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ABSTRACT

As the parameter size of language models continues to grow, effective model com-
pression is required to reduce their computational and memory overhead. Low-rank
decomposition and quantization are two prominent compression methods that have
been proven to significantly reduce the computational and memory requirements
of Large Language Models (LLMs) while maintaining model accuracy. However,
how these two methods interact when combined remains a critical question for
developers, as many assume they are orthogonal, meaning their combination would
not introduce additional errors beyond those independently introduced by each
method. This paper provides the first mathematical proof that low-rank decom-
position and quantization are non-orthogonal. We validate these findings through
a series of experiments on large language models. Our results demonstrate that
these methods are non-orthogonal, and their combination leads to significant perfor-
mance degradation. Importantly, we propose a novel approach Diagonal Adhesive
Method (DAM), which can effectively combine the two methods and mitigate the
performance loss. Our research provides deep insights into model compression and
lays a solid theoretical and experimental foundation for future related studies.

1 INTRODUCTION

In recent years, Large Language Models (LLMs) have demonstrated excellent performance in
numerous natural language processing tasks, thanks to their increasing parameter counts (Huang
et al., 2021; 2022). However, this growth in parameter size comes at the cost of significantly higher
computational and storage demands (Meng et al., 2022). Consequently, efficient and low-cost
deployment of LLMs has become a critical area of research (Gupta et al., 2023). Prior work in this
field can be broadly categorized into two main approaches: Architecture-modifying techniques and
Architecture-agnostic techniques (Ding et al., 2023).

Architecture-modifying techniques include distillation and pruning (Hwang et al., 2021). Distillation
explicitly extracts knowledge from a large model and utilizes it to train a smaller one (Porada et al.,
2021). Pruning, on the other hand, removes less important parameters to reduce computational
and storage overhead. However, both distillation and pruning are often impractical for LLMs due
to their substantial requirements for training data and compute resources. Architecture-agnostic
techniques include quantization and low-rank decomposition (Levy et al., 2017). Quantization
reduces the precision of model weights or activations, typically from 32-bit floating-point to lower
bit representations like 8-bit or 4-bit integers, or even binary (Ashkboos et al., 2025). Low-rank
decomposition approximates weight matrices with lower-rank matrices, reducing parameter count
while keeping the weights in floating-point format (Yuan et al., 2023). Quantization and low-
rank decomposition are popular choices for deploying LLMs practically because they are low-cost,
architecture-agnostic, and generally perform well.

Existing quantization and low-rank decomposition methods both face performance bottlenecks
(Sun et al., 2025; Yuan et al., 2023). For example, quantization can maintain good performance at
precisions above W4A4KV4, but when the model is further compressed to lower bit-widths, there is
a significant and unacceptable drop in accuracy (Hu et al., 2025). Similarly, low-rank decomposition
suffers a notable decline in performance when the compression ratio exceeds 50% (Wang et al.,
2024). Extensive experiments indicate that W4A4KV4 and a 50% compression ratio represent the
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current bottlenecks for model compression techniques, limiting the potential for further high-fidelity
compression. An inspiring idea is to effectively combine these two architecture-agnostic techniques.

It is natural to expect that directly combining quantization and low-rank decomposition can yield
significant benefits in terms of computation and storage costs. However, the potential drawbacks
remain unclear. Previous studies have assumed that these two methods are orthogonal, meaning their
combination would not introduce additional errors beyond those of each individual method (Wang
et al., 2024). However, these studies have primarily focused on quantizing weights only, making extra
error from combining quantization and low-rank decomposition less noticeable, and overlooking
the widespread presence of outliers when quantifying activation values. These studies have failed
to properly investigate the overall impact of utilizing both methods together or to provide effective
strategies for their integration. This poses a major challenge for further low-cost deployment of
LLMs.

To address these challenges, we first conduct a theoretical analysis from both the tensor and dot-
product perspectives, demonstrating that quantization and low-rank decomposition are non-orthogonal
and thus introduce additional error. In addition, we find that the order in which these two methods are
applied significantly affects model performance, and we derive the theoretically optimal sequence—
applying low-rank decomposition before quantization. Finally, we identify outliers of activation as
a key factor impacting compressed model performance, and propose a Diagonal Adhesive Method
(DAM) that can significantly reduce the extra losses caused by the combination of quantization and
low-rank decomposition.

To the best of our knowledge, we are the first to theoretically demonstrate that quantization and
low-rank decomposition are non-orthogonal and provide the correct compression order. Based on
the outliers issue inherent in low-rank decomposition, we propose the DAM method. Extensive
experiments have shown that the DAM method significantly improves the performance of compressed
models. Our research provides deep insights into model compression, and lays a solid theoretical and
experimental foundation for future related studies. Our contributions are summarized below:

• We mathematically prove that quantization and low-rank decomposition are non-orthogonal
operations. Based on compression error analysis, their combination introduces compound er-
rors and leads to performance degradation. Our findings provide a theoretical foundation and
challenge the conventional belief that combining quantization and low-rank decomposition
does not significantly impact performance.

• To improve the performance of combining quantization and low-rank decomposition, we are
the first to derive the optimal order—applying low-rank decomposition before quantization.
This finding is further supported by extensive experimental results.

• We propose a Diagonal Adhesive Method (DAM) to address the performance degradation
caused by the combination of quantization and low-rank decomposition. Extensive exper-
iments demonstrate that while maintaining low cost and high speed, DAM significantly
improves performance.

2 RELATED WORK

Quantization. Post-training quantization (PTQ) has emerged as a prominent technique for large
language models (LLMs) due to its efficiency. Current PTQ methods can generally be categorized
into weight-only and weight-activation quantization. To minimize memory usage, some strategies
concentrate on weight-only quantization. GPTQ employs Hessian-based error compensation to
achieve significant compression rates by reducing quantization errors (Frantar et al., 2022). AWQ
(Lin et al., 2024) enhances performance by tackling the effects of activation outliers on weight
quantization (Lee et al., 2023). QuIP (Chee et al., 2023) and QuIP# (Tseng et al., 2024) utilize
random Hadamard matrices for incoherent processing and apply vector quantization to weights,
resulting in improved performance compared to reduced precision quantization. SmoothQuant (Xiao
et al., 2023) shifts the difficulty of quantization from activations to weights through a mathematical
transformation. OmniQuant (Shao et al., 2023) further boosts performance by training quantization
parameters and transformation coefficients. Additionally, I-LLM (Hu et al., 2024) proposes a strategy
for integer-only quantization and inference through fully-smooth block reconstruction and fully
integer operators. Recently, QuaRot (Ashkboos et al., 2025) employs random rotation matrices to
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facilitate 4-bit quantization of weights and activations, while SpinQuant (Liu et al., 2024) learns these
matrices to refine the 4-bit quantization process.

