.5	23.3	62.8	17.5	52.1	22.5	55.1	23.1	60.1	19.8	51.0	24.3
		$\text{L} \Rightarrow \text{Q}$ (20%)	45.0	38.7	49.9	26.8	43.7	37.6	45.1	36.4	47.8	33.0	41.9	37.5
		Ours (20%)	61.7	18.8	64.5	10.4	58.9	17.8	60.1	15.5	62.3	13.8	57.2	18.5
4-4-4	$\text{Q} \Rightarrow \text{L}$ (40%)	39.2	46.2	44.8	29.8	33.3	39.7	37.9	41.9	42.2	32.1	32.3	40.1	
		$\text{L} \Rightarrow \text{Q}$ (40%)	49.5	31.1	54.6	26.1	44.7	29.9	48.5	29.4	53.8	27.7	43.8	30.5
		Ours (40%)	54.6	24.5	61.7	18.8	51.2	23.3	54.2	24.3	59.3	20.7	50.1	25.4
		$\text{L} \Rightarrow \text{Q}$ (20%)	43.8	39.7	48.8	27.7	42.5	38.5	44.0	37.8	49.0	35.0	40.8	38.6
443	$\text{Q} \Rightarrow \text{L}$ (20%)	54.5	26.6	57.4	17.3	52.1	24.6	52.8	23.5	55.1	25.7	52.1	29.0	
		Ours (20%)	60.3	19.6	63.4	11.5	57.6	18.8	59.0	16.8	61.4	15.0	56.1	19.8

Table 3: Results of the diagonal adhesive method. The compression ratios of the low-rank decomposition are 20% and 40%, respectively.

Fig. 2: Compression errors (L2) and outliers (Anomaly Values) across different layers. The models utilized include LLaMA-2-7B (32 layers) and LLaMA-2-70B (80 layers).

Ablation Experiment. In Figure 2, the experimental results indicate that the L2 error on LLaMA-2-7B and LLaMA-2-70B is similar. Compared to $\text{Q} \Rightarrow \text{L}$, $\text{L} \Rightarrow \text{Q}$ exhibits lower L2 error. In addition, LLaMA-2-70B exhibits smaller **Outlier** on per-layer and reduced accumulated compression error compared to LLaMA-2-7B. This also supports the rationale behind our DAM method, which addresses outlier mitigation.

5.3 VERIFICATION OF THE DIAGONAL ADHESIVE METHOD

This section serves to verify the effectiveness of the Diagonal Adhesive Method. As presented in the Table 3, our method demonstrably enhances the performance of the $\text{L} \Rightarrow \text{Q}$ compression approach. Compared to $\text{L} \Rightarrow \text{Q}$, DAM narrows the performance gap of the LLaMA3-8B model by 42.6% under the 4-4-4 (20%) setting. In addition, compared to $\text{Q} \Rightarrow \text{L}$, DAM improves the performance of the LLaMA3-8B model by 39.28% in the 4-4-4 (40%) setting.

6 CONCLUSION

In this paper, we provide theoretical and practical guidance for future model compression methods. Firstly, we conduct theoretical analysis from the perspectives of tensors and dot products, demonstrating that quantization and low-rank decomposition are non-orthogonal and will introduce additional errors. Additionally, we find that the order in which these two methods are applied significantly affects model performance, and we derive the theoretically optimal sequence—applying low-rank decomposition before quantization. Finally, we propose a learnable Diagonal Adhesive Method (DAM), which will significantly reduce the additional losses caused by quantization and low-rank decomposition. Extensive experiments demonstrate that while maintaining low cost and high speed, DAM significantly improves performance.

