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ABSTRACT

Viruses pose a significant threat to human health. Advances in machine learning
for predicting mutation effects have enhanced viral surveillance and enabled the
proactive design of vaccines and therapeutics, but the accuracy of these methods
across priority viruses remain unclear. We perform the first large-scale modeling
across 40 WHO priority pandemic-threat pathogens, many of which are under-
surveilled, discovering that most have sufficient sequence or structural informa-
tion for effective modeling, highlighting the potential for using these approaches
in pandemic preparedness. To understand the limits of current modeling capabil-
ities for viruses, we curate 51 standardized viral deep mutational scanning assays
to systematically evaluate the performance of three alignment-based models, three
Protein Language Models (PLMs), and two structure-aware PLMs with different
training databases. We find marked differences in performance of these models on
viruses relative to non-viral proteins. For viral proteins, we find alignment-based
models perform on par with PLMs though with predictable differences in which
model is better for a particular function or virus depending on data available. We
define confidence metrics for both alignment-based models and PLMs that in-
dicate when additional sequence or structural data may be needed for accurate
predictions and to guide model selection in the absence of available data for eval-
uation. We use these metrics to inform the development a confidence-weighted
hybrid model that builds on the strength of each approach, adapts to the quality of
data available, and outperforms either of the best alignment or PLM models alone.

1 INTRODUCTION

Viral diseases pose a significant challenge to public health, with increasing human-animal inter-
actions heightening the risk of novel spillover events. The rapid mutation rates of viruses further
threaten the long-term efficacy of vaccines and therapeutics, necessitating robust predictive strate-
gies for viral evolution. Recent advances in machine learning for predicting the functional effects
of mutations have transformed the landscape of viral surveillance and therapeutic design. Such
methods fall broadly into two categories: Alignment-based models and Protein Language Models
(PLMs). Alignment-based models infer functional constraints from multiple sequence alignments
(MSAs) of homologous sequences (Hopf et al., 2017; Frazer et al., 2021). PLMs use deep learn-
ing approaches, without relying on MSAs, to learn constraints from all available protein sequences
(Meier et al., 2021; Marquet et al., 2022; Notin et al., 2022). Structurally-aware PLMs, such as
SaProt, integrate both sequence and local structural information (Su et al., 2023). We perform the
first large-scale modeling of protein fitness across pandemic-threat viruses. We evaluate model per-
formance across all 40 2024 World Health Organization (WHO) priority and prototype RNA viral
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pathogens across 21 viral families (WHO, 2024), identifying pathogens that are likely to benefit
from additional sequence and structural data.

The best PLMs are beginning to outperform alignment-based models across proteins from diverse
taxa (e.g., bacteria and eukaryotes). Yet, it is unclear if this trend holds for viruses since databases
used for training PLMs often contain fewer and less diverse viral sequences compared to sequences
from other species. Viral proteins have unique biophysical properties, such as lower stability, loosely
packed cores, and high structural flexibility, which are hypothesized to facilitate immune evasion and
host adaptation (Tokuriki et al., 2009). Alignment-based methods have been previously successful
in predicting viral antibody escape and vaccine effectiveness (Thadani et al., 2023; Youssef et al.,
2024). One challenge, however, is that many high-risk viral pathogens are understudied and have
few homologous sequences available, potentially limiting the applicability of both alignment-based
models and PLMs.

We present a comprehensive evaluation of mutation effect prediction models for viruses by curating
a dataset of 51 standardized viral deep mutational scanning (DMS) assays–more than twice the num-
ber in existing benchmarks (Notin et al., 2023). We assess the performance of three alignment-based
models (PSSM, EVmutation, EVE) with different epistatic assumptions, and three PLMs (ESM1v,
Tranception, VESPA) and two structurally-aware PLMs (SaProt-AF and SaProt-PDB) with differ-
ent training datasets. Our analysis reveals that sequence clustering hinders PLM performance on
viruses, whereas incorporating local structural information can partially compensate for the lim-
ited number of viral sequences. Additionally, we show that increasing sequencing depth does not
necessarily improve alignment-based model performance, rather optimizing alignments by priori-
tizing sequences with greater identity to the target protein yields better predictions. These findings
challenge conventional assumptions about optimal modeling strategies and highlight the need for
virus-specific adaptations in PLMs.