Low-Rank Decomposition. Singular Value Decomposition (SVD) is a common technique for
reducing matrix size by approximating a matrix with two smaller low-rank matrices (Golub et al.,
1987). In the realm of LLM compression, only a limited number of SVD-based methods have been
suggested. Specifically, standard SVD focuses solely on compressing the original weight matrix
without accounting for the significance of the parameters, which may result in a higher compression
error. To tackle this issue, FWSVD method was introduced that incorporates Fisher information to
assess parameter importance (Hsu et al.). However, this approach necessitates a complex gradient
calculation, requiring significant resources for LLM compression. Another challenge with standard
SVD is the distribution of activation, which can influence compression accuracy. To address this,
ASVD method was proposed that scales the weight matrix utilizing a diagonal matrix to reflect the
impact of input channels on the weights (Yuan et al., 2023). Nonetheless, both methods do not
establish a clear relationship between singular values and compression loss.

Combining Quantization and Low-rank Decomposition. Previous studies have explored the
combination of quantization and low-rank decomposition for model compression. SVD-LLM only
compresses the model’s weights without addressing the activation values and neglects their existence
(Wang et al., 2024). Prior research has not provided clear conclusions regarding the optimal order
of these two methods, nor has it offered solutions to the problem of outliers. These issues pose
significant challenges for further high-quality model compression.

3 NON-ORTHOGONALITY OF QUANTIZATION AND LOW-RANK
DECOMPOSITION

Definition 3.1 (Quantization Method). The existing quantization method is a block based quan-
tization method that divides the weight matrix into multiple blocks and quantizes each block in-
dependently. For each block, utilize the maximum absolute value within that block as the scaling
factor.

Q(W ) = Round(
W

max(|W |)
· 2b−1) (1)

among them, Q(W ) represents the quantized block, W represents the original weight block,
max(|W |) represents the maximum absolute value of the elements in block W , b represents the
quantization bit width, Round(·) represents rounding operation. The inverse quantification formula is

D(Q(W )) = Q(W ) ∗max(|W |)/(2b − 1) (2)

Definition 3.2 (Quantization Error). We formalize the quantification error and theoretical error
boundary as follows

E(Wx) = |Wx−D(Q(W ))x|, |E(Wx)| ≤ max(|W |)/(2 ∗ (2b − 1))x (3)

where E(Wx) is the quantization error and |E(Wx)| is the maximum error boundary, x is the input
for weight W . The detailed proof process is provided in Appendix A.

Definition 3.3 (Low-Rank Decomposition Method). For any matrix W ∈ Rm×n, its Singular
Value Decomposition (SVD) can be expressed as

W = UΣV T (4)

where U ∈ Rm×m is a left singular vector matrix (orthogonal matrix), Σ ∈ Rm×n is a singular value
diagonal matrix, V ∈ Rn×n is the transpose (orthogonal matrix) of the right singular vector matrix.
Appendix B shows the Low-Rank Decomposition Error.
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3.1 TENSOR-LEVEL ANALYSIS

Definition 3.5 (Compression Error). Previous studies did not consider the optimal application
order of quantization and low-rank decomposition, and we provided compression errors for different
orders. For the compression error of l ◦ q, we have:

El = ||W − Ur ∗ Σr ∗ V T
r ||F , Eq = ||Q(Ur) ∗Q(Σr) ∗Q(V T

r )− Ur ∗ Σr ∗ V T
r ||F ,

El◦q = ||Q(Ur) ∗Q(Σr) ∗Q(V T
r )−W ||F (5)

where l◦q represents utilizing low-rank decomposition first, and then utilizing quantization methods, r
represents the compression ratio of low-rank decomposition. Q(·) represents the utilize of quantitative
methods. For the compression error of q ◦ l, we have:

Eq′ = ||Q(W )−W ||F , El′ = ||SV Dr(Q(W ))−Q(W )||F
Eq◦l = ||SV Dr(Q(W ))−W ||F (6)

Definition 3.6 (Tensor-level Orthogonality). If any combination order of q and l does not introduce
additional errors, we define the two compression methods as orthogonal, satisfying the following
inequality:

∀W ∈ Rn, ∥El◦q(W )∥ ≤ El(W ) + Eq(W )

and ∥Eq◦l(W )∥ ≤ Eq′(W ) + El′(W )
(7)

Theorem 3.7. According to the Appendix C, we prove that low-rank decomposition followed by
quantization does not introduce additional compression errors, satisfying the following inequality:

∀W ∈ Rn, ∥El◦q(W )∥ ≤ El(W ) + Eq(W ) (8)

Eq.8 states that after low-rank decomposition, the maximum error in the matrix has a specific
limit and is strongly correlated with the singular values σi, ensuring the determinacy of the scale
quantization parameter. Therefore, the quantization error of non-zero vectors before and after
low-rank decomposition remains unchanged.

Theorem 3.8. According to the Appendix D, we demonstrate that quantization before low-rank
decomposition introduces additional errors:

∃W ∈ Rn, ∥Eq◦l(W )∥ > Eq′(W ) + El′(W ) (9)

Eq.9 states that the quantization operation Q(·) introduces rounding errors, which can alter the singular
value distribution of the matrix, affecting the accuracy of SV D decomposition and ultimately leading
to a cumulative effect of errors greater than simple superposition. This indicates that the compression
strategy of quantization first and then SV D will lead to larger errors, and it is better to adopt the
strategy of SV D first and then quantization.

3.2 DOT-PRODUCT LEVEL ANALYSIS

In this section, we delve into the combined effects of quantification and low-rank decomposition at the
dot product level. Our analysis focuses on the application of quantization and low-rank decomposition
to weight, while activation only applies quantization operations. We first extend the definition of
compression error to the dot-product level.
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Fig. 1: Visualization of activation values < ΣrV
T
r >, the left and right images respectively show the

3D visualization of activation values before and after utilizing DAM. The X and Y axes represent
the dimensions of the activation matrix, while the Z axis indicates the magnitude of the values. The
left figure shows that before applying the DAM method, the activation values are steeply distributed
with clear outliers, resulting in a Z-axis maximum of 32, which significantly increases compression
error. The right figure demonstrates that the DAM method effectively eliminates outliers, reducing
the Z-axis maximum to 3.0.

Definition 3.9 (Compression Error on Dot-product Level). Let x,w ∈ Rn denote the inputs of
a compression l/q : Rn ⇒ Rn and the dot product operation < ., . >: Rn × Rn ⇒ R. We define
ED

q,l(x,w) = ⟨x,w⟩ − ⟨q(x), q ◦ l(w)⟩ as the compression error on dot-product level. Meanwhile,
we define ED

l,q(x,w) = ⟨x,w⟩ − ⟨q(x), l ◦ q(w)⟩ as the compression error when utilizing another
order to compress weight.