486 ETHICS STATEMENT
487488 This work theoretically proves the non-orthogonal relationship between quantization and low-rank
489 decomposition, and provides the optimal compression order, breaking through the existing compres-
490 sion bottlenecks. All experiments are based on publicly available datasets and open-source models. It
491 does not involve human subjects or private data, nor does it create new datasets. This benchmark is
492 intended for academic research on model compression, not for harmful applications. We have not
493 identified significant ethical risks related to bias, privacy, or abuse. All experiments comply with the
494 license terms of the datasets and models used.495
496 REPRODUCIBILITY STATEMENT
497498 We provide detailed descriptions of the benchmark construction, evaluation protocols, and experi-
499 mental setup. All underlying datasets are publicly available, and we followed standard preprocessing
500 and evaluation procedures. Additional details and complete results are reported in the appendix.501
502 REFERENCES
503504 Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian Croci, Bo Li, Pashmina Cameron, Martin
505 Jaggi, Dan Alistarh, Torsten Hoefer, and James Hensman. Quarot: Outlier-free 4-bit inference in
506 rotated llms. *Advances in Neural Information Processing Systems*, 37:100213–100240, 2025.507 Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
508 commonsense in natural language. In *Proceedings of the AAAI conference on artificial intelligence*,
509 volume 34, pp. 7432–7439, 2020.510 Michael Boratko, Harshit Padigela, Divyendra Mikkilineni, Pritish Yuvraj, Rajarshi Das, Andrew
511 McCallum, Maria Chang, Achille Fokoue-Nkoutche, Pavan Kapanipathi, Nicholas Mattei, et al.
512 A systematic classification of knowledge, reasoning, and context within the arc dataset. *arXiv
513 preprint arXiv:1806.00358*, 2018.514 Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M De Sa. Quip: 2-bit quantization of
515 large language models with guarantees. *Advances in Neural Information Processing Systems*, 36:
516 4396–4429, 2023.518 Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
519 Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. *arXiv preprint
520 arXiv:1905.10044*, 2019.521 Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
522 Chen, Chi-Min Chan, Weize Chen, et al. Parameter-efficient fine-tuning of large-scale pre-trained
523 language models. *Nature Machine Intelligence*, 5(3):220–235, 2023.524 Elias Frantar, Saleh Ashkboos, Torsten Hoefer, and Dan Alistarh. Gptq: Accurate post-training
525 quantization for generative pre-trained transformers. *arXiv preprint arXiv:2210.17323*, 2022.527 Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
528 Laurence Golding, Jeffrey Hsu, Alain Le Noac'h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
529 Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
530 Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
531 language model evaluation, 07 2024. URL <https://zenodo.org/records/12608602>.532 Gene H Golub, Alan Hoffman, and Gilbert W Stewart. A generalization of the eckart-young-mirsky
533 matrix approximation theorem. *Linear Algebra and its applications*, 88:317–327, 1987.534 Anshita Gupta, Debanjan Mondal, Akshay Sheshadri, Wenlong Zhao, Xiang Li, Sarah Wiegreffe,
535 and Niket Tandon. Editing common sense in transformers. In *Proceedings of the 2023 Conference
536 on Empirical Methods in Natural Language Processing*, pp. 8214–8232, 2023.538 Yen-Chang Hsu, Ting Hua, Sungjen Chang, Qian Lou, Yilin Shen, and Hongxia Jin. Language model
539 compression with weighted low-rank factorization. In *International Conference on Learning
Representations*.

540 Xing Hu, Yuan Cheng, Dawei Yang, Zhihang Yuan, Jiangyong Yu, Chen Xu, and Sifan Zhou. I-lm:
 541 Efficient integer-only inference for fully-quantized low-bit large language models. *arXiv preprint*
 542 *arXiv:2405.17849*, 2024.

543 Xing Hu, Yuan Cheng, Dawei Yang, Zukang Xu, Zhihang Yuan, Jiangyong Yu, Chen Xu, Zhe Jiang,
 544 and Sifan Zhou. Ostquant: Refining large language model quantization with orthogonal and scaling
 545 transformations for better distribution fitting. *arXiv preprint arXiv:2501.13987*, 2025.

546 Xiuseng Huang, Yubo Chen, Shun Wu, Jun Zhao, Yuantao Xie, and Weijian Sun. Named entity
 547 recognition via noise aware training mechanism with data filter. In *Findings of the Association for*
 548 *Computational Linguistics: ACL-IJCNLP 2021*, pp. 4791–4803, 2021.

549 Xiuseng Huang, Hang Yang, Yubo Chen, Jun Zhao, Kang Liu, Weijian Sun, and Zuyu Zhao.
 550 Document-level relation extraction via pair-aware and entity-enhanced representation learning. In
 551 *Proceedings of the 29th International Conference on Computational Linguistics*, pp. 2418–2428,
 552 2022.

553 Jena D Hwang, Chandra Bhagavatula, Ronan Le Bras, Jeff Da, Keisuke Sakaguchi, Antoine Bosselut,
 554 and Yejin Choi. On symbolic and neural commonsense knowledge graphs. 2021.

555 Changhun Lee, Jungyu Jin, Taesu Kim, Hyungjun Kim, and Eunhyeok Park. Owq: Lessons
 556 learned from activation outliers for weight quantization in large language models. *arXiv preprint*
 557 *arXiv:2306.02272*, 2, 2023.

558 Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettlemoyer. Zero-shot relation extraction via
 559 reading comprehension. *arXiv preprint arXiv:1706.04115*, 2017.

560 Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
 561 Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
 562 on-device llm compression and acceleration. *Proceedings of Machine Learning and Systems*, 6:
 563 87–100, 2024.

564 Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman Krish-
 565 namoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. Spinquant: Llm quantization
 566 with learned rotations. *arXiv preprint arXiv:2405.16406*, 2024.

567 Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
 568 associations in gpt. *Advances in Neural Information Processing Systems*, 35:17359–17372, 2022.

569 Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
 570 models. *arXiv preprint arXiv:1609.07843*, 2016.

571 Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
 572 electricity? a new dataset for open book question answering. *arXiv preprint arXiv:1809.02789*,
 573 2018.

574 Ian Porada, Kaheer Suleman, Adam Trischler, and Jackie Chi Kit Cheung. Modeling event plausibility
 575 with consistent conceptual abstraction. *arXiv preprint arXiv:2104.10247*, 2021.

576 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 577 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.

578 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
 579 adversarial winograd schema challenge at scale. *Communications of the ACM*, 64(9):99–106,
 580 2021.

581 Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialqa: Commonsense
 582 reasoning about social interactions. *arXiv preprint arXiv:1904.09728*, 2019.

583 Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
 584 Peng Gao, Yu Qiao, and Ping Luo. Omnipquant: Omnidirectionally calibrated quantization for large
 585 language models. *arXiv preprint arXiv:2308.13137*, 2023.