2 RESULTS

Using the ProteinGym benchmark (Notin et al., 2023), which evaluated 50+ protein fitness models
across 250+ DMS assays, we found that the top-performing PLM achieved comparable or superior
performance to the best alignment-based model across proteins from eukaryotic and prokaryotic
organisms (Fig 1A). However, for viral proteins, the best alignment-based model (GEMME (Laine
et al., 2019)) significantly outperformed the best PLM (VespaG (Marquet et al., 2022); Fig 1A,
S1). The relative under-performance of PLMs for viral proteins may stem from unique evolution-
ary constraints of viral proteins, such as their higher mutation rates(Fig 1B), or limitations in the
composition of PLM training datasets (Fig 1C,D). Most PLMs benefit generally from training on
clustered subsets of UniRef, such as UniRef90 or UniRef50, to account for biased sequencing, but
they contain disproportionately low numbers of viral sequences—0.6% and 1% respectively. For
example, while UniRef100 contains over 6,000 paramyxovirus fusion protein sequences, less than
10% remain in UniRef90, despite UniRef90 being roughly half the size of UniRef100 (Fig 1D). This
substantial loss of viral sequence diversity likely contributes to the lower performance of PLMs
on viral proteins and suggests that incorporating additional viral-specific training data without as
strict clustering could improve predictive accuracy. This evaluation informed the development of
a viral-specific deep mutational scanning benchmark across 47 scans, with double the number of
viral assays in ProteinGym, and with more in depth analysis of modeling considerations unique to
viruses. Our goal in creating this benchmark is to identify the optimal models to use to forecast mu-
tation effects on all WHO priority RNA viruses, and to make practical recommendations to improve
predictions for these viruses.

2.1 ALIGNMENT-BASED MODELS

For each protein in our newly curated viral benchmark, we trained three alignment-based models
(PSSM, EVmutation, and EVE, each with different epistatic assumptions) using MSAs generated
from three databases (UniRef90, UniRef100, and UniRef100+BFD+Mgnify) at multiple bit scores.
We found that increasing alignment depth improved performance for some proteins (positive corre-
lation between depth and DMS agreement) but reduced performance for others (negative correlation;
Fig 2A, S2)). Proteins that benefited from deeper alignments had a higher proportion of closely re-
lated sequences, while those that performed worse often contained more distantly related sequences
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Figure 1: Understanding modeling considerations for unique viral features A. Best alignment-
based model or PLM performance for eukaryotic, prokaryotic, and eukaryotic-infecting viral pro-
teins from ProteinGym, measured as the average Spearman correlation against DMS assays. B.
Geometric average mutation rates (substitutions per site per year) from Linz et al. (2014). C. Num-
ber of effective sequences (normalized by sequence length, clustered by 99% identity) in alignments
from ProteinGym. D. Number of sequences in UniRef100, UniRef90, and UniRef50, and structures
in the PDB and AF2DB, and for antigenic proteins of selected viruses or viral families.

(Fig 2B). This suggests that after a certain threshold, including additional sequences introduces noise
or redundant information that can negatively impact performance, as mutations are seen on vastly
different background sequences, that are likely under different functional constraints. This holds
true even when considering the NDCG metric focused on top mutation ranking (Fig S3).