Definition 3.10 (Dot-product Level Orthogonality). Let f denote a composition of q and l in
any order, f := q ◦ l or f := l ◦ q. We assume that if the combination of quantization and low-rank
decomposition does not introduce additional errors, then they are orthogonal, defined as follows:

∀x,w ∈ Rn, |ED
l,q(x,w)| = |ED

q,l(x,w)| (10)

Theorem 3.11. Let q be the quantization, s be low-rank decomposition. We demonstrate that any
order of quantization and low-rank decomposition will result in additional compression errors:

∃x,w ∈ Rn, |ED
l,q(x,w)| < |ED

q,l(x,w)| (11)

The Appendix E provides a detailed proof process. We have demonstrated that quantization and
low-rank decomposition are non orthogonal at the dot-product level.

4 DIAGONAL ADHESIVE METHOD

The theory in Section 3 suggests that utilizing low-rank decomposition before quantization is the
optimal compression strategy. However, these two compression methods have been utilized inde-
pendently in the past, and existing research has not yet explored the problems and solutions when
combined.

After undergoing low-rank decomposition, the weight is decomposed into the form of UrΣrV
T
r ,

where Ur and V T
r are relatively smooth states. In the quantization process, we choose to quantize

Q(Ur) and Q(ΣrV
T
r ). However, due to the presence of Σr, there is a significant quantization error

when quantizing Q(ΣrV
T
r ). This is because < ΣrV

T
r > contains outliers (As shown in the left

image of Figure 1), which poses a huge challenge for quantifying LLM. Outliers refer to a small

5
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number of elements that are significantly larger than the mean of the entire matrix. They reduce the
effective utilization of the quantization space and increase quantization error.

4.1 PROBLEM MODELING

To address this issue, we propose a Diagonal Adhesive Method (DAM). Introduce diagonal matrix a
and rewrite the decomposition as:

UrΣrV
T
r = (Ura) · (a−1ΣrV

T
r ) (12)

where the diagonal elements ai > 0 of a are used to scale the columns of Ur and rows of ΣrV
T
r .

DAM shifts the burden of outlier removal from < ΣrV
T
r > to < Ur >. While eliminating outliers,

DAM has no impact on the model’s inference speed or storage cost. The quantized product is:

Q(Ura) ·Q(a−1ΣrV
T
r ) (13)

The objective is to choose a to minimize the quantization error, that is to minimize:

||Q(Ura) ·Q(a−1ΣrV
T
r )− UrΣrV

T
r ||2F (14)

4.2 QUANTIZATION ERROR ANALYSIS

Assume the quantization error is additive noise, that is:

Q(W ) = W + E (15)

where each element of E is independent with zero mean, and the variance is related to the quanti-
zation step size. For the scaled matrices Ura and a−1ΣrV

T
r , their quantization error variances are

proportional to a2i and σ2
i

a2
i

respectively, where σi is the i-th diagonal element of Σr. The quantized
product error can be approximated as:

Q(Ura) ·Q
(
1

a
ΣrV

T
r

)
− UrΣrV

T
r ≈ UraE2 + E1

1

a
ΣrV

T
r (16)

where E1 and E2 are quantization error matrices.

4.3 ERROR DECOMPOSITION AND OPTIMIZATION

For each rank i, analyze independently where ui and vi are the i-th columns of Ur and Vr respectively,
and σi is the i-th diagonal element of Σr. The squared Frobenius norm of the quantization error is:

∥∥∥∥aiuie2,i +
σi

ai
e1,iv

T
i

∥∥∥∥2
F

⇒ E
[
∥aiuie2,i∥2F

]
+ E

[∥∥∥∥σi

ai
e1,iv

T
i

∥∥∥∥2
F

]
(17)

where e1,i and e2,i are quantization error vectors. Assuming quantization error variances are

Var(e1,i) = c1a
2
i and Var(e2,i) = c2

σ2
i

a2
i

, the total error is:

c2σ
2
i n+ c1σ

2
im (18)

To balance both terms, choose ai such that:

c2σ
2
i n = c1σ

2
im =⇒ c2

c1
=

m

n
(19)

This shows there exists an ai that balances both terms, thus minimizing the total error.

6
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4.4 EXISTENCE OF OPTIMAL DIAGONAL MATRIX

For each rank i, choose ai to balance the variance terms of quantization error, that is:

a2i ∝

√
c2σ2

i n

c1m
(20)

Then, the diagonal elements of diagonal matrix a are:

ai =

(
c2σ

2
i n

c1m

)1/4

(21)

Since the objective function is continuous and has a lower bound, according to the extreme value
theorem, there exists such a diagonal matrix a that minimizes the quantization error. We constructed
an error reconstruction loss to optimize the diagonal matrix a:

Lrecon = ∥Wx−Q(Ura)Q(
1

a
ΣrV

T
r )x∥2F (22)

5 EXPERIMENTS

Models and Datasets. We apply our method to the entire LLaMA family, including LLaMA-1
(7B-30B) (Touvron et al., 2023a), LLaMA-2 (7B-13B) (Touvron et al., 2023b), and LLaMA-3-8B.
We report perplexity (PPL) scores on the WikiText2 (Merity et al., 2016) test set. In addition, we also
evaluate the models on up to nine zero-shot tasks utilizing the lm-evaluation-harness (Gao
et al., 2024) , including BoolQ (Clark et al., 2019), HellaSwag (Zellers et al., 2019), LAMBADA
(OpenAI) (Radford et al., 2019), OpenBookQA (OBQA) (Mihaylov et al., 2018), PIQA (Bisk et al.,
2020), SIQA (Sap et al., 2019), WinoGrande (Sakaguchi et al., 2021), ARC-Easy, and ARC-Challenge
(Boratko et al., 2018).

Experiments Setup. In all experiments, quantization and low-rank decomposition will be applied
to weights, while activation will only utilize quantization. For low-rank decomposition, we adopt the
state-of-the-art SVD-LLM (Wang et al., 2024) approach. For quantization, we leverage the commonly
utilized GPTQ (Frantar et al., 2022) technique. In addition, the weights compressed in the model
are only trainable parameters. Specifically, we focus on all linear layers in LLM, excluding the
embedding layer and lm-head layer. Appendix F offers more experimental results.

5.1 VERIFICATION OF COMPRESSION ORDER

To verify the optimal compression order, we performed order validation experiments. This section
offers empirical evidence that applying low-rank decomposition before quantization achieves superior
model performance compared to the opposite sequence. These findings align with the conclusions
presented in Section 3.1. Table 1 details the performance across different quantization bit-widths and
low-rank decomposition ratios, examining both compression orders. For instance, “4-16-16” signifies
that the weights in the quantized model are 4-bit, while activations and the KV cache maintain full
precision. “40%” represents a 40% compression ratio for low-rank decomposition. Optimal results
are displayed in bold.