594 Yuxuan Sun, Ruikang Liu, Haoli Bai, Han Bao, Kang Zhao, Yuening Li, Jiaxin Hu, Xianzhi Yu,
 595 Lu Hou, Chun Yuan, Xin Jiang, Wulong Liu, and Jun Yao. Flatquant: Flatness matters for llm
 596 quantization, 2025. URL <https://arxiv.org/abs/2410.09426>.

597
 598 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 599 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 600 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023a.

601
 602 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
 603 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
 604 and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023b.

605
 606 Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip#:
 607 Even better llm quantization with hadamard incoherence and lattice codebooks. *arXiv preprint*
arXiv:2402.04396, 2024.

608
 609 Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. Svd-llm: Truncation-aware singular value
 610 decomposition for large language model compression. *arXiv preprint arXiv:2403.07378*, 2024.

611
 612 Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
 613 Accurate and efficient post-training quantization for large language models. In *International
 Conference on Machine Learning*, pp. 38087–38099. PMLR, 2023.

614
 615 Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan Yan, and Guangyu Sun. Asvd: Activation-
 616 aware singular value decomposition for compressing large language models. *arXiv preprint*
arXiv:2312.05821, 2023.

617
 618 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
 619 really finish your sentence? *arXiv preprint arXiv:1905.07830*, 2019.

648 **A PROOF PROCESS OF THEOREM 3.2**
 649

650 To better understand the maximum error bound of Eq. 3, it is necessary to combine the definition of
 651 quantization and dequantization, the mathematical expression of error, and the extreme value analysis.
 652 The detailed derivation process is as follows:
 653

654 **STEP 1: DEFINITION OF QUANTIZATION ERROR**
 655

656 The quantization error $E(Wx)$ represents the output difference when the original weight W and the
 657 dequantized weight $D(Q(W))$ are multiplied by the input x , that is:
 658

$$E(Wx) = Wx - D(Q(W))x \quad (24)$$

660 Among them, $D(Q(W))$ is the dequantized weight.
 661

662 **STEP 2: MATHEMATICAL EXPRESSION OF DEQUANTIZATION**
 663

664 According to Eq. 3, the expression of the dequantization operation $D(Q(W))$ is:
 665

$$D(Q(W)) = Q(W) \cdot \frac{\max(|W|)}{2^b - 1} \quad (25)$$

668 Among them:
 669

- 670 • $Q(W)$ is the quantized weight,
 671
- 672 • $\max(|W|)$ is the maximum absolute value of the elements in the weight block,
 673
- 674 • b is the quantization bit width.

675 **STEP 3: EXPANSION OF OUTPUT ERROR**
 676

677 Substitute the dequantization expression into the error definition, and expand to get:
 678

$$E(Wx) = Wx - \left(Q(W) \cdot \frac{\max(|W|)}{2^b - 1} \right) x \quad (26)$$

681 Extract the common factor x , which can be simplified as:
 682

$$E(Wx) = \left(W - Q(W) \cdot \frac{\max(|W|)}{2^b - 1} \right) x \quad (27)$$

686 **STEP 4: UPPER BOUND ANALYSIS OF QUANTIZATION ERROR**
 687

688 During the quantization process, the quantization error of each parameter satisfies:
 689

$$W - Q(W) \cdot \frac{\max(|W|)}{2^b - 1} \leq \frac{\max(|W|)}{2 \cdot (2^b - 1)} \quad (28)$$

693 The derivation of this inequality is based on the property of the quantization step size: the quantization
 694 step size is $\frac{\max(|W|)}{2^b - 1}$, and the absolute value of the rounding error does not exceed half of the step
 695 size (i.e., $\frac{\max(|W|)}{2 \cdot (2^b - 1)}$).
 696

697 **STEP 5: BOUNDARY DERIVATION OF OUTPUT ERROR**
 698

699 Substitute the upper bound of the quantization error into the output error expression, and get:
 700

$$|E(Wx)| \leq \frac{\max(|W|)}{2 \cdot (2^b - 1)} \cdot x \quad (29)$$

702 FINAL CONCLUSION
703704 Through the above steps, the theoretical upper bound of the quantization error can be derived as:
705

706
$$|E(Wx)| \leq \frac{\max(|W|)}{2 \cdot (2^b - 1)} \cdot x \quad (30)$$

707
708

709 B LOW-RANK DECOMPOSITION ERROR
710711 In SVD decomposition, $U = [u_1, u_2, u_3, \dots, u_r]$, $\Sigma = \text{diag}(\sigma_1, \sigma_2, \sigma_3, \dots, \sigma_r)$, and $V = [v_1, v_2, v_3, \dots, v_r]$. Then, the smallest singular values in Σ are truncated to obtain the compressed weight matrix $W' = U \times \text{Trunc.}(\Sigma) \times V^T \times S^{-1}$. Inspired by SVD-LLM (Wang et al., 2024), The Frobenius norm of matrix W with dimension $m \times n$ can be deduced into the square root of the trace of its gram matrix, which is:
712
713
714

715
$$\|W\|_F \triangleq \left(\sum_{j=1}^n \sum_{i=1}^m |w_{ij}|^2 \right)^{\frac{1}{2}} = [\text{trace}(W^T W)]^{\frac{1}{2}} \quad (31)$$