To generalize these findings to viral proteins without existing DMS data for evaluation, we propose
a heuristic for selecting the optimal alignment: choosing the alignment with the highest number
of effective sequences (Neff), the number of sequences after clustering at 99% identity, up to a
threshold of 103.5 (Fig S4)). Using this threshold, we found that EVE outperformed both PSSM
and EVmutation across almost all viral proteins (Fig 2C, S5), consistent with previous findings
that EVE’s probabilistic approach capturing high-order epistasis offers better predictive accuracy
(Frazer et al., 2021; Riesselman et al., 2018; Thadani et al., 2023). Additionally, when applying this
alignment selection strategy to viral proteins, EVE performed slightly better on average for viral
compared to non-viral proteins (for which alignments were selected using the protocol outlined in
ProteinGym). These results highlight the benefit of using this Neff threshold, as this improvement
is remarkable considering that almost none of the evaluated viral proteins have sufficient sequence
diversity to accurately predict structural contacts (Fig S6), as can commonly be done for non-viral
proteins. Lastly, we find that Neff normalized by the length of the protein (L) is an indicator of EVE
performance across viral proteins, and can therefore be used as an estimate of model confidence (Fig
2D).

2.2 PROTEIN LANGUAGE MODELS

We likewise evaluated our newly compiled viral DMS datasets using three sequence-only PLMs—
ESM-1v (trained on UniRef90), Tranception (trained on UniRef100 without MSA retrieval), and
VESPA (trained on BFD and UniRef50)—and two structurally-aware PLMS—SaProt-AF2 (trained
on the AlphaFold2 database), and SaProt-PDB (continues training on the PDB). PLMs were chosen
for their relatively high performance on the ProteinGym dataset and to cover a range of training
databases. PLMs trained on UniRef50 sequence alone, such as CARP (Yang et al., 2024), were
excluded due to their predictably low performance on viruses (Table S1).

Our analysis revealed that sequence scale of the training dataset improves sequence-only PLM per-
formance for viruses, with ESM-1v having the lowest performance and VESPA having the best
performance (Fig 3A), unlike for other taxa (Fig S7). Moreover, including local structural informa-
tion lead to the best performing PLM: SaProt-PDB outperforms all other PLMs in approximately
50% of the viral DMS datasets (Fig S8). The performance boost provided by SaProt-PDB over
SaProt-AF2 is particularly pronounced for viral proteins, while SaProt-PDB’s advantage over other
PLMs declines for viruses with low numbers of unique strains in the PDB, such as Lassa and Nipah
(Fig S8).

3



Published at the GEM workshop, ICLR 2025

Figure 2: EVE outperforms other alignment-based models. A. Increasing alignment depth often
reduces model performance. Each point represents the slope for a given viral protein of EVmu-
tation model performance (Spearman with DMS) and Neff (across 6 bitscores and 3 databases).
Positive slopes indicate performance increases with increasing Neff (as in influenza polymerase),
and negative slopes indicate decreases in performance with increasing Neff (as in Coxsackie Pro-
tease). B. Deeper alignments improve (or reduce) performance when a larger (or smaller) propor-
tion of sequences are within 90% identity of the target sequence. C. Spearman correlation between
alignment-based models and DMS scores across collected viral proteins. D. Spearman correlations
between EVE and DMS scores for viral proteins and non-viral ProteinGym datasets increase with
increasing Neff/L (Neff normalized by sequence length).

We identify a model confidence score, measured as invesre pseudo-perplexity, that effectively pre-
dicts SaProt-PDB performance for viral proteins, with higher confidence scores correlating with
better performance (Fig. 3B). This suggests that confidence scores may serve as a useful uncer-
tainty quantification metric for viruses lacking experimental evaluation. As expected, SaProt-PDB
had lower confidence scores for viral proteins than for non-viral proteins, likely due to the sparse
representation of viral structures in the PDB. SaProt-PDB’s performance was directly linked to the
number of relevant structures in the training data (Fig. 3C). Therefore, incorporating even a lim-
ited number of viral structures could significantly improve predictions for viral proteins with low
structural representation.

2.3 MODELING 40 WHO PRIORITY PATHOGENS

The WHO recently prioritized 40 RNA viruses for research and intervention development based
on transmission, virulence, and available medical countermeasures (WHO, 2024). Using insights
from our prior analysis, we aimed to determine the best modeling approach for each WHO priority
virus—particularly those lacking experimental data—and assess whether additional sequencing or
structural information could improve predictions.