We experimentally validated two different orderings: (Q⇒L)—Quantization then Low-rank decom-
position, and (L⇒Q)—Low-rank decomposition then Quantization. As shown in Table 1, the L⇒Q
configuration demonstrates significantly better model performance than Q⇒L. Furthermore, the
performance gap favoring L⇒Q widens with increasing compression ratios. Consistent with the
discussion in Section 3.1, SVD Low-rank decomposition bounds the maximum error in the matrix,
ensuring effective control over the accumulated error in the L⇒Q approach.
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Model Method (Ratio) ARC C ARC E HellaSwag LAMBADA PIQA Winogrande BoolQ OBQA SIQA Avg.

2-7B
Original 46.16 74.54 75.98 73.92 79.05 69.06 77.71 44.20 45.91 65.21

Q ⇒ L(50%) 22.46 35.67 34.68 30.55 39.96 27.43 35.43 20.55 36.57 30.57
L ⇒ Q(50%) 35.67 47.43 48.66 31.05 50.57 38.74 48.90 31.97 47.93 42.43

2-13B
Original 49.15 77.44 79.39 76.73 80.47 72.14 80.58 45.20 47.49 67.61

Q ⇒ L(50%) 34.65 38.99 38.57 35.26 44.79 30.57 39.08 24.49 38.75 35.59
L ⇒ Q(50%) 39.27 51.26 52.43 35.67 54.29 42.77 53.09 35.96 51.43 46.63

2-70B
Original 57.17 81.02 83.81 79.60 82.70 77.98 83.81 48.80 49.18 71.59

Q ⇒ L(50%) 39.67 43.27 41.09 38.94 48.36 33.63 42.57 28.99 43.82 39.97
L ⇒ Q(50%) 44.73 56.24 56.78 39.42 57.77 47.08 59.03 39.43 55.62 51.42

3-8B
Original 53.50 77.57 79.12 75.51 80.74 72.93 81.10 44.80 47.08 68.09

Q ⇒ L(50%) 37.43 41.35 39.07 36.68 46.52 31.30 39.67 25.87 41.26 37.26
L ⇒ Q(50%) 40.39 52.26 51.30 34.79 52.89 44.09 56.46 35.38 51.72 47.43

3-70B
Original 64.25 85.94 84.93 79.37 84.44 80.74 85.14 48.46 50.82 73.81

Q ⇒ L(50%) 43.36 46.62 45.76 40.33 49.37 37.65 43.54 29.87 45.98 42.47
L ⇒ Q(50%) 46.32 56.94 57.43 37.48 58.36 48.79 61.42 41.78 56.55 52.43

Table 1: The results of validating the compression order, we highlight the superior metrics, with the
quantization set to W4A4KV4.The compression ratio of the low-rank decomposition is 50%.

Ratio 2-7B 2-13B 2-70B 3-8B 3-70B
0-shot THo 0-shot THo 0-shot THo 0-shot THo 0-shot THo

Original 65.21 - 67.61 - 71.59 - 68.09 - 73.81 -
10% 55.71 58.45 57.43 59.65 62.35 65.41 58.98 60.34 62.48 65.63
20% 52.63 52.37 52.86 57.39 55.13 59.78 54.56 58.75 57.46 62.92
40% 44.76 47.34 48.58 53.66 53.82 55.14 49.53 53.43 54.64 58.77
50% 42.43 44.79 46.63 51.34 51.47 51.39 47.43 50.77 52.43 56.41

Table 2: The results of the orthogonality verification experiment: 0-shot refers to the average perfor-
mance across the nine downstream tasks in Table 1, and THo represents the orthogonality threshold.
When 0-shot is lower than THo, it demonstrates that quantization and low-rank decomposition are
non-orthogonal.

5.2 NON-ORTHOGONALITY VERIFICATION OF QUANTIZATION AND LOW-RANK
DECOMPOSITION

Orthogonality Threshold: Following Equation 11, we introduce an orthogonality threshold, THo. Let
Po represent the performance of the original model. The performance of the quantized model (e.g.,
accuracy) is denoted as Poq, and the resulting quantization loss is Loq = Po − Poq. Similarly, the
low-rank decomposition loss is Lol = Po − Pol. The orthogonality threshold, THo, is then defined
as:

THo = Po − Loq − Lol (23)

For accuracy, where higher values indicate better performance, THo will be less than Po. Conversely,
for perplexity, where lower values are better, THo will be greater than Po.

This section aims to validate our conclusion from Section 3.2: combining quantization and sparsity
introduces additional error, indicating non-orthogonality. We present results for the L-Q (Low-rank
decomposition followed by Quantization) order only. As shown in Table 2, when utilizing accuracy
as the metric, the combined model’s performance significantly below the orthogonality threshold
THo. These empirical findings support the validity of Equation 11, confirming the non-orthogonal
nature of quantization and low-rank decomposition.

Intriguingly, despite the substantial difference in parameter layer count between LLaMA-2-7B and
LLaMA-2-70B, the performance deviation from THo remains comparable. This contradicts our
expectation, as we would typically anticipate a significant increase in accumulated compression
error with more layers. We posit that this is due to the smaller outlier magnitudes across layers
in LLaMA-2-70B. Consequently, quantizing after low-rank decomposition does not introduce a
proportionally larger additional error. To explore this, we performed ablation studies.
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#Bits Method(Ratio) LLaMA-3-8B LLaMA-3-70B LLaMA-2-7B LLaMA-2-13B LLaMA-2-70B LLaMA-7B
W-A-KV 0-shot(↑) Wiki(↓) 0-shot(↑) Wiki(↓) 0-shot(↑) Wiki(↓) 0-shot(↑) Wiki(↓) 0-shot(↑) Wiki(↓) 0-shot(↑) Wiki(↓)
16-16-16 FP16 (0%) 68.09 6.14 73.81 2.86 65.21 5.47 67.61 4.88 71.59 3.32 64.45 5.68

4-16-16

Q ⇒ L (40%) 42.3 43.8 47.7 27.9 36.4 37.4 41.2 39.7 45.3 29.9 35.4 37.8
L ⇒ Q (40%) 52.8 28.4 58.3 22.8 47.8 27.6 51.7 26.4 56.2 24.5 47.0 27.8
Ours (40%) 57.7 21.4 64.7 15.3 54.4 20.5 57.3 20.5 62.3 17.8 53.2 21.3
Q ⇒ L (20%) 47.3 36.9 52.4 24.7 45.4 35.7 47.2 34.3 49.3 30.5 44.5 35.4
L ⇒ Q (20%) 57.9 23.4 60.4 13.6 55.6 21.2 56.3 20.5 58.4 22.6 55.4 25.1
Ours (20%) 63.6 16.5 66.8 7.1 60.4 15.4 62.4 13.4 64.4 11.3 59.4 16.4