716
717
718

719 Given an input X , we obtain the compression loss L_i when truncating the i^{th} singular value of $S^{-1}X$
720 to reduce its rank for compression:
721
722

723
$$L_i = \|(W - W')X\|_F = \|\sigma_i u_i v_i^T S^{-1} X\|_F = \sigma_i \text{trace}(u_i v_i^T S^{-1} X X^T (S^{-1})^T v_i u_i^T)^{\frac{1}{2}} \quad (32)$$

724
725

726 Since U and V are orthogonal matrices, we have
727
728

729
$$v_i^T v_i = u_i^T u_i = I; v_i^T v_j = u_i^T u_j = 0, \forall i \neq j; \text{trace}(v_i v_i^T) = \text{trace}(u_i u_i^T) = 1 \quad (33)$$

730
731 we set the whitening matrix S is the Cholesky decomposition of XX^T , and $SS^T = XX^T$. We can
732 obtain:
733
734

735
$$L_i = \|\sigma_i u_i v_i^T S^{-1} X\|_F = \sigma_i \text{trace}(u_i v_i^T S^{-1} X X^T (S^{-1})^T v_i u_i^T)^{\frac{1}{2}} = \sigma_i \text{trace}(u_i v_i^T v_i u_i^T)^{\frac{1}{2}} = \sigma_i \quad (34)$$

736
737

738 Therefore, L_i of truncating σ_i equals to the singular value σ_i itself.
739
740

C PROOF PROCESS OF THEOREM 3.7

741 To simplify the proof process, all formulas omit the input x . We rewrite $E_{l \circ q}$ as
742
743

744
$$E_{l \circ q} = \|Q(U_r)Q(\Sigma_r)Q(V_r^T) - W\|_F \quad (35)$$

745
746

747 Insert the middle term $U_r \Sigma_r V_r^T$:
748
749

750
$$E_{l \circ q} = \| \| [Q(U_r)Q(\Sigma_r)Q(V_r^T) - U_r \Sigma_r V_r^T] + [U_r \Sigma_r V_r^T - W] \| \|_F \quad (36)$$

751
752

753 For the Frobenius norm, the triangle inequality holds:
754
755

756
$$\|A + B\|_F \leq \|A\|_F + \|B\|_F \quad (37)$$

757

758 We obtain:
759
760

756
 757
$$E_{l \circ q} \leq \| \|Q(U_r)Q(\Sigma_r)Q(V_r^T) - U_r \Sigma_r V_r^T \| \|_F + \| \|U_r \Sigma_r V_r^T - W \| \|_F \quad (38)$$

 758
 759

760 Then, we have
 761

762
$$E_{l \circ q} \leq E_q + E_l \quad (39)$$

 763

764 **Strict proof.** To prove the strictness of this inequality, we need to consider the properties of the
 765 Frobenius norm:

766 Definition of Frobenius norm:

767
$$\|A\|_F = \sqrt{\sum_{i,j} |a_{ij}|^2} \quad (40)$$

 768
 769

770 Meanwhile, for matrices A and B:
 771

772
$$\|A + B\|_F^2 = \|A\|_F^2 + \|B\|_F^2 + 2\text{tr}(A^T B) \quad (41)$$

 773
 774

775 In our case:

776
$$\begin{aligned} A &= Q(U_r)Q(\Sigma_r)Q(V_r^T) - U_r \Sigma_r V_r^T \\ B &= U_r \Sigma_r V_r^T - W \end{aligned} \quad (42)$$

 777
 778

779 Then

780
$$\begin{aligned} E_{l \circ q}^2 &= \|A + B\|_F^2 \\ &= \|A\|_F^2 + \|B\|_F^2 + 2\text{tr}(A^T B) \\ &= E_q^2 + E_l^2 + 2\text{tr}(A^T B) \end{aligned} \quad (43)$$

 781
 782

783 Since $\text{tr}(A^T B)$ may be negative, this ensures the validity of the inequality.

784 Considering the upper bound of quantization error:

785
$$|E(W)| \leq \max(|W|)/(2(2^b - 1)) \quad (44)$$

 786

787 and the SVD decomposition error Es is determined by the truncated singular values:

788
$$L_i = \sigma_i \quad (45)$$

 789

790 This ensures that $|E(W)|$ and L_i is bounded, thereby ensuring an upper bound on the overall error
 791 $E_{l \circ q}$.

792 D PROOF PROCESS OF THEOREM 3.8

793 To simplify the proof process, all formulas omit the input x . The upper bound of quantization error:

794
$$|E(W)| \leq \max(|W|)/(2(2^b - 1)) \quad (46)$$

 795

796 The quantization operation Q (W) introduces nonlinear errors, which can: (1)Changing the Singular
 797 Value Distribution of a Matrix. (2)The low-rank structure of the influence matrix. Perform SVD
 798 decomposition on the quantized matrix Q (W):

799
$$L_i = \text{SVD}_r(Q(W)) = \sigma_i \quad (47)$$

 800

810 D.1 PROOF OF ERROR AMPLIFICATION EFFECT
811812 **Error propagation analysis.** Firstly, quantization introduces errors:
813