Among alignment-based and PLM approaches, EVE and SaProt-PDB were the top-performing mod-
els, with comparable average Spearman correlations (0.454 for EVE, 0.451 for SaProt-PDB; Fig.
4A). However, their relative performance varied in a predictable manner: SaProt-PDB excelled for
phages with abundant structures in AF2DB and PDB, while EVE performed better for viruses with
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Figure 3: SaProt-PDB outperforms PLMs trained on sequences alone. A. Spearman correlation
between PLM and DMS scores across collected viral proteins. B. SaProt-PDB confidence scores
(1/pseudo-perplexity) are a good indicator of model performance. Viral replication or infectivity
assays are highlighted in red. SaProt-PDB has lower confidence scores for viral compared to non-
viral proteins. C. SaProt-PDB performance is related to number of related structures (via foldseek
search, maximum 1000). Learning from structural information requires fewer related training points
than learning from sequences (training points estimated using UniRef100 EVcouplings alignments).

limited structural data (Fig S9). Notably, our confidence measures (inverse pseudo-perplexity for
SaProt-PDB and Neff/L for EVE) reliably predicted which model would perform better (Fig. 4B).
Using these insights, we identified the minimum confidence score for any virus with known high
model performance (Spearman greater than 0.6 against DMS). For the WHO pathogens, our anal-
ysis suggests that approximately 30% of viral antigens would benefit from additional sequencing
data, while 16% would require additional structural data to improve model predictions (Fig. 4C).
Four viral antigens currently lack sufficient sequences and structure information for accurate mod-
eling and would benefit from increased sequencing and structure determination efforts: Hantavirus,
Rift valley fever, Dabie bandavirus, and Sin Nombre virus Gn glycoproteins (the only Gn proteins in
the WHO antigen dataset, each of which has a co-translational heterodimer Gc with sufficient data
(Guardado-Calvo & Rey, 2021)).

Figure 4: Evaluating EVE and SaProt utility across 40 WHO priority pathogens. A. EVE
and SaProt-PDB show comparable performance across viruses. B. Viral proteins with high EVE
confidence scores (Neff/L) have better performance with EVE; those with higher SaProt confidence
scores (1/pseudo-perplexity) are better modeled with SaProt-PDB. Spearmans are considered similar
if they are within 0.05. C. Few WHO priority pathogen proteins have lower EVE and SaProt-PDB
confidence scores than other viral proteins with Spearman more than 0.6 (dotted lines).
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3 DISCUSSION

Our comprehensive evaluation of protein mutation effect prediction models for viruses highlights
key areas for improvement. While sequence clustering helps mitigate bias in PLMs (Meier et al.,
2021), the low representation of viral sequences in standard databases hinders viral predictions.
Fine-tuning with additional viral sequences from databases like GISAID (Shu & McCauley, 2017)
may enhance performance. Structure-aware modeling also offers a promising solution by compen-
sating for limited viral sequence diversity with structural information. Notably, SaProt-PDB requires
far fewer related training structures—many fewer than 1,000—compared to sequences needed for
sequence-based PLMs. This underscores the potential advantage of leveraging structural data from
either experimentally-determined (e.g., PDB) or predicted structure databases (e.g., BFVD (Kim
et al., 2025) and Viro3D (Litvin et al., 2024)).

We find that deeper alignments do not necessarily improve alignment-based model performance.
Increasing alignment depth beyond Neff = 103.5 introduces more distantly related sequences (<90%
identity to the target) and reduces model performance, a trend that may extend to non-viral proteins.
Future work could assess whether performance declines further with sequences in the twilight zone
(20–35% identity) (Rost, 1999), whether selectively retaining closer sequences while pruning distant
ones improve signal-to-noise ratio, and whether this sequence identity distribution could be used to
improve the confidence metric.