4-4-16

Q ⇒ L (40%) 40.4 45.1 45.7 28.9 34.2 38.9 39.1 41.0 43.1 31.0 33.2 39.3
L ⇒ Q (40%) 50.4 30.2 56.5 25.0 45.9 29.1 49.6 28.3 54.9 26.8 44.9 29.7
Ours (40%) 55.5 23.3 62.8 17.5 52.1 22.5 55.1 23.1 60.1 19.8 51.0 24.3
Q ⇒ L (20%) 45.0 38.7 49.9 26.8 43.7 37.6 45.1 36.4 47.8 33.0 41.9 37.5
L ⇒ Q (20%) 55.8 25.5 58.4 15.2 53.3 23.5 54.4 22.3 56.2 24.8 53.1 27.7
Ours (20%) 61.7 18.8 64.5 10.4 58.9 17.8 60.1 15.5 62.3 13.8 57.2 18.5

4-4-4

Q ⇒ L (40%) 39.2 46.2 44.8 29.8 33.3 39.7 37.9 41.9 42.2 32.1 32.3 40.1
L ⇒ Q (40%) 49.5 31.1 54.6 26.1 44.7 29.9 48.5 29.4 53.8 27.7 43.8 30.5
Ours (40%) 54.6 24.5 61.7 18.8 51.2 23.3 54.2 24.3 59.3 20.7 50.1 25.4
Q ⇒ L (20%) 43.8 39.7 48.8 27.7 42.5 38.5 44.0 37.8 49.0 35.0 40.8 38.6
L ⇒ Q (20%) 54.5 26.6 57.4 17.3 52.1 24.6 52.8 23.5 55.1 25.7 52.1 29.0
Ours (20%) 60.3 19.6 63.4 11.5 57.6 18.8 59.0 16.8 61.4 15.0 56.1 19.8

Table 3: Results of the diagonal adhesive method. The compression ratios of the low-rank decompo-
sition are 20% and 40%, respectively.

(a) The result on LLaMA-2-7B model. (b) The result on LLaMA-2-70B model.

Fig. 2: Compression errors (L2) and outliers (Anomaly Values) across different layers. The models
utilized include LLaMA-2-7B (32 layers) and LLaMA-2-70B (80 layers).

Ablation Experiment. In Figure 2, the experimental results indicate that the L2 error on LLaMA-
2-7B and LLaMA-2-70B is similar. Compared to Q⇒L, L⇒Q exhibits lower L2 error. In addition,
LLaMA-2-70B exhibits smaller Outlier on per-layer and reduced accumulated compression error
compared to LLaMA-2-7B. This also supports the rationale behind our DAM method, which addresses
outlier mitigation.

5.3 VERIFICATION OF THE DIAGONAL ADHESIVE METHOD

This section serves to verify the effectiveness of the Diagonal Adhesive Method. As presented in the
Table 3, our method demonstrably enhances the performance of the L⇒Q compression approach.
Compared to L⇒Q, DAM narrows the performance gap of the LLaMA3-8B model by 42.6% under
the 4-4-4 (20%) setting. In addition, compared to Q⇒L, DAM improves the performance of the
LLaMA3-8B model by 39.28% in the 4-4-4 (40%) setting.

6 CONCLUSION

In this paper, we provide theoretical and practical guidance for future model compression methods.
Firstly, we conduct theoretical analysis from the perspectives of tensors and dot products, demonstrat-
ing that quantization and low-rank decomposition are non-orthogonal and will introduce additional
errors. Additionally, we find that the order in which these two methods are applied significantly
affects model performance, and we derive the theoretically optimal sequence—applying low-rank
decomposition before quantization. Finally, we propose a learnable Diagonal Adhesive Method
(DAM), which will significantly reduce the additional losses caused by quantization and low-rank
decomposition. Extensive experiments demonstrate that while maintaining low cost and high speed,
DAM significantly improves performance.
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REPRODUCIBILITY STATEMENT

We provide detailed descriptions of the benchmark construction, evaluation protocols, and experi-
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A PROOF PROCESS OF THEOREM 3.2

To better understand the maximum error bound of Eq. 3, it is necessary to combine the definition of
quantization and dequantization, the mathematical expression of error, and the extreme value analysis.
The detailed derivation process is as follows:

STEP 1: DEFINITION OF QUANTIZATION ERROR

The quantization error E(Wx) represents the output difference when the original weight W and the
dequantized weight D(Q(W )) are multiplied by the input x, that is:

E(Wx) = Wx−D(Q(W ))x (24)

Among them, D(Q(W )) is the dequantized weight.

STEP 2: MATHEMATICAL EXPRESSION OF DEQUANTIZATION

According to Eq. 3, the expression of the dequantization operation D(Q(W )) is:

D(Q(W )) = Q(W ) · max(|W |)
2b − 1

(25)

Among them:

• Q(W ) is the quantized weight,

• max(|W |) is the maximum absolute value of the elements in the weight block,

• b is the quantization bit width.

STEP 3: EXPANSION OF OUTPUT ERROR

Substitute the dequantization expression into the error definition, and expand to get:

E(Wx) = Wx−
(
Q(W ) · max(|W |)

2b − 1

)
x (26)

Extract the common factor x, which can be simplified as:

E(Wx) =

(
W −Q(W ) · max(|W |)

2b − 1

)
x (27)

STEP 4: UPPER BOUND ANALYSIS OF QUANTIZATION ERROR

During the quantization process, the quantization error of each parameter satisfies:

W −Q(W ) · max(|W |)
2b − 1

≤ max(|W |)
2 · (2b − 1)

(28)

The derivation of this inequality is based on the property of the quantization step size: the quantization
step size is max(|W |)

2b−1
, and the absolute value of the rounding error does not exceed half of the step

size (i.e., max(|W |)
2·(2b−1)

).

STEP 5: BOUNDARY DERIVATION OF OUTPUT ERROR

Substitute the upper bound of the quantization error into the output error expression, and get:

|E(Wx)| ≤ max(|W |)
2 · (2b − 1)

· x (29)
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FINAL CONCLUSION

Through the above steps, the theoretical upper bound of the quantization error can be derived as:

|E(Wx)| ≤ max(|W |)
2 · (2b − 1)

· x (30)

B LOW-RANK DECOMPOSITION ERROR

In SVD decomposition, U = [u1, u2, u3, ..., ur], Σ = diag(σ1, σ2, σ3, ..., σr), and V =
[v1, v2, v3, ..., vr]. Then, the smallest singular values in Σ are truncated to obtain the compressed
weight matrix W ′ = U × Trunc.(Σ)× V T × S−1. Inspired by SVD-LLM (Wang et al., 2024), The
Frobenius norm of matrix W with dimension m× n can be deduced into the square root of the trace
of its gram matrix, which is:

∥W∥F ≜

 n∑
j=1

m∑
i=1

|wij |2
 1

2

= [trace(WTW )]
1
2 (31)

Given an input X , we obtain the compression loss Li when truncating the ith singular value of S−1X
to reduce its rank for compression:

Li = ∥(W −W ′)X∥F = ∥σiuiv
T
i S

−1X∥F = σitrace(uiv
T
i S

−1XXT (S−1)T viu
T
i )

1
2 (32)

Since U and V are orthogonal matrices, we have

vTi vi = uT
i ui = I; vTi vj = uT

i uj = 0,∀i ̸= j; trace(vivTi ) = trace(uiu
T
i ) = 1 (33)

we set the whitening matrix S is the Cholesky decomposition of XXT , and SST = XXT . We can
obtain:

Li = ∥σiuiv
T
i S

−1X∥F = σitrace(uiv
T
i S

−1XXT (S−1)T viu
T
i )

1
2 = σitrace(uiv

T
i viu

T
i )

1
2 = σi

(34)

Therefore, Li of truncating σi equals to the singular value σi itself.