814
$$Q(W) = W + E_q \quad (48)$$

815

816 Among them, E_q is the quantization error matrix. Then, perform SVD decomposition on $Q(W)$:
817

818
$$SVD_r(Q(W)) = SVD_r(W + E_q) \quad (49)$$

819

820 Due to SVD's sensitivity to disturbances, the presence of E_q can lead to:
821

822
$$SVD_r(W + E_q) \neq SVD_r(W) + SVD_r(E_q) \quad (50)$$

823

824 **Nonlinear amplification effect.** Considering matrix perturbation theory, for small perturbations
825 E_q :
826

827
$$\sigma_i(W + E_q) = \sigma_i(W) + \delta\sigma_i \quad (51)$$

828

829 Among them, $\delta\sigma_i$ not only depends on the size of E_q , but also on the singular value distribution of
830 W . This leads to:
831

832
$$\begin{aligned} \|SVD_r(Q(W)) - W\|_F &> \|SVD_r(W) - W\|_F + \\ &\|Q(W) - W\|_F \end{aligned} \quad (52)$$

833
834

835 **Strict proof.** We assume:
836

837
$$E_{qol} = \|SVD_r(Q(W)) - W\|_F \quad (53)$$

838

839 Insert middle item $Q(W)$:
840

841
$$E_{qol} = \|[SVD_r(Q(W)) - Q(W)] + [Q(W) - W]\|_F \quad (54)$$

842

843 The properties of Frobenius norm:
844

845
$$\|A + B\|_F^2 = \|A\|_F^2 + \|B\|_F^2 + 2tr(A^T B) \quad (55)$$

846

847 Applied to our situation:
848

849
$$\begin{aligned} E_{qol}^2 &= E_{l'}^2 + E_{q'}^2 + \\ &2tr([SVD_r(Q(W)) - Q(W)]^T [Q(W) - W]) \end{aligned} \quad (56)$$

850
851

852 The key point lies in the cross item:
853

854
$$2tr([SVD_r(Q(W)) - Q(W)]^T [Q(W) - W]) \quad (57)$$

855

856 This item is usually positive because: (1) The quantization error changes the singular value structure
857 of the matrix. (2) SVD decomposition is performed on the quantized matrix, preserving the main
858 structure distorted by quantization. (3) This structural distortion is related to the direction of the
859 original quantization error. So we obtain:
860

861
$$E_{qol}^2 > (E_{l'} + E_{q'})^2 \quad (58)$$

862

863 This means:

864
865
866

$$E_{qol} > E_{l'} + E_{q'} \quad (59)$$

867 **Numerical stability analysis.** The error amplification of SVD after quantization can also be
 868 analyzed from the perspective of numerical stability: (1) The quantization operation $Q(\cdot)$ will
 869 introduce rounding errors. (2) These rounding errors will affect the condition numbers of the matrix.
 870 (3) The variation of the condition number will affect the accuracy of SVD decomposition. (4) The
 871 cumulative effect that ultimately leads to errors is greater than a simple superposition.

872

873 E PROOF PROCESS OF THEOREM 3.11

874

875 To prove the optimal quantization order at the dot product level, we need to analyze the error sources,
 876 structures, and propagation mechanisms of both orders, and compare their error magnitudes through
 877 rigorous mathematical derivation.

878

879 E.1 CORE DEFINITIONS AND NOTATIONS

880

881 Let the original weight matrix be $w \in \mathbb{R}^{n \times m}$ and the activation value be $x \in \mathbb{R}^n$. The original
 882 Dot-product is:

883

$$\langle x, w \rangle = x^T w$$

884

885 E.1.1 LOW-RANK DECOMPOSITION:

886

887 Any matrix w can be decomposed into a product of low-rank matrices $w \approx AB$, where $A \in \mathbb{R}^{n \times k}$
 888 and $B \in \mathbb{R}^{k \times m}$ with $k \ll \min(n, m)$ (low-rank dimension). The decomposition error is $r = w - AB$
 889 (usually small, as low-rank decomposition is an optimal approximation).

890

891 E.1.2 QUANTIZATION:

892

893 The quantization function $Q(\cdot)$ converts a high-precision matrix into a low-precision one, introducing
 894 quantization error:

895

- For a quantized matrix M , $Q(M) = M + e_M$, where e_M is the quantization error (satisfying
 $|e_M| \ll |M|$, since quantization error is usually much smaller than the original value).

896

897 E.2 ERROR DERIVATION FOR BOTH ORDERS

898

899 We need to calculate the error between the Dot-product under each order and the original value $\langle x, w \rangle$,
 900 and compare their magnitudes.