Due to the high cost of training PLMs, the impact of viral sequencing depth on their performance
remains unclear. Using PLMs trained on different datasets (albeit with different architectures) as a
proxy, we find that PLMs trained on larger sequence databases (e.g., UniRef100 or UniRef50+BFD)
perform better for viruses compared to other taxa which are well-represented in smaller databases
(e.g., UniRef90). We show that inverse pseudo-perplexity is a good PLM confidence indicator.
Taken together, these results suggest that for proteins with no existing experimental or sequencing
data for evaluation, Neff/L and inverse pseudo-perplexity provide reliable confidence measures to
determine the best modeling approach. Our results and benchmarks are available on GitHub.

Lastly, our results suggest that for the vast majority of WHO priority pathogens, most of which do
not have large-scale experimental data, existing alignment-based and PLMs can accurately predict
the fitness impacts of mutations. Overall, our findings provide insights for future model development
tailored to viral mutation prediction, which could enhance efforts in viral surveillance, identifying
immune and antibody escape mutations and aiding variant-proof vaccine design.

CODE AND DATA AVAILABILITY

Data and code available at https://github.com/debbiemarkslab/priority-viruses.
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A SUPPLEMENTARY FIGURES

Supplementary Figure 1: Protein language models have higher performance across all taxa except
for eukaryotic viruses. Each point represents the average correlation across 250 DMS assays for
each of the 50 fitness models in ProteinGym, labeled with their model type. Viral performance is
on the dataset provided by ProteinGym which is a more limited set of DMSs than available in this
paper. Lines denote maximum Spearman correlation per model type for each taxa. For details of
included models see Supp Table S1. Notably, this benchmark excludes SaProt-PDB.
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Supplementary Figure 2: Relationship between Neff and model performance (Spearman rank cor-
relation) between model scores and DMS. Selected Neff cutoff (red line).
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Supplementary Figure 3: Relationship between Neff and model performance (NDCG rank correla-
tion) between model scores and DMS. Normalized Discounted Cumulative Gain (NDCG) measures
between 0 (low) and 1 (high) and focuses ranking performance on the top rankings (here top 10%).
Selected Neff cutoff (red line).
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Supplementary Figure 4: Relationship between maximum log Neff of all alignments for a given
viral DMS and the log Neff of the alignment with the highest EVmutation spearman. Selected Neff
cutoff (red line).
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Supplementary Figure 5: Spearman rank correlation between PLM model score and DMS score
for each curated viral protein. EVE outperforms other alignment-based models on almost all pro-
teins.
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Supplementary Figure 6: Selected contact maps from UniRef100 alignments with bit score 0.1
for SARS-CoV-2 Spike, Influenza H3 and HIV Envelope proteins. HIV Env is one of the few
examples of viral proteins with a DMS where EVcouplings successfully predict structure contacts,
while ability to predict structural contacts is a strong predictor of model performance for other taxa.
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Supplementary Figure 7: Comparison of the Spearman rank correlation of all PLM models across
DMSs separated by taxa.
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Supplementary Figure 8: A. Comparison of the Spearman rank correlation of the SaProt-PDB
model to SaProt-AF2 model for all viral DMSs. SaProt-PDB performs best on almost all viruses.
SaProt-PDB has an advantage over SaProt-AF2 especially for viruses like SARS-CoV-2 and In-
fluenza that are vastly over-represented in the PDB. B. Comparison of the Spearman rank correlation
of SaProt-PDB to SaProt-AF2 for all DMSs from ProteinGym. SaProt-PDB outperfoms SaProt-AF2
for most eukaryotic viral proteins, but not for phages. C. Spearman rank correlation between PLM
model score and DMS score for each curated viral protein.
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Supplementary Figure 9: Viral proteins with higher EVE confidence scores (Neff/L) than SaProt
confidence scores (1/perplexity) tend to have fewer structures in training in AF2DB and PDB (darker
blue for fewer structures).
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B SUPPLEMENTARY TABLES