C PROOF PROCESS OF THEOREM 3.7

To simplify the proof process, all formulas omit the input x. We rewrite El◦q as

El◦q = ∥Q(Ur)Q(Σr)Q(V T
r )−W∥F (35)

Insert the middle term UrΣrV
T
r :

El◦q =∥∥[Q(Ur)Q(Σr)Q(V T
r )− UrΣrV

T
r ]+

[UrΣrV
T
r −W ]∥∥F

(36)

For the Frobenius norm, the triangle inequality holds:

||A+B||F ≤ ||A||F + ||B||F (37)

We obtain:
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El◦q ≤∥∥Q(Ur)Q(Σr)Q(V T
r )− UrΣrV

T
r ∥∥F

+ ∥∥UrΣrV
T
r −W∥∥F

(38)

Then, we have

El◦q ≤ Eq + El (39)

Strict proof. To prove the strictness of this inequality, we need to consider the properties of the
Frobenius norm:

Definition of Frobenius norm:

||A||F =
√∑

i, j|aij |2 (40)

Meanwhile, for matrices A and B:

||A+B||2F = ||A||2F + ||B||2F + 2tr(ATB) (41)

In our case:

A = Q(Ur)Q(Σr)Q(V T
r )− UrΣrV

T
r

B = UrΣrV
T
r −W

(42)

Then

E2
l◦q = ∥A+B∥2F

= ∥A∥2F + ∥B∥2F + 2tr(ATB)

= E2
q + E2

l + 2tr(ATB)

(43)

Since tr(ATB) may be negative, this ensures the validity of the inequality.

Considering the upper bound of quantization error:

|E(W )| ≤ max(|W |)/(2(2b − 1)) (44)

and the SVD decomposition error Es is determined by the truncated singular values:

Li = σi (45)

This ensures that |E(W )| and Li is bounded, thereby ensuring an upper bound on the overall error
El◦q .

D PROOF PROCESS OF THEOREM 3.8

To simplify the proof process, all formulas omit the input x. The upper bound of quantization error:

|E(W )| ≤ max(|W |)/(2(2b − 1)) (46)

The quantization operation Q (W) introduces nonlinear errors, which can: (1)Changing the Singular
Value Distribution of a Matrix. (2)The low-rank structure of the influence matrix. Perform SVD
decomposition on the quantized matrix Q (W):

Li = SV Dr(Q(W )) = σi (47)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

D.1 PROOF OF ERROR AMPLIFICATION EFFECT

Error propagation analysis. Firstly, quantization introduces errors:

Q(W ) = W + Eq (48)

Among them, Eq is the quantization error matrix. Then, perform SVD decomposition on Q(W ):

SV Dr(Q(W )) = SV Dr(W + Eq) (49)

Due to SVD’s sensitivity to disturbances, the presence of Eq can lead to:

SV Dr(W + Eq) ̸= SV Dr(W ) + SV Dr(Eq) (50)

Nonlinear amplification effect. Considering matrix perturbation theory, for small perturbations
Eq:

σi(W + Eq) = σi(W ) + δσi (51)

Among them, δσi not only depends on the size of Eq, but also on the singular value distribution of
W . This leads to:

∥SV Dr(Q(W ))−W∥F >∥SV Dr(W )−W∥F+
∥Q(W )−W∥F

(52)

Strict proof. We assume:

Eq◦l = ∥SV Dr(Q(W ))−W∥F (53)

Insert middle item Q(W ):

Eq◦l = ∥[SV Dr(Q(W ))−Q(W )] + [Q(W )−W ]∥F (54)

The properties of Frobenius norm:

∥A+B∥2F = ∥A∥2F + ∥B∥2F + 2tr(ATB) (55)

Applied to our situation:

E2
q◦l = E2

l′ + E2
q′+

2tr([SV Dr(Q(W ))−Q(W )]T [Q(W )−W ])
(56)

The key point lies in the cross item:

2tr([SV Dr(Q(W ))−Q(W )]T [Q(W )−W ]) (57)

This item is usually positive because: (1) The quantization error changes the singular value structure
of the matrix. (2) SVD decomposition is performed on the quantized matrix, preserving the main
structure distorted by quantization. (3) This structural distortion is related to the direction of the
original quantization error. So we obtain:

E2
q◦l > (El′ + Eq′)

2 (58)

This means:
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Eq◦l > El′ + Eq′ (59)

Numerical stability analysis. The error amplification of SVD after quantization can also be
analyzed from the perspective of numerical stability: (1) The quantization operation Q (·) will
introduce rounding errors. (2) These rounding errors will affect the condition numbers of the matrix.
(3) The variation of the condition number will affect the accuracy of SVD decomposition. (4) The
cumulative effect that ultimately leads to errors is greater than a simple superposition.

E PROOF PROCESS OF THEOREM 3.11

To prove the optimal quantization order at the dot product level, we need to analyze the error sources,
structures, and propagation mechanisms of both orders, and compare their error magnitudes through
rigorous mathematical derivation.

E.1 CORE DEFINITIONS AND NOTATIONS

Let the original weight matrix be w ∈ Rn×m and the activation value be x ∈ Rn. The original
Dot-product is:

⟨x,w⟩ = xTw

E.1.1 LOW-RANK DECOMPOSITION:

Any matrix w can be decomposed into a product of low-rank matrices w ≈ AB, where A ∈ Rn×k

and B ∈ Rk×m with k ≪ min(n,m) (low-rank dimension). The decomposition error is r = w−AB
(usually small, as low-rank decomposition is an optimal approximation).

E.1.2 QUANTIZATION:

The quantization function Q(·) converts a high-precision matrix into a low-precision one, introducing
quantization error:

• For a quantized matrix M , Q(M) = M+eM , where eM is the quantization error (satisfying
|eM | ≪ |M |, since quantization error is usually much smaller than the original value).