901

902 E.2.1 LOW-RANK DECOMPOSITION FOLLOWED BY QUANTIZATION (ORDER 1)

903

904 Steps:

905

1. Perform low-rank decomposition on w : $w = AB + r$ (where r is the decomposition error,
 906 negligible, approximately $w \approx AB$).
2. Quantize A and B respectively: $A_q = Q(A) = A + e_A$, $B_q = Q(B) = B + e_B$ (where e_A
 908 and e_B are quantization errors of A and B).
3. The quantized weight matrix is:

911

$$w_{q1} = A_q B_q = (A + e_A)(B + e_B)$$

912

913 Expanding and ignoring second-order small errors ($e_A e_B$, as the product of quantization errors is
 914 even smaller):

915

$$w_{q1} \approx AB + Ae_B + e_A B$$

916

917 The Dot-product in this case is:

$$\langle x, w_{q1} \rangle \approx \langle x, AB \rangle + \langle x, Ae_B \rangle + \langle x, e_A B \rangle$$

918 Since $w \approx AB$, the original Dot-product $\langle x, w \rangle \approx \langle x, AB \rangle$. Thus, the error E_1 for Order 1 is:
 919

$$920 \quad E_1 \approx \langle x, Ae_B \rangle + \langle x, e_A B \rangle \quad (1)$$

922 E.2.2 QUANTIZATION FOLLOWED BY LOW-RANK DECOMPOSITION (ORDER 2)
 923

924 Steps:

925 1. Directly quantize w : $w_q = Q(w) = w + e_w$ (where e_w is the quantization error of w).
 926 2. Perform low-rank decomposition on w_q : $w_q = A'B' + r'$ (where $A' \in \mathbb{R}^{n \times k}$, $B' \in \mathbb{R}^{k \times m}$,
 927 and r' is the decomposition error).
 928

930 The low-rank approximation of the quantized weight is $A'B' = w_q - r' = w + e_w - r'$. The
 931 Dot-product is:

$$932 \quad \langle x, A'B' \rangle = \langle x, w \rangle + \langle x, e_w \rangle - \langle x, r' \rangle$$

934 Thus, the error E_2 for Order 2 is:

$$935 \quad E_2 = \langle x, e_w \rangle - \langle x, r' \rangle \quad (2)$$

937 E.3 ERROR COMPARISON AND PROOF
 938

939 We need to prove $|E_1| < |E_2|$ (smaller error norm), focusing on the scale of error sources and the
 940 ability of low-rank decomposition to suppress errors.
 941

942 E.3.1 DIFFERENCE IN QUANTIZATION ERROR SCALE
 943

944 The total energy (squared norm) of quantization error is positively correlated with the number of
 945 elements in the quantized matrix (assuming the variance of quantization error for each element is the
 946 same):
 947

- 948 • In Order 1, the quantized objects are A and B , with a total number of elements $k(n + m)$
 949 (since $A \in n \times k$ and $B \in k \times m$).
- 950 • In Order 2, the quantized object is w , with a total number of elements nm (since $w \in n \times m$).
 951

952 Since $k \ll \min(n, m)$, it is obvious that:
 953

$$954 \quad k(n + m) \ll nm$$

955 Therefore, the total energy of quantization error in Order 1 is much smaller than that in Order 2:
 956

$$957 \quad |e_A|^2 + |e_B|^2 \ll |e_w|^2 \quad (3)$$

960 E.3.2 STRUCTURAL DIFFERENCE IN ERROR PROPAGATION
 961

- 962 • **Error E_1 in Order 1:** The error terms $\langle x, Ae_B \rangle$ and $\langle x, e_A B \rangle$ are products of low-rank
 963 matrices and quantization errors, constrained by the low-rank dimension k . For example:

$$964 \quad |Ae_B| \leq |A| \cdot |e_B|, \quad |e_A B| \leq |e_A| \cdot |B|$$

965 Since A and B are results of low-rank decomposition, their norms $|A|$ and $|B|$ are not
 966 excessively large, so E_1 is “constrained” by the low-rank structure.
 967

- 968 • **Error E_2 in Order 2:** The core of the error is $\langle x, e_w \rangle$, where e_w is a high-rank matrix
 969 (since w itself is high-rank, and the quantization error retains the high-rank property). The
 970 low-rank decomposition error r' cannot offset the high-rank components of e_w (low-rank
 971 matrices cannot approximate high-rank errors). Thus, $\langle x, e_w \rangle$ dominates the error, and due
 972 to the large $|e_w|$ (see Equation 3), E_2 is significantly larger.

972 E.3.3 RIGOROUS INEQUALITY DERIVATION
973

974 Combining the above analysis and using the Cauchy-Schwarz inequality:

975 • For E_1 :

976
$$|E_1| \leq |x| \cdot (|Ae_B| + |e_A B|) \leq |x| \cdot (|A||e_B| + |e_A||B|)$$

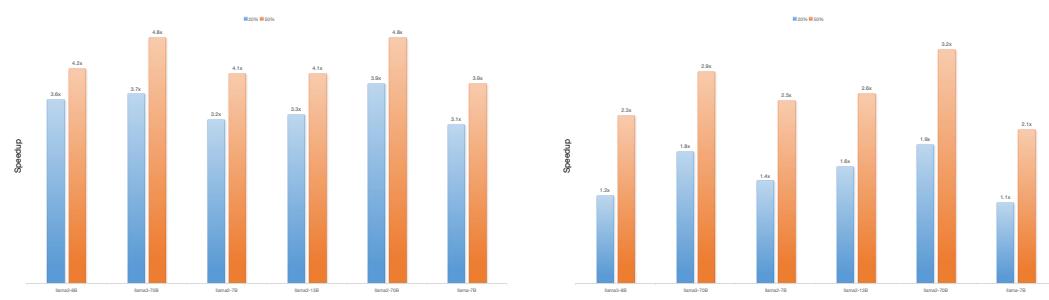
977 Since $|e_A|$ and $|e_B|$ are small (Equation 3), $|E_1|$ is small.978 • For E_2 :