Model Type Model Avg Spearman Viral Avg Spearman

Alignment-based model

GEMME 0.455 0.469
EVE (ensemble) 0.439 0.428

EVE (single) 0.433 0.424
DeepSequence (ensemble) 0.419 0.344

DeepSequence (single) 0.407 0.323
EVmutation 0.395 0.388

Wavenet 0.373 0.328
Site-Independent 0.359 0.383

Hybrid - Alignment & PLM

TranceptEVE L 0.456 0.453
TranceptEVE M 0.455 0.441
TranceptEVE S 0.452 0.433

Tranception L 0.434 0.432
MSA Transformer (ensemble) 0.434 0.414

Tranception M 0.427 0.415
MSA Transformer (single) 0.421 0.390

Tranception S 0.418 0.405
Tranception M no retrieval 0.348 0.349

Unirep evotuned 0.347 0.349

Hybrid - Structure & PLM

SaProt-AF2 (650M) 0.457 0.300
ProtSSN (ensemble) 0.449 0.356

ProtSSN (k=20 h=1280) 0.442 0.347
ProtSSN (k=20 h=512) 0.441 0.359

Protein language model

VESPA 0.436 0.432
VESPAl 0.394 0.392

Progen2 XL 0.391 0.391
Progen2 L 0.380 0.333

Progen2 M 0.379 0.342
Progen2 Base 0.378 0.328

Tranception L no retrieval 0.374 0.395
ESM-1v (ensemble) 0.407 0.279

RITA XL 0.372 0.402
CARP (640M) 0.368 0.273

RITA L 0.365 0.391
RITA M 0.350 0.385

Progen2 S 0.336 0.285
CARP (76M) 0.328 0.150

ESM2 (3B) 0.406 0.274
ESM2 (15B) 0.401 0.313

ESM2 (150M) 0.387 0.137
ESM2 (650M) 0.414 0.238

ESM2 (35M) 0.321 0.102

Inverse folding model
ESM-IF1 0.422 0.374

MIF 0.383 0.359
ProteinMPNN 0.258 0.248

Supplementary Table 1: Model performance previously available in ProteinGym (Notin et al.,
2023). Note this analysis only covers half of the now curated 51 viral datasets and does not include
SaProt-PDB, but can be used to contextualize our findings in terms of 50+ models.
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Bitscore UniRef90 UniRef100 UniRef+BFD
0.5 57 57 48
0.4 57 56 37
0.3 55 51 28

0.05 54 51 21
0.04 53 45 12
0.03 44 37 10

Supplementary Table 2: Number of successful models given the equal memory constraints at
different bitscores across UniRef90, UniRef100, and UniRef+BFD datasets. Failed models with
high numbers of sequences would mostly be excluded by selected Neff cutoff.
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C EXTENDED METHODS

C.1 OVERVIEW

We curated and standardized a set of 51 viral DMSs (more than doubling the number of viral datasets
in ProteinGym) to evaluate eight models, which were selected to span differing modeling approaches
and training on diverse sequence datasets. Assays measuring expression, host receptor binding, or
replication, or infectivity. The viruses included are relevant for vaccine design (e.g., SARS-CoV-2
and other sarbecoviruses, seasonal and pandemic Flu, and pandemic-threat Lassa andNipah viruses)
as well as for viral vector design (e.g., AAV).

For alignment-based methods, we tested three models: position-specific scoring matrix (PSSM),
EVmutation (Hopf et al., 2017), and EVE (Frazer et al., 2021). PSSM assumes each position in
the protein evolves independently and assigns a prediction score for each mutation dependent on
its frequency in the alignment. In addition to capturing position-specific frequencies, EVmutation
infers pairwise residue dependencies and can therefore account for epistatic interactions (Hopf et al.,
2017). Meanwhile, EVE captures higher order interactions by using a variational autoencoder ar-
chitecture (Frazer et al., 2021).