E.2 ERROR DERIVATION FOR BOTH ORDERS

We need to calculate the error between the Dot-product under each order and the original value ⟨x,w⟩,
and compare their magnitudes.

E.2.1 LOW-RANK DECOMPOSITION FOLLOWED BY QUANTIZATION (ORDER 1)

Steps:

1. Perform low-rank decomposition on w: w = AB + r (where r is the decomposition error,
negligible, approximately w ≈ AB).

2. Quantize A and B respectively: Aq = Q(A) = A+ eA, Bq = Q(B) = B + eB (where eA
and eB are quantization errors of A and B).

3. The quantized weight matrix is:

wq1 = AqBq = (A+ eA)(B + eB)

Expanding and ignoring second-order small errors (eAeB , as the product of quantization errors is
even smaller):

wq1 ≈ AB +AeB + eAB

The Dot-product in this case is:

⟨x,wq1⟩ ≈ ⟨x,AB⟩+ ⟨x,AeB⟩+ ⟨x, eAB⟩
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Since w ≈ AB, the original Dot-product ⟨x,w⟩ ≈ ⟨x,AB⟩. Thus, the error E1 for Order 1 is:

E1 ≈ ⟨x,AeB⟩+ ⟨x, eAB⟩ (1)

E.2.2 QUANTIZATION FOLLOWED BY LOW-RANK DECOMPOSITION (ORDER 2)

Steps:

1. Directly quantize w: wq = Q(w) = w + ew (where ew is the quantization error of w).

2. Perform low-rank decomposition on wq: wq = A′B′ + r′ (where A′ ∈ Rn×k, B′ ∈ Rk×m,
and r′ is the decomposition error).

The low-rank approximation of the quantized weight is A′B′ = wq − r′ = w + ew − r′. The
Dot-product is:

⟨x,A′B′⟩ = ⟨x,w⟩+ ⟨x, ew⟩ − ⟨x, r′⟩

Thus, the error E2 for Order 2 is:
E2 = ⟨x, ew⟩ − ⟨x, r′⟩ (2)

E.3 ERROR COMPARISON AND PROOF

We need to prove |E1| < |E2| (smaller error norm), focusing on the scale of error sources and the
ability of low-rank decomposition to suppress errors.

E.3.1 DIFFERENCE IN QUANTIZATION ERROR SCALE

The total energy (squared norm) of quantization error is positively correlated with the number of
elements in the quantized matrix (assuming the variance of quantization error for each element is the
same):

• In Order 1, the quantized objects are A and B, with a total number of elements k(n+m)
(since A ∈ n× k and B ∈ k ×m).

• In Order 2, the quantized object is w, with a total number of elements nm (since w ∈ n×m).

Since k ≪ min(n,m), it is obvious that:

k(n+m) ≪ nm

Therefore, the total energy of quantization error in Order 1 is much smaller than that in Order 2:

|eA|2 + |eB |2 ≪ |ew|2 (3)

E.3.2 STRUCTURAL DIFFERENCE IN ERROR PROPAGATION

• Error E1 in Order 1: The error terms ⟨x,AeB⟩ and ⟨x, eAB⟩ are products of low-rank
matrices and quantization errors, constrained by the low-rank dimension k. For example:

|AeB | ≤ |A| · |eB |, |eAB| ≤ |eA| · |B|

Since A and B are results of low-rank decomposition, their norms |A| and |B| are not
excessively large, so E1 is “constrained” by the low-rank structure.

• Error E2 in Order 2: The core of the error is ⟨x, ew⟩, where ew is a high-rank matrix
(since w itself is high-rank, and the quantization error retains the high-rank property). The
low-rank decomposition error r′ cannot offset the high-rank components of ew (low-rank
matrices cannot approximate high-rank errors). Thus, ⟨x, ew⟩ dominates the error, and due
to the large |ew| (see Equation 3), E2 is significantly larger.
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E.3.3 RIGOROUS INEQUALITY DERIVATION

Combining the above analysis and using the Cauchy-Schwarz inequality:

• For E1:
|E1| ≤ |x| · (|AeB |+ |eAB|) ≤ |x| · (|A||eB |+ |eA||B|)

Since |eA| and |eB | are small (Equation 3), |E1| is small.
• For E2:

|E2| ≥ ||⟨x, ew⟩| − |⟨x, r′⟩|| ≥ |x| · (|ew| − |r′|)
Since |ew| ≫ |r′| (high-rank errors cannot be eliminated by low-rank decomposition),
|E2| ≈ |x| · |ew|, which is much larger than |E1|.

At the Dot-product level, the error E1 of low-rank decomposition followed by quantization is
significantly smaller than the error E2 of quantization followed by low-rank decomposition because
the quantized objects are smaller in scale (low-rank matrices) and the error is constrained by the
low-rank structure. That is:

|E1| < |E2|

F SPEEDUP EXPERIMENTS

3.6x
3.7x

3.2x
3.3x

3.9x

3.1x

4.2x

4.8x

4.1x 4.1x

4.8x

3.9x

llama3-8B llama3-70B llama2-7B llama2-13B llama2-70B llama-7B

Sp
ee
du

p

20% 50%

1.2x

1.8x

1.4x

1.6x

1.9x

1.1x

2.3x

2.9x

2.5x
2.6x

3.2x

2.1x

llama3-8B llama3-70B llama2-7B llama2-13B llama2-70B llama-7B

Sp
ee
du

p
20% 50%

Fig. 3: Prefill and decoding speedup across different models. We decode 256 tokens after the prefill
on a sequence length of 2048. The quantization setting is w4a4kv4. The left figure represents the
Prefilling stage, and the right figure represents the Decoding stage.

We conducted prefilling and decoding tests across several models. Prefilling acceleration improved
by 4.8x while ratio is 50%, and decoding acceleration improved by 3.2x while ratio is 50%.

G SUPPLEMENTARY EXPERIMENTAL RESULTS

Our work mainly theoretically proves the non-orthogonality between quantization and low-rank
decomposition and provides the optimal compression order. Our compression process consists of
two steps: first quantization, then compression. To verify our theoretical analysis, the traditional
GPTQ method was used for quantization in the paper, but this quantization method has large
quantization errors. Since our method is compatible with existing quantization methods, we replaced
the quantization method with the popular QuaRot method, and the experimental results are as follows:

G.1 EXPERIMENTAL RESULTS OF OTHER MODELS

We conducted experiments on the Qwen2-7B and Mistral-7B models with the same setup as those in
the paper, and the results in W4-A4-KV4 are as follows:

The experimental results show that our method achieves significant compression performance on the
Qwen model.