979
$$|E_2| \geq ||\langle x, e_w \rangle| - |\langle x, r' \rangle|| \geq |x| \cdot (|e_w| - |r'|)$$

980 Since $|e_w| \gg |r'|$ (high-rank errors cannot be eliminated by low-rank decomposition),
981 $|E_2| \approx |x| \cdot |e_w|$, which is much larger than $|E_1|$.
982983 At the Dot-product level, the error E_1 of low-rank decomposition followed by quantization is
984 significantly smaller than the error E_2 of quantization followed by low-rank decomposition because
985 the quantized objects are smaller in scale (low-rank matrices) and the error is constrained by the
986 low-rank structure. That is:

987
$$|E_1| < |E_2|$$

988

989 F SPEEDUP EXPERIMENTS
9901000 Fig. 3: Prefill and decoding speedup across different models. We decode 256 tokens after the prefill
1001 on a sequence length of 2048. The quantization setting is w4a4kv4. The left figure represents the
1002 Prefilling stage, and the right figure represents the Decoding stage.
10031004 We conducted prefilling and decoding tests across several models. Prefilling acceleration improved
1005 by 4.8x while ratio is 50%, and decoding acceleration improved by 3.2x while ratio is 50%.
10061007 G SUPPLEMENTARY EXPERIMENTAL RESULTS
10081009 Our work mainly theoretically proves the non-orthogonality between quantization and low-rank
1010 decomposition and provides the optimal compression order. Our compression process consists of
1011 two steps: first quantization, then compression. To verify our theoretical analysis, the traditional
1012 GPTQ method was used for quantization in the paper, but this quantization method has large
1013 quantization errors. Since our method is compatible with existing quantization methods, we replaced
1014 the quantization method with the popular QuaRot method, and the experimental results are as follows:
10151016 G.1 EXPERIMENTAL RESULTS OF OTHER MODELS
10171018 We conducted experiments on the Qwen2-7B and Mistral-7B models with the same setup as those in
1019 the paper, and the results in W4-A4-KV4 are as follows:
10201021 The experimental results show that our method achieves significant compression performance on the
1022 Qwen model.
10231024 Furthermore, we replaced the traditional quantization method with QuaRot and conducted similar
1025 experiments, with the results as follows:
1026

	Qwen2-7B	MMLU	HumanEval	GSM8K	MATH
1026	FP16 (0%)	70.3	51.2	79.9	44.2
1027	$Q \Rightarrow L$ (20%)	42.2	27.5	45.9	16.9
1028	$L \Rightarrow Q$ (20%)	61.3	42.5	61.0	36.3
1029	Ours (20%)	65.6	46.1	73.6	39.8
1030					
1031	Mistral-7B	MMLU	HumanEval	GSM8K	MATH
1032	FP16 (0%)	64.2	29.3	52.2	13.1
1033	$Q \Rightarrow L$ (20%)	37.5	11.8	22.4	2.9
1034	$L \Rightarrow Q$ (20%)	56.3	21.1	41.2	7.3
1035	Ours (20%)	59.5	24.4	47.1	8.9
1036					

Table 4: Experimental results on Qwen2-7B and Mistral-7B (W4-A4-KV4 setup)

	Qwen2-7B	MMLU	HumanEval	GSM8K	MATH
1044	FP16 (0%)	70.3	51.2	79.9	44.2
1045	$Q \Rightarrow L$ (20%)	42.3	27.4	45.5	16.5
1046	$L \Rightarrow Q$ (20%)	62.6	44.8	63.3	39.7
1047	Ours (20%)	68.5	48.3	77.9	41.7
1048	Mistral-7B	MMLU	HumanEval	GSM8K	MATH
1049	FP16 (0%)	64.2	29.3	52.2	13.1
1050	$Q \Rightarrow L$ (20%)	37.3	11.6	22.5	2.3
1051	$L \Rightarrow Q$ (20%)	58.7	23.5	43.7	8.6
1052	Ours (20%)	61.7	26.8	50.1	11.4
1053					

Table 5: Experimental results with QuaRot quantization

The experimental results indicate that our method is not only compatible with other PTQ methods but also achieves superior performance.

H DISCUSSION ON DIFFERENT COMPRESSION ORDERS

On the premise of achieving a compressed model with a small compression error, in this paper, we prove the superiority of performing low-rank decomposition first and then quantization. However, the compression order of performing quantization first and then low-rank decomposition is still meaningful.

The following is a detailed analysis of its advantages from both technical principles and practical effects:

I. QUANTIZATION PROVIDES A “SIMPLIFIED INPUT” FOR LOW-RANK DECOMPOSITION, REDUCING DECOMPOSITION DIFFICULTY AND RETAINING REDUNDANCY

The core of quantization is to compress the model by reducing the numerical precision of parameters (e.g., from 32-bit floating-point \rightarrow 16-bit floating-point \rightarrow 8-bit integer). Essentially, it **eliminates redundant precision information** in parameters (i.e., subtle numerical differences that have minimal

1080 impact on model performance). This preprocessing significantly benefits subsequent low-rank
 1081 decomposition:
 1082

1083 **1. Reducing “Noise Interference” in Parameters and Enhancing Core Information Capture in**
 1084 **Low-Rank Decomposition** Low-rank decomposition (e.g., SVD singular value decomposition,
 1085 matrix factorization) aims to decompose high-rank matrices (such as convolution kernels or fully
 1086 connected layer weights) into products of low-rank matrices (e.g., $W = A \times B$, where the ranks of
 1087 A and B are much smaller than that of W), preserving the “principal components” critical to model
 1088 performance.