For these methods, we used three different sequence datasets for alignment generation: UniRef100,
a non-redundant protein sequence database; UniRef90, a 90% identity-clustered version of
UniRef100; and UniRef100+BFD+Mgnify which combines UniRef100 with the Big Fantastic
Database (BFD) and the Mgnify database. The BFD integrates sequences from UniProt (Swiss-
Prot and TrEMBL) (uni, 2021), Metaclust (Steinegger & Söding, 2018), and the Soil and Marine
Eukaryotic Reference Catalog (Steinegger et al., 2019). Mgnify includes proteins from metage-
nomic assemblies (Richardson et al., 2022). We generated alignments with six different length-
normalized bit scores: 0.5, 0.3, 0.1, 0.05, 0.03, and 0.01 bits per residue. To mitigate redundancy,
sequences in the MSA were clustered at 99% identity, with each sequence within a cluster assigned
a weighted contribution equal to the inverse of the cluster size. A challenge during the process of
fitting alignment-based models was the memory required to query large sequence databases. Some
models encountered memory limitations that prevented training on the largest alignments (Table
S2), but these would mostly be excluded by the choice of Neff cutoff. This highlights the compu-
tational intensity of alignment-based approaches, particularly when using comprehensive databases
like BFD and Mgnify, with 2.1 billion and 2.4 billion sequences, respectively.

For PLMs, we evaluated Tranception (without MSA retrieval) (Notin et al., 2022), ESM-1v (Meier
et al., 2021) and VESPA (Marquet et al., 2022). Tranception is a autoregressive PLM trained on
UniRef100. ESM-1v has a Transformer encoder architecture and was trained on UniRef90. VESPA
combines per-residue conservation prediction with the embeddings from ProtT5 (Elnaggar et al.,
2021), a PLM with T5 architecture trained first on BFD and then finetuned on UniRef50.

We also evaluate a structure-aware protein language model, SaProt (Su et al., 2023), which em-
ploys the same architecture as ESM2 (trained on UniRef50) but expands the embedding layer to
encompasses 441 structurally-aware tokens instead of the original 20 amino acid residue tokens.
We evaluated two versions of SaProt: SaProt-AF2 which was trained on the AlphaFold2 database
compromising of approx. 40 million predicted structures (without eukaryotic viruses, though includ-
ing phages), and SaProt-PDB which continues pretraining of the SaProt-AF2 model on the 60,000
experimentally derived structures from the PDB. We use the ProteinGym benchmark(Notin et al.,
2023) to extrapolate the results of the models tested here to the over 50 alignment-based, protein
language model, hybrid, and inverse folding models evaluated previously on a more limited set of
viral assays.

C.2 VIRAL DEEP MUTATION SCANS

We searched for all viral fitness and escape deep mutational scans, focusing here on single sub-
stitution mutations (Sinai et al., 2021; Mattenberger et al., 2021; Álvarez-Rodrı́guez et al., 2024;
Suphatrakul et al., 2023; Tsuboyama et al., 2023; Bakhache et al., 2024; Qi et al., 2014; Haddox
et al., 2018; Duenas-Decamp et al., 2016; Haddox et al., 2016; Fernandes et al., 2016; Heredia et al.,
2019; Doud & Bloom, 2016; Wu et al., 2014; Lee et al., 2018; Dadonaite et al., 2024; Doud et al.,
2015; Jiang et al., 2016; Lei et al., 2023; Wu et al., 2015; Soh et al., 2019; Li et al., 2023; Ashen-

23



Published at the GEM workshop, ICLR 2025

berg et al., 2017; Teo et al., 2024; Hom et al., 2019; Wu et al., 2016; Starr, 2024; Starr et al., 2020;
Dadonaite et al., 2023; Taylor & Starr, 2023; Flynn et al., 2022; Wu et al., 2024; Sourisseau et al.,
2019; Setoh et al., 2019; Maurer et al., 2024; Welsh et al., 2024; Dingens et al., 2019; Frank et al.,
2022; Lei et al., 2024; Kikawa et al., 2023). We focus now only on fitness DMSs, but will later
include escape from monoclonal antibodies and patient sera. Moreover, some DMSs were excluded
from this benchmark depending on the assayed phenotype, for example drug inhibition assays, or
difficulties with the data, but may be included in the future.