Furthermore, we replaced the traditional quantization method with QuaRot and conducted similar
experiments, with the results as follows:
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Qwen2-7B MMLU HumanEval GSM8K MATH
FP16 (0%) 70.3 51.2 79.9 44.2

Q ⇒ L (20%) 42.2 27.5 45.9 16.9

L ⇒ Q (20%) 61.3 42.5 61.0 36.3

Ours (20%) 65.6 46.1 73.6 39.8

Mistral-7B MMLU HumanEval GSM8K MATH
FP16 (0%) 64.2 29.3 52.2 13.1

Q⇒L (20%) 37.5 11.8 22.4 2.9

L⇒Q (20%) 56.3 21.1 41.2 7.3

Ours (20%) 59.5 24.4 47.1 8.9

Table 4: Experimental results on Qwen2-7B and Mistral-7B (W4-A4-KV4 setup)

Qwen2-7B MMLU HumanEval GSM8K MATH
FP16 (0%) 70.3 51.2 79.9 44.2

Q ⇒ L (20%) 42.3 27.4 45.5 16.5

L ⇒ Q (20%) 62.6 44.8 63.3 39.7

Ours (20%) 68.5 48.3 77.9 41.7

Mistral-7B MMLU HumanEval GSM8K MATH
FP16 (0%) 64.2 29.3 52.2 13.1

Q⇒L (20%) 37.3 11.6 22.5 2.3

L⇒Q (20%) 58.7 23.5 43.7 8.6

Ours (20%) 61.7 26.8 50.1 11.4

Table 5: Experimental results with QuaRot quantization

The experimental results indicate that our method is not only compatible with other PTQ methods but
also achieves superior performance.

H DISCUSSION ON DIFFERENT COMPRESSION ORDERS

On the premise of achieving a compressed model with a small compression error, in this paper, we
prove the superiority of performing low-rank decomposition first and then quantization. However,
the compression order of performing quantization first and then low-rank decomposition is still
meaningful.

The following is a detailed analysis of its advantages from both technical principles and practical
effects:

I. QUANTIZATION PROVIDES A “SIMPLIFIED INPUT” FOR LOW-RANK DECOMPOSITION,
REDUCING DECOMPOSITION DIFFICULTY AND RETAINING REDUNDANCY

The core of quantization is to compress the model by reducing the numerical precision of parameters
(e.g., from 32-bit floating-point → 16-bit floating-point → 8-bit integer). Essentially, it eliminates
redundant precision information in parameters (i.e., subtle numerical differences that have minimal
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impact on model performance). This preprocessing significantly benefits subsequent low-rank
decomposition:

1. Reducing “Noise Interference” in Parameters and Enhancing Core Information Capture in
Low-Rank Decomposition Low-rank decomposition (e.g., SVD singular value decomposition,
matrix factorization) aims to decompose high-rank matrices (such as convolution kernels or fully
connected layer weights) into products of low-rank matrices (e.g., W = A×B, where the ranks of
A and B are much smaller than that of W ), preserving the “principal components” critical to model
performance.

However, original high-precision parameters may contain numerous subtle numerical fluctuations
(which can be regarded as “noise”). These fluctuations are not core to the model’s decision-making
but interfere with the identification of principal components in low-rank decomposition (e.g., singular
value decomposition may misclassify noise as components needing retention).

Quantization first filters out this “noise” from redundant precision, making the numerical
distribution of parameters more regular (e.g., quantized parameters concentrate on limited discrete
values). This allows low-rank decomposition to focus more on the core numerical patterns that truly
affect model outputs, thereby retaining key information more efficiently and reducing information
loss during decomposition.

2. Reducing the Dynamic Range of Parameters and Improving the Stability of Low-Rank
Decomposition The dynamic range of original high-precision parameters can be large (e.g., floating-
point parameters may span multiple orders of magnitude). When processing data with a large dynamic
range, the numerical stability of low-rank decomposition may decline (e.g., when singular values
differ significantly in magnitude, components corresponding to small singular values are easily
ignored, leading to loss of useful information).

Quantization maps parameters to a smaller dynamic range (e.g., the range of 8-bit integers is typically
[−128, 127]), narrowing the numerical span of parameters. This enhances the numerical stability
of low-rank decomposition during calculations (such as singular value sorting and low-rank matrix
reconstruction) and reduces decomposition errors caused by an excessively large dynamic range.

II. REDUCING COMPUTATIONAL COSTS OF LOW-RANK DECOMPOSITION AND IMPROVING
COMPRESSION EFFICIENCY

Low-rank decomposition has high computational complexity (e.g., the time complexity of SVD
decomposition for an M ×N matrix is O(M2N +MN2)), but quantization can significantly reduce
resource consumption in this process:

Reducing Parameter Storage and Computation to Accelerate Decomposition After quanti-
zation, the bit-width of parameters decreases (e.g., from 32-bit to 8-bit, reducing storage by 75%).
During low-rank decomposition, memory usage and computation time for matrix operations
(such as matrix multiplication and singular value solving) decrease significantly.

For example, decomposing a quantized 8-bit integer weight matrix is several times faster on the same
hardware compared to the original 32-bit floating-point matrix, with lower memory usage (especially
for large-scale models like Transformers and ResNets, the effect is more pronounced).

To validate this, we conducted experiments: we used INT8 SpinQuant quantization + 20% Low-rank
decomposition (Q ⇒ L) compression, comparing it against standalone 20% Low-rank decomposition
(Only-L).

The Table 6 and Table 7 show that compared with standalone low-rank decomposition, the “quantiza-
tion first, then low-rank decomposition” approach achieves comparable performance and outperforms
the standalone low-rank decomposition method in some metrics. Moreover, it improves the compres-
sion speed by 2.2x, which is a significant advantage of this approach. It is worth noting that previous
works often regarded quantization and low-rank decomposition as orthogonal.

The above indicates that quantization followed by low-rank decomposition is also a valuable compres-
sion method. In particular, existing low-bit quantization methods can retain approximately 98% of
model performance, making their gains for low-rank decomposition increasingly valuable. Previous
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Qwen2-7B (20%) MMLU HumanEval GSM8K MATH Time
FP16 (0%) 70.3 51.2 79.9 44.2 - - min

Only-L 48.0 29.7 47.9 19.2 132 min

Q ⇒ L 48.3 29.3 47.8 19.6 63 min

Table 6: Results for Qwen2-7B (20% compression)

Mistral-7B (20%) MMLU HumanEval GSM8K MATH Time
FP16 (0%) 64.2 29.3 52.2 13.1 - - min

Only-L 46.3 18.7 29.9 4.7 136 min

Q ⇒ L 46.5 18.3 29.3 4.8 62 min

Table 7: Results for Mistral-7B (20% compression)

work did not explore reasonable compression orders, assuming the two orders are orthogonal. We
theoretically propose the optimal compression order, providing a theoretical foundation for future
research in the field of compression.

I LIMITATIONS

Firstly, due to limitations in computing resources, we did not conduct relevant experiments on larger
language models. Secondly, due to limited experimental resources, there is a lack of experiments
conducted on different types of GPUs to verify the widespread practicality of the verification method.
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