1089 However, original high-precision parameters may contain numerous subtle numerical fluctuations
 1090 (which can be regarded as “noise”). These fluctuations are not core to the model’s decision-making
 1091 but interfere with the identification of principal components in low-rank decomposition (e.g., singular
 1092 value decomposition may misclassify noise as components needing retention).

1093 **Quantization first filters out this “noise” from redundant precision**, making the numerical
 1094 distribution of parameters more regular (e.g., quantized parameters concentrate on limited discrete
 1095 values). This allows low-rank decomposition to focus more on the core numerical patterns that truly
 1096 affect model outputs, thereby retaining key information more efficiently and reducing information
 1097 loss during decomposition.

1098 **2. Reducing the Dynamic Range of Parameters and Improving the Stability of Low-Rank**
 1099 **Decomposition** The dynamic range of original high-precision parameters can be large (e.g., floating-
 1100 point parameters may span multiple orders of magnitude). When processing data with a large dynamic
 1101 range, the numerical stability of low-rank decomposition may decline (e.g., when singular values
 1102 differ significantly in magnitude, components corresponding to small singular values are easily
 1103 ignored, leading to loss of useful information).

1104 Quantization maps parameters to a smaller dynamic range (e.g., the range of 8-bit integers is typically
 1105 $[-128, 127]$), **narrowing the numerical span of parameters**. This enhances the numerical stability
 1106 of low-rank decomposition during calculations (such as singular value sorting and low-rank matrix
 1107 reconstruction) and reduces decomposition errors caused by an excessively large dynamic range.

1109 **II. REDUCING COMPUTATIONAL COSTS OF LOW-RANK DECOMPOSITION AND IMPROVING**
 1110 **COMPRESSION EFFICIENCY**

1112 Low-rank decomposition has high computational complexity (e.g., the time complexity of SVD
 1113 decomposition for an $M \times N$ matrix is $O(M^2N + MN^2)$), but quantization can significantly reduce
 1114 resource consumption in this process:

1116 **Reducing Parameter Storage and Computation to Accelerate Decomposition** After quanti-
 1117 zation, the bit-width of parameters decreases (e.g., from 32-bit to 8-bit, reducing storage by 75%).
 1118 During low-rank decomposition, **memory usage and computation time for matrix operations**
 1119 (such as matrix multiplication and singular value solving) decrease significantly.

1120 For example, decomposing a quantized 8-bit integer weight matrix is several times faster on the same
 1121 hardware compared to the original 32-bit floating-point matrix, with lower memory usage (especially
 1122 for large-scale models like Transformers and ResNets, the effect is more pronounced).

1123 To validate this, we conducted experiments: we used INT8 SpinQuant quantization + 20% Low-rank
 1124 decomposition ($Q \Rightarrow L$) compression, comparing it against standalone 20% Low-rank decomposition
 1125 (Only-L).

1127 The Table 6 and Table 7 show that compared with standalone low-rank decomposition, the “quantiza-
 1128 tion first, then low-rank decomposition” approach achieves comparable performance and outperforms
 1129 the standalone low-rank decomposition method in some metrics. Moreover, it improves the compres-
 1130 sion speed by **2.2x**, which is a significant advantage of this approach. It is worth noting that previous
 1131 works often regarded quantization and low-rank decomposition as orthogonal.

1132 The above indicates that quantization followed by low-rank decomposition is also a valuable compres-
 1133 sion method. In particular, existing low-bit quantization methods can retain approximately 98% of
 model performance, making their gains for low-rank decomposition increasingly valuable. Previous

	Qwen2-7B (20%)	MMLU	HumanEval	GSM8K	MATH	Time
1134	FP16 (0%)	70.3	51.2	79.9	44.2	-- min
1135	Only-L	48.0	29.7	47.9	19.2	132 min
1136	Q \Rightarrow L	48.3	29.3	47.8	19.6	63 min

Table 6: Results for Qwen2-7B (20% compression)

	Mistral-7B (20%)	MMLU	HumanEval	GSM8K	MATH	Time
1143	FP16 (0%)	64.2	29.3	52.2	13.1	-- min
1144	Only-L	46.3	18.7	29.9	4.7	136 min
1145	Q \Rightarrow L	46.5	18.3	29.3	4.8	62 min

Table 7: Results for Mistral-7B (20% compression)

work did not explore reasonable compression orders, assuming the two orders are orthogonal. We theoretically propose the optimal compression order, providing a theoretical foundation for future research in the field of compression.

I LIMITATIONS

Firstly, due to limitations in computing resources, we did not conduct relevant experiments on larger language models. Secondly, due to limited experimental resources, there is a lack of experiments conducted on different types of GPUs to verify the widespread practicality of the verification method.