C.3 ALIGNMENT-BASED MODELS

C.3.1 GENERATION OF MULTIPLE SEQUENCE ALIGNMENTS

All alignment-based models rely on a method for generating a multiple sequence alignment on
which they are trained. Multiple sequence alignments of the corresponding protein family were ob-
tained using the method outlined in Hopf et al. (2017). Briefly, this involved five search iterations
of the profile HMM homology search tool jackhmmer against the specified sequences database.
We evaluated the impact of searching against three database with vastly different number of se-
quences: UniRef100, a database of non-redundant protein sequences; UniRef90, a database obtained
by clustering the UniRef100 database based on 90% sequence identity and specifying a representa-
tive sequence per cluster; Big Fantastic Database (BFD) covering protein sequences from UniProt
(Swiss-Prot&TrEMBL; uni (2021)), Metaclust (Steinegger & Söding, 2018) and Soil Reference Cat-
alog Marine Eukaryotic Reference Catalog (Steinegger et al., 2019). We used length-normalized bit
scores to threshold sequence similarity. We generated alignments across six bit scores of 0.5, 0.3,
0.1, 0.05, 0.03, 0.01 bits/residue. The alignments were post-processed to exclude positions with
more than 50% gaps and to exclude sequence fragments that align to less than 50% of the length of
the target sequence.

C.3.2 PSSM

To infer the contribution of site-specific amino acid constraints without considering explicit epistatic
constraints, we used a site-wise maximum entropy model as implemented in Hopf et al. (2017).

C.3.3 EVMUTATION

To predict the effects of mutations that explicitly captures pairwise residue dependencies between
positions, we used EVMutation as implemented in Hopf et al. (2017).

C.3.4 EVE

To predict the effects of mutations capturing high-order dependencies between positions, we used
EVE, a Bayesian VAE model architecture, as implemented in Frazer et al. (2021).

C.4 PROTEIN LANGUAGE MODELS

C.4.1 SEQUENCE DATASETS

The protein language models described here do not use multiple sequence alignments, instead us-
ing variants of a Transformer (Vaswani, 2017) popularized in natural language modeling for self-
supervised training on a large corpus of sequence data. In this case, the models are trained on large
protein sequence datasets from across the entire protein universe, rather than only sequences specific
to a given family of proteins. These datasets include BFD, UniRef100, and UniRef90, as well as
the AF2 and PDB structure databases. Moroever, because these datasets are alignment-free, these
models can more naturally score insertions and deletions.

C.4.2 TRANCEPTION

Tranception (Notin et al., 2022) combines an autoregressive protein language model with inference-
time retrieval from a MSA. We used Tranception Large (700M parameters) trained on UniRef100
without MSA retrieval as implemented in ProteinGym (Notin et al., 2023).
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C.4.3 ESM-1V

ESM-1v (Meier et al., 2021) has a Transformer encoder architecture similar to BERT [Devlin et al.,
2019] and was trained with a Masked-Language Modeling (MLM) objective on UniRef90. We use
the implementation presented in ProteinGym (Notin et al., 2023) to handle sequences that are longer
than the model context window (ie., 1023 amino acids).

C.4.4 VESPA

VESPA (Marquet et al., 2022) combines the embeddings from ProtT5 (Elnaggar et al., 2021) with
a per-residue conservation prediction. ProtT5 uses a T5 architecture which uses an encoder and
decoder and was first trained on BFD and then finetuned on UniRef50.

C.4.5 SAPROT

SaProt (Su et al., 2023) introduces a structure-aware vocabulary, into protein language modeling
by training on Foldseek (van Kempen et al., 2022) 3Di tokens which represent the local geometric
conformation information of each residue relative to its spatial neighbors. These 3Di tokens are
combined with typical amino acid residue tokens as input to the SaProt model, which utilizes an
ESM-2 Transformer architecture (Lin et al., 2022). We use both SaProt-650M-AF2, trained on
approximately 40 million AF2 sequences/structures (from UniRef50) which notably excludes all
viral proteins, and SaProt-650M-PDB, which continuously pre-trains the SaProt-650M-AF2 model
on the PDB.